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Abstract Canonical correlation analysis (CCA), principal
component analysis (PCA), and principal factor analysis
(PFA) have been adopted to provide ease of understanding:
interpretation of a large complex data set in the Gorganrud
River monitoring networks, evaluation of the temporal and
spatial variations of water quality, and finally identification of
monitoring stations and parameters which are most important
in assessing annual variations of water quality in the river. In
accomplishing the research, 11 surface water quality data
related to both of physical and chemical parameters have been
collected from seven monitoring stations from 1996 to 2002.
In general, our results from CCA method indicated strong
relationship between physical and chemical parameters in the
Gorganrud River. In addition, analyzing data through the PCA
and PFA techniques revealed that all monitoring stations are
important in explaining the annual variation of data set. From
the point of view of the degree of importance of parameters
contributing to water quality variations, further investigations
by running two scenarios (rotated factor correlation coefficient
value equal to 0.95 and 0.90 for the first and second scenarios,
respectively) showed that the important parameters in one
season may not be important for another season. For example,
unlike in summer, water temperature, total suspended solids,
total phosphorous, and nitrate parameters were important,
electrical conductivity, and turbidity parameters had been

realized as important parameters in spring through the first
scenario.
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1 Introduction

Surface water pollution by chemical, physical, and biolog-
ical contaminants all over the world can be considered as a
worldwide problem [1, 2]. Anthropogenic inputs such as
municipal, industrial, and agricultural wastewater discharge
and natural processes, i.e., weathering and soil erosion, are
major factors determining the quality of the water resour-
ces. Many studies have been done on anthropogenic
contamination of ecosystems [3, 4]. However, due to spatial
and temporal variations in water quality, which are often
difficult to interpret, a monitoring program providing a
representative and reliable estimation of the quality of
surface waters is necessary [5]. Literature demonstrated that
chemometric data analysis methods such as canonical
correlation analysis (CCA), principal component analysis
(PCA), and principal factor analysis (PFA) are suitable
techniques to achieve the goals. Through the CCA
approach, Larson et al. [6] analyzed an 11-year-long
measurement time series of waves and profiles from Duck
North Carolina in order to determine covariability between
waves and profile response. Gangopadhyay et al. [7]
applied the PCA and PFA techniques to identify importance
of monitoring wells predicting dynamic variations related to
potentiometric head at a location in Bangkok, Thailand.
Simeonov et al. [8] using PCA, clustering analysis (CA),
and principal component regression interpreted a large and
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complex data matrix of surface water parameters in northern
Greece. However, water quality data set from alluvial region
in northern India have been analyzed by means of PCA,
discriminate analysis, and partial least squares in order to
investigate the three parts: first compositional differences
between surface and groundwater samples; second spatial
variations in groundwater composition; and finally influence
of natural and anthropogenic factors [9]. Sarbu and Pop [10]
illustrated a data set concerning the water quality in the
Danube River through a robust fuzzy PCA algorithm.
Ouyang [11] adopted PCA and PFA to identify important
water quality parameters in 22 stations located at the main
stem of the lower St. Johns River in Florida, USA. Results
revealed that total organic carbon, dissolved organic carbon,
total nitrogen, dissolved nitrate and nitrite, orthophosphate,
alkalinity, salinity, magnesium, and calcium were the most
important parameters in assessing variations of water quality
in the river. Through the PCA and geographical information
system approaches, Terrado et al. [12] analyzed the main
contamination sources of heavy metals, organic compounds,
and other physicochemical parameters in Ebro River surface
waters. Furthermore, they evaluated their temporal and
spatial distributions. Noori et al. [13] applied PCA and
PFA techniques for selecting the monitoring stations in
assessing annual variations of river water quality. They
selected eight monitoring stations, located at the Karoon
River in Iran. Finally, authors suggested that PCA and PFA
techniques were useful tools for identifying the importance
of surface water quality monitoring stations. Sherestha and
Kazama [14] applied CA, PCA, PFA, and discriminant
analysis techniques to evaluate temporal and spatial varia-
tions and interpret a large complex water quality data set of
the Fuji River basin. Liu et al. [15] applied CCA to
investigate relationship between personal exposure to ten
volatile organic compounds and biochemical liver tests.
Noori et al. [16] proposed a multivariate statistical
method, i.e., canonical correlation analysis for investigat-
ing the relationship between physical and chemical
parameters of the Karoon River.

However, it is pointed out that previous studies try to
identify annual variations of the water quality parameters in
the water quality monitoring networks. It is clear that water
quality parameters are affected by arid, semi-arid, and wet
conditions; thus they can be different in each season of the
year. So it is an important task to investigate the seasonal
variations of the water quality in the monitoring networks.
Hence, the research aims are to analyze seasonal variations
of 11 physio-chemical parameters recorded in seven surface
water quality monitoring stations for 7 years in the
Gorganrud River, Iran, by means of PCA and PFA
techniques. In addition, investigation of the relationship
between physical and chemical parameters in the Gorgan-
rud River is carried out using CCA method.

2 Materials and Methods

2.1 Case Study and Data

The Gorganrud River basin (between 54°00′ to 56°07′E and
36°36′ to 37°47′N) is located in Golestan province, northern
part of Iran (Fig. 1). Gorganrud River originates from the
Alborz Mountains and after passing from the residential,
agricultural, and industrