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Abstract In this paper, we establish an economy-energy-
environment integrated model by introducing a new technical
mechanism, that is, the revised logistic model, to be the
technical core of the energy module. This gives the conven-
tional top-down modes more bottom-up features and allows
us to model the evolutionary pathways of multiple non-carbon
technologies. The model’s simulations indicate that the mixed
policy of both carbon tax and subsidy plays a significant part
in promoting the development of new energy technologies.
The shares in total primary energy usage for PV solar, geo-
thermal power and wind energy, for example, will have in-
creased to 24.9, 9.7 and 6.12 %, respectively. Meanwhile,
technological progress can be significantly enhanced by in-
troducing research and development (R&D) investment. As a
result, the percentages of usage of the above three technolo-
gies are likely to increase to 26.2, 12.1 and 7.2%, respectively,
in that case. Besides, energy supply market will be locked up
by non-fossil energy as early as 2035, or thereabouts, under
the current R&D investment regime. Thus, the expansion of
R&D may significantly improve the carbon-reducing poten-
tial of the mixed policy and perform well in easing the tax
burden on businesses and consumers in the long run.

Keywords Logistic curve . Learning-by-doing .

Learning-by-searching . Carbon tax . Subsidy . Technology
evolution

1 Introduction

As the global economy develops rapidly, the consumption of
fossil fuels is increasing, which inevitably results in an in-
crease of carbon dioxide emissions, thereby affecting the
environment. Effectively reducing CO2 emissions is widely
considered to be the most important approach to controlling
atmospheric concentrations of greenhouse gases and
preventing our earth from warming.

There are many ways to cut down CO2 emissions, includ-
ing improving traditional fossil energy technologies to de-
crease the carbon intensity per unit of output, changing peo-
ple’s behaviour to save energy and developing low-carbon or
non-carbon technologies, such as carbon capture and storage
(CCS) and renewables. In fact, developing low-carbon energy
technologies to replace fossil fuels is one of the most promis-
ing directions in responding to the issue of emission abate-
ment in the long run. As shown in McKinsey [28], the low-
carbon energy substitution may contribute to 25.5 % of the
total CO2 abatement opportunities in 2030, at which time
around 70 % of global electricity supply is provided by low-
carbon alternatives. Meanwhile, the CO2 abatement contribu-
tion of low-carbon alternatives will account for about 56 % in
2035 for achieving the 450-ppmv carbon concentration stabi-
lization target [18]. However, most of the low-carbon tech-
nologies (such as PV solar and Tide) are too expensive cur-
rently to deploy on a large scale in the absence of financial
incentives, this may block the shift process of energy supply
from fossil fuels to low-carbon alternatives. Policies are im-
portant to promote not only diffusion of alternatives but also
innovations in technologies themselves [10, 22]. For example,
with respect to the current policy case, the increment of non-
fossil energy will reach 604 Mtoe under the International
Energy Agency (IEA) new policies scenario, which yields
annual emission savings of around 5 GtCO2 in 2035 [18].
Based on this, the first intention of this paper is to explore the
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long-term evolutionary pathways of multiple carbon-free
technologies and determine the role of policy incentives in
promoting the development of low-carbon alternatives.

The second intention of this work is to consider the inter-
action between learning-by-doing (LBD) effect and research
and development (R&D)-based learning effect in the process
of technological evolution and explore the complementary
effect of the strength of R&D activities in promoting techno-
logical penetration. In fact, the public R&D activities provide
an important option to supplement the knowledge (or experi-
ence) accumulated by LBD process and contribute a lot to
accelerate the cost-reduction of non-carbon innovations.
These are very critical for the development of new technolo-
gies, especially in their early stages [19]. Furthermore, in-
duced R&D will lower the cost of achieving a given abate-
ment target [12].

In this paper, we establish a one-region energy-economy-
environmental (E3) integrated model that allows us to intro-
duce multiple new energy technologies and address the pro-
posed issues. This model builds on the framework of top-
down models, like DICE [32], RICE [33], MERGE [23],
DEMETER [8] and ENTICE [36], but our model differs from
these models at least in two aspects. First, we introduce a new
technical mechanism that theoretically allows us to couple as
many technologies as we need. Energy technical structure in
the pioneering top-down models are usually oversimplified,
which makes the models weak in incorporating multiple new
energy technologies and determining the long-term competi-
tive relationship between fossil and non-fossil technology
[36]. This may largely be because the constant elasticity
substitution (CES) function method has been widely used to
model energy technological substitution in conventional top-
down models, while this method gets limited potential in
combining multiple technologies [34, 37]. To be specific, a
substitution elasticity parameter is indispensable when we try
to describe the substituting relations between any two tech-
nologies by employing the CES method; hence, for consider-
ing multiple technologies, lots of elasticity parameters are
essential. The problem lies in that the elasticity parameters
for new energy technologies are often difficult to estimate
(largely due to the unavailability of data), and this might bring
plenty of uncertainty to the model results.1 In this work, we
attempt to introduce a new revised logistic technical model
into the energy module of our E3 framework to replace of the
conventional CES method. The introduction of this new tech-
nical mechanism allows us to incorporate multiple carbon-free
energy technologies, cutting down the number of elasticity

parameters to be estimated and, to some extent, releasing the
dependence on data. Besides, this mechanism allows the
conventional top-down models to feature more bottom-up
technical characteristics, which provides a feasible option to
bridge these two types of model frameworks.2

Second, technological progress is endogenized in our mod-
el by means of two-factor learning curve, directly incorporat-
ing links between policy and technological change. Research
on endogenous technological change started at the 1990s
when S. Messner first endogenized technological change in
the system-engineering model called MESSAGE [29]. In
general, endogenous technological advancement comes
through knowledge (or experience) that can be accumulated
by the LBD process or investment in research and develop-
ment (R&D).3 Despite a substantial work on studying endog-
enous technological change in E3 models, majority of them
endogenize technological change by one-factor learning
curve.4 For example, Messner [29], Van der Zwaan et al.
[41], Gerlagh et al. [8], Kypreos et al. [21] and Manne et al.
[24] endogenize technological improvement by LBD process,
while many other papers consider it based on LBS process,
including Grübler et al. [14], Goulder et al. [12], Buonanno
et al. [7], Popp [36] and Gillingham et al. [11]. However,
knowledge accumulated no matter by LBD process or LBS
process becomes obsolete as time goes, i.e. there exists so-
called forgetting-by-not-doing phenomenon (FBND), which
would weaken the effect of learning on technological ad-
vancement. R&D efforts (or LBD) act as a complementary
channel for knowledge accumulation; it can mitigate the effect
of FBND and provide long-term forces to drive technical
improvement [4]. On this basis, the two-factor learning curve
(both LBD and LBS) is employed in the top-down model
framework to describe endogenous technological change, and
this provides us a feasible option to discuss the interaction
between LBD and LBS in the process of technological evo-
lution and explores the complementary effect of the strength
of R&D activities on technological penetration.

