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Abstract Environmental impacts of road traffic have
attracted increasing attention in project-level traffic plan-
ning and management. The conventional approach con-
siders emission impact analysis as a separate process in
addition to traffic modeling. This paper first introduces our
research effort to integrate traffic, emission, and dispersion
processes into a common distributed computational frame-
work, which makes it efficient to quantify and analyze
correlations among dynamic traffic conditions, emission
impacts, and air quality consequences. A model calibra-
tion approach is particularly proposed when on-road or
in-lab instantaneous emission measurements are not directly
available. Microscopic traffic simulation is applied to gen-
erate dynamic vehicle states at the second-by-second level.
Using aggregate emission estimation as standard reference,
a numerical optimization scheme on the basis of a stochastic
gradient approximation algorithm is applied to find optimal
parameters for the dynamic emission model. The calibrated
model has been validated on several road networks with
traffic states generated by the same simulation model. The
results show that with proper formulation of the optimiza-
tion objective function, the estimated dynamic emission
model can capture the trends of aggregate emission patterns
of traffic fleets and predict local emission and air quality at
higher temporal and spatial resolutions.
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1 Introduction

Despite growing efforts in reducing emission pollution,
the deterioration of air quality has proved to be persistent
worldwide. As a result of continual growth of traffic, road
transport has become by far the dominant anthropogenic
source of environmental pollution in urban areas. It has
stimulated the requirements for coherent development of
management strategies for both traffic and its environmen-
tal impacts at the local network level as well as urban and
regional scales.

In order to manage the urban air pollution induced by
traffic flow, it is essential to accurately estimate the time-
resolved emission quantity in the city road network. To
fulfill such an objective, the majority of the research effort
is based on, instead of direct measurement, computational
modeling of emissions using the input of traffic dynamics as
well as individual vehicle information. Different emission
models have been developed to compute fuel consumption
and air pollutants including CO, HC, NOx, and particulate
matters (PMs) as well as greenhouse gases, e.g., CO;. Sim-
ilar to transport models, an emission model can be either
macroscopic, mesoscopic, or microscopic in nature accord-
ing to its detailed characteristics. In this paper, we summa-
rize the models simply in two main categories: aggregate
and microscopic emission models.

1.1 Aggregate Emission Models

Aggregate emission models are normally applied to estimate
traffic emission quantity at the network level by consider-
ing traffic flow properties such as vehicle fleet composition,
average flow speed, and vehicle travel distance as inputs.
There are several well-known aggregate models such as
MOVES and MOBILE [1] developed by US EPA, as well
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as the Computer Programme to Calculate Emissions from
Road Transport (COPERT) [2], Handbook Emission Fac-
tors for Road Transport (HBEFA) [3], and Assessment and
Reliability of Transport Emission Models and Inventory
Systems (ARTEMIS) [4] developed by the European coun-
tries. The ARTEMIS model is an emission model recently
developed in the European Union (EU) using a large amount
of on-road and in-lab emission data measured in different
countries. The model is considered applicable for estima-
tion of not only macroscopic but also short-term dynamic
emission index for various sizes of road networks. The
essential calculation in ARTEMIS depends on an encoded
database, which incorporates emission factors derived from
real measurements. To make it compatible with the previous
modeling approach such as the COPERT, alternative mod-
ules are also provided so that users can compute emission
measures using aggregate traffic flow variables on prede-
fined networks (e.g., average traffic speed). In ARTEMIS
and other EU emission models, vehicle classification is
based on the fuel type and the EU Emission Standard, shown
in the left column of Table 1.

In Sweden, different studies were carried out to com-
pare on-road emission factors against the modeling results
of COPERT 1V, HBEFA, and ARTEMIS. In [5], essential
measurements were conducted by means of remote opti-
cal sensors at roadside, and comparisons were made for the
gasoline passenger vehicles at three locations. Acceptable
agreement was concluded between the roadside measure-
ment and estimation of ARTEMIS, although significant
discrepancies appear occasionally.

