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Abstract Given a differential game, if agents have
different time preference rates, cooperative (Pareto
optimum) solutions obtained by applying Pontryagin’s
maximum principle become time inconsistent. We de-
rive a set of dynamic programming equations in contin-
uous time whose solutions are time-consistent equilib-
ria for problems in which agents differ in their utility
functions and also in their time preference rates. The
solution assumes cooperation between agents at every
time. Since coalitions at different times have different
time preferences, equilibrium policies are calculated by
looking for Markov (subgame perfect) equilibria in a
(noncooperative) sequential game. The results are ap-
plied to the study of a cake-eating problem describing
the management of a common property exhaustible
natural resource. The extension of the results to a
simple common property renewable natural resource
model in infinite horizon is also discussed.
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Time inconsistency · Cooperation ·
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1 Introduction

In the analysis of intertemporal decision problems with
several agents, when players can communicate and
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coordinate their strategies in order to optimize their
collective payoff, cooperative solutions are introduced.
Although the natural framework for most economic
problems is to assume that the agents compete among
each other, in some models—for instance, those related
to the analysis of international trade agreements, topics
in environmental economics concerning climate change
policies, or the exploitation of common property nat-
ural resources (see [13] and [17] for two recent sur-
veys on dynamic games in these topics)—it is natural
to look for mechanisms inducing cooperation between
economic agents (see, e.g., [3] and references therein
for a recent study of coalition formation and stability of
coalitions in resource economics).

Although it is customary to assume that all economic
agents have the same rate of time preference, there is
no reason to believe that consumers, firms, or countries
have identical time preferences for utility streams (see,
e.g., [12] and references therein). For instance, in a
noncooperative setting, for the problem of extraction of
exhaustible resources under common access, feedback
Nash equilibria have been studied in the case of equal
[5] and different [18] discount rates. With respect to the
Pareto optimum in the cooperative framework, if there
is a unique (constant) discount rate for all agents, it is
easily obtained by solving a standard optimal control
problem. However, in the case of different discount
rates, when looking for time-consistent cooperative
solutions, standard dynamic optimization techniques
fail. The reason is that time preferences become time
inconsistent, as in the case of hyperbolic preferences.
In [10], effects of aggregation of heterogeneous time
preferences were studied by assuming that there is
a representative agent and that agents can commit
to their future consumption plan at date t = 0 (this
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is the so-called precommitment solution according to
the literature of nonconstant discounting). Li and and
Löfgren [16] characterized long-run steady states for
a renewable resource model with two agents under
similar assumptions. If we remove the commitment
assumption, time-consistent policies can be computed
by solving the dynamic programming equation (DPE)
first derived in [14]. This paper aims to fill the gap in
the search for time-consistent solutions in a cooperative
continuous time setting if agents are asymmetric (or
heterogeneous), in the sense that their preferences are
represented by different utility functions (there is not
a representative agent) and they also use different dis-
count rates. It is important to realize that when agents
lack commitment power, they act at different times t as
sequences of independent coalitions (the t coalitions).
The solution we compute assumes cooperation among
players at every time t but is a noncooperative equilib-
rium for the noncooperative sequential game defined
by these infinitely many t coalitions.

In recent years, papers departing from standard dis-
counting have received increasing attention. Strotz [25]
called attention to the problem of time inconsistency
arising when nonconstant discount rates of time pref-
erence are introduced. We refer to [9] for a review
of the literature up to 2002. Time inconsistency also
arises in problems where the decision-maker discounts
instantaneous utilities and final gains in a different way.
Equilibrium conditions for time-consistent solutions
have recently been obtained for both kinds of problems
in a continuous time setting (see [14] for the case of
nonconstant discounting and [20] for the problem with
heterogeneous discounting).

As we have mentioned above, despite the fact that
nonstandard discounting models have focused on indi-
vidual agents, this framework has proved to be useful
in the study of multiagent problems if decision-makers
cooperate among them (although the different t coali-
tions act in a noncooperative way). If players share the
same joint instantaneous utility function (there is a rep-
resentative agent) but have different rates of time pref-
erence, say r1 �= · · · �= rN , the cooperative problem can
be rewritten as a nonconstant discounting problem and
previous results in the literature can be applied in order
to obtain a time-consistent (subgame perfect) solution
(see Remark 2 in [14]) as follows. Let us consider an
N player cooperative differential game where, as usual,
the joint coalition maximizes the weighted sum of their
respective payoffs, J (c(·)) =∑N

m=1 λm Jm, where Jm =
∫ T

t e−rm(s−t)Um (x(s), c(s), s) ds represents the individual
payoff of player m, λm ≥ 0 characterizes the weight of
player m in the coalition, and x(s) and c(s) are the vec-
tors of state and control variables. Thus, the joint payoff

is J (c(·)) =∑N
m=1 λm

∫ T
t e−rm(s−t)Um (x(s), c(s), s) ds. If

there is a representative agent, we can write the (joint)
utility function as U(x, c, s), and the payoff for the
group can be rewritten as

J (c(·)) =
∫ T

t
θ(s − t)U (x(s), c(s), s) ds ,

where θ(s − t) =∑N
m=1 λme−rm(s−t) is the discount func-

tion, which can be also rewritten as θ(s − t) =
e− ∫ s

t r̄(τ−t)dτ = e− ∫ s−t
0 r̄(τ )dτ where the time preference

rate r̄(τ ) is a nonconstant function of its argument,

r̄(τ ) = − θ ′(τ )

θ(τ )
=

∑N
m=1 λmrme−rmτ

∑N
m=1 λme−rmτ

. For N = 2, this noncon-

stant discounting model has been applied to study a
model of catastrophic climate-related damages in [15].

In this paper, we tackle the more general problem
that consists in maximizing

J (c(·)) =
N∑

m=1

λm

∫ T

t
e−rm(s−t)Um (x(s), c(s), s) ds (1)

subject to

ẋ(s) = f (x(s), c(s), s), x(t) = xt . (2)

Hence, we focus on the case when agents exhibit
different instantaneous payoff functions and different
(but constant) rates of time preference. This problem
cannot be transformed into a problem with nonconstant
discounting.