1 Gerlagh and van der Zwaan [9] give sensitivity analysis of substitution
elasticities between fossil fuels and zero-carbon energy based on their
DEMETER model. When the value of elasticity is set to be 2.0, 3.0 and
4.0 respectively, the carbon emissions in 2020 will range from 7.6 to
7.8 GtC, and the reductions will be in the interval 36–73%; shares of non-
fossil energy demand will change from 9 to 16 %.

2 Top-downmodels focus onmacroeconomy, in which output is given by
a production function, with capital, labour to be the inputs. Sometimes,
energy or electricity is also input to be the complemented production
factor, leaving energy technology advancement exogenized by automatic
energy efficiency improvement (AEEI). Bottom-up models always get
relatively rich set of specific energy technologies, making technological
progress an exogenous process of cost and efficiency improvements. That
is why the bottom-up models are often called “energy-system model” [8,
36].
3 Arrow [3] is regarded as the first to discuss learning curves to which he
refers as “learning-by-doing” (LBD), while the R&D-driven learning
curve is often called “learning-by searching” (LBS) process. More infor-
mation about learning curves can be attributed to Ibenholt [15] and
Mattsson [25].
4 Kouvaritakis et al. [20] and Barreto and Kypreos [4] have done some
research on the two-factor learning method, but they did not discuss it in
the scope of E3 models, and their study intention is different from ours as
well.

56 H.-B. Duan et al.



The remainder of this paper is organized as follows.
Section 2 presents the framework of the model established in
this paper and characterized by its technical core of logistic
curves. Data sources and processing will be showed in
Section 3. Section 4 is dedicated to exhibit the modelling
results, as well as the corresponding analysis. Robustness
analysis of some key technical parameters is shown in
Section 5. Conclusions will be drawn in the last Section 6.

2 Model Description

In this paper, we establish an economy-energy-environment
integrated model that we call the E3METL model, as an
acronym for “economy-energy-environment model with en-
dogenous technological change by employing logistic curve”.
Our purpose is to study the evolutionary paths of carbon-free
technologies in the policy context and the effects of R&D on
the economic and technical systems. E3METL views the
world as a single region and embraces three modules of
macroeconomy, technological change and climate. The model
framework can be seen in Fig. 1.

2.1 Macroeconomy Module

Similar to the DICE and MERGE models, we optimize the
model by maximizing gross social welfare, which is presented
by the discounted sum of the population-weighted utility of
consumption per head, subject to a budget constraint:

Max
X

t

L tð Þ⋅log C tð Þ
L tð Þ

� �
∏
τ¼0

t

1þ σ τð Þð Þ−Δt

 !
; ð1Þ

where C(t) and L(t) presents consumption and population,
respectively; σ tð Þ ¼ σ0⋅e−dσt is the pure time preference, with
initial value σ0 and decline rate dσ.

5 The production processes
relies on the inputs of capital K(t), labour L(t) and energy E(t),
which can be expressed as follows:

Y tð Þ ¼ A tð Þ K tð Þγ ⋅L tð Þ1−γ
� �κ

þ B tð ÞE tð Þκ
h i1=κ

; ð2Þ

where A(t) presents the technical progress level of capital and
labour, γ is share of capital in capital-labour composition, and
B(t) shows the autonomous energy efficiency improvement
(AEEI), which includes all the energy technical progress
induced by price changes. Also, κ gives the substitution
elasticity between capital-labour mix and energy inputs.

Capital K(t) can be formulated in terms of current and past
capital stock adjusted by the depreciation rate:

K tð Þ ¼ 1−δð ÞK t−1ð Þ þ I tð Þ; ð3Þ

The outputs Y(t) are made by the production department
and will be used to pay for consumption, investment, energy
costs and R&D activities; the balance relationship is as fol-
lows:

Y tð Þ ¼ C tð Þ þ I tð Þ þ EC tð Þ þ ARD tð Þ; ð4Þ

where I(t) and ARD(t) are the investments and gross R&D
expenditures, respectively, and EC(t) gives the energy cost,
which is expressed as the product of composite price and
energy usage,

EC tð Þ ¼ Pe tð Þ⋅E tð Þ; ð5Þ

Pe(t) is the composite price of fossil fuels, and E(t) presents
energy consumption. For simplicity and convenience in cal-
culating carbon emissions, the consumption of fossil fuels will
be measured by equivalent tons of carbon (tC) in this paper; as
for non-fossil fuels, we measure them by transforming equiv-
alently in terms of their calorific value to carbon-based energy.

2.2 Energy Technology Module

2.2.1 Experience Curve Based on Learning-by-Doing

Considering both LBD-based and LBS-based ITC in energy
technologymodelling is one of the main features of this paper;
thus, it is necessary to define the learning curves. Earlier
research on ITC is mainly based on the learning-by-doing
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Fig. 1 The framework of the E3METL model

5 Debates on discount rate have never ceased; for more details on how to
set depreciation rates appropriately in environmental problems, see [38].
In this paper, we give the value by referring to Nordhaus [32].
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process, and the one-factor learning curve (OFLC) can be
expressed as follows:

Ci tð Þ ¼ ai⋅ KDi tð Þð Þ−bi ; ð6Þ

whereCi(t) is the cost per unit energy for technology i and bi is
the learning index. The relation between the learning index
and learning rate takes the following form:

1−LRi ¼ 2−bi ; ð7Þ

LRi is the so-called learning rate, which is the rate at which
the cost declines each time the accumulative production or
installed capacity doubles.6 Knowledge stock KDi(t) based on
learning-by-doing is usually measured by the accumulation
amount of energy consumption, including the “obsolete ef-
fect” of knowledge, i.e.