1.2 Microscopic Emission Models

As increased attention is paid to traffic impact manage-
ment in local networks, microscopic emission models have
become a research topic of great interest. Taking vehi-
cle operating conditions as inputs including instantaneous

Table 1 Vehicle classifications for two different types of emission
models

ARTEMIS VT-Micro

LDVI1: Y<1990

LDV2: 1990<Y <1995, E<3.2 1, M<83653
LDV3:Y > 1995, E < 3.21, M < 83653
LDV4:Y > 1990, E < 3.21, M > 83653
LDV5:Y > 1990, E > 3.21

LDT1:Y > 1993

LDT2: Y < 1993

LDT high emitters

Petro Euro I
Petro Euro 11
Petro Euro III
Petro Euro IV

Diesel Euro I
Diesel Euro II

Diesel Euro IIT

Y model year, E engine size, M mileage
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speed, acceleration, engine states, and so on, the mod-
els aim at predicting microscale vehicular emission at a
second-by-second resolution. The development of micro-
scopic emission models requires collection of emission data
from various types of vehicles. Different approaches have
been adopted in the model development including the physi-
cal power-based models (e.g., the CMEM model [6]) and the
regression-based approach (e.g., the VI-Micro model [7]).

Whereas the power-based models are based on complex
physical principles, the VI-Micro statistical model [7] uses
a third-order polynomial regression of instantaneous vehicle
speed and acceleration. It was developed first by Virginia
Tech. using the Portable Emission Measurement System
(PEMS) data collected in the USA. The second column of
Table 1 illustrates the vehicle categories adopted in the orig-
inal model development. Mathematically, the model can be
simply represented by the following:

. exp (T0 X)mo (Lg, v -al))  az0 N

(ST (v ) a0

where E, is the instantaneous fuel consumption or emission
rate of a pollutant species e; e can be CO, HC, and NOx; v
and a represent the instantaneous vehicle speed (kilometers
per hour), and acceleration (kilometers per hour per second)
separately; Lf! j and M i"’!j are the regression coefficients.
A logarithm transform is adopted to avoid negative output
and to enhance the model representativeness in low-speed
and/or low-acceleration regimes. The model was created for
positive and negative accelerations separately to ensure a
better compliance with the measurement data over the full
range of the vehicle-operation envelope.

1.3 Integrated Simulation Model

The requirements of developing environmentally sensitive
traffic planning and management strategies have stimulated
research efforts to integrate traffic, emission, and disper-
sion models. As traffic simulation models are commonly
grouped into microscopic, mesoscopic, and macroscopic
classes, they can be combined with corresponding emis-
sion models for estimation of traffic-induced air pollution at
various scales. Because they describe detailed traffic activi-
ties, microscopic traffic models are widely used to compute
dynamic emission quantities of road traffic with microscale
emission models at a local network [8, 9]. However, since
microscopic traffic and emission models are often com-
putationally expensive, the performance of such integrated
simulation may suffer from the lack of computing power
because of the increased size of road networks in real
applications.
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In an early study [10], we described a computing plat-
form capable of simulating, visualizing, and analyzing air
quality impacts of traffic flow by integrating emission com-
putation with microscopic traffic simulators. Besides the
common off-line emission simulation approach, the sys-
tem can run in an online mode, that is, it operates as a
distributed computation server capable of simulating emis-
sion and dispersion of several road networks by real-time
communication with clients running traffic simulations. At
the present, an in-house traffic simulator, KTH-TPMA,
and a commercial simulator, VISSIM, are integrated with
the emission computing server based on the CORBA and
Web Service technology. Figure 1 illustrates the data flow
from traffic simulation to emission estimation procedures.
The emission computation are triggered whenever there
is a request from remote traffic simulation client. The
emission estimation processes at the server side applies
emission and air quality models to assess traffic impacts
using received traffic activity information at different res-
olutions. With concerns on high-performance computing
and flexibility, the system is fully distributed, which indi-
cates potential to be coupled with different traffic models
as well as system scalability, reliability, and efficiency.
Figure 2 shows the graphical user interface of the emis-
sion estimation platform. The first graph shows the main
window with the connected traffic clients and correspond-
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ing visualization of traffic states. The dynamic emission
of the selected network area is presented in a time series
chart in the second graph. The third graph demonstrates
a visualization of the air quality map near the road net-
work.