There are two sources of time inconsistency in prob-
lem (1–2). First, there is the time-consistency problem
related to the changing time preferences of the different
t coalitions, as we have discussed in the previous para-
graphs. In addition, if players are not committed them-
selves to cooperate at every instant of time t, a problem
of dynamic inconsistency or time inconsistency (both
words are synonymous and are used indistinctly in the
literature of cooperative differential games) can arise,
independently of the form of the discount function:
it is possible that players initially agree on a coop-
erative solution that generates incentives for them,
but it is profitable for some of them to deviate from
the cooperative behavior at later periods. Haurie [11]
proved that the extension of the Nash bargaining solu-
tion to differential games is typically not dynamically
consistent. We refer to [27] for a recent review on
the topic. For the case of transferable utilities, if the
agents can redistribute the joint payoffs of players in
any period, Petrosyan proposed in a series of papers
a payoff distribution procedure in order to solve this
problem of dynamic inconsistency (see, e.g., [26] or [22]
and references therein). We do not consider this issue
of dynamic consistency (related to the stability of the



Time-Consistent Equilibria in Common Access Resource Games 173

whole coalition) in this work. Throughout the paper,
we assume that the agents commit themselves to coop-
erate at every instant of time t. On the contrary, recall
that we do not assume that the different t coalitions
(with different time preferences) have precommitment
power. Equilibria are computed by finding subgame
perfect equilibria in a noncooperative sequential game
where players are the different t coalitions (represent-
ing, for instance, different generations). Hence, our
solution to the problem is time consistent provided
that all the agents at a given time t cooperate. This
is not a real restriction in some problems, in which
it is always profitable for the agents to cooperate. In
other cases, if utilities are transferable, payoff (impu-
tation) distribution procedures can be introduced in
order to guarantee the stability of the whole coalition,
extending in a rather easy way this method to our
problem with asymmetric players, as in the case of
differential games with nonconstant discounting (see
[21]). If utilities are not transferable, weights λm of
agents in whole coalition should be nonconstant, in
general, but a result of a bargaining procedure at every
time t, as in the case of equal discount rates. For
instance, in a multiperiod (discrete time) setting with
two heterogeneous agents, Sorger [24] proposed the so-
called recursive Nash bargaining solution, which is a
dynamically consistent equilibrium. According to this
solution, nonconstant weights λm(x) of the different
players in the whole coalition are computed for each
period according to a Nash bargaining scheme.

Our main contributions are the following: First, for
a finite horizon two-person cooperative differential
game, we introduce a computationally tractable ap-
proach based in transforming the problem into a one-
agent problem with heterogeneous discounting (see
[20]). As a result, we must solve two coupled DPEs.
A second approach enables us to study problems with
an arbitrary number of players. In the derivation of
the DPE, we adopt the procedure given in [14] for the
nonconstant discounting problem. And third, we apply
the approach in [21] for the analysis of the problem in
an infinite horizon setting. We illustrate the effects of
using different discount rates by solving an exhaustible
resource extraction model with common access (see,
e.g., [7]), and a basic common property renewable nat-
ural resource model (see, e.g., [4]). We prove that, for
these problems, if all the agents have the same σ in their

utility functions Ui(ci) = c
1−σi
i −1
1−σi

, the extraction rates of
all agents in the time-consistent solution coincide. A
similar result has recently been obtained in a discrete
time setting in a fisheries model in the limit σ = 1 for a
logarithmic utility function (see [2]).

The paper is organized as follows: In Section 2, we
study the two-player case in finite horizon. The exten-
sion to the N player case is considered in Section 3. Sec-
tion 4 analyzes the infinite time horizon setting. Finally,
Section 5 presents a summary of the main results of the
paper.

2 Heterogeneous Discounting and Time-Consistent
Solutions in a Cooperative Setting: the Case
of Two Asymmetric Players

Heterogeneous discounting problems were studied in
[20] in order to study problems where the agent dis-
counts in a different way the utilities enjoyed along
the planning horizon (typically due to consumption)
and the final function (which has normally a different
nature), i.e., the decision-maker faces the problem of
maximizing
∫ T

t
e−r1(s−t)U(x(s), c(s), s) ds + e−r2(T−t)F(x(T), T) (3)

subject to

ẋ(s) = f (x(s), c(s), s), x(t) = xt . (4)

We refer to [20] for an economic motivation of problem
(3–4), as well as a discussion on the time inconsis-
tency of these time preferences. In that paper, it was
proved that if the value function W(x, t) is continuously
differentiable function in (x, t), a time-consistent solu-
tion can be obtained by solving the DPE

r2W(x, t) + K(x, t) − ∇tW(x, t)

= max
{c}

{U(x, c, t) + ∇xW(x, t) · f (x, c, t)} , (5)

with W(x, T) = F(x, T) and

K(x, t) = (r1 − r2)

∫ T

t
e−r1(s−t)Ū(x, s)ds .

If, for each pair (x, t), there exists c∗ = φ(x, t), with the
corresponding state trajectory, such that c∗ maximizes
the right-hand side term of Eq. 5, then c∗ = φ(x, t)
is called a Markov equilibrium rule for the problem
with heterogeneous discounting. The same DPE can be
obtained by following a derivation in the spirit of [14]
for nonconstant discounting models, by first obtaining
the DPE for a discretized version of problem (3–4), and
passing next to the continuous time limit.1

1We refer to the preliminary version of this paper, de-Paz
et al. [6], for the details.
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Next, note that Ū(x, s) = U(x(s), φ(x(s), s), s), where
x(s) is the solution to ẋ(s) = f (x, φ(x, s), s) with x(t) =
x.2 Hence,

K(x, t) = (r1 − r2)

∫ T

t
e−r1(s−t)U(x(s), φ(x(s), s), s) ds

(6)

and, by differentiating K in Eq. 6 with respect to t, we
obtain the “auxiliary DPE”

r1 K(x, t)−∇t K(x, t) = (r1−r2)U(x, φ(x, t), t)

+∇x K(x, t) · f (x, φ(x, t), t) . (7)

Hence, let W(x, t) and K(x, t) be two continu-
ously differentiable functions in (x, t) such that W(x, t),
K(x, t), and the strategy c∗ = φ(x, t) satisfy the set
of two DPEs (5) and (7) with boundary conditions
W(x, T) = F(x, T) and K(x, T) = 0. Then, W(x, t) is
the value function for problem (3–4), and the strategy
c∗ = φ(x, t) maximizing the right-hand side term of
Eq. 5 is a Markov equilibrium rule.