KDi tð Þ ¼ 1−δ1ð ÞKDi t−1ð Þ þ Si tð Þ⋅E tð Þ; ð8Þ

where Si(t) is the share of technology i in total primary energy
demand, and δ1 is the obsolete rate for knowledge.

2.2.2 Two-Factor Experience Curves by Introducing R&D
Efforts

R&D activity has been proven to provide fundamental driving
forces towards economic growth and technological progress,
especially at the early development stages of carbon-free
technologies [13]. On this basis, we endogenized energy
technological change by both R&D-based LBS and LBD

process. The two-factor learning curve (TFLC) that incorpo-
rates both LBD and R&D-based LBS can be formulated as
follows [4, 20]:

Ci tð Þ ¼ ai⋅ KDi tð Þð Þ−bi ⋅ KSi tð Þð Þ−ci ; ð9Þ

where Ci, bi and KDi have been defined above, ci is the
learning index for learning-by-searching process, with the
expression similar to Eq. 7,

1−lri ¼ 2−ci ; ð10Þ

lri is the learning rate for LBS. KSi presents the knowledge
stock accumulated by R&D efforts, which can be measured in
terms of current and past R&D investments adjusted by de-
preciation rate δ2,

KSi tð Þ ¼ 1−δ2ð Þ⋅KSi t−1ð Þ þ ARDi tð Þ; ð11Þ

ARDi is the R&D expenditure, ai in Eq. 9 can be easily
figured out by substituting the initial point (Ci0,, KDi0, KSi0),
and Eq. 9 becomes,

Ci tð Þ ¼ Ci0⋅
KDi tð Þ
KDi0

� �−bi
⋅

KSi tð Þ
KSi0

� �−ci
: ð12Þ

It is easy to see from Eq. 12 that technology costs will
decrease as knowledge grows. However, cost cannot be re-
duced infinitely, so it is necessary for us to consider the
possible minimal cost Cimin, then Eq. 12 can be transformed
into the following formula [2]:7

Ci tð Þ ¼ Ci t−1ð Þ− Ci t−1ð Þ−Ciminð Þ⋅ bi⋅
KDi tð Þ−KDi t−1ð Þ

KDi tð Þ
� �

þ ci⋅
KSi tð Þ−KSi t−1ð Þ

KSi tð Þ
� �� �

: ð13Þ

2.2.3 Modelling for Fossil Energy Technology

The issue on how the cost of fossil fuels will change has long
been a bone of contention; the main viewpoints are as follows:
some researchers believe that the proven reserves of carbon-
based energy will increase as the exploitation technology
advances, which implies that the costs of fossil fuels would
keep declining for quite a long time; others hold the opinion
that fossil energy is one of the non-renewable resources that
will be exhausted with the total amount given, and the costs of

fossil fuel are destined to rise due to scarcity. To the best of our
knowledge, Nordhaus W.D. is one of supporters for the sec-
ond point; based on his idea, we describe the changes of cost
for fossil fuels as follows [35]:

CF tð Þ ¼ QF tð Þ þMarkup; ð14Þ

where CF(t) is the cost of fossil energy per unit, andMarkup is
the sum of all the external costs, including the cost of trans-
portation, distribution cost and energy tax cost, and we assume
that Markup keeps constant during the entire projection

6 Rubin et al. [39] did much research on the learning rates of multiple
energy technologies, suggesting that the costs of the technologies are
declining in the past few decades, with learning rates ranging from 10
to 12 %.

7 We replaceCi(t) withCi(t−1)−Cimin after taking some simple derivative
and difference operations to Eq. 12, then we get Ci(t)→Cimin, as t→∞,
and the learning effect tends to zero, which fits in with the reality (see
Appendix 2).
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period. QF(t) presents the marginal cost for exploration of
fossil fuels and can be formulated as below:

QF tð Þ ¼ ξ1 þ ξ2 CumC tð Þ=CumCmaxð Þ4; ð15Þ

Here, CumC(t) presents the exploitation accumulation till
period t, and CumCmax is the global maximum possible ex-
traction; ς1 and ς2 are given cost parameters. Moreover, we
describe the process of accumulative exploitation as follows:

CumC tð Þ ¼ CumC t−1ð Þ þ S F tð Þ⋅E tð Þ; ð16Þ

where SF is the share of fossil energy in gross primary
energy use.

2.2.4 Revised Logistic Curves and Multiple Energy
Technologies Modelling

E3METL employs logistic curves to describe the competitive
relationships between different technologies, and the original
logistic curve is revised mainly based on the following two
facts: first, technology development is closely related to its
cost (cost per unit energy or price). Generally speaking, the
market competitiveness and demand of some technology
would increase as its price declines, so it is necessary for us
to incorporate the changes of prices in modelling technolog-
ical evolution; second, policy intervention is important for
promoting technical penetration, so we introduce the revised
logistic curve by taking policy variables into account [2]. The
revised logistic technological mechanism can therefore be
presented as

dSi tð Þ
dPi tð Þ ¼ χiSi tð Þ S̄ i 1þ Si tð Þ−

X

i

Si tð Þ
 !

−Si tð Þ
 !

; ð17Þ

where rate of change in market share is expressed with respect
to the change of relative prices rather than changes in time,
and Pi is the ratio of marker technology that is presented by
fossil energy technology in E3METL to alternative

technologies that consist of all the non-carbon technologies;
the formulation is

Pi tð Þ ¼
CF tð Þ 1þ T f tð Þ� �

Ci tð Þ 1−Gi tð Þð Þ : ð18Þ

Here, CF and Ci denote the costs per unit of energy for the
marker technology and alternative technology (the ratio CF/Ci

may show awide frequency distribution, the value here should
be understood as the mean values, and the relative price Pi is
also the mean value of the price ratio). The effects of carbon
taxes and subsidies on prices are also included in Eq. 18; Tf
and Gi represent the tax rate for fossil energy and the subsidy
levels for alternative energy, respectively. χi is a substitution

parameter, and Si means the maximum possible share of

technology i in energy supply market, with 0≤Si≤Si ≤1 .
The relative prices have a great influence on technology
substitution, and the share of alternative technology will in-
crease as Pi closes to 1. An increase of the price ratio P can be
brought about in two ways. One is to increase the carbon taxes
levied on the maker technology but not on the substitutes or
alternatively to subsidize the substitute technology but not the
marker. The second is through innovation that reduces the
costs of the alternatives relative to the marker.