Several emission models have been implemented in the
system for predicting traffic emissions and analyzing air
quality. On the aggregate scale, both the MOBILE and
ARTEMIS modules have been included for evaluation of
general or average emission level. At the microscale, we
have implemented models such as VI-Micro and VSP [11]
with parameters proposed in the literature. Of course, func-
tionality is provided for reconfiguration of the essential
parameters of the models.

1.4 Objective

In order to apply the platform for dynamic estimation of
traffic-induced emission and improve local traffic control
measures in Stockholm, one key question is how to finely
calibrate the adopted microscopic emission model. Usu-
ally, such calibration is based on the data collected using
the chassis dynamometer or PEMS [12]. However, chas-
sis dynamometers and PEMS systems are expensive, and a
wide spectrum of vehicles needs to be measured to estimate
a comprehensive model. Therefore, the experiment and later
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Fig. 1 Data flow of the traffic and emission modeling processes in the simulation platform

@ Springer



274

Fig. 2 The graphic user
interface of the emission
computing platform
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data analysis are rather complicated and costly, especially
for heavy-duty vehicles and buses. This paper demonstrates
our recent research effort on developing a tuning approach
for microscopic emission models given that dynamic emis-
sion measurement is not fully available. The basic idea
is to calibrate microscopic emission models using aggre-
gate emission information. The emission outputs of the EU
ARTEMIS model are used as standard references due to
its importance in the application projects supported by the
Swedish Transport Administration.

2 Methodology
2.1 Problem Formulation

Similar to traffic models, microscale emission models need
to be calibrated using real data before application. Whereas
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microscopic traffic models can be calibrated by different
types of data, e.g., individual driver behavior or traffic flow
measurement, microscopic emission models are conven-
tionally estimated by instantaneous emission time series
data at the individual vehicle level. However, such data is
seldom available due to the large amount of expenses and
work in data collection and analysis. Nevertheless, inter-
national collaboration is promoted on developing models
of aggregate or average emission on roads [4] based on
a wide spectrum of vehicle emission measurement. It is
believed that vehicle emission can be estimated accurately
at the aggregated level, given the differences among various
vehicle types and individuals.

For calibration of microscopic impact models in this
study, few instantaneous emission data is directly avail-
able. Therefore, the basic idea is, instead of using vehicle
emission measurement data, to identify microscale emission
models (mainly a regression emissions model, VI-Micro)
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using aggregate emission information and instantaneous
vehicle states generated by traffic simulation. Analytically,
the calibration approach is formulated as a parameter iden-
tification problem according to aggregate emission measure
estimated at a rougher resolution level on time and space.
This is mathematically illustrated by the following:

min L(0)=fff(M(x,t,0),A(x,t)) dx dt 2)

where M (x, t, #) is the sum of the instantaneous emission
of individual vehicles (estimated by microscale models)
emitted at time ¢ in subnet x; A(x,?) is the aggregate
emission estimated on the corresponding time and net-
work; 6 is the parameter vector of the microscopic emission
model; f is a statistical measure of the difference between
the aggregated estimates M from the microscopic models
and the aggregate estimates A from the aggregated model
(e.g., ARTEMIS).