For the two-player case, N = 2, we can connect our
cooperative problem with a heterogeneous discounting
problem. In order to do this, we rewrite the functional
objective for one of players in the Mayer form, in such
a way that problem (1–2) for the t coalition becomes
equivalent to the problem of maximizing

λ1

∫ T

t
e−r1(s−t)U1 (x(s), c1(s), c2(s), s) ds + λ2e−r2(T−t)y(T)

subject to

ẋ(s) = f (x(s), c1(s), c2(s), s) ,

ẏ(s) = r2 y(s) + U2 (x(s), c1(s), c2(s), s)

(for t = 0, x(0) = x0, and y(0) = 0, as usual). With the
addition of a new state variable y, we transform the
cooperative problem with asymmetric players into a
Bolza problem for just one agent with integral and
terminal value terms, but with different time preference
rates.

We can apply these results in the analysis of a simple
model of a common-property nonrenewable resource
with two agents, N = 2, with equal weights λ1 = λ2, in
a finite time horizon T. Let x(t) and cm(t), m = 1, 2,
denote the stock of the resource and player m’s rate
extraction at time t, respectively, while the evolution of
the system follows

ẋ(t) = −c1(t) − c2(t), x(0) = x0, x(T) = 0. (8)

2Along the paper, we will omit the subindex in xt if it is not strictly
necessary.

Each player m has an increasing and concave utility
function Um(cm). Let us assume that the utility func-
tions are logarithmic, Um(cm) = ln(cm), and are dis-
counted at constant time preference rates rm > 0, with
r1 �= r2. If the agents at time t = 0 decide to cooperate
throughout all the planning horizon [0, T], the objective
for the coalition is to maximize
∫ T

0
ln (c1(s)) e−r1sds +

∫ T

0
ln (c2(s)) e−r2sds (9)

subject to Eq. 8. If we solve problem (9) subject to
Eq. 8 by means of Pontryagin’s maximum principle, we
obtain

c0
m(s) = e−rms

∑2
i=1

1−e−ri T

ri

x0 = e−rms

∑2
i=1

e−ris−e−ri T

ri

xs , (10)

where the superscript 0 in c0
m accounts for the mo-

ment at which the decision has been taken. This is
the so-called (in the hyperbolic discounting literature)
precommitment solution, which is optimal from the
viewpoint of the 0 coalition, cP(s) = c0(s), and can be
associated with the existence of some binding agree-
ment between players at the beginning of the game, in
the sense that both agents will follow the decision rule
taken at time t = 0, despite having incentives to deviate
in the future from the previously calculated decision
rule. However, if such an agreement does not exist,
players in the coalition can recalculate the cooperative
solution at some instant t ∈ (0, T]. The maximum of
∫ T

t
ln (c1(s)) e−r1(s−t)ds +

∫ T

t
ln (c2(s)) e−r2(s−t)ds, (11)

subject to

ẋ(s) = −c1(s) − c2(s), x(t) = xt, x(T) = 0 (12)

is given by

ct
m(s) = e−rm(s−t)

∑2
i=1

1−e−ri(T−t)

ri

xt , s ∈ [t, T] . (13)

Note that this solution differs from that calculated in
Eq. 10. For instance, ct

1(t) = ct
2(t), whereas c0

1(t) �= c0
2(t)

for every t > 0. Thus, the joint solution becomes time
inconsistent as long as the coalition has the possibility
of reoptimizing at any instant after t = 0.

In general, if players in the coalition can continu-
ously recalculate the “cooperative” solution, they will
follow what we call the (time inconsistent) naive deci-
sion rule cN

m(t). Note that a coalition taking a decision
at time t will choose the decision rule (13). However,
at time t′ > t, the coalition will recompute the decision
rule. Hence, ct

m(s) in Eq. 13 is followed only at the
time s = t at which the agents of the t coalition have
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calculated the extraction rate, so that the actual extrac-
tion rate becomes

cN
m(t) = ct

m(t) = 1
∑2

i=1
1−e−ri(T−t)

ri

xt. (14)

Note that the precommitment and naive solutions do
not coincide unless r1 = r2. In fact, cP

1 (t) �= cP
2 (t), for

every t ∈ (0, T], whereas cN
1 (t) = cN

2 (t) for every t ∈
[0, T]. If the agents can split the resource at time t = 0
in an irreversible way so that x0 = x1

0 + x2
0, where xm

0 =
∫ T

0 cm(s) ds, i = 1, 2, then the precommitment solution
becomes time consistent.

In order to determine a time-consistent equilibrium,
we first reformulate problem (11–12) by rewriting the
payoff of player 2 in the Mayer form. The objective
functional becomes

∫ T

t
e−r1(s−t) ln (c1(s)) ds + e−r2(T−t)y(T)

subject to

ẋ(s) = −c1(s) − c2(s) , ẏ(s) = r2 y(s) + ln (c2(s)) (15)

with x(T) = 0. Although the DPE for the problem with
heterogeneous discounting was derived in [20] for the
case of free terminal states x(T) and y(T), it is easy to
check that it is preserved if a terminal condition on x(T)

is imposed. We look for the solution to the DPE (5), i.e.,

r2W(x, y, t) + K(x, y, t) − Wt(x, y, t)

= max
{c1,c2}

{ln c1 + Wx(x, y, t)(−c1 − c2)

+Wy(x, y, t) (r2 y + ln(c2))
}
, (16)

where K(x, y, t) = (r1 − r2)
∫ T

t e−r1(s−t) ln(c∗
1, s)ds. As

we prove in the Appendix, for this particular prob-
lem, the solution obtained for the naive coalition is
a time-consistent policy. This feature, also arising in
nonconstant discounting models (see Pollak [23] and
[19]), is a consequence of using logarithmic utility func-
tions, and it no longer holds when more general utility
functions are considered, as we show in the following
section for a general N-player cooperative differential
game.

3 An Exhaustible Resource Model Under Common
Access: the Case of N-Asymmetric Players

In this section, we extend the two-player case analyzed
above. Let us consider the case of N players who

decide to form a coalition seeking for a time-consistent
solution maximizing

J (c(·)) =
N∑

m=1

λm

∫ T

t
e−rm(s−t)Um (x(s), c(s), s) ds (17)

subject to

ẋ(s) = f (x(s), c(s), s), x(t) = xt . (18)

3.1 A Dynamic Programming Equation

First, we derive a dynamic programming equation de-
scribing time-consistent equilibria for problem (17–18),
by following a formal procedure. In we discretize (17)
and (18), the corresponding problem in discrete time is

max
{c1,...,cn}

V j =
N∑

m=1

Vm
j

=
n− j−1∑

i=0

N∑

m=1

λme−rm(iε)Um(x(i+ j), c(i+ j), (i + j)ε)ε (19)

subject to

xi+1 = xi + f (xi, ci, iε)ε , i = j, . . . , n − 1 , x j given .