The term dSi/dPi in Eq. 17 captures the exponential
growth of the alternatives in the early phases of expansion
and diminishing possibilities as market saturation levels are
approached. In general, the relative price Pi shows a wide
frequency distribution; hence, dSi/dPi=f(P) can be viewed
as the frequency distribution of relative prices, this implies
that we might estimate the substitution parameter χi based
on the standard deviation of frequency distribution. In fact,
there exists an inverse relationship between χi and the
standard deviation of the frequency distribution of the rela-
tive prices [2].8

For the convenience of inter-temporal simulation, we con-
vert Eq. 17 into a different form:

Si tð Þ ¼ Si t−1ð Þ þ χiSi t−1ð Þ⋅ S̄ i 1þ Si t−1ð Þ−
X

i

Si t−1ð Þ
 !

−Si t−1ð Þ
 !

Pi tð Þ−Pi t−1ð Þð Þ: ð19Þ

It is worth noting that Eq. 19 will regress to the original
form as long as the changes of relative prices in each
period are constant and equal to the duration per period,
that is, ΔPi=Δt.

By embedding logistic curves into technical sub-module,
as we have observed above, it becomes much more conve-
nient to inducing carbon tax and subsidy policy variables,

8 In the one-dimension case, the relationship between parameterχ and the
standard deviation can be described as χ2=π2/3σ2≈1.81π2/σ2, when
turning to the multi-dimension case, the relationship becomes more
complex [2]. Overall, the dynamics of logistic curve is sensitive to the
parameter value χ, for the formulation, St=αSt−1(1−St−1), if α≥3.57, the
long run solution starts to become chaotic; if α≥3.83, there will be
unaccountable number of asymptotically α-periodic trajectories, as well
as cycles for every integer period [26].
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which is beneficial to investigate the influences of various
policy instruments on our system. In fact, the most important
thing is that we may consider energy technologies as many
as possible by means of the revised logistic technical model,
with no need to worry about the harsh problems of elasticity
estimation and optimal calculation compared to the common
constant elasticity substitution method (CES). Besides, by
transforming the logistic differential Eq. 17 into a different
one Eq. 19, we can easily overcome the nonlinearity
problem.

In addition, the composite prices of energy inputs can be
defined as follows:

Pei tð Þ ¼ CF tð Þ 1−
X

i

Si tð Þ
 !

1þ T f tð Þ� �

þ
X

i

Si tð ÞCi tð Þ 1−Gi tð Þð Þ: ð20Þ

2.3 Climate Change Module

CO2 emission in E3METL is classified into two parts; one is
anthropogenic emission, which is mainly attributed to the
burning of fossil fuels, and the other is natural emission, which
includes all the external emissions. We assume the natural
emissions stay unchanged during the entire horizon, so the
emission equation can be shown as follows:

EMIS tð Þ ¼ θFS F tð ÞE tð Þ þ EMIS0; ð21Þ

where θF is the emission factor, that is, CO2 emissions per unit
of energy consumption, and EMIS0 means natural emissions.
SF gives the share of fossil energy, which can be expressed as
follows:

S F tð Þ ¼ 1−
X

i
Si tð Þ:

Carbon concentration in the atmosphere is the sum of
current emissions and past emissions adjusted by the
sinking rate,

AC tð Þ ¼ 1−ηð ÞAC t−1ð Þ þ EMIS tð Þ; ð22Þ

where AC(t) denotes atmospheric CO2 concentration, and η is
the sink rate that describes the Earth’s carbon absorption level.

Our simulation starts in 2000 and terminates in 2150, with
30 5-year periods. The model can be solved numerically by
CONOPT algorithm in GAMS on a standard PC. By maxi-
mizing the social welfare objective, the model will choose
optimal consumption flows, then we can get the optimal
solution. Several minutes are enough to get the solution under
the business-as-usual (BAU) case.

3 Data and Calibrations

In this work, the fossil energy is the composite of all the
carbon-base energy, including coal, oil and natural gas, and
we divide non-fossil energy technology into seven types, that
is, combustible renewables and waste power (CRW), nuclear
(NUC), hydropower (HYD), geothermal energy (GEO), solar
power (SOL), wind energy (WIND) and tide (TIDE).

According to the World Bank [43], the gross world product
(GWP) in 2000 is $29.07 trillion, and the world’s entire
population is 6.68 billion.9 The maximum size of the world’s
population is assumed to be 11.4 billion [31]. In addition,
energy consumption is 6.63 GtC in 2000 [9].

The initial market shares for various energy technologies
considered originate in IEA’s key world energy statistics [16].
The gross energy R&D expenditure is estimated to be $10.54
billion in 2000, with new energy accounting for around 10 %
[1]. The initial R&D shares of various alternative technologies
stem from renewable energy statistics reported by IEA [17].10

The R&D investment path is assumed to grow exogenously,
with the 5-year growth rate to be 10 % for CRW, NUC and
HYD versus 30 % for GEO, WIND, SOL and TIDE. The
atmospheric CO2 concentration for the starting year is set to be
386 GtC, based on the research of Gerlagh and van der Zwaan
[10] and Nordhaus and Boyer [35]. For more parameters and
initial values, refer to Table 1.

Learning rates for alternative energy technologies and sub-
stitution parameters in logistic curves are very important pa-
rameters that have great influence on the results of a simula-
tion [39]. McDonald and Schrattenholzer [27] conducted ex-
tensive research on estimating the learning rates of different
technologies; they explain that emerging technologies may
take up a larger amount of the development space, and the
corresponding learning rates will range from 12.9 to 18.7 %.
Mature technologies may get a lower learning rate than the
emerging technologies, with the values from 9.8 to 12.9 %,
and there are very limited spaces left for the old technologies,
so the learning rates are often evaluated to be about 7 %. The
learning indexes for the considered technologies are presented
in Table 2 in detail.11

The substitution parametersχi in the revised logistic curves
could be comprehended as the capability of replacing fossil
fuels with carbon-free technologies. Thus, χi will grow as
time goes by and as the exhaustion of fossil energy continues,