Although such formulation is not uncommon, the opti-
mization solution method may suffer from the difficulties
resulted from the under-determined nature of the nonlinear
systems. In addition, the formulation of Eq. 2 misses an
important factor. Although data used for estimating the orig-
inal regression emission models (e.g., VI-Micro using data
collected in the USA) reflects a different vehicle running
condition from the Swedish case, the estimated parame-
ters may reflect a latent structure of instantaneous vehicular
emissions. Such information can be useful if it is incorpo-
rated in our model identification methodology. Therefore,
we reformulate an objective function by taking into account
of the difference of the estimated model parameters from
their counterparts derived from real instantaneous vehicle
emission data, i.e.

mojn O@,r) =L@O)+r-P@) 3)

" (o —0 2
1 1
(")

i=1

where P(0)

where O(0, 1) is the new objective function, and P(#) is
the penalty function representing the difference of the cali-
brated parameters from those estimated from measurement
data elsewhere; A is a non-negative penalty weight, which
has a significant impact on the optimization result; 6; and 6;
are the ith element of the calibrated parameter vector § and
the reference vector 6 estimated by real data, respectively.
When the statistical measure of scaled least square (LS) is
applied, the Eq. 2 can be further represented in a discrete
form as follows:

K S Mk, 0) — AGs, k) \2
L(0)=ZZ< (s A(Z’k) (s )> (4)

k=1 s=1

where s and k are discrete representation of space and time.
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Comparing the microscopic VI-Micro models and aggre-
gate ARTEMIS model, their vehicle classifications are
not fully compatible. Whereas VT-Micro classifies vehi-
cles based on the vehicle information, such as model
year, engine size, and mileage, ARTEMIS groups vehicles
according to the fuel type and emission standards such as
Euro I-IV. Since the aggregate estimation of ARTEMIS is
used as the reference, the parameters of the VT-Micro model
will be estimated according to the ARTEMIS vehicle-type
classification.

2.2 Model Estimation Approach

To solve the parameter identification problem formulated
in Eq. 3, it is widely accepted to resort to numerical opti-
mization methods. The objective function of Eq. 4 involves
calculation of aggregated emissions A as well as com-
putation of dynamic emissions M using simulated traffic
data. Microscale emissions M are calculated from traf-
fic simulation data and the parameters 6 of the emissions
regression model. The aggregate emissions A are calculated
by ARTEMIS using aggregate traffic characteristics derived
from the simulated data.

A numerical optimization technique is used to find the
parameters € that solve Eq. 3. The iterative optimization
process starts with an initial guess on the parameter vec-
tor 0. For each iteration k, the emission of the ARTEMIS
and microscale model will be estimated using the parameter
vector @, and simulated traffic states. Then these emis-
sion outputs and the parameter vector §; will be used to
compute the objective function O (0, A). If the selected
convergence condition is fulfilled, 8; will then be the final
optimal solution and the numerical search terminates; other-
wise, the optimization process continues to the next iteration
by repeating the computational steps.

Among many nonlinear optimization algorithms,
the simultaneous perturbation stochastic approxima-
tion approach (SPSA) [13] is a numerical scheme using
first-order approximation of the gradient vector of the
optimization objective function. It shows apparent advan-
tages over the conventional finite difference scheme
(FDM). It is computationally more efficient especially
for high-dimension multivariate optimization problems
because only two evaluations of the objective func-
tion per iteration are necessary in SPSA. On the other
hand, the FDM algorithm needs 2n evaluations (n is
the dimension of the parameter vector). In addition,
the SPSA achieves the same level of accuracy as the
FDM algorithm if the same number of iterations are
performed.
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The SPSA algorithm can be mathematically expressed as
follows:

a

= 5
T ket A ®)
C
=, (6)
0f =0 +cr-A (7)
0, =0 —cx-A (8)
. 00 M)-00;.1)
o = ye A ©)
Ory1 = 0 —ak - 8k (10)

where a; and c; are gain sequences at step k; A is a
n-dimensional random perturbation vector drawn from a
Bernoulli distribution; g is the estimated gradient vector at
step k; a, A, «, y, and c are user-defined parameters for the
algorithm. The literature [13, 14] suggests that

e «, y can be set as 0.602 and 0.101, respectively, the
asymptotically optimal values of 1.0 and 1/6 may also
be used.

e A ischosen such that it is much less than the maximum
number of iterations allowed or expected, normally,
taking 10 % of maximum iteration number.

e Choose a such that a/AY times the magnitude of ele-
ments in go approaches smallest desired change in the
first few iterations of @, which requires some extra
replications in early iterations.

