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Abstract Considering the projected population growth in
the twenty-first century, some studies have indicated that
global warming may have negative impacts on the risk of
hunger. These conclusions were derived based on assump-
tions related to social and technological scenarios that in-
volve substantial and influential uncertainties. In this paper,
focusing on agrotechnology and food access disparity, we
analyzed food availability and risk of hunger under the
combined scenarios of food demands and agroproductivity
with and without climate change by 2100 for the B2 sce-
nario in the Special Report on Emissions Scenarios. The
results of this study suggest that (1) future food demand can
be satisfied globally under all assumed combined scenarios,
and (2) a reduction of food access disparity and increased
progress in productivity are just as important as climate
change mitigation for reducing the risk of hunger.
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1 Introduction

Climate change is considered to have an impact on food
security. As stated in the Fourth Assessment Report by the
IPCC [1], some studies support the premise that “stabilization
of CO2 concentrations reduces damage to crop production in

the long term,” therefore, “climate change is likely to increase
the number of people at risk of hunger compared with refer-
ence scenarios with no climate change.” Past studies report a
wide range of risk projections that depend on the assumed
climate change and socioeconomic scenarios. However, the
results may also depend on the prospect of agricultural tech-
nologies and more detailed socioeconomic situations such as
food access disparity. These in-depth assumptions regarding
food security have not yet been sufficiently addressed to
assess the significance of factors other than climate change.
In this study, we attempt to demonstrate the impact of future
agroproductivity and food access disparity on food availabil-
ity to contribute to the discussions of the risk of hunger under
climate change.

Nelson et al. [2] have demonstrated the impact of climate
change on the global production of selected crops under the
A2 scenario in the Special Report on Emissions Scenarios
(SRES) [3] towards 2050 using a global agricultural supply-
and-demand projection model [4] linked to a biophysical
crop model [5]. Compared with no climate change, under a
climate change scenario, the world production of wheat and
rice in 2050 is estimated to be lower by 23–27 and 12–14 %,
respectively. Consequently, calorie availability in the devel-
oping world in 2050 is estimated to be lower than the
availability in 2000, and the prevalence of child malnutrition
will be 20 % higher. Based on that analysis, they concluded
that agriculture and human well-being will be negatively
affected by climate change.

Fisher et al. [6] applied a comprehensive assessment of
agro-ecosystems and the agroeconomy to estimate the impact
of climate change on food security. This method combined the
agro-ecological zone (AEZ) model [7] and the Basic Linked
System (BLS) [8] to assess future food availability, taking into
consideration climate scenarios, crop production, and socio-
economic drivers, as well as world food trade. Four emission
and socioeconomic scenarios, known as the SRES A1, A2,
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B1, and B2 (see Appendix I), were applied in the analysis. The
results indicated that the impact is highly dependent on the
scenarios, but that climate change is estimated to have an
especially negative impact on poor developing countries.
Using the same approach, Tubiello and Fisher [9] examined
a modified A2 scenario by the International Institute of
Applied Systems Analysis (IIASA) [10]. This scenario
assumes a similar climate change as the original A2 scenario,
but the population and gross domestic product are modified.
Mitigation actions that reduce the climate impact are estimated
to reduce the risk of malnutrition by 80–95 % compared with
the non-mitigation case—this is due to the smaller production
loss as a result of the action in less developed countries.

These studies have quantitatively clarified the possible im-
pact of climate change on agriculture, taking into consideration
the population and economic scenarios in SRES. However,
other factors, such as technological progress and social dispar-
ity, have not yet been sufficiently studied. Agrotechnology
appears to be incorporated in the BLS as external input, but
how much the technological factor improves future crop yield
was not described. The number of undernourished people was
estimated as a function of the ratio of food supply over food
requirement in those studies. If food allocation is completely
equal, the share of undernourished people is zero when the
supply/requirement ratio equals one. The undernourished
share is illustrated as a declining curve over the food supply/
requirement ratio in the above studies; the undernourished
share falls below 20 % for the ratio of approximately 1.3 and
almost zero for the ratio of higher than 1.6 in the study by
Fisher et al.[6]. This means that inequity or disparity in food
access is implicitly assumed in the relationship. Applying a
fixed relationship in future estimation means that the disparity
is also unchanged during the estimation period.

Agrotechnologies, including irrigation, fertilizers, and
pesticides, as well as the development of new, more produc-
tive crop varieties through breeding or biotechnology, are
considered to be major contributors to food security during
the predicted population growth under the constraints of
land, water, energy, and greenhouse gas emissions [11].
For instance, the global yield of wheat has increased ap-
proximately threefold between 1961 and 2008 [12]. This is
considered to be an achievement of agrotechnological prog-
ress, including the chemical synthesis of nitrogen fertilizer.
Wise et al. [13] conducted a sensitivity experiment related to
the impact of crop productivity growth on terrestrial carbon
emissions. Compared with their baseline productivity im-
provement, a frozen productivity scenario that made crop
productivity constant at the 2005 level brought about an
additional 70 PgC carbon emission from land use over the
twenty-first century as a result of massive cultivation to
meet increased food demand without yield improvement.
Even though the assumption of frozen productivity is unre-
alistic, this experiment suggests the importance of the in-

depth prospect of the agrotechnological effect on food pro-
ductivity in food security analysis.

Food security consists not only of food availability but
also of access to and use of food [14, 15], as well as its
stability [16]. In terms of food access, the demand side
conditions, which include the growth of the real income of
consumers, is expected to become more important over the
next 50 years [17], even if enough food can be produced to
feed the future population. As mentioned in studies of
climate impact on food availability [6, 9], the elimination
of malnutrition requires a higher food supply than the total
dietary energy requirement because accessibility to food
varies among people. These results suggest that greater
elaboration in the assessment of the social side of food
security is needed.

In this study, the impact of future agroproductivity and
food access disparity on food availability is demonstrated
using AEZ methodology combined with a global food de-
mand and trade model. We assume four combined scenarios
of possible disparities and agroproductivity with and with-
out climate change by 2100 for the B2 scenario of the
SRES. We consider that the B2 scenario is the most proba-
ble of the four scenarios, taking into account the recent
demographic and economic trends. Based on these results,
the impact of disparity reduction and the progress of agro-
productivity compared with climate change mitigation on
global food security are discussed.

2 Analysis Framework

For an impact assessment of food disparity and agroproduc-
tivity on food availability that takes climate change into
consideration, we developed an analytical framework that
consists of a global food system model and a grid-based
agricultural land use model (Fig. 1). In this framework,
regional food demand is estimated based on the GDP and
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the population from SRES as well as the disparity scenario,
which is discussed in section 4. Regional crop production to
meet food demand is allocated based on an inter-regional trade
model. Crop productivities are estimated using the AEZ mod-
el under the climate and agroproductivity progress scenarios.
The productivities determine the possible production value of
each land grid’s crop when crop prices are given. The crop-
ping grids are allocated to maximize the total production value
of the region under the constraint of regional production
volume given by the demand-trade model.