9 The monetary figures in this paper are in 1990 USD.
10 Data for R&D are only available for IEA countries (http://www.
iea.org/stats/index.asp), data for the rest of world is not given in detail.
Then we adopt the estimation of total public R&D expenditures for the
entire world in 2000, and the share the R&D relates to energy is set to be
2 %, referring to Popp [36].
11 The learning ratio is the rate at which the specific cost declines each
time the cumulative capacity doubles, the relationship between the learn-
ing rate and the learning index is described by Eq. 7 [4].
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while we assume that the parameter values keep constant
during our simulation for simplicity. Anderson and Winne
[2] suggest that the parameters be valued at the interval of 4
to 15. The technologies that can be replaced easily will cer-
tainly get a higher substitute rate, ranging from 10 to 15, and
the substitution relationships among fossil fuels may fall into
this category. The replacement level for the new energy tech-
nologies, such as wind power and biomass energy, may be

lower than 10, with 7 to be the lower boundary. It is difficult
for the technologies with wider application cost gaps to sub-
stitute for each other, and the parameter values might be even
lower; then a range of 4 to 7 is often set. We give the
parameters in E3METL by summarizing the information
above, and they are presented in Table 2.

4 Scenario Setting and Simulation Results

4.1 Scenarios

In order to investigate the long-term evolutionary path-
ways of multiple new energy technologies in the policy
context and explore the impacts of R&D activities, we set
six other policy scenarios in addition to the benchmark
case (business-as-usual, BAU). Policy scenarios are pro-
vided in the light of the strength of policy signals and

Table 1 Description for parameters and initial values

Parameter Value Description Reference source

σ0 0.03 Initial pure time preference [32, 34, 35]

dσ 0.003 Annual decline rate of pure time preference Ditto

δ 0.07 Annual capital depreciation rate Ditto

γ 0.31 Share of capital’s value in capital-labour mix Ditto

κ 0.40 Elasticity between energy and capital-labour mix Ditto

AEEI 0.70 Initial automatic energy efficiency improvement Ditto

da 0.002 Annual decline rate for AEEI Ditto

ζ1 113.00 Cost parameter for fossil energy extraction ($/tC) Ditto

ζ2 700.00 Cost parameter for fossil energy extraction ($/tC) Ditto

θF 1.00 CO2 emission factora [36, 37]

η 0.006 Natural sink rate [8–10]

CumCmax 6,000.00 The maximum exploitation of fossil fuels (GtC) [33, 34]

Markup 163.29 External cost parameter ($/tC) Ditto

emis0 1.33 The global natural emissions per year (GtC) Ditto

CF 276.29 Initial cost of carbon-based energy ($/tC) Ditto

CC 830.00 Initial cost of biomass energy ($/tC) Estimatedb

CN 470.00 Initial cost of nuclear power ($/tC) Ditto

CH 550.00 Initial cost of hydro power ($/tC) Ditto

CG 550.00 Initial cost of geothermal energy ($/tC) Ditto

CS 1,380.00 Initial cost of PV solar power ($/tC) Ditto

CW 1,100.00 Initial cost of wind energy ($/tC) Ditto

CT 1,100.00 Initial cost of tide energy ($/tC) Ditto

a In this paper, fossil fuel is measured in tons of carbon, then the price of fossil fuels is the price per ton of carbon ($/tC); non-carbon energy is measured
by carbon ton equivalent which can be converted in terms of the equivalent calorific value between fossil and non-fossil energy (Fossil energy in this
paper is not subdivided; thus, it is a composited energy consisting of coal, oil and nature gas, and the calorific value of the composited fossil energy is
therefore the average value of coal, oil and nature gas); thus, $/tC can also be the price of non-fossil energy [36]. Since this definition, the carbon emission
factor of fossil fuel is equal to 1
bAnderson and Winne [2] believes that the cost of nuclear power may be at least 70 % higher than that of fossil fuels; the extent for biomass, offshore
wind and tide energy will reach 100 %; and the cost of photovoltaic solar energy is even higher, that is, 2∼7 times that of fossil energy. Meanwhile,
Gerlagh and van der Zwaan [8] indicates that the cost of biomass might be close to conventional energy, cost of some other new energy, such as offshore
wind and onshore wind may be 2∼8 folds of fossil fuels, and the cost for solar power may be even higher

Table 2 Assumptions of learning indexes and substitution parameters

Parameter CRW NUC HYD GEO SOL WIND TIDE

L-index bi
a 0.20 0.10 0.10 0.20 0.30 0.25 0.20

S-index χi 5.00 10.00 7.00 5.00 9.00 8.00 6.00

a For simplicity, we assume the learning effect of LBD process is the same
with that of LBS process, i.e. ci=bi
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whether R&D investment is included in reaching the
given climate stabilization targets (Three targets of 450,
500 and 550 ppmv are given in this paper). As we have
reviewed in Section 2, research concerning the learning
effect of LBD process has grown to a substantial size;
thus, we imply the LBD effect in every scenario, and the
emphasis of this work is put on R&D-based endogenous
technological change. It is worth noting that we only
consider the policy mix of carbon taxes and subsidies
instead of each one separately, on the basis of the follow-
ing two facts. Firstly, revenues from a carbon tax can be
used to pay for subsidies in the policy mix, which is
helpful for meeting the condition of tax neutrality [40].
Secondly, the combination policy is the most cost-
effective way of curbing CO2 emissions with respect to
the pure carbon tax policy or subsidy policy, especially
when the “spillover effect” in R&D activities is consid-
ered [10, 12]. Scenario descriptions are listed in Table 3.

4.2 Simulation Results and Analysis

4.2.1 Benchmark Case

In the case of BAU, the GWPwill grow from $29.07 trillion in
2000 to $272.55 trillion in 2100, with the growth close to
tenfold. The gross primary energy consumption in 2000 is

6.63 GtC that increases nearly 400 % as compared to
33.14 GtC in 2100. Moreover, by the end of the twenty-first
century, the total CO2 emissions for the entire world will have
grown to 23.71 GtC.12 The energy supply market is dominat-
ed by fossil fuels during the entire projection period under the
BAU case, and non-fossil energy grows slowly from 20.61 %
in 2000 to 30.32 % in 2100 (see Fig. 2).