(20)

In the Appendix, the following dynamic programming
algorithm for the discrete time problem (19–20) is
derived:

V∗
j (x j, jε) = max

{c j}

{
N∑

m=1

λmUm(x j, c j, jε)ε

+
n− j−1∑

k=1

N∑

m=1

λm
(
1 − ermε

)
e−rmkεŪm

( j+k)(x( j+k), ( j + k)ε)ε

+V∗
( j+1)(x( j+1), ( j + 1)ε)

}
, (21)

with x( j+1) = x j + f (x j, c j, jε)ε, j = 0, . . . , n − 1, and
V∗

n = 0.
Next, we define the value function for problem (17–

18) as the solution to the DPE obtained by taking the
formal continuous time limit when ε → 0 of the DPE
(21) obtained from the discrete approximation to the
problem, assuming that the limit exists and that the
solution is of class C1 in all their arguments. Proceeding
in this way, it can be easily proved (see the Appendix)
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that if Wm(x, t), m = 1, . . . , N, is a set of continuously
differentiable functions in (x, t) satisfying the DPE

N∑

m=1

rmWm(x, t) −
N∑

m=1

∇tWm(x, t)

= max
{c}

{
N∑

m=1

λmUm(x, c, t)+
N∑

m=1

∇xWm(x, t) · f (x, c, t)

}

(22)

with Wm(x, T) = 0, for every m = 1, . . . , N, and

Wm(x, t) = λm

∫ T

t
e−rm(s−t)U(x(s), φ(x(s), s), s) ds ,

(23)

where c∗(t) = φ(x(t), t) is the maximizer of the right-
hand term in Eq. 22; then W(x, t) =∑N

m=1 Wm(x, t) is
the value function of the whole coalition, the decision
rule c∗ = φ(x, t) is the (time consistent) Markov per-
fect equilibrium, and Wm(x, t), for m = 1, . . . , N, is the
value function of player m in the cooperative problem
(17–18).

Remark 1 Note that, throughout the equilibrium rule
c∗ = φ(x, t), for every player m, Wm(x, t) in Eq. 23 is a
solution to the partial differential equation

rmWm(x, t) − ∇tWm(x, t)

= λmUm(x, φ(x, t), t) + ∇xWm(x, t) · f (x, φ(x, t), t) ,

(24)

for m = 1, . . . , N, with Wm(x, T) = 0. Hence, we can
compute the value function by first determining the
decision rule solving the right-hand term in Eq. 22 as
a function of ∇xWm(x, t), m = 1, . . . , N, and then sub-
stituting the decision rule into the system of N partial
differential equations (24).

3.2 An Exhaustible Resource Model Under Common
Access and Partial Cooperation

Now we can extend the results for the nonrenewable
resource model in Section 2 to the general case of
N asymmetric players. If λ1 = · · · = λN = 1, we must
solve

max
{c1,...,cn}

N∑

m=1

∫ T

t
e−rm(s−t) (cm(s))1−σm − 1

1 − σm
ds (25)

subject to

ẋ(s) = −
N∑

m=1

cm(s), x(t) = xt, x(T) = 0 . (26)

For m = 1, . . . , N, the precommitment and naive solu-
tions for problem (25–26) are given by

cP
m(t) = e−γmt

∑N
i=1

1
γi

(
e−γi t − e−γiT

)xt and

cN
m(t) = 1

∑N
i=1

1
γi

(
1 − e−γi(T−t)

)xt , (27)

respectively, where γm = rm
σm

. In the naive case, the
extraction rates of all agents coincide.

In order to look for a time-consistent equilibrium,
we apply the results in Section 3.1 to problem (25–26).3

From Eq. 22, we have to solve

N∑

m=1

rmWm(x, t) −
N∑

m=1

∂Wm(x, t)
∂t

= max
c1,...,cN

{
N∑

m=1

cm(s)1−σm − 1
1 − σm

+
(

N∑

m=1

∂Wm(x, t)
∂x

)(

−
n∑

m=1

cm(s)

)}

. (28)

The maximizer of the right-side term in (28) is cS
m(t) =

(∑N
j=1

∂W j(x,t)
∂x

)− 1
σm , for m = 1, . . . , N. Therefore, the

extraction rates of agents m and m′ coincide (cS
m = cS

m′)
if, and only if, σm = σm′ . Thus, if there are two players m
and m′ such that σm �= σm′ (hence, cS

m �= cS
m′), the naive

solution is always time inconsistent.
In order to compute the actual decision rule, we

can solve the family of N coupled partial differential
equations (24), which in our particular case becomes

rmWm(x, t) − ∂Wm(x, t)
∂t

= 1
1 − σm

⎡

⎢
⎣

⎛

⎝
N∑

j=1

∂W j(x, t)
∂x

⎞

⎠

σm−1
σm

− 1

⎤

⎥
⎦

− ∂Wm(x, t)
∂x

N∑

j=1

(
N∑

i=1

∂Wi(x, t)
∂x

)− 1
σ j

,

for m = 1, . . . , N. If σ1 = · · · = σN = σ , the
above system simplifies to rmWm(x, t) − ∂Wm(x,t)

∂t =

3As in the standard case, the same DPE is obtained if x(T) is
fixed.
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1
1−σ

[(∑N
j=1

∂W j(x,t)
∂x

)1− 1
σ −1

]− N ∂Wm(x,t)
∂x

(∑N
i=1

∂Wi(x,t)
∂x

)− 1
σ ,

m = 1, . . . , N. We guess Wm(x, t) = Am(t) x1−σ −1
1−σ

+
Bm(t), m = 1, . . . , N, with Am(t) > 0 for every
t ∈ [0, T). By substituting in the above DPE, we
find that the functions Am(t) are the solution to the
system of ordinary differential equations

Ȧm − rm Am = N(1 − σ)Am

⎛

⎝
N∑

j=1

A j

⎞

⎠

− 1
σ

−
⎛

⎝
N∑

j=1

A j

⎞

⎠

1− 1
σ

, j = 1, . . . , N . (29)

For instance, if we reproduce the calculations for the
case of logarithmic utility functions, which corresponds
to the limit σ = 1, it is easy to check that the above
system simplifies to Ȧm − rm Am + 1 = 0, for m =
1, . . . , N. Note that Am(t) = 1

rm
[1 − e−rm(T−t)], which is

the naive solution, satisfies this set of differential equa-
tions. Hence, the naive solution also becomes time con-
sistent in the case of N asymmetric players, extending in
this way the result obtained in Section 2. Summarizing,
we have proved the following property: in problem (25–
26), in the time-consistent solution, the extraction rates
of two agents coincide if, and only if, they have the same
marginal elasticity σ . In particular, if σ1 = · · · = σN =
1, then the naive solution (27) is time consistent.