2.3 Enhancements on SPSA

Although the basic SPSA algorithm has proved to be pow-
erful in solving optimization problems, enhancement on the
algorithm is still necessary to make it more suitable for
numerical analysis in this study.

2.3.1 Scaling

In the dynamic emission model, model parameters may have
significantly different orders of magnitude. For example,
in the estimation of the VT-Micro model [7], the largest
absolute coefficient value is 8.27978, and the smallest is
3.98 x 1078, In practice, this will cause numerical difficul-
ties in the optimization. Scaling can dramatically improve
the performance of the SPSA algorithm [15, 16]. In this
study, a simple scaling is implemented for each parameter to
transfer them into a value between 1 and 10. When applying
parameters for emission computation in SPSA, an inverse
scaling has to be performed.
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2.3.2 Gradient Average

In principle, averaging a few gradient estimations can
improve the precision of the estimate of gradient informa-
tion [17]. This is also emphasized by [18]. Thus, in our
implementation, we consider incorporating several indepen-
dent SPSA gradient approximations at each iteration. That
is, we replace the original calculation of gx in Eq. 9 by the
following:

o= -y 8 (11)
Jj=1

where r is the replication number of independent SPSA
approximations. According to the report in [14], the aver-
aged gradients mechanism does not give significant per-
formance improvement in comparison with using standard
SPSA algorithm when the sample size is small. Along with
the increase of the sample size, the advantage of gradi-
ent average becomes obvious. Even though a larger size of
replications may produce better performance, the compu-
tation needs extra calculations on gradients per iteration.
When the evaluation of the objective function is expensive,
the computational cost on replications will increase dramati-
cally. Thus, a trade-off has to be made between optimization
speed and quality. In the implementation, » is normally set
to 4 which gives empirically satisfactory results.

2.3.3 Multiple Initial Guesses

Although the SPSA approach has shown to be powerful in
the literature, it still belongs to a gradient search algorithm.
It is widely known that gradient-based approaches may suf-
fer from the existence of local optima. In this problem, we
consider a classical mechanism by introducing multiple ran-
dom initial guesses. Therefore, the smallest optimum will
be our final solution after running the SPSA algorithm from
each initial guess.

3 Numerical Experiments and Results

Numerical experiments are conducted for each vehicle class
and each emission factor using the following steps:

e Generate microscopic vehicle states by a traffic simula-
tor and determine the model calibration and validation
datasets;

e Test and choose constant parameters for the numerical
scheme including the SPSA algorithm coefficients and
termination condition;

e Test and analyze the effect of the penalty weight A by
solving the optimization problem using a small amount
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of simulated data and select an appropriate A for the
calibration process;

e Solve the numerical optimization problem using the
whole calibration dataset;

e Perform model validation using validation datasets.

3.1 Experiment Preparation
3.1.1 Traffic Simulation Network

In our studies, dynamic traffic states are generated by
microscopic traffic simulators, mainly the KTH-TPMA and
VISSIM. This paper is focused on the results using KTH-
TPMA, a traffic simulation model developed at our uni-
versity. Two road networks are used for calibration and
validation studies, including a big intersection and a rela-
tively large road network in a Swedish city. The geometrical
configuration of the networks are depicted in Fig. 3. In order
to use simulated traffic data to represent stochastic traffic
conditions and fit the models with confidence, replications
have to be carried out with an independent random seed for
each simulation run [19]. This numerical study uses 20 sim-
ulation replications to generate representative datasets. For
the first network, a 1-h traffic data is generated by simu-
lation for calibration and validation using different random
seeds. Twenty-minute traffic data generated on the second
road network is mainly used for validation. Before collect-
ing data from the traffic model, the simulator had been
running for 15 min to avoid the vehicle loading effect in the
beginning of a simulation.