4.2.2 Pathways of CO2 Emission and the Effect of R&DPolicy

Figure 3 gives the paths of CO2 emissions and that of CO2

abatement, respectively, under the various scenarios given in
this paper. In BAU, carbon emissions will keep growing
without an inflection point throughout our simulation.
Carbon emissions begin to decline in 2030 under the strictest
case of LBSY3; by the end of the twenty-first century, the
emissions will have been reduced to 67% of that in 2000, with
the atmospheric CO2 concentration being stabilized at
400 ppmv.

Table 3 Scenario descriptions for simulation

Scenarios Endogenous TC Policy instrument

LBD LBS Tax ratea Subsidy rateb

BAU √ × 0.00 0.00

LBSN1 √ × 1.10 CRW 0.10

NUC 0.10

HYD 0.10

GEO 0.50

SOL 0.50

WIND 0.50

TIDE 0.50

LBSN2 √ × 1.25 Subsidy rates for all the non-fossil technologies
are the same with LBSN1

LBSN3 √ × 1.40 Ditto

LBSY1 √ √ 1.10 Ditto

LBSY2 √ √ 1.25 Ditto

LBSY3 √ √ 1.40 Ditto

a Generally, the revenues resulting from carbon tax can be used to subsided non-carbon technologies, making the net payments be zero. However, our
intention is not to find the optimal carbon tax or subsidy policy but to consider the impact of policy intervention, we thus do not implement it in this
model, assuming that the tax neutrality be met by adjusting other tax out of our system instead [10]
b In this paper, we give fixed scenario parameters during the entire time horizon for convenience of simulation; for the purpose of supporting the
development of smaller-share non-carbon technologies, we give them high subsidy rates. In addition, carbon tax and subsidy are implemented by means
of ad valorem

12 The CO2 emission in this model in 2100 is much lower than in the
RICE model (38 GtC) while approaches to the projection in the DICE
model (21 GtC), but the carbon projections in both E3METL and DICE
model are in the IPCC’s projection interval of 5 to 35 GtC [33, 42]. The
comparisons of the main results in this work to that of the existing models
are listed in Table 4 in Appendix 1.
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Ceteris paribus, the peak point of carbon emissions will
occur sooner as carbon tax increases. This point first
appears in 2045, with the peak value to be 39.35 GtC,
corresponding to the case of LBSN3. The implementation
of a carbon tax will increase the costs of fossil fuels,
which in turn cuts its demand, and emissions are reduced
accordingly. Therefore, a carbon tax is an effective way of
reducing carbon dioxide.

By comparing LBSY1, LBSY2 and LBSY3 with LBSN1,
LBSN2 and LBSN3, respectively, we can observe that R&D-
based technological progress plays a significant role in CO2

reduction, and the peak point of carbon emissions will occur
in 2030, with an even lower peak value of 18 GtC, which is in
line with the corresponding finding in Gerlagh and van der
Zwaan [8]. In fact, R&D activities have no direct influence on
CO2 abatement, but they will help to reduce the cost of non-
fossil energy technologies and promote its development,
which in turn releases our dependence on fossil fuels and
results in carbon abatement.

Under the scenario of LBSN3, in which the rate of carbon
tax is set at 140 %, we get the accumulation of tax revenues
and subsidy expenditures from 2000 to 2100 to be $24.52
trillion and $11.97 trillion, respectively, while in the LBSY3
case, in which we keep the carbon tax rate unchanged and
incorporate R&D investment, the corresponding carbon tax
revenues and subsidy expenditures are $19.11 trillion and
$14.09 trillion; by deducting the 50 billion R&D expenditure,
we could get a surplus of 4.98 trillion. In other words, 50

billion of R&D investment could hedge 7.57 trillion of carbon
tax loss for the enterprises. In addition, the accumulative CO2

reduction under the R&D case for the ten decades is
164.1 GtC more than the no R&D case (see Fig. 4). Thus,
lower carbon tax is needed to achieve the same carbon reduc-
tion target if R&D activity is induced. In summary, the intro-
duction of R&D investments plays an important role in rein-
forcing the effects of the policy mix, which is not only helpful
in cutting down CO2 emissions but also in easing the tax
burden on businesses and consumers in the long run.

4.2.3 Evolutionary Paths of Market Shares for Various Energy
Technologies

The mixed policy of combining carbon tax with subsidies will
promote the development of zero-carbon technologies to a
large extent, while R&D investment enhances the policy
effect. Market shares for all the technologies in 2050 and
2100 under various given scenarios are depicted in Fig. 8, in
which the horizontal lines show the various scenarios, the tab
“2000” presents the shares of technologies in the beginning
year and the vertical axis gives the market shares. Under the
scenario of BAU, the share of alternative technologies grows
slowly from 20.61 % in 2000 to 30.3 % in 2100, which
suggests that fossil fuels will dominate the energy supply
during the entire projection period. In BAU, the geothermal,
solar and wind energy would be underdeveloped without
policy instruments taken into account, and the relative shares
would be 0.8, 0.1 and 0.06 % by 2100, respectively. Note that
by the end of the twenty-first century, the shares of geother-
mal, solar and wind will have increased to 7, 19.5 and 4.8 %,
respectively, in the LBSN1 case, with the total share of new
energy to be 24.75%, versus 9.7, 24.9 and 6.1%, respectively,
in the LBSN3 case, with the total share of non-fossil energy to
be 14.28 % (see Fig. 5).13 Hence, taxing fossil fuels as well as

13 The results here are in line with that of most of the relevant studies; for
example, Gerlagh and van der Zwaan [10] believed that at least half of the
world’s energy supply would be provided by alternative technologies at
the end of the century.
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subsiding carbon-free technologies has a fundamental effect
on the penetration of new energy technologies; alternative
technologies will develop more rapidly, depending on the
strength of the policy signals.