If σ �= 1, note that cS
m(t) =

(∑N
j=1 A j(t)

)− 1
σ

and the solution to the state equation is

x(t) = x0e
− ∫ t

0
N

(∑N
j=1 A j(s)

)1/σ ds

. In order to achieve the
terminal condition x(T) = 0, from the positivity of
Am(t) for t < T, we obtain that limt→T

∑N
j=1 A j(t) = 0;

therefore, Am(T) = 0, for every m = 1, . . . , N. It can
be shown that the naive solution is time inconsistent,
in general, for σ �= 1, as we illustrate numerically in
Section 3.3.

Remark 2 If Um(cm) = U(cm), i.e., all the agents have
the same utility function (in the isoelastic case, σ1 =
· · · = σN = σ ), along the equilibrium rule all players
extract the resource at the same rate and problem (25–
26) becomes equivalent to the problem of a represen-
tative agent using the discount function

∑N
m=1 e−rm(s−t).

This result is not preserved for the precommitment
solution. The time inconsistency of the naive solution if
σ �= 1 for the corresponding cake-eating problem with
nonconstant discounting was already proved in [19]. On
the contrary, if there two agents m and m′ with different
marginal utilities (σm �= σm′), the problem cannot be
simplified to a nonconstant discounting problem.

10 20 30 40 50
t

0.5

1.0

1.5

2.0

2.5

3.0

c t

Fig. 1 Extraction rates for naive and sophisticated agents (σ =
0.6) and logarithmic case

3.3 Numerical Illustrations

Next, we illustrate numerically the above results. We
consider as a baseline case the problem for three play-
ers, N = 3, exhibiting as time preference rates r1 =
0.03, r2 = 0.06, and r3 = 0.09, respectively, i.e., agent 1
being the most patient and agent 3 the most impatient.
Agents face the “optimal” exploitation of a common
property exhaustible resource with an initial stock of
x0 = 100 during a time interval that extends from t0 =
0 to T = 50 periods. Utilities from consumption are
assumed to be of the isoelastic type with equal in-
tertemporal elasticity of substitution (1/σ ) for all three
players in the coalition.

Figures 1 and 2 show the individual extraction rate
for every agent in the coalition under the assumption
of cooperation for the naive (dot dashed line) and
the sophisticated solutions (dashed line), with σ = 0.6

10 20 30 40 50
t

0.5

1.0

1.5

c t

Fig. 2 Extraction rates for naive and sophisticated agents (σ = 2)
and logarithmic case
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10 20 30 40 50
t

0.5

1.0

1.5

c t

Fig. 3 Extraction rates for sophisticated agents in the coalition
(solid line) and individual extraction rates under precommitment
at t = 0 (dashed, dotted, and dot–dashed lines correspond to
players 1, 2, and 3, respectively). Logarithmic utility

(Fig. 1) and σ = 2 (Fig. 2). In both graphs, the solid line
shows the extraction rate for logarithmic utilities.

Unless σ = 1 (logarithmic utilities), the time-
consistent and naive solutions do not coincide, as ex-
pected. For σ = 0.6, the time-consistent agents’ extrac-
tion rate is higher at initial periods compared with naive
agents, this behavior being reversed for σ = 2. It is
noteworthy to observe that the equilibrium appears to
be more sensitive to the value of σ than to the behavior
(naive or time consistent) of the t coalitions. In addi-
tion, higher values of σ lead agents to smooth their
extraction rate path along the time horizon. Finally,
in Fig. 3, we compare the precommitment solutions
(c0

m(s), s ∈ [0, 50], m = 1, 2, 3) with the time-consistent
solution assuming now that utilities are of the logarith-
mic type.

We observe that in the precommitment solution,
each player’s extraction rate in the coalition is different,
(patient) player 1 being the agent in the coalition with
higher aggregate extraction (and hence exploitation) of
the resource (patient agents have a higher weight in the
joint functional payoff than impatient agents). In the
time-consistent solution, extraction rates are equal for
all the three players in the coalition, as indicated by the
solid line.

4 An Extension: Infinite Planning Horizon

In most economic models and, in particular, in the
economic modeling of natural resources, it is customary
to work in an infinite horizon setting. For instance,
an important issue in the management of natural re-
sources (such as forests, aquifers, or fish species) is the

existence of positive steady-state levels. In this section,
we briefly extend the previous results for the nonrenew-
able resource model to a simple model of management
of a common-property renewable resource. If prefer-
ences of agent m, for m = 1, . . . , N, are characterized
by the utility function Um(cm) = c1−σm

m −1
1−σm

and the dis-
count rate of time preference rm, then, at time t, we
must solve

max
{c1,...,cn}

N∑

m=1

∫ ∞

t
e−rm(s−t) (cm(s))1−σm − 1

1 − σm
ds , (30)

subject to

ẋ(s) = g(x) −
N∑

m=1

cm(s) , x(t) = xt , (31)

where cm(t) is the harvest rate of agent m, for m =
1, . . . , N, and g(x) is the natural growth function of
the resource stock x. In the case of a representative
agent applying a unique utility function, this problem
was already studied in [1] for the neoclassical growth
model.

In general, consider the problem of looking for the
decision rule “maximizing”

J (c(·)) =
N∑

m=1

λm

∫ τ

t
e−rm(s−t)Um (x(s), c(s), s) ds,

subject to Eq. 18, where τ can be finite or infinite. If τ =
∞, a natural candidate for a DPE is given by Eqs. 22
and 23) with T = ∞. However, in our derivation, we
assumed that T is finite. In the Appendix, we provide
a mathematical justification of this DPE by using the
approach in [21], which is based on the one by [8].
For simplicity, we take λ1 = · · · = λN = 1. If the value
function (42) is finite and of class C1, then the solution
c = φ(x, t) to the right-hand term of the DPE

N∑

m=1

rmWm(x, t) −
N∑

m=1

∇tWm(x, t)

= max
{c}

{
N∑

m=1

Um(x, c, t) +
N∑

m=1

∇xWm(x, t) · f (x, c, t)

}

(32)

with

Wm(x, t) =
∫ τ

t
e−rm(s−t)U(x(s), φ(x(s), s), s) ds (33)

is an equilibrium rule.