In this study, we assume 13 food items for final demand:
wheat, rice, maize, soybeans, and potato as primary products;
beef, pork, chicken, and milk as animal products; and sugar,
soybean oil, rapeseed oil, and palm oil as processed food. In
addition to the five primary products, sugarcane, rapeseed,
and palm fruit are assumed as harvested crops. To meet world
demand, the total agricultural land use allocation for eight
kinds of crops is estimated. Feed for animal production is also
assumed to consist of these eight kinds of crop, whose share is
given based on the current share by region (see Appendix II).
Processed food production requires an ingredient input of a
corresponding crop. We assume that the ingredient in sugar is
sugarcane, in soybean oil is soybean, in rapeseed oil is rape-
seed, and in palm oil is palm fruit. All of the food items and
crops are tradable among regions except for sugarcane and
palm fruit because these two crops quickly deteriorate, which
makes inter-regional trade difficult. Regional demand is satis-
fied by domestic and imported products, and the share of
domestic product is calculated by a binary logit model [18]
using the domestic and import price. Imports of all regions are
aggregated into global trade demand, and the export share in
the international market is calculated by a multinomial logit
model using the prices of export regions. The details of this
trade model are described in Appendix III. All data required
for the model estimation were obtained from FAOSTAT [12].
Even though trade is defined by the model, because we fixed
the prices of all regions and crops for future estimation, the
share of domestic product or the international market is con-
stant except in the case where there is an agricultural land

shortage, which is described below. The estimation process
from food demand to agricultural land use allocation is shown
in Fig. 2.

For food demand, trade, and crop production estimation,
the world is divided into 32 regions, considering socioeco-
nomic cohesiveness, geographical adjacency, and integrality
of the food market (Fig. 3). To meet the estimated regional
food production, agricultural land use is allocated on a 15×
15 min land grid. One allocated grid is fully used for the
production of one selected crop. The harvested crop is
selected to maximize the grid’s production value, consider-
ing the yields estimated by the AEZ model and given
producer prices for all crops. The crops are allocated to meet
the estimated regional crop production. If there is a shortage
of agricultural land, the production shortage is reallocated
through the trade model to regions where agricultural land
remains. In the simulations, the available agricultural land is
initially limited to the cropland grid in the USGS land use
datasets [19], but is expanded to adjacent grids for the
regions where agricultural land shortage occurred in the
previous period.

It should be noted that the crop demand for energy use is
not incorporated in this study. The global production of
ethanol is increasing, from 17.3 billion liters in 2000 to over
46 billion liters in 2007, and it is expected to exceed 125
billion liters in 2020 with worldwide government programs
[20]. However, the current production cost of bioethanol is
much higher than that of fossil fuel, except for the bioetha-
nol from sugar cane in Brazil [21]. This means that support-
ing policies or regulations are needed to promote bio-energy
use and production. Competition between energy and food
provision would raise concerns in producing biofuels from
food crops [22]. For instance, the promotion of bioethanol
production from maize in the USA began as a countermea-
sure for oversupply [23]. It is uncertain whether the promo-
tion of biofuel would last long under a situation of tight
supply of ingredient crops and competition with food. An
increase in the use of food crops for energy production will
affect agricultural production, price, and risk of hunger.
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However, we did not include crop production for energy use
in this study because of the uncertainties around the future
demand for biofuels.

Figure 4 shows the estimation algorithm for agricultural
land use. First, we set Qrk as the target production volume of
crop k in region r derived from the food demand and trade
model. We also initialized πr and qr as sequences of the
production value and volume for all grids and crops in
region r in descending order of production value. This
means that πr [j]>πr [j+1], where πr [j] represents the jth
production value in the sequence πr. Jr is a set of j, which is
a sequence of all combinations of land grids and crops in
region r. Temporary production volume is denoted as tQrk

and set as j01 and tQrk00 as the initial value.
For each region, the temporary production volume of

crop k[j] is set to tQrk[j]0tQrk[j]+qr[j], where k[j] denotes
the jth crop in the production value sequence. This means

that the grid that gives the highest production value is
selected to harvest crop k. If tQrk[j]<Qrk[j] and j<|Jr|, as
shown in the first branch, we add grid i[j] to Irk, which is a
set of grids where crop k is harvested in region r. In this
case, the grid cannot be used to harvest another crop.
Therefore, j′, which indicates the same grid as j (i.e., i[j′]0
i[j]) but harvests another crop, has to be removed from Jr. In
the same way, the data of production value and volume
indicating grid i[j] in the sequence πr and qr are also re-
moved. If tQrk>Qrk and j<|Jr|, as shown in the second
branch, this means that the temporary production exceeds
the target production and there is still room for production,
but no more grids for producing crop k are needed. In this
case, therefore, we add i[j] to Irk and remove all data for the
crop k from Jr, πr, and qr. Here, if there are other crops for
which the temporary production volume is less than the
target volume, we remove the crop k from the set of crops
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K. Otherwise, if all temporary production volumes exceed
the target volumes, this algorithm ends. If j>|Jr|, which
means that no grids are left for cultivation, region r is
removed from REX and the shortage of production Sk is set
as the difference between the target and the temporary
production volume. If REX is not empty, the shortage is
reallocated to the target volume Qrk in the regions of REX

through the trade model that gives the export share Pk(r|
REX). If REX is empty, algorithm stops and the output is the
total shortage of all crop productions.

In this framework, the estimated global agricultural land
use allocation is consistent with food demand and crop
yields under the socioeconomic, climate, and agroproduc-
tivity conditions. For agricultural land use projection during
the twenty-first century, SRES provides greenhouse gas
emission paths and basic socioeconomic conditions. Based
on the emission path, general circulation models calculate
long-term grid-based global climate conditions that are
inputs of the AEZ model to estimate the crop yield in each
grid. As technological factors for yield estimation in the
AEZ model, Leaf Area Index and Harvest Index are incor-
porated; they are represented as coefficients for the gross
and net biomass production estimation, and those values are
given by three input categories. For the projections, there-
fore, the yield depends on the choice of input category, but
there are no standard methods for how to choose one.
In addition, AEZ estimates the possible yield in each
grid cell, but it does not give information in regard to
where each crop is harvested and how much of the
crops are produced in regions.

Relationships among population, GDP, and average food
demand can be captured statistically using the FAOSTAT
data [12] of past decades. However, this statistical relation-
ship does not necessarily reflect the disparity in food access
and malnutrition of poverty groups. SRES can provide an
average income index as per-capita GDP, but it does not
give its distribution. As mentioned in Section 1, past studies
projecting the impact of climate change on food security
implicitly assumed a distribution and did not consider a
change in disparity.

A comparison with Computable General Equilibrium
(CGE) models coupled to agricultural land use models
[24–26] would be helpful to understand the features of our
approach. The Global Trade Analysis Project (GTAP) model
[27] is often used as a CGE model for the analysis of the
effect of climate change on global agriculture and land use.
CGE models are based on the Walrasian perfect competition
paradigm to generate a general equilibrium state where the
supply and demand of all markets in the economic system
are balanced by adjusting the prices. Actors in the model,
firms and households, behave to maximize their profit and
utility at a given price under the resource constraints. In the
GTAP model, there are multiple industrial sectors and the
world is divided into multiple regions. The model represents
the interregional trade of all commodities including agricul-
tural products. In this model, the demand and supply of food
are elastic to the prices, and the interregional trade is flex-
ible, and will change according to resource constraints,
especially land use. Some studies define land constraints
by agricultural land use models such as the AEZ model.
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On the other hand, in our approach, the final food
demands are initially determined based on the regional per
capita income, then supply volume is allocated to the
regions using their current trade share, and finally land use
to meet the given production volume is assigned to grids in
each region. This means that food demand is inelastic to
price, and that the import/export share is fixed to the current
level except in the case of land use shortage for food
provision. Therefore, our approach can be described as an
analysis of the physical availability of food supply under the
expected food demand and current trade system.