Specifically, the non-fossil technologies will develop to
different extents under the case of LBSN3 (see Fig. 6—
left). It is known that the energy embedded in sediments
and macro-phytes (generated by photosynthesis) is 10 to
20 times the world’s energy demand; the part that is
currently available to us for development, however, is less
than 3 %. This implies that there is a lot of potential for
humans to develop energy from combustible materials
and waste. The simulated analysis indicates that the share
of biomass will reach 23.3 %, with a growth of 112 % by
the end of 2100. Hydropower is one of the technologies
that have been significantly developed in some countries;
there are 24 countries, such as Norway and Brazil, in
which the share of hydropower is more than 90 % of
the energy mix. There are 55 nations, including Canada
and Switzerland, in which hydropower accounts for 50 %
of energy consumption and 62 states in which more than
40 % of the energy supply is provided by hydropower. In
sum, more than 60 % of the hydropower in developed
countries has been developed, which implies a limited
space for the world to exploit it.14 In the case of
LBSN3, the share of hydropower will double from 2000
to 2100, reaching 4.5 %. Nuclear power has suffered a lot
in recent years because of security issues, but it has in fact
gained a great deal of potential. In the long term, nuclear
energy will likely be one of the main energy sources we
depend on to support the economic development,

especially if nuclear waste is handled properly and if
breakthroughs in nuclear fusion technology occur in the
future. According to the above analysis, nuclear technol-
ogy will develop to a large extent; in the LBSN3 case, its
share of total primary energy consumption will increase
from 6.8 % in 2000 to 17 % in 2100, with its growth rate
be over 150 %.

Solar and geothermal are viewed as the technologies with
the greatest potentials on earth. According to the forecast of
the IEA [17], a majority of the world’s electricity consumption
will be supplied by photovoltaic and thermal power plants by
2060, with the rest being supported by wind, hydropower and
biomass. Under the scenario of LBSN3, the shares of solar,
wind and geothermal in 2060 will reach 15, 3.7 and 7.4 %,
respectively, by our calculation, and they will have expanded
to 24.9, 6.1 and 9.7 %, respectively, by the end of the twenty-
first century. It can be observed from Fig. 5 that tide power is
the only technology that maintains a lower share during the
entire simulation, which might largely attribute to the stricter
constraints supporting its development; the share of tide ener-
gy will only be 0.011 % by the end of 2100.

Figure 6—right indicates competitive evolutionary paths of
various carbon-free technologies in the scenario of LBSY3,
with R&D investments incorporated. Under the incentives of
R&D-based technological change, the competitiveness of var-
ious energy technologies will be improved as their costs
decline. The share of non-fossil energy will reach 85.72 %
in 2100 by LBSN3 versus 93.1 % by LBSY3. Similar to the
situation in the LBSN3 case, the zero-carbon energy market
will be dominated by solar, wind and geothermal, which
contribute 26.2, 7.2 and 12.1 %, respectively, to total primary
energy demand.

In addition, the timing of “lock-up” points for carbon-free
energy is affected by policy incentives to a large extent, and

14 Data resources: Dams and Development, the report of the World
Commission on Dams, Nov. 2000, Earthscan Publications Ltd.
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this point may appear in 2055 or thereabouts (Fig. 7).
Strengthening the policy signal by raising the carbon rate from
110 to 140 % could result in moving up the lock-up point to
2045 or thereabouts. The energy supply market could be
locked up by the non-fossil energy as early as 2035 if R&D
investment is incorporated.15 Hence, the development of
carbon-free technologies relies heavily on the strength level
of the policy incentives, and R&D activities provide great
driving forces towards energy technological progress—re-
vealing a complementary impact on the combination policy.

4.2.4 Effects on Energy Consumptions and Outputs

Changes for energy consumptions and GWP are depicted in
Figs. 8 and 9, respectively. It can be observed that energy
consumption is reduced significantly, beginning in the year
when the mixed policy of both carbon tax and subsidy is
implemented, which implies that the earlier carbon reduction
targets are achieved mainly by reducing the consumptions of
fossil fuels. In the beginning of policy implementation, the
carbon-free technologies do not have enough time to develop
sufficiently to replace fossil energy and support the energy
supply, which leads to a significant decrease in energy con-
sumption. After a while, the carbon-free energy sector will
grow to a substantial size and offset the decreased use of fossil
fuels, allowing energy consumption to return to the primary
level.We can also observe that the strength of the policy signal
determines the decrease of energy consumption as well as the
time it will take for energy demand to catch up with the BAU
line. For example, energy consumption will at most be re-
duced by 21.06 % in LBSN1 and may recover to its primary
level by the end of the twenty-first century, versus 24.72 % in
LBSY3, with recovery 30 years earlier.

Under the shock of policy instruments, the total ener-
gy demand will be strongly reduced, especially when
substitution possibilities with zero-carbon technologies
are not yet available in the short term. This will undoubt-
edly be a great blow to the global economy—the stricter
the climate policies, the greater the blow. For instance,
the maximum loss in LBSN1 will be limited to 3.76 %
under the BAU case, while the loss will increase to
4.68 % when turning to LBSN3 (Fig. 9). As non-
carbon technologies develop, the economy will return
to its primary level at the end of the twenty-first century;
the inclusion of R&D investment may lower the GWP
loss and move up the date that the economy catches up
to the BAU trajectory to 2080, which indicates that R&D
activities may reduce the GWP loss triggered by climate
policies. The inherent ration is that R&D activities pro-
vide driving forces to promote the penetration of non-
fossil technologies, which then enhances the role of
carbon-free energy in the energy supply and in turn
supports the development of the global economy.

5 Sensitivity Analysis

This section is devoted to a sensitivity analysis. The learning
rates (learning indexes) for both LBD and LBS are crucial for
the penetration of carbon-free energy technologies; thus, it is
of great importance to examine how the choices of these
parameters affect the diffusion of non-fossil technologies.
The base values of LBD and LBS learning indexes for the
considered technologies are presented in Table 2; we imple-
ment the sensitivity analysis by reducing or increasing the
base values by 30%. As the sensitivities of learning effects for
both LBD and LBS are to be examined, here we focus on one
of the R&D policy cases, i.e. LBSY1 case.

15 The “lock-up” points define the first time when the share of non-carbon
technologies surpasses that of fossil fuels.
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Figure 10 summarizes the percentage deviation of
market shares for various non-carbon technologies.
Overall, the trajectories of percentage changes for the
given technologies are hump-shaped over time, that is,
the effects of the learning rates increase first and then
decrease. An increase or a decrease of LBS learning
effect by 30 % has approximately symmetric impacts
on the technological shares, and the changes of percent-
age for all the given technologies will be lower than
25 %. Meanwhile, the percentage deviations for wind
and solar are much larger than the other technologies,
with their highest values reach 20.71 and 23.7 %, re-
spectively. As for the LBD case, the symmetric effects
could not be observed any more, when the learning
indexes increase or decrease by 30 %. The impacts of
the increase of LBD learning rates by 30 % are substan-
tially larger than that of the decrease by the same per-
centage. In addition, the technical shares of solar, wind
and geothermal energy are significantly sensitive to the
changes of LBD learning rates, and their percentage
deviations will reach as high as 147.1, 148.3 and
76.7 %, respectively, if the LBD learning indexes in-
crease by 30 %; Meanwhile, the changes of percentage

will also surpass 50 %, if the learning indexes decline by
the same percentage.