3.1.2 Selection of the SPSA Coefficients
According to initial tests, the performance of SPSA is quite

sensitive to the coefficients in numerical optimization. With
careful numerical experiments according to the guidance
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of the previous section, the coefficients listed in Table 2
are adopted, and My is the least desired change magnitude
in the early iterations. ¢ is chosen to be 0.01 in order to
prevent the gradient g (6y) from being too large in its mag-
nitude, and a is selected so that the risk of divergence is
reduced in early iterations, whereas the performance in the
later iterations is enhanced especially when the step size is
small.

3.1.3 Global Solution

For a certain penalty weight A, the optimization problem
is solved by sampling N random initial points and then
running the SPSA algorithm from each of these points.
The final parameter vector leading to the smallest objec-
tive function will be considered as the global solution to
the optimization problem with the A value. Although the
increase of the initial guesses may raise the chance of find-
ing a global solution, the computational time will also grow
dramatically. In the study, N = 100 to 1000 is used to real-
ize a trade-off between the chance for a global solution and
computational time.

3.2 Calibration Study
3.2.1 Termination Condition

For SPSA, two types of termination conditions could be
used in numerical experiment for justification of conver-
gence:

o |0 —0;1] < e
* [0k A)— O0Or—1, M| <€
where €, and €, are small positive values to determine the

termination of the optimization process. Although the first
condition gives more reliable performance especially when

Fig. 3 Configuration of the road networks used for calibration and validation in numerical experiment (left is netl and right is net2)
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Table 2 The SPSA coefficients used in the application

Variable  Literature Application

a av 8ol = My Ay 180l = 0.1
A 10 % iteration 100

c Related to std. dev. of noise in O(#, 1) 0.01

o 1.0 or 0.602 0.602

y 1/6 or 0.101 0.101

random noise is involved in the objective function, both
conditions can be applied for this optimization problem.

A series of numerical experiments are conducted to eval-
uate the configuration of €, and ¢, for different A values

X. Maet al.

and various vehicle classes and emission types. Figure 4
illustrates examples of numerical convergence when the CO
emission model for the Petro Euro II vehicle class is cali-
brated (A = 1075). It can be concluded that convergence
is fulfilled when the termination conditions of €, = 107°
and €, = 1077 are applied. However, the process stops too
early when e, = 107 is adopted. Meanwhile, when ¢, is
set to be 1077, many iterations of computation are wasted.
Similar phenomenon happens when the convergence con-
dition on the objective function is applied. In our analysis,
the convergence condition on the adaption of the parame-
ter vector is used, and the configuration of €, needs careful
tests. For example, €, = 107 is adopted in the illustrated
example.

Fig. 4 Comparison of the ¢, =1e-005 ¢, = 16-005
convergence performance of the 42 4
objective function (in logarithm) al i |
defined by Eq. 3 when different
termination conditions are 38r ] i
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3.2.2 Influence of A

It is important to analyze the effect of penalty weight on
the final result of the optimization problem. In principle, the
influence of A for the optimization is quite obvious:

e when A approaches zero, the optimal solution tends to
minimize L(0);

e when A approaches infinity, the optimal solution tends
to minimize the penalty term X - P(0).