Food demand and trade are probably affected by price,
which is determined by the market under perfect competition,
as assumed in CGE models. However, in our ex ante analysis
using the FAO database, we could not find significant relation-
ships among food price, demand, trade, and production that
consider the tariff and subsidy of each region. In other words,
we could not capture the effect of price on food consumption
or production from historical data. Both demand and supply of
agricultural products may reflect not only its price but also
other factors such as preference, regulation, and the distribu-
tion system. International trade may depend on the bilateral
political or cultural relationships. If the relationships among
price, demand, trade, and production are clarified, our model
can be easily expanded to a partial equilibrium model that
limits the sectors in CGE to agriculture. A further calibration
study is needed.

In the next section, the technological factor for regional
yield estimation is addressed, and a food demand scenario
considering food access disparity is discussed in Section 4.

3 Estimation of the Agrotechnological Factor
and its Future Scenarios

In this section, we introduce the agrotechnological factor to
clarify the method to generate the agroproductivity scenar-
ios. To estimate yields that are consistent with their statis-
tics, harvested land grids for each crop have to be specified.
For that task, we use the agricultural land use allocation
algorithm shown in the previous section. In the application
of this algorithm, the target production volume for each crop
and region is given by FAOSTAT for the year to be calibrat-
ed. Once the harvested grids are determined, while the grid
allocation procedure requires the yields of each grid, the
average yield in the region can be obtained. The agrotech-
nological factor is adjusted to fit the estimated regional
average yield with its statistics under the regional produc-
tion constraint, but the yield adjustment will change the land
use allocation that affects the average yield. Therefore, this
adjustment process has to be iterative.

We simply determine the agrotechnological factor as a
multiplicative coefficient of the original AEZ yield estimation,

and determine the actual yield as a product of the agrotechno-
logical factor and the AEZ yield. We denote the AEZ yield
with moisture content for grid i and crop k as Yki

AEZ, actual
yield as Yki and the agrotechnological factor as Hk, which is
region- and crop-specific, then Yki0Hk×Yki

AEZ. Using Yki, a
set of harvested grids Ik, and area of grid i Ai, the total
production volume of crop k in region Qk can be expressed
as follows:

Qk ¼
X

i2Ik Yki � Ai ð1Þ

The regional average yield Yk is estimated as follows:

Yk ¼ Qk

X
i2Ik Ai

.
ð2Þ

If Ik was fixed, the agrotechnological factor Hk′, which
makes the estimated yield identical to that in statistics Y*

k

could be calculated using the following equation:

Hk
0 ¼ Hk � Y*

k Yk= ð3Þ
Ik will change if Hk is updated because this adjustment

changes the production value of corresponding crops in each
grid that affect the land use competition among crops;
therefore, Ik must be updated through the land use allocation
algorithm. In summary, Hk and Ik are calculated alternately
until the error of the yield estimation for every crop is small
enough. This estimation flow is shown in Fig. 5.

The estimated AEZ yield in this study reflects the current
climate (monthly temperature, precipitation, cloud cover,
wind speed, and humidity), soil condition [8], slope/height
[28], and irrigation. Grid climate conditions are estimated
based on the CRU dataset [29] and pattern scaling method
[30] using MIROC 3.2 medres, which was obtained from a
database by the Program for Climate Model Diagnosis and
Intercomparison [31]. The irrigated grids are given based on
the AQUASTAT database [32] and both rain-fed and irrigated
yields are calculated using the AEZmodel. Irrigated yields are
applied to irrigated grids, and rain-fed yields are applied to the
other grids. Based on the AQUASTAT database, double crop-
ping grids of rice are also estimated. AQUASTAT also gives
double cropping areas for rice, and we assume that double
cropping grids are allocated to a higher yield grid so that the
regional total area of the grids equals the statistics. In addition,
land use allocation is limited to the current crop land grid,
which is compiled based on the USGS database [19] for the
current agrotechnological factor estimation.

Applying this procedure to estimate the agrotechnologi-
cal factor for four periods, 1990, 1995, 2000, and 2005, the
correlation of regional yield between the estimation and
statistics for every crop and period is no less than 0.98.
The production target constraints are satisfied for all crops
in each estimation, and therefore, the area harvested can also
be accurately estimated using this factor.
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For future productivity projections, the main concern is
how to estimate the agrotechnological factor for each re-
gion. First, we considered that this factor somewhat reflects
the input of agricultural technologies, which may correlate
with the economic development of the region. Figure 6 plots
agrotechnological factors vs. GDP per capita in 2,000
USD, considering cases of wheat, rice, and maize. The
factor has a tendency to increase as per-capita GDP
grows, but it varies widely even among both higher
and lower income groups.

The agrotechnological variation probably reflects various
regional backgrounds such as culture and food preferences,
land use constraints, agricultural labor/capital conditions,
and affordability/cost-effectiveness/policies on intensive
farming. Some high-income regions seem to take on exten-
sive farming and some low-income regions appear to inten-
sively input agrotechnologies. In the future, an acceptance

of the use of biotechnologies, including genetically
modified organisms or agrochemicals, may widen the
difference in the factors among regions. Furthermore,
it is quite uncertain which pathway would be taken by
the current low-income and low-technology regions that
are expected to have higher economic growth during
this century.

For this reason, we simply apply autonomous yield in-
creasing rates to the agrotechnological factor scenarios. The
rates are estimated based on historical statistical data cover-
ing 43 years. To remove annual fluctuations, we take a 5-
year moving average of both yield and its growth rate.
Based on a nonparametric analysis, the average growth rate
was found to tend to decline against its yield. Therefore, we
assume that the average growth rate can be represented by
an exponential function with input of yield (Growth rate: f
(Y)0α0 exp{α1 Y}; Y: Yield, α0, α1: parameters). The

AEZ model (High-input)
Rain fed yield Irrigated yield

Irrigation grid
(AquaStat GMIA v4.0.1)

Yield of grids (8 crops) Land use allocation

FAO-STAT (32 region)
production volume, producer price

Double cropping area (12 regions)
Rice only (AquaStat)

Regional average yield YAgro-technological factor: H

Yield in statistics (FAO): Y*H’=Y*/Y H
Loop until the yield estimation 
error becomes enough small

Current crop land (USGS)

Fig. 5 Flowchart of the
agrotechnological factor
estimation
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parameters and their standard errors are estimated by the
maximum likelihood method. In this study, we take two
scenarios for the future growth rate; one is based on the
expected parameter values and the other is based on the
lower bound of parameters with 66 % confidence, assuming
normal distributions for parameter errors.

Using these growth rate functions, agrotechnological fac-
tor scenarios are determined by the following equation:

Htþ1
kr ¼ Ht

kr � f Y t
kr

� �þ 1
� � ð4Þ

where Y t
kr and Ht

kr are yield and agrotechnological factor of
crop k in region r at year t, respectively. Figure 7 shows a
plot of yield and its growth rate for wheat, and Fig. 8 shows
the estimated agrotechnological factor scenarios for selected
regions. In Fig. 7, the gray plot shows the observed yield
and annual growth rate as a 5-year moving average, and the
solid and dotted lines represent the functions with expected
and lower bound parameters, respectively. The two charts in
Fig. 8 depict estimated past agrotechnological factors
(1990–2005) and their future scenarios (2010–2100) for five
regions. In Fig. 7, the assumed two growth rate curves
appear relatively close to each other when compared with
the actual growth rate distribution (both of these two curves
show the average growth rate, but one represents its
expected average and the other shows the lower bound with
66 % confidence), but we can see that this slight variation
generates a significant difference in the long-term produc-
tivity scenarios. In the lower growth scenario, the agrotech-
nological factor increases by 63 % on average for all crops
and regions from 2005 to 2100, and by 151 % in the average
growth scenario. In this study, we apply these growth curves
as the technological scenarios. Of course, productivity by
region will bring about a wider variety of scenarios
because of regionality or fluctuations. Additionally, if
we assume a higher confidence level, the range of
scenarios will be wider.

4 Disparity in Food Access

Food accessibility is an important component of food secu-
rity, as discussed in Section 1. To evaluate food accessibility
based on a food demand/supply analysis, we employ the
estimation method and undernourishment prevalence data of
the FAO Statistics Division [33]. In the FAO framework, the
proportion of undernourished in the total population PU is
determined by the following equation:

PU ¼ P x < rLð Þ ¼
Z
x<rL

f ðxÞdx ð5Þ

where x refers to dietary energy consumption, rL is the
minimum dietary energy requirement, and f(x) is the density
function of dietary energy consumption. Here, f(x) is as-
sumed as a lognormal density function with mean and
deviation parameters μ and σ. These parameters are estimat-
ed by FAO based on a Food Balance Sheet and household
budget survey in each country. With this framework, the
FAO provides estimates of the prevalence of undernourish-
ment in the total population and minimum dietary energy
requirements on their website of food security statistics [34].
Though FAO does not publish the parameters of the density
functions, they can be calculated using the above data.

Using the lognormal distribution parameter σ, the GINI
coefficient of dietary energy consumption can be calculated
[35]. Here, the degree of disparity of food access can be
expressed by the GINI coefficient. This is one of the defin-
itive factors of the prevalence of undernourishment.
Therefore, its assumption is no less important than average
food consumption for the food security analysis. For in-
stance, the average food consumption and prevalence of
undernourishment in India in 2004 are 2,473 kcal/capita/
day and 21 %, respectively, and the minimum dietary energy
requirement is 1,770 kcal/capita/day. Assuming a lognormal
distribution in dietary energy consumption, its GINI coeffi-
cient is calculated as 0.19, as shown in Fig. 9a. To make the
prevalence less than 5 % using the same GINI coefficient,
the average energy consumption has to be more than
3,294 kcal/capita/day (Fig. 9b). Meanwhile, if the GINI
coefficient is assumed to be 0.11, which is the minimum
value in the FAO database [36], it takes an average con-
sumption of 2,489 kcal/capita/day to make the prevalence of
undernourishment 5 % (Fig. 9c). This example suggests that
the alleviation of food access disparity would reduce the
number of undernourished people significantly, with a rela-
tively small increase in total food consumption. In contrast,
if the disparity was unchanged, a substantial amount of food
provision would be required to eliminate the malnutrition.

Based on the above discussion, we set two scenarios for
future food demand: fixed and reduced food access disparity.
In the fixed scenario, the GINI coefficient estimated from
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current average energy consumption and the prevalence of
malnutrition in each region is used. The reduced scenario sets
the GINI coefficients of all regions to the value 0.11, which is
the minimum value given in the FAO database. We assume
that chronic malnutrition is eliminated when the prevalence is
less than 5 % (a value less than 5 % is represented by a dash
mark in the FAO database), and define the average food
consumption that eliminates malnutrition under a given
GINI coefficient as the saturation level of food demand per

capita. Based on the GINI coefficient scenarios, two saturation
levels are generated.

Table 1 presents the food access indices and parameters
for these two scenarios in the 27 regions where the preva-
lence of malnutrition was less than or equal to 5 % in 2003.
The values of the average food consumption and the prev-
alence of malnutrition in 2003 are also listed. In this table,
the middle group of columns (GINI in 2003) shows the
parameters estimates based on food access indices in 2003.
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Here, log-scale mean and standard deviation (s.d.) indicates
the lognormal distribution parameters of food access dispar-
ity, and GINI is the GINI coefficient of dietary energy
derived from the distribution. Saturation level indicates the
average food consumption required to meet the condition
that the prevalence of malnutrition equals 5 % under the
given GINI coefficient (the assumed relationships be-
tween the average food consumption, per capita GDP
and the saturation level are denoted in Eq. 6.).
Therefore, for the regions whose prevalence of

malnutrition is equal to 5 % the average food consump-
tion in 2003 value is taken.

The right group of columns (GINI00.11) indicates the
distribution parameters and saturation levels when the GINI
coefficient is fixed to 0.11 for all regions. By definition, the
same GINI coefficient requires the same standard deviation
of the lognormal distribution, but its mean parameter differs
depending on the minimum dietary energy requirement.
This scenario assumes a smaller disparity in food access;
therefore, the average food consumption (saturation level)

Table 1 Food access indices for the two food demand scenarios

In 2003 Fixed GINI scenario (GINI in 2003) Reduced GINI scenario (GINI00.11)

Region Minimum
dietary energy
requirement
(kcal/day)

Average food
consumption
(kcal/day)

Prevalence of
malnutrition
(%)

Log-
scale
mean

Log-
scale
s.d.

GINI a Saturation
levelb

Log-
scale
mean

Log-
scale
s.d.

GINIa Saturation
levelb

Oceaniac 1,811 2,746 7 7.89 0.254 0.142 2,840 7.82 2,547

China 1,900 2,940 9 7.94 0.294 0.164 3,215 7.87 2,672

Mongolia, DPRK 1,858 2,186 32 7.65 0.266 0.149 2,984 7.85 2,613

Cambodia, Laos,
Viet Nam

1,787 2,528 16 7.79 0.302 0.169 3,072 7.81 2,513

South Korea 1,900 3,035 5 7.98 0.264 0.148 3,035 7.87 2,672

Malaysia,
Singapore, Brunei

1,811 2,867 5 7.93 0.259 0.145 2,867 7.82 2,547

Indonesia 1,810 2,891 17 7.89 0.405 0.225 3,824 7.82 2,545

Thailand 1,850 2,424 17 7.76 0.251 0.141 2,883 7.84 2,601

Philippines 1,750 2,480 16 7.77 0.304 0.170 3,023 7.79 2,461

India 1,770 2,473 21 7.75 0.342 0.191 3,294 7.80 2,489

Afghanistan, Pakistan 1,750 2,316 23 7.70 0.313 0.175 3,076 7.79 2,461

Other Asia 1,767 2,398 23 7.72 0.341 0.191 3,283 7.80 2,484

Iran 1,810 3,096 5 7.99 0.299 0.167 3,096 7.82 2,545

Arabian Peninsula 1,791 2,522 17 7.79 0.305 0.171 3,099 7.81 0.196 0.11 2,518

Upper Middle East 1,813 3,009 5 7.97 0.283 0.159 3,009 7.82 2,550

Turkey 1,920 3,328 5 8.06 0.306 0.171 3,328 7.88 2,700

North Africa 1,835 3,233 5 8.03 0.314 0.176 3,233 7.84 2,581

South East Africa 1,728 2,057 35 7.58 0.317 0.177 3,061 7.78 2,430

Other S.S.Africa 1,756 2,347 27 7.69 0.367 0.205 3,435 7.79 2,470

Mexico 1,831 2,897 10 7.92 0.323 0.180 3,280 7.83 2,575

Brazil 1,850 3,146 6 8.01 0.310 0.174 3,235 7.84 2,601

Paraguay, Uruguay,
Argentina

1,879 2,901 6 7.94 0.255 0.143 2,950 7.86 2,642

Other South America 1,801 2,536 12 7.80 0.262 0.147 2,868 7.82 2,532

Russia 1,950 3,118 5 8.01 0.264 0.148 3,118 7.90 2,742

Annex I of FUSSR 1,940 3,047 5 7.99 0.255 0.143 3,047 7.89 2,728

Other FUSSR 1,887 2,553 13 7.82 0.240 0.135 2,884 7.86 2,653

Eastern Europe 1,967 3,257 5 8.05 0.282 0.158 3,257 7.91 2,766

S.S Africa denotes Sub-Saharan Africa, FUSSR Former Union of Soviet Socialist Republics
a The estimated GINI coefficient of dietary energy consumption
b The maximum level of average food consumption required to meet the condition that the prevalence of malnutrition equals 5 % under the given
GINI coefficient
c Oceania does not include Australia and New Zealand
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required to make the prevalence of malnutrition 5 % is
smaller than that in the fixed GINI scenario.

Average food consumption and per capita GDP were
found to be highly correlated in the data analysis, and we
assumed the following logistic growth function for average
food demand:

Q ¼ b3
1þ exp b1 � GDP þ b2ð Þ þ S � b3ð Þ ð6Þ

where Q is average food demand (kcal/capita/day), GDP is
per-capita GDP (constant 2000 USD), S is the saturation
level, and β1, β2, and β3 are parameters. Here, the parame-
ters are estimated by the maximum likelihood method using
time-series data of each region. However, five of the total 32
regions, the US, Canada, Western Europe, Japan, and South
Africa, have less than 5 % of the prevalence of malnutrition
in the database, and the saturation level S cannot be given by
the food access disparity indices for these regions. These
five regions are almost developed regions, and the average
food demand looks nearly saturated. Therefore, (S-β3) in the
above equation for these five regions is substituted by an
additional parameter β4 and is statistically estimated with
other parameters. Here, the parameters for Canada were not
estimated to be significant; therefore, we applied the US
saturation level in Eq. 6 and estimates β1, β2, and β3 for
Canada.

The estimated values for the parameters in Eq. 6 are
given in Tables 2 and 3. Figure 10 depicts the time-series
data for dietary energy consumption and its estimation using
the model assuming a fixed GINI coefficient for selected
regions. For all regions in this figure, the model estimation
has a good fit with observed data where the correlations
between them are more than 0.9. Looking at China in this
figure, the observed consumption is almost stable from 1998
to 2003, but the estimate still increases. This reflects the
higher assumed saturation level than the current consump-
tion level and the high economic growth during this period.
Therefore, the consumption is possibly overestimated, but if
the current prevalence of malnutrition is 9 %, as shown in
the FAO database, and if it has to be less than 5 % in the
saturation stage, the average consumption must increase. In
this sense, the demand estimation is not just a projection
based on a past trend but reflects the future target in the
crusade against undernourishment.

Regarding the overall fitness of the model under the fixed
GINI scenario, 16 regions have a correlation coefficient of
more than 0.9; in five regions, it is between 0.7 and 0.9. The
remaining 11 regions have relatively poor fit and they are
mostly positioned as low developing regions, the Middle
East, and Economies in Transition (EIT). For low develop-
ing regions, they remain in the starting stage of economic
growth, and therefore, dietary energy consumption is not

necessarily explained by the economic index. In the Middle
East, GDP is highly correlated with oil price, and hence, it is
not an adequate index for representing the past consumption
trend. In EIT regions, per capita dietary energy consumption
was almost stable, but GDP declined in the 1990s, so the
consumption cannot be explained by the per-capita GDP in
the past.

Despite the poor fit of the models for these 11 regions, we
apply them in future scenario building if the estimated
model parameters satisfy sign conditions that represent a
positive relationship between average dietary energy con-
sumption and per-capita GDP. In addition, for the regions
where the current energy consumption has already exceeded
the determined saturation level, the future average dietary
energy consumption is fixed to the saturation value in the
scenario. As a result, three regions do not satisfy the con-
ditions above and the parameters of adjacent regions are
applied to them with modification to meet the given satura-
tion level, in particular, the parameters of Iran, South East
Africa, and Russia are applied to the Arabian Peninsula,
other Sub-Saharan Africa, and other Former Union of
Soviet Socialist Republics, respectively.

The generated per-capita dietary energy consumption
scenarios are shown in Fig. 11. Here, the developed
countries, the US, Western Europe, and Japan, have single
saturation parameters, and therefore, their paths are the same
in both scenarios. In contrast, developing regions have dif-
ferent pathways between the two scenarios. In the fixed
GINI scenario, all of the developing regions exceed
Japanese consumption. This is due to the higher saturation
level of average energy consumption to meet the condition
of a 5 % prevalence of malnutrition under high food access
disparity, as shown in Table 2. Meanwhile, all of their
average consumptions are below Japan in the reduced
GINI scenario because of the lower saturation level under
more equal food access, as shown in Table 3. In the latter
case, China and Indonesia reduce their future consumption
from the current level. We assume that malnutrition will be
resolved even if the average dietary energy consumption
declines because the food access disparity is greatly
reduced.

Furthermore, we decompose these dietary energy con-
sumption scenarios into the demand for the 13 food items
described in Section 2. First, we defined four food classes:
cereals and vegetables (wheat, rice, maize, soybeans, and
potato), animal products (beef, pork, chicken, and milk),
sugar, and oil (soybean oil, rapeseed oil, and palm oil). We
assume that the share of animal products, sugar, and oil
grows as per-capita GDP increases. The share of cereals
and vegetables is calculated by subtracting the other shares
from one. Again, a logistic function is applied as the share
growth model. The shares of these classes in the USA,
Western Europe and Japan have been almost stable during

Risk of Hunger Under Climate Change 309



the past 20 years, so we consider them to have already been
saturated. Saturation parameters are assigned to the other
regional models based on the similarity of the food share.
We used the Consumption Similarity Index [37] to quantify
the similarity of the current share. As a result, the US
parameter was assigned to Canada, the Western Europe
parameter was assigned to Oceania and Argentina, and the
Japanese parameter was assigned to the other regions. With
these saturation parameters, the other growth model

parameters are estimated based on the data of each region
in the same way as the total energy model estimation. The
absolute estimation error for each region in 2003 falls in the
range 0.0–3.0 %; on average, it is 0.7 %.

The item share within the food class is fixed to the 2000–
2003 average for each region. Multiplying the regional
population, dietary energy consumption per capita, share
of food class, and share of food item, the demand for each
food item is calculated. It should be noted that our energy

Table 2 The estimated values for parameters of the food demand function (fixed GINI scenario)

Region names Average
consumption
(kcal/day)

β1 β2 β3 β4 Saturation level
(kcal/day)

Correlation

USAa 3,754 −0.19 (−7.15) 4.96 (7.29) 1,176.44 (10.06) 2,765 (48.71) 3,941 0.994

Canadab 3,605 −0.47 (−10.98) 10.33 (11.01) 1,036.61 (50.88) – 3,941 0.964

Western Europea 3,536 −0.09 (−1.67) 0.71 (0.54) 1,633.2 (1.39) 2,205 (2.31) 3,838 0.983

Japana 2,768 −0.11 (−0.35) −0.21 (−0.01) 1,240.77 (0.07) 1,583 (0.09) 2,824 0.952

Oceaniaa 3,114 0.00 (0.33) −3.84 (−0.08) −11,038.18 (−0.02) – 2,840 0.057

China 2,940 −2.44 (−13.87) −1.93 (−5) 13,008.19 (2.91) – 3,215 0.972

Mongolia, DPRK 2,185 −5.64 (−0.5) 3.7 (0.64) 933.93 (4.24) – 2,984 0.248

Cambodia, Laos, Viet Nam 2,530 −5.54 (−1.89) 1.96 (1.06) 1,400.02 (2.53) – 3,072 0.978