6 Concluding Remarks

In this paper, we establish an economy-energy-
environment integrated model by employing revised lo-
gistic curves as the heart of the technology module; by
employing the new technical mechanism, we have suc-
cessfully introduced multiple non-carbon energy technol-
ogies into the conventional E3 model framework, and
this provides a feasible option to enrich the technical
details of top-down models. The emphases of this paper
are to investigate the evolutionary paths of various ener-
gy technologies, explore the competitive relations be-
tween the conventional fossil and new non-fossil tech-
nologies in the policy context and determine the impacts
of R&D activities. The key conclusions can be drawn as
follows:

Firstly, R&D is not only helpful in cutting down CO2

emissions but also in easing the tax burden on businesses
and consumers in the long run. The results reveal that 50
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billion of R&D investment could hedge 7.57 trillion of
carbon tax loss for the enterprises, while the accumula-
tive CO2 reductions of the R&D case for the ten decades
is 164.1 GtC more than the no R&D case.

Secondly, energy consumption will be strongly re-
duced immediately upon implementation of the mixed
policy, especially if substitution possibilities with non-
carbon technologies are not yet available in the short
term, which may in turn negatively impact the global
economy. However, the energy demand and the
macroeconomy will recover to their primary level with
the development of non-carbon technologies—the stricter
our policy signal, the more energy consumption will
decrease and the earlier energy demand will catch up

with the BAU line. Furthermore, R&D investment will
effectively ease the negative effect of the policy instru-
ments on the macroeconomy.

Thirdly, the mixed policy of both carbon tax and
subsidy plays a significant part in promoting the devel-
opment of new energy technologies. The non-carbon
energy technologies will develop sufficiently in the pres-
ence of policy incentives, especially for solar, wind and
geothermal power, which account for 24.9, 6.1 and
9.7 %, respectively, of the total primary energy demand
under the 140 % carbon rate case, versus 0.1, 0.06 and
0.8, respectively, under the case of BAU. Meanwhile,
solar, wind and geothermal will expand their contribu-
tions of the total energy usage to 26.2, 7.2 and 12.1 %,
respectively in the R&D case, by the end of the twenty-
first century, which suggests that R&D investment for
carbon-free technologies will dramatically improve their
market competitiveness. In addition, including of R&D
investment would largely strengthen the substitution of
non-carbon technologies for fossil fuels, and the energy
supply market will be locked up by non-fossil energy as
early as 2035 or thereabouts.

Limitations of this model and directions for future
research should be discussed here. First, the E3METL
model is a one-sector model; this type of model has
great flexibility in studying the evolutionary paths of
various energy technologies from a global point of
view, but it overlooks regional differences. In fact, there
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is a great deal of discrepancy on economic situation,
climate change policies and public pressure to curb
carbon emissions among different nations, which may
lead to completely different technological development
paths. Hence, expanding E3METL to a multi-regional
version will be necessary to investigate the evolution of
various energy technologies inter-regionally, and this
should be a challenging research project. Second, we
assume that the learning effect of LBD process is the
same with that of LBS process for simplicity in this
paper, and it is a rather rough way to deal with this
parameter [30]. We hope to estimate the LBS-based
learning rates in detail for renewables in the near future,
given more available technical cost and R&D expendi-
ture data. Finally, the R&D investment is assumed to be
deterministic, ignoring of the uncertainty in R&D-based
technological advancement, which might yield higher
investments in innovation and lower policy costs [6].
Therefore, introducing stochastic R&D and considering
the robustness of R&D activities could be another po-
tentially interesting aspect of future research.
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Appendix 1

The following table compares the GWP, CO2 emissions,
energy demand and CO2 concentration for various models
by the end of 21st century.

Appendix 2

The differential Eq. 12 is equivalent to the difference Eq. 13,
and the derivation is as follows:

ΔCi t þ 1ð Þ ¼ ∂Ci t þ 1ð Þ
∂KDi

ΔKDi t þ 1ð Þ þ ∂Ci t þ 1ð Þ
∂KSi

ΔKSi t þ 1ð Þ

¼ Ci 0ð Þ⋅ −bi
KDi 0ð Þð Þ−bi ⋅ KDi t þ 1ð Þð Þ−bi−1⋅ΔKDi t þ 1ð Þ

þ Ci 0ð Þ⋅ −ci
KSi 0ð Þð Þ−ci ⋅ KSi t þ 1ð Þð Þ−ci−1⋅ΔKSi t þ 1ð Þ

¼ Ci 0ð Þ⋅ −bi
KDi t þ 1ð Þ⋅

KDi t þ 1ð Þ
KDi 0ð Þ

� �−bi
⋅ΔKDi t þ 1ð Þ

þ Ci 0ð Þ⋅ −ci
KSi t þ 1ð Þ⋅

KSi t þ 1ð Þ
KSi 0ð Þ

� �−ci
⋅ΔKSi t þ 1ð Þ

¼ −bi⋅Ci t þ 1ð Þ⋅ KDi t þ 1ð Þ−KDi tð Þ
KDi t þ 1ð Þ

� �

−ci⋅Ci t þ 1ð Þ⋅ KSi t þ 1ð Þ−KSi tð Þ
KSi t þ 1ð Þ

� �

¼ −bi⋅ Ci tð Þ−Ciminð Þ⋅ KDi t þ 1ð Þ−KDi tð Þ
KDi t þ 1ð Þ

� �

−ci⋅ Ci tð Þ−Ciminð Þ⋅ KSi t þ 1ð Þ−KSi tð Þ
KSi t þ 1ð Þ

� �

⇒ Ci t þ 1ð Þ ¼ Ci tð Þ− Ci tð Þ−Ciminð Þ

bi⋅
KDi t þ 1ð Þ−KDi tð Þ

KDi t þ 1ð Þ
� �

þ ci⋅
KSi t þ 1ð Þ−KSi tð Þ

KSi t þ 1ð Þ
� �� �
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