A proper A value is expected to balance the roles of L(@)
and P (@), that is, ensuring the two parts having appropri-
ate influences on the general objective function. While it
is difficult to directly analyze the relation between A and
O (0, 1) or L(0), the proportion of L(#) in the total objec-
tive function O (@, A) (i.e. L(0)/0 (8, 1)) is introduced as
an intermediate variable to study the relations between A
and other functions (O (@, 1), AP(0), and L(#)). It is found
that with the increase of penalty weight A both O (8, 1) and
A - P(0) raise up. But the impact of A on L(#) is difficult to
conclude.

In the calibration, it is also important to find an appropri-
ate range of X values so that the effect of penalty weight can
be better understood. The final determination of the proper
A value is mainly based on the empirical cross-validation
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result. For instance, during the calibration of the CO emis-
sion model for the Petro Euro II vehicle class, a sensitivity
range of [107°, 10~*] is found, which means A < 107° or
A > 10~ does not give solution significantly different from
A=10"%0rx = 1074, respectively. Therefore, A values in
a grid defined between 107% and 10~* (with an interval of
10) are applied for model calibration. Cross-validation is
performed on the calibrated parameters with different A val-
ues. Examples of validation results are shown in Fig. 5 when
different A values, such as 10_4, 5 x 10_5, 2 x 1075, and
103, are applied for optimization. The validation is con-
ducted using simulated traffic data of one hour on the first
network (netl).

It is clear that the model performance is worst when the
weight A is too large. This indicates that the emphasis on
the reference parameter vector may result in the difficulty
of minimizing L(#). On the other hand, small penalty term,
e.g. . = 107>, may lead to the emphasis on L (@), therefore
increasing potential over-fitting risk. In the example, a good
result on fitness is achieved when A = 2 x 107 is applied.

3.2.3 Final Parameters
This study applies the reference parameters of the VI-Micro

regression model estimated based on on-road PEMS mea-
surements of 30 petrol passenger cars including two Euro

Fig. 5 Comparison of the =107 A =5410"°
FEp : 30 T T 30 T T T T T
Vall.datlon results for different A ARTEMIS ARTEMIS
settings —6— VTMicro —o&— VTMicro
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3 E
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Fig. 6 Comparison of the calibrated microscopic model (right) on the CO emission with the reference model (left)

I vehicles, fifteen Euro II vehicles, twelve Euro III vehi-
cles and one Euro IV vehicle [12]. Although the European
emission standard is applied for cars in the experiment, they
are not operating in the same conditions as the European
vehicles.

The model calibration is based on 1-h traffic data sim-
ulated using “netl,” the first road network of Fig. 3 (not
including the vehicle loading time at the beginning of each
simulation). Figure 6 compares the CO emission maps of
the Petro Euro II category predicted by the emission models
using the reference and calibrated parameters, respectively.
It is not difficult to observe that the CO emission outputs of
the two models are in different magnitudes. The calibration
process results in the adaption of the CO emission output
at a lower level whereas the characteristics of the model
are to some degree kept. For instance, accelerations at high
speeds lead to more CO emissions and this phenomenon
becomes more obvious in the emission map predicted by the
calibrated model.

3.3 Validation

To evaluate the performance of the calibrated model, the
prediction of the estimated VT-Micro model is aggregated

and then compared with the estimation of ARTEMIS using
the simulated traffic data on two different networks. A
widely used statistical measure, mean absolute percentage
error (MAPE), is adopted to analyze the performance. The
calculation of MAPE can be expressed by

1 m
MAPE = . ;

M; — A;

A, 12)

where M; and A; are accumulated emission of VT-Micro
and the estimation of ARTEMIS in time interval i, respec-
tively, and m is the total number of intervals.