Remark 3 The previous result can easily be generalized
to the general problem where agents’ time preferences
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are represented by arbitrary discount functions dm(s, t),
m = 1, . . . , N. In this case, Wm(x, t) in Eq. 33 be-
comes Wm(x, t) = ∫ τ

t d(s, t)U(x(s), φ(x(s), s), s) ds and
the DPE in Eq. 32 transforms into

N∑

m=1

∫ τ

t

∂dm(s, t)
∂t

U(x(s), φ(x(s), s), s) ds−
N∑

m=1

∇tWm(x, t)

= max
{c}

{
N∑

m=1

Um(x, c, t) +
N∑

m=1

∇xWm(x, t) · f (x, c, t)

}

.

For instance, if dm(s, t) = θm(s − t), we obtain the
problem of N-hyperbolic heterogeneous agents using
different nonconstant discount rates of time preference.

Now, we analyze problem (30–31). Since both the
utility functions and the state equation are autonomous,
it seems natural to restrict our attention to time-
independent value functions Wm(x), for m = 1, . . . , N.
From Eq. 32, we have to solve

N∑

m=1

rmWm

= max
c1,...,cN

⎧
⎨

⎩

N∑

m=1

c1−σm
m −1
1−σm

+
⎛

⎝
N∑

j=1

W j
x

⎞

⎠

(

g(x)−
N∑

m=1

cm

)⎫
⎬

⎭
,

(34)

hence

c∗
m = φm(x) =

⎛

⎝
N∑

j=1

W j
x

⎞

⎠

− 1
σm

. (35)

Therefore, c∗
m = c∗

m′ if, and only if, σm = σm′ . In this
model, in general, along the equilibrium rule, U ′(c∗

m) =
U ′(c∗

m′) =∑N
j=1 W j

x, for all m �= m′. In addition, we have
the set of DPEs

rmWm = (φm(x))1−σm − 1
1 − σm

+Wm
x

⎛

⎝g(x) −
N∑

j=1

(φ j(x))∗
⎞

⎠ ,

(36)

for all m = 1, . . . , N, where φm(x) is given by Eq. 35.
Next, let us restrict our attention to the case of

linear decision rules. Since (c∗
i )

−σi = (c∗
j)

−σ j , for all
i, j = 1, . . . , N, if c∗

m = φm(x) = αmx, then (αix)−σi =
(α jx)−σ j . Therefore, no linear decision rules exist

unless σi = σ j, for all i, j. For σi = σ j = σ , then
αi = α j and the DPE (34) becomes

∑N
m=1 rmWm =

N
1−σ

(
α1−σ x1−σ − 1

)+ α−σ x−σ (g(x) − Nαx). This equa-
tion has a solution if g(x) = ax. In this case, we obtain

N∑

m=1

rmWm(x) =
[

Nσ

1 − σ
α1−σ + aα−σ

]

x1−σ − N
1 − σ

,

together with
∑N

m=1 Wm
x (x) = α−σ x−σ and Eq. 36. If we

try Wm(x) = Am x1−σ −1
1−σ

+ Bm, by simplifying we obtain
that Am, Bm, and α are obtained by solving the equa-
tion system

[rm − (1 − σ)(a − Nα)] Am

= α1−σ , rm Am−(1−σ)rm Bm =1 and
N∑

m=1

Am =α−σ .

(37)

In the case of logarithmic utilities (corresponding to the
limit σ = 1), by trying Wm(x) = Am ln x + Bm, we can
reproduce the calculations to obtain Am = 1

rm
and α =

1
∑N

m=1
1

rm

. If r1 = · · · = rN = r, then α = r−(1−σ)a
Nσ

.

Next, we summarize the main results of this simple
model:

1. In problem (30–31), along the equilibrium rule, the
extraction rates of two agents are equal if, and only
if, they have the same marginal elasticity. From a
mathematical viewpoint, this result is straightfor-
ward. However, it is noteworthy to observe how,
in the time-consistent solution with partial cooper-
ation, agents with different discount rates harvest
the resource at equal rates. This solution is different
from that obtained in a noncooperative setting, or
from that obtained by applying the Pontryagin’s
maximum principle (the so-called precommitment
solution).

2. Since cσi
i = c

σ j

j , for every i, j = 1, . . . , N, extrac-
tion/harvesting rates are higher for agents with
a higher intertemporal elasticity of substitution
(lower value of the parameter σ ) when ci, c j > 1.
This property is reversed when ci, c j < 1. Note that
this property is independent on the use of different
discount rates (although discount rates affect to the
value of extraction/harvesting rates).

3. If there are two players with different marginal
elasticities, no linear decision rules exist. This prop-
erty is independent on the use of different discount
rates. As a consequence, in the case of different
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marginal elasticities, it becomes very difficult to
derive analytic solutions.

4. If the natural growth function is linear and all the
agents have the same marginal elasticity σ , then
the decision rules cm = αx and the value functions
Wm(x) = Am x1−σ −1

1−σ
+ Bm, m = 1, . . . , N solve

problem (30–31), where the coefficients α, Am, and
Bm are the solutions to Eq. 37.

5. It is easy to show that the previous qualitative prop-
erties (coincidence of extraction/harvesting rates,
existence of linear decision rules) are preserved
if time preferences of agent m, m = 1, . . . , N, are
given by dm(s, t) (see Remark 3).

We can particularize some of these results for the
case of an exhaustible resource (function g(x) = 0). In
the case of equal marginal elasticities, in the Markov–
perfect Nash equilibrium, linear decision rules of the
form ci = γix exist where if 1 − σi ∈ [0, 1/2), then γi >

γ j ⇐⇒ ri > r j. Hence, patience is weakness. In the case
of partial cooperation, it is easy to prove (as we have
illustrated numerically) that, in the precommitment so-
lution, the agent with the lower discount rate extracts
at the higher rate, as expected (patience is better). On
the contrary, in the naive and time-consistent solutions,
all agents extract at the same rate.

If marginal elasticities are different, in the Markov–
Nash equilibrium with ci = γix, if 1 − σ ∈ [0, 1/2), then
γi > γ j ⇐⇒ ri

r j
> 2σi−1

2σ j−1 . Therefore, the solutions do not
cross in the sense that different agents extract the
resource always at different rates. On the contrary, it
can be shown that, if the initial stock x0 is sufficiently
high so that ci(0) > 1 for some i, the (cooperative)
time-consistent solutions cross. This property is also
preserved for the (time inconsistent) naive solution.
Next, we illustrate this result with a numerical example
(we take x0 = 50 and N = 2).