South Koreac 3,035 −3.49 (−5.88) 5.32 (4.21) 1,073.25 (6.59) – 3,035 0.980

Malaysia, Singapore, Bruneic 2,867 −0.76 (−5.43) 0.87 (0.89) 835.95 (2.31) – 2,867 0.968

Indonesia 2,891 −1.5 (−37.58) −1.07 (−4.24) 10,043.58 (5.15) – 3,824 0.994

Thailand 2,424 −0.33 (−6.34) −1.18 (−1.62) 3,734.12 (1.76) – 2,883 0.835

Philippines 2,480 −3.48 (−2.49) 2.68 (1.34) 2,129.71 (2.22) – 3,023 0.905

India 2,473 −2.16 (−7.66) −0.68 (−1.16) 5,052.41 (2.48) – 3,294 0.901

Afghanistan, Pakistan 2,316 −1.72 (−14.49) −0.9 (−1.01) 4,753.95 (1.51) – 3,076 0.815

Other Asia 2,384 −2.96 (−6.11) 0.3 (0.51) 3,176.16 (3.48) – 3,283 0.907

Iranc 3,096 −0.4 (−0.47) −1.51 (−0.12) 3,700.51 (0.09) – 3,096 0.082

Arabian Peninsulad 2,519 −0.03 (−2.05) −1.97 (−0.98) 8,793.33 (0.56) – 3,099 0.332

Upper Middle Eastc 3,107 0.31 (0.69) −3.83 (−0.63) 2,007.85 (0.17) – 3,009 0.127

Turkeyc 3,328 −7.38 (−2.69) 13.41 (2.28) 396.96 (2.76) – 3,328 0.885

North Africa 3,231 −7.82 (−11.44) 8.85 (9.9) 1,137.69 (28.22) – 3,233 0.988

South Africaa 2,962 −2.64 (−1.94) 3.73 (0.65) 2,291.49 (0.31) 542 (0.07) 2,833 0.632

South East Africa 2,053 −5.3 (−0.53) 2.03 (0.36) 1,512.13 (0.99) – 3,061 0.577

Other S.S.Africad 2,354 1.76 (2.05) −1.19 (−1.5) 3,281.28 (1.6) – 3,435 0.434

Mexico 2,895 −0.61 (−4.64) 0.71 (0.53) 3,025.23 (1.44) – 3,280 0.969

Brazil 3,146 −3.16 (−7.52) 10.05 (7.3) 890.16 (33.73) – 3,235 0.947

Paraguay, Uruguay, Argentina 2,901 0.77 (1.05) −5.33 (−1.85) −259.2 (−0.69) – 2,950 0.348

Other South America 2,535 −3.01 (−4.94) 7.91 (4.46) 846.96 (10.26) – 2,868 0.918

Russiac 3,118 −2.31 (−12.12) 1.77 (0.42) 1,831.82 (0.35) – 3,118 0.795

Annex I of FUSSRc 3,047 −8.97 (−1.71) 5.07 (2.15) 3,390.46 (0.23) – 3,047 0.731

Other FUSSRd 2,553 4.74 (0.22) −1.22 (−0.11) 418.2 (5.29) – 2,884 0.171

Eastern Europe 3,259 2.18 (0.35) −4.81 (−0.4) −20.59 (−0.74) – 3,257 0.255

Values in parenthesis indicate t-statistic
a Saturation level is estimated based on food consumption statistics
b Canada’s saturation value is set to the US level
c Current consumption level exceeds the given saturation level
d Sign condition of per capita GDP parameter is not satisfied
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consumption model and food class share estimation model
are explained only by per-capita GDP and do not depend on
the price of food.

5 Results

Using this framework and scenarios, we estimated food
demand/production, area of agricultural land use, and yield

from 2000 to 2100 for every 10 years. In total, simulations
for eight scenarios were carried out for a combination of the
following cases: expected and low growth for agrotechnol-
ogies; fixed and reduced GINI for food access disparity; and
B2 climate and 1990 fixed climate. Under all scenarios, an
agricultural land use pattern was obtained that satisfied
global food demand throughout the study period. For sim-
plicity, we set a base scenario, taking low technological
growth, fixed GINI, and B2 climate, which requires

Table 3 Food demand function estimation results (reduced GINI scenario)

Region names Average
consumption
(kcal/day)

β1 β2 β3 β4 Saturation level
(kcal/day)

Correlation

USAa 3,754 −0.19 (−7.15) 4.96 (7.29) 1,176.44 (10.06) 2,765 (48.71) 3,941 0.994

Canadab 3,605 −0.47 (−10.98) 10.33 (11.01) 1,036.61 (50.88) (–) 3,941 0.964

Western Europea 3,536 −0.09 (−1.67) 0.71 (0.54) 1,633.2 (1.39) 2,205 (2.31) 3,838 0.983

Japana 2,768 −0.11 (−0.35) −0.21 (−0.01) 1,240.77 (0.07) 1,583 (0.09) 2,824 0.952

Oceaniac 3,114 0 (0.36) −3.83 (−1.98) −24,592.36 (−0.53) – 2,547 0.058

China 2,940 −12.26 (−2.75) 1.78 (1.04) 1,378.17 (1.96) – 2,672 0.972

Mongolia, DPRK 2,185 −4.42 (−1.1) 2.42 (0.74) 596.57 (2.42) – 2,613 0.216

Cambodia, Laos, Viet Nam 2,530 −17.69 (−5.29) 5.12 (3.97) 508.4 (7.42) – 2,513 0.974

South Koreac 3,035 8.13 (1.92) −16.32 (−1.99) −343.09 (−10.71) – 2,672 0.937

Malaysia, Singapore, Bruneic 2,867 1.63 (5.37) −5.41 (−6.11) −323.86 (−15.46) – 2,547 0.935

Indonesia 2,891 −14.72 (−3.21) 5.12 (2.45) 844.67 (5.64) – 2,545 0.965

Thailand 2,424 −0.55 (−5.73) −1.78 (−0.99) 4,349.26 (0.64) – 2,601 0.845

Philippines 2,480 −11.11 (−4.76) 9.19 (4.13) 812.81 (8.1) – 2,461 0.911

India 2,473 −12.85 (−3.22) 2.63 (1.48) 908.85 (2.07) – 2,489 0.931

Afghanistan, Pakistan 2,316 −6.76 (−7.01) −0.94 (−0.76) 5,823.78 (0.93) – 2,461 0.860

Other Asia 2,384 −8.82 (−10.87) 0.49 (0.96) 2,985.77 (3.04) – 2,484 0.928

Iranc 3,096 16.64 (1.15) −20.72 (−1.12) −214.75 (−3.11) – 2,545 0.374

Arabian Peninsulad 2,519 −0.19 (−2.55) −2.51 (−1.4) 10,851.41 (0.6) – 2,518 0.497

Upper Middle Eastc 3,107 −1.3 (−0.78) 8.45 (0.77) −316.41 (−2.58) – 2,550 0.164

Turkeyc 3,328 4.28 (6.63) −7.38 (−6.42) −733.3 (−32.2) – 2,700 0.895

North Africa 3,231 20.36 (2.19) −25.77 (−2.18) −625.37 (−7.09) – 2,581 0.952

South Africac 2,962 −2.64 (−1.94) 3.73 (0.65) 2,291.49 (0.31) 542 (0.07) 2,833 0.632