Table 3 summarizes the general validation results for
three datasets (netl-10, netl-60, and net2-20). The netl-
10 and net-60 datasets include 10-min and 1-h simulated
traffic data of “netl,” respectively. The net2-20 dataset is
20-min simulated data of the second network “net2.” It
can be concluded that the calibrated model shows generally
good prediction performance in comparison to the aggre-
gate estimation of ARTEMIS. For CO, the largest errors
(about 35 %) occur in the vehicle categories of Euro I and
Euro 1V, in which insufficient data was collected (from two
Euro I and one Euro IV vehicles) for the estimation of the
reference parameters. The worst performance mainly hap-
pens for the validation using traffic data simulated from

Table 3 Validation results in terms of MAPE (percentage) for different emission factors using three datasets

Emissions  Petro Euro I Petro Euro II Petro Euro IIT Petro Euro IV

netl-10  netl-60 net2-20  netl-10  netl-60  net2-20  netl-10  netl-60  net2-20  netl-10  netl-60  net2-20
CO 3.45 5.27 34.92 12.76 3.94 6.46 3.61 3.63 13.11 7.60 8.94 35.92
HC 1.95 3.78 7.87 0.82 0.55 5.78 2.00 3.78 12.08 3.61 6.39 10.85
NOx 7.31 3.52 11.82 4.84 3.87 2.97 2.06 2.82 10.16 3.54 5.59 25.09
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the second network, which is independent from the cali-
bration dataset. The validation on HC shows better results
than CO according to the MAPE measures. The relatively
worse performance also happens to the cross-validation case
using data from the second network. For NOx, the valida-
tion results are satisfying except that the cross-validation
error for the Euro IV type reaches 25 %. For all three types
of emissions, the relatively poorer performance on cross-
validation indicates that traffic pattern may play important
roles to the results of model identification. Especially, the
first network is a large intersection with mainly stop-and-
go traffic, whereas the second network describes traffic in a
much bigger area of six intersections. Random vehicle driv-
ing cycles from the two networks show different statistical

property.

4 Conclusions

This paper starts with an illustration on integrated traf-
fic and emission modeling and their increasing importance
in project-level traffic management applications. It then
raises the dynamic emission model tuning issue for accurate
local traffic impact assessment. Inspired by the calibration
approaches for microscopic traffic models using aggregate
traffic flow data, the study proposes a numerical approach to
calibrate microscopic emission model using aggregate emis-
sion estimation. This indicates that different aggregate data
sources can be applied, not only average vehicle emission
but also air quality information, considered as a function
(dispersion process) of aggregate traffic emission in reality.

Numerical experiments are conducted in a case study,
through which VT-Micro, a microscopic regression-based
emission model, is finely tuned by aggregate emission levels
estimated by ARTEMIS, a widely accepted EU aggregate
emission estimator. Based on the ARTEMIS estimation
and reference parameters derived from some limited PEMS
data, the microscale VI-Micro model is calibrated for each
ARTEMIS vehicle class while minimizing an objective
function combining:

e a scaled measure on the aggregate output difference
between VT-Micro and ARTEMIS models; and

e ascaled measure on the Euclidean distance between the
calibrated and reference parameter vectors.

The standard SPSA algorithm with several critical enhance-
ments is applied to solve the multivariate optimization prob-
lem. Extensive numerical experiment has been conducted to
analyze the effects of the SPSA coefficients, penalty weight,
size of road segments, etc. The calibrated parameter vectors
are validated by the following:
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e traffic data generated at the same road network but with
different random seeds;

e traffic data simulated from another road network with
different traffic flow characteristics.

According to the validation results, the calibration approach
shows its capacity in identifying dynamic emission model
parameters especially when only aggregate emission infor-
mation is available. The estimated models are implemented
in an integrated traffic and emission simulation platform
potentially applicable for project-level traffic environment
analysis. While the second-by-second traffic states were
generated using an in-house traffic simulation tool in this
study, promising results are also achieved when traffic data
generated by a commercial microscopic traffic simulator,
VISSIM, is used for emission model calibration and valida-
tion. However, a limitation of this study is the assumption
that the model outputs from ARTEMIS for different aggre-
gate time intervals are reliable emission estimates. With the
increasing availability of roadside emission measurement,
the method has a large potential to be further extended in
the new arena.
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