• Cooperation: precommitment solution
ri σi Higher initial Higher final

extraction extraction
rate rate

Agent 1 0.04 1/3 � �
Agent 2 0.08 2/3
Agent 1 0.04 2/3 �
Agent 2 0.08 1/3 �
Agent 1 0.04 1/3 �
Agent 2 0.06 2/3 �
Note that, in this case, solutions do not cross in
the first example, and they do in the other two
examples. In the first example, final extraction

rate is higher for the agent with a lower σ . On
the contrary, in the two examples where solutions
cross, final extraction rate is higher for the agent
with a higher σ .

• Cooperation: naive and time-consistent solutions
ri σi Higher initial Higher final

extraction extraction
rate rate

Agent 1 0.04 1/3 �
Agent 2 0.08 2/3 �
Agent 1 0.04 2/3 �
Agent 2 0.08 1/3 �
Agent 1 0.04 1/3 �
Agent 2 0.06 2/3 �
In this case, solutions cross in the three examples.
Final extraction rates are higher always for the
agent with a higher value of the parameter σ .

5 Concluding Remarks

In this paper, we address the problem of searching
time-consistent solutions for cooperative differential
games with asymmetric players (in the sense that they
exhibit different instantaneous payoff functions and
different discount rates of time preference). We focus
our attention in the implications of introducing het-
erogeneous agents in the exploitation of a common
property resource. We analyze the time-consistency
problem related to the changing preferences of the
different t coalitions. In order to avoid the possible
time-consistency problem associated to the stability of
the grand coalition, we assume that agents commit
themselves to cooperate at every instant of time t (al-
though we do not assume that the different t coalitions
cooperate among them). First, we restrict our attention
to problems in a finite horizon setting. For this case,
we introduce two alternative approaches in order to
find time-consistent equilibria. In the first approach, we
transform a two-player cooperative differential game
into a one-agent problem with heterogeneous discount-
ing. The second approach allows us to study prob-
lems with an arbitrary number of players. We apply
these two approaches to the study of the effects of
using different discount rates in the derivation of time-
consistent extraction rates in a simple exhaustible re-
source extraction model with common access (see, e.g.,
[5] and [7]). We prove that, within the class of isoelastic
utility functions, if the agents decide to cooperate, if all
the agents have the same σ in their utility function, then
the extraction rate of all players in the time-consistent
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solution coincide (although they are using different
discount rates of time preferences). A similar result has
been recently obtained in a discrete time setting in a
fisheries model for a logarithmic utility function (see
[2]). Next, we extend our results to an infinite horizon
setting, and a simple common access renewable natural
resource model with asymmetric players is discussed.
We show that, if there are two players with different
marginal elasticities, no time-consistent linear decision
rules exist if the agents decide to cooperate. We illus-
trate with several examples that, in this case, if agents
decide to form the grand coalition, along this solution
it can happen (depending on the initial stock of the
resource) that one agent (that with a higher intertem-
poral elasticity of substitution) extracts the resource at
a higher rate at the beginning, and at a lower rate when
time passes.
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Appendix

Solution of the DPE (16) We guess for a value
function of the form W(x, y, t) = A(t) ln(x)+
B(t)y + C(t). If this choice proves to be consistent, the
extraction rates for both agents are given by c1(t) =
1/Wx = x/A(t) and c2(t) = Wy/Wx = B(t)x/A(t). In
order to solve Eq. 16, we calculate the expression
for K(x, t). To do that, we substitute our “guessed”
controls in Eq. 15. Hence, x(s) = xt exp (�t(s)), with
�t(s) = − ∫ s

t
1+B(τ )

A(τ )
dτ . Therefore, K(x, y, t) = (r1 −

r2)
∫ T

t e−r1(s−t) ln
( xte�t (s)

A(s)

)
ds = r1−r2

r1

(
1 − e−r1(T−t)

)
ln(xt) +

(r1 − r2)
∫ T

t e−r1(s−t) ln
( e�t (s)

A(s)

)
ds. By substituting in Eq. 16

and simplifying, we obtain

r2
[
A(t) ln(x)+B(t)y+C(t)

]−[A′(t) ln(x)+B′(t)y+C′(t)
]

+r1 − r2

r1

(
1 − e−r1(T−t)) ln(x)

+(r1 − r2)

∫ T

t
e−r1(s−t) ln

(
e�t(s)

A(s)

)

ds

= ln(x) − ln (A(t)) − 1 − B(t)

+ B(t)
(

r2 y + ln(x) + ln
(

B(t)
A(t)

))

.

Since the above equation must be satisfied for every x
and y, then

r2 A(t)− A′(t)+ r1−r2

r1

(
1−e−r1(T−t))=1+B(t) , B′(t)=0.

(38)
Using the terminal condition B(T) = 1, we obtain
B(t) = 1 and c1(t) = c2(t) = x/A(t), for every t ∈ [0, T].
With respect to A(t), note that if A(t) =∑2

i=1
1−e−ri(T−t)

ri
,

which describes the solution for a naive coalition (see
(14)), then (38) is satisfied and, in addition, the solu-
tion to the state equation ẋ(t) = −2x(t)/A(t) verifies
the terminal condition limt→T x(t) = 0. Therefore, the
naive solution verifies the DPE (16).

Derivation of the Dynamic Programming Algorithm in
Discrete Time (21) In the final period, we define V∗

n =
0, as usual. For j = n − 1, the optimal value for (19) will
be given by the solution to the problem

V∗
(n−1)(x(n−1), (n − 1)ε)

= max
{c(n−1)}

{
N∑

m=1

λmUm(x(n−1), c(n−1), (n − 1)ε)ε

}

,

with xn = x(n−1) + f (x(n−1), u(n−1), (n − 1)ε)ε. If
c∗
(n−1)(x(n−1), (n − 1)ε) is the maximizer of the right-

hand term of the above equation, let us denote

Ūm
(n−1)(x(n−1), (n − 1)ε)

= Um(x(n−1), c∗
(n−1)(x(n−1), (n − 1)ε), (n − 1)ε) .

In general, for j = 1, . . . , n − 1, the value V∗
j (x j, jε) in

(19) can be written as

V∗
j = max

{c j}

{
N∑

m=1

λmUm(x j, c j, jε)ε

+
n− j−1∑

k=1

N∑

m=1

λme−rmkεŪm
( j+k)(x( j+k), ( j+k)ε)ε

}

.