South East Africa 2,053 −8.47 (−0.97) 1.98 (0.44) 814.41 (0.81) – 2,430 0.562

Other S.S.Africac 2,354 6.1 (3.1) −4.97 (−3.37) 3,751.79 (0.71) – 2,470 0.466

Mexico 2,895 6.91 (2.24) −24.32 (−2.28) −279.31 (−7.34) – 2,575 0.931

Brazil 3,146 5.3 (1.28) −18.78 (−1.84) −1,100.37(−0.35) – 2,601 0.877

Paraguay, Uruguay, Argentina 2,901 0.31 (0.24) −1.41 (−1.45) −655.55 (−0.36) – 2,642 0.350

Other South America 2,535 −7.12 (−5.43) 17.34 (5.11) 405.67 (10.71) – 2,532 0.913

Russiac 3,118 5.15 (1.43) −8.55 (−1.57) −328.7 (−3.53) – 2,742 0.802

Annex I of FUSSRc 3,047 3.07 (0.91) −4.47 (−5.74) −1,138.67 (−0.37) – 2,728 0.844

Other FUSSRd 2,553 6 (0.24) −2.84 (−0.21) 176.53 (24.71) – 2,653 0.166

Eastern Europe 3,259 4.93 (1.96) −7.14 (−1.69) −516.55 (−30.57) – 2,766 0.421

Values in parenthesis indicate t-statistic
a Saturation level is estimated based on food consumption statistics
b Canada’s saturation value is set to the US value
c Current consumption level exceeds the given saturation level
d Sign condition of per capita GDP parameter is not satisfied
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maximum agro-land use, and examined the impacts of al-
ternative scenarios compared with this base scenario.

First, the global dietary energy consumption under the
two demand scenarios is shown in Fig. 12. Total energy
demand increases by 96 % in the fixed GINI scenario and
58 % in the reduced GINI scenario between 2000 and 2100.
During this period, the population increases by 67 % in the
B2 scenario. As a result, the dietary energy consumption per
capita increases by 17 % in the former and decreases by 5 %
in the latter, even though per-capita GDP increases by
440 % in both scenarios. In this study, we assume that
chronic malnutrition is eliminated when the prevalence is
less than 5 %, and the gap reduction in food access will
contribute to eliminating malnutrition with less total food
supply. The result presented in Fig. 12 indicates that the
promotion of equity in food access has a substantial impact
on food demand. Compared with the fixed GINI scenario,

the total dietary energy consumption of the reduced GINI
scenario is 20 % smaller.

This figure also shows the composition of food class.
Reflecting the economic growth, the share of animal products,
vegetable oils, and sugar is projected to increase. This change
in food class composition may require more agricultural land
than that for vegetable product-dominant composition.

Second, the total area of agricultural land use for all crops
and average yield for wheat for four selected scenarios are
shown in Fig. 13. In 2000, the estimated agro-land area was
3 % smaller than that in the statistics. It should be noted that
all food is assumed to be generated from the eight crops in
this study; therefore, the estimated geographical distribution
of the crop harvest grid must differ from the actual distribu-
tion, and some regions such as Mexico and Mongolia have
low accuracy in the estimation even though the global
estimation error is quite accurate. In this sense, this estima-
tion is not a prediction that considers real regional variety or
constraints in production or trade but is representative of a
possible land-use pattern to meet the assumed demand.

The base scenario, depicted by the solid line, projects that
the area of agricultural land used for wheat production
increases by 18 % from 2000 to 2030, then decreases. In
2100, the area is reduced from that of 2000 by 13 %. Even
though food energy demand increases significantly, as
shown in Fig. 12, the yield increase by the assumed tech-
nological progress exceeds the demand increase after 2030
in this scenario.

In the case of a fixed climate, climate change is completely
mitigated. The trend is quite similar to that of the base scenario
but projects an approximately 3 % smaller area in 2100 than
the base scenario projection. This means that the climate
change in the B2 scenario, in which the global average tem-
perature is expected to increase by approximately 2.6 °C in
2100 from the 1990 level, has a negative effect on agricultural
productivity and requires that the agricultural land area
increases to meet the demand. Looking at the average yield
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of wheat, the fixed climate scenario has a higher path than the
base scenario; it is 10 % higher in 2100.

Both the expected technology scenario and the reduced
GINI scenario project a constant decline in the required agri-
cultural land area. During the period between 2000 and 2100,
it is reduced by 47 and 39% in these scenarios, respectively. A
reduction of disparity in food access affects the land area
immediately through a decline in the per-capita energy de-
mand in developing countries, as shown in Fig. 11. Looking at
the average yield of wheat, the reduced GINI scenario marks a
higher yield than the base scenario through the analysis period;
it is 6 % higher in 2100. Even though the agricultural technol-
ogy progress path is the same in these scenarios, the smaller
demandmakes the average yield higher because the harvesting
grid is allocated by priority of production value in this study. In
other words, smaller demand only needs more productive
grids. In contrast, larger demand requires an expansion of the
harvesting area to land less suitable for agriculture.

The expected technology scenario gives the highest
world-average yield among the chosen scenarios for wheat.
Technological progress increases the yield, and higher yield
needs a smaller harvested area to meet the demand, which

again leads to higher yield. Because of this assumed in-
crease in technological progress and yield, despite the in-
crease in demand and shift caused by an increase in
population and per-capita GDP, the agricultural land area
satisfying the demand declines.

In summary, the prospects of food access disparity and
agrotechnological progress have a significant impact on the
projection of food availability, agricultural land use, and
productivity—no less than that of climate change. Based
on the results of our scenario analyses, technological prog-
ress and the promotion of equitable food access are estimat-
ed to have sufficient potential to alleviate the negative
impact of climate change on food security.

The above results are for the global average. However,
the impacts of climate change are considered to differ by
region, and how agriculture performs against climate change
is one of our concerns, especially in developing countries.
Figure 14 shows agricultural land use taking the cases of
four regions: Western Europe, China, India, and South East
Africa. In Western Europe and China, the figure indicates
that the fixed climate scenario requires larger area for agri-
culture in total. This means that the assumed global
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warming will have a positive impact in these two regions
where substantial land at higher latitude is used for agricul-
ture even though the climate impacts vary among crops and
locations within the regions; some crops in the same loca-
tion gain from climate change, but others may lose. In India,
the fixed climate scenario needs less land than the base
scenario; in other words, climate change will have negative
impact on agriculture. In South East Africa, the base and
fixed climate scenarios have almost the same path in agri-
cultural land use, but climate change is expected to have a
negative effect in the long term.

Both the expected technology scenario and the reduced
GINI scenario require a smaller land area for agriculture in
all regions. Even though the dietary energy consumption
distributions of the fixed and reduced GINI scenarios are
identical in Western Europe, the equitable food access in
developing countries requires lower export from Western
Europe. This pushes down the agricultural land use there.
In China, India, and South East Africa, the expected tech-
nology and reduced GINI scenarios need much less land use
than the base and fixed climate scenarios. This means that
the assumed technological progress and the promotion of
equitable food access are estimated to have sufficient poten-
tial to alleviate the negative impact of climate change on
food security in the currently relatively poor regions as well.

It should be noted these outcomes are under the assump-
tion that the food imports in regions such as China, India,

and South East Africa will increase with future increases in
the demand for animal and processed food. It is controver-
sial whether these countries will increase their food imports
or not. In most countries, employment in the agricultural
sector is an important political issue, and sometimes they
protect the domestic products from competitive imported
products. In other cases, if they fail in economic growth
and a massive increase of food imports is not affordable,
they have to supply crops themselves. In this case, however,
the presumed food demand scenario may be changed. If
these regions do not increase their imports, the pathway of
land use in the developing countries shown in Fig. 14 will
be pushed up, while the pathway of exporter regions will be
pushed down.

It should also be noted that various adaptation measures,
such as changing the crop calendar and harvesting sites,
cultivation, and flexible trade against land use constraints,
are already incorporated in the base scenario. This means
that the global agricultural system is assumed to be managed
quite idealistically and that some component such as chang-
ing the cropping calendar would be realized in the short
term, but another part such as agricultural trade would take
time to be more fair and flexible because of political
reasons in many countries. These results, in this sense,
are representative of a possible future but are not pre-
dictive, considering all the barriers and inefficiencies in
the real world.
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6 Conclusions

In this study, the impact of agrotechnological progress and
the reduction of food access disparity are demonstrated in
comparison with climate change scenarios. Under the agro-
technology, food access, and climate change scenarios dur-
ing the period between 2000 and 2100, crop yields,
agricultural land use, and food demand were estimated using
a new analytical framework that incorporates AEZ method-
ology and the global food demand-trade model. For the
agroproductivity scenario development, we developed a
calibration method to extract the agrotechnological factor
contribution to crop yield from statistics and AEZ yield
estimation. This agrotechnological factor contribution im-
plicitly includes the historical trend of technological prog-
ress, land use constraint, and agricultural labor/capital
conditions. Using the estimated agrotechnological factor
and statistical data on yield, two scenarios of agrotechno-
logical progress were generated. In addition, based on the
definition of hunger by the FAO, two scenarios of food
demand, in which different levels of food access dispar-
ity are assumed under the B2 socioeconomic scenario,
were also generated taking food access disparity into
consideration.

The results indicate that (1) the assumed agroproductivity
progress will have a substantial impact on crop yields and
agricultural land use in this century; (2) a reduction in food
access disparity will reduce the total food demand signifi-
cantly in developing countries, leading to a smaller required
harvesting area; and (3) both of these factors, the progress of
agroproductivity and the reduction in food access disparity,
have no lesser impacts on agriculture than climate change,
which has been considered to be a significant factor in food
security in past studies.

The assumed climate change increases the total agricul-
tural land use, which represents a negative impact of climate
change on agriculture. The total area of agricultural land
required to meet global food demand is estimated to de-
crease substantially in two scenarios: the expected technol-
ogy scenario and the reduced GINI scenario. The former
scenario increases productivity, and the latter scenario
decreases the total food demand even though the prevalence
of malnutrition is eliminated in both scenarios. This implies
that the negative impact of climate change on food security
could be recovered by agrotechnological progress and the
alleviation of disparity. Our results suggest that these factors
may play more important roles than climate change in future
global food security.

In the scenario development, various simplifications or
assumptions were employed. Agrotechnological progress
was determined statistically and did not necessarily reflect
any potential of the individual technologies in the future. In
addition to our statistical approach, a bottom–up analysis

compiling the possible yield improvement by each technol-
ogy/technique would be needed. To develop the reduced
disparity scenario, we applied the minimum GINI index to
the setting of the saturation level of average food demand
for all regions in which the prevalence of malnutrition is
more than 5 %. This setting made the average dietary energy
demand lower than the current level for some countries and
malnutrition was eliminated. This indicates that this scenario
may demonstrate the maximum impact of disparity reduc-
tion, and we should thus address a greater variety of dispar-
ity scenarios in future studies. Crop production for biofuels
was omitted from this study. Increased demand for biofuels
may affect agricultural land use and food security. Demand
for energy crops should also be incorporated in future
studies.
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Appendix I: IPCC SRES Scenarios

There are four basic scenarios in the SRES report: A1, A2, B1,
and B2. With regard to the population prospects, there are
only three different trajectories because scenarios A1 and B1
have the same population trajectory. These two scenarios
assume a higher economic growth around the world and lower
birth rates in developing countries. As a result, they have the
lowest population trajectory of the scenarios. The A2 scenario
assumes self-reliance regions, lower trade flows, and uneven
economic growth. Reflecting international disparities, a
higher birth rate in developing regions and the largest popu-
lation among the scenarios is assumed. The B2 scenario
describes intermediate economic growth and moderate popu-
lation growth, and the fertility rates were assumed to converge
to the same level as the UN 1998 medium scenario.

Appendix II: Feed Demand for Animal Production

In this study, we assumed four types of animal prod-
ucts: bovine meat, pig meat, poultry, and milk.
Alexandratos [38] provides a simple equation to esti-
mate the feed demand for animal production. However,
the intensity of feeding varies significantly by region: in
some regions, the products come from non-grain-fed
animals, whereas other regions feed high-calorie cereals
intensively. We assume that two feed intensity vectors,
Ve and Vi, are the required feed for unit production of
the various types of animal products in extensive and
intensive feeding systems. Assuming a region-specific
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parameter α, the regional feed demand Q is calculated
using the following equation:

Qf ¼ 1� að Þ � Ve þ a � Við Þ � X ð7Þ
where X is the production volume vector of animal products.
Ve and Vi are assumed on the basis of Alexandratos’ study and
reports from agricultural experiments in Japan. Using the data
of Qf and X in 2000 from FAOSTAT, α is estimated for each
region.

We also assume that the feed consists of the eight kinds
of crops considered in the land use analysis in this study.
The regional share of primary crops for feed is fixed to the
value in 2000.

Appendix III: Food Trade Model

In this model, the regional food demand is satisfied by
domestic and imported products. The share of domestic
product SD is calculated by a binary logit model using the
domestic price PD and import price PI.

SD ¼ exp �θd1 � PD þ θd0ð Þ
exp �θd1 � PD þ θd0ð Þ þ exp �θd1 � 1þ tð Þ � PIð Þ

ð8Þ

where τ is the tariff rate, θd1 is the scale parameter of the
error term, and θd0 is the dummy parameter for domestic
product. This equation means that as the domestic price
decreases or the import price increases, the domestic share
becomes high. The model parameters are estimated for each
food item and region. Using the share and demand for all
regions, the global demand for imports is calculated. The
export share of region j in the global market, which is
denoted as SEj, is estimated by a multinomial logit model
using the domestic prices of export regions PDj.

SEj ¼
exp θe1 � PDj þ θej

� �
P

j0 exp θe1 � PDj0 þ θej0
� � ð9Þ

where θe1 is the scale parameter of the error term and θej is
the dummy parameter for region j. The model parameters
are estimated by the following process. First, scale parame-
ters are estimated by solving the following equation for θ1:

σ ¼ � p1=p2
Q1=Q2

� d Q1=Q2ð Þ
d p1=p2ð Þ ¼ p1 � p2

p1 þ p2
� θ1 ð10Þ

where σ is the elasticity of substitution given by GTAP [27],
p1 and p2 are the prices of two competitive items, and Q1

and Q2 are the demand volume of the items. For the domes-
tic share model, θd1 can be estimated using domestic and
import prices. For the export share model, we calculate θ1
for all price combinations of two export regions and θe1 is

determined as an average of them. Second, the dummy
parameters θd0 and θej are estimated to represent the share
in 2000 under the estimated scale parameters.

In this model, food trade depends only on the price and
tariff rate. However, in this study, we fixed the prices of
agricultural products at the 2000 level during the analysis
period. Therefore, the share of domestic products and the
export share in the global food market are also fixed to the
share in 2000 if land shortage does not occur in the alloca-
tion process. If land shortage occurs, the shortage volume of
production is reallocated through the export share model
where the export regions are limited to regions with mar-
ginal land for cultivation.
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