(39)

Since

V∗
( j+1)(x( j+1), ( j + 1)ε)

=
n− j−2∑

i=0

N∑

m=1

λme−rmiεŪm
( j+i+1)(x( j+i+1), ( j + i + 1)ε)ε,

then we can write V∗
( j+1)(x( j+1), ( j + 1)ε) −∑n− j−2

i=0∑N
m=1 λme−rmiε Ūm

( j+i+1) (x( j+i+1), ( j + i + 1)ε)ε = 0.
Adding the former expression to (39), we obtain (21).

Derivation of the DPE in Continuous Time (22)
Let Wm(x, t) be a continuously differentiable func-
tion representing the value function of player m in
the t coalition, and let W(x, t) =∑N

m=1 Wm(x, t) be
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the value function for the t coalition, with initial
condition x(t) = x. Since s = jε, for sufficiently small
ε, x(s + ε) − x(s) ∼= f (x(s), c(s), s)ε, W(x(t), t) ∼= V j(x j,

jε), and W(x(t + ε), t + ε) = W(x(t), t) + ∇xW(x(t), t)·
f (x(t), c(t), t)ε + ∇tW(x(t), t)ε + o(ε). Substituting in
(21), we obtain

W(x(t), t)

= max
{ct}

{
N∑

m=1

λmUm(x(t), c(t), t)ε + W(x(t), t)

+∇xW(x(t), t) · f (x(t), c(t), t)ε + ∇tW(x(t), t)ε

−
N∑

m=1

(
1 − ermε

)
Wm(x(t), t) + o(ε)

}

, (40)

where

Wm(x(t), t) =
n− j−1∑

k=1

λme−rmkεŪm
( j+k)(x( j+k), ( j + k)ε)ε.

(41)

Finally, by dividing (40) and (41) by ε and taking the
limit ε → 0, we obtain Eq. 22.

Derivation of the DPE (32) Without lack of general-
ity, for simplicity, we take λ1 = · · · = λN = 1. If c∗(s) =
φ(s, x(s)) is the equilibrium rule, then the value func-
tion is

W(x, t) =
N∑

m=1

∫ τ

t
e−rm(s−t)Um(x(s), φ(x(s), s), s) ds (42)

where ẋ(s) = f (x(s), φ(x(s), s), s), x(t) = xt. We assume
that if τ = ∞, along the equilibrium rule, the value
function (42) is finite (i.e., the integral converges). This
is guaranteed if we restrict our attention to strategies
φ(x, s) of class C1 such that, when t → ∞, the state
variables converge to a stationary state.

Next, for ε > 0, let us consider the variations

cε(s) =
{

v(s) if s ∈ [t, t + ε] ,

φ(x, s) if s > t + ε .

If the t agent can precommit her behavior during the
period [t, t + ε], the value function for the perturbed
control path cε is given by

Wε(x, t)

= max
{v(s), s∈[t,t+ε]}

{
N∑

m=1

∫ t+ε

t
e−rm(s−t)Um (x(s), v(s), s) ds

+
N∑

m=1

∫ τ

t+ε

e−rm(s−t)Um(x(s), φ(x(s), s), s) ds

}

.

Let us assume that Wε is differentiable in ε in a
neighborhood of ε = 0. Then, c∗(s) = φ(s, x(s)) is called
an equilibrium rule if

lim
ε→0+

W(x, t) − Wε(x, t)
ε

≥ 0 . (43)

The above definition can be interpreted as follows:
for sufficiently small ε, the maximum of Wε in the limit
when ε = 0 is precisely W(x, t). In order to prove that
c∗(t) = φ(x, t) solving the right-hand term in Eq. 32 is
an equilibrium rule, we have to check Eq. 43. We do it
in several steps:

If x̄(s) denotes the state trajectory corresponding to
the decision rule cε(s), then

W(x, t) − Wε(x, t)

=
N∑

m=1

∫ t+ε

t
e−rm(s−t) [Um(x(s), φ(x(s), s), s)

− Um(x̄(s), v(s), s)
]

ds

+
N∑

m=1

∫ τ

t+ε

e−rm(s−t) [Um(x(s), φ(x(s), s), s)

−Um(x̄(s), φ(x̄(s), s), s)
]

ds .

Note that

N∑

m=1

∫ τ

t+ε

e−rm(s−t)Um(x(s), φ(x(s), s), s) ds

= W(x(t + ε), t + ε) −
N∑

m=1

∫ τ

t+ε

[
e−rm(s−t−ε)

−e−rm(s−t)]Um(x(s), φ(x(s), s), s) ds .

In a similar way,

N∑

m=1

∫ τ

t+ε

e−rm(s−t)Um(x̄(s), φ(x̄(s), s), s) ds

= W(x̄(t + ε), t + ε) −
N∑

m=1

∫ τ

t+ε

[
e−rm(s−t−ε)

−e−rm(s−t)]Um(x̄(s), φ(x̄(s), s), s) ds .
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Therefore,

lim
ε→0+

W(x, t) − Wε(x, t)
ε

= lim
ε→0+

∑N
m=1

∫ t+ε

t e−rm(s−t) [Um(x(s), φ(x(s), s), s) − Um(x̄(s), v(s), s)] ds

ε

+ lim
ε→0+

1
ε

N∑

m=1

[∫ τ

t+ε

[
e−rm(s−t) − e−rm(s−t−ε)

] [
Um(x(s), φ(x(s), s), s) − Um(x̄(s), φ(x̄(s), s), s)

]
ds
]

+ lim
ε→0+

W(x(t + ε), t + ε) − W(x̄(t + ε), t + ε)

ε
=

N∑

m=1

[
Um(x(t), φ(x(t), t), t) − Um(x(t), v(t), t)

]

+ 0 + lim
ε→0+

W(x(t + ε), t + ε) − W(x(t), t)
ε

− lim
ε→0+

W(x̄(t + ε), t + ε) − W(x(t), t)
ε

=
N∑

m=1

[
Um(x(t), φ(x(t), t), t) − Um(x(t), v(t), t)

]+
[
∂W(x, t)

∂t
+ ∇xW(x, t) · f (x, φ(x, t), t)

]

−
[
∂W(x, t)

∂t
+ ∇xW(x, t) · f (x, v(t), t)

]

=
N∑

m=1

[
Um(x, φ(x, t), t) + ∇xWm(x, t) · f (x, φ(x, t), t)

]

−
N∑

m=1

[
Um(x, v(t), t) + ∇xWm(x, t) · f (x, v(t), t)

] ≥ 0 ,

since c∗ = φ(x, t) is the maximizer of the right-hand
term in Eq. 32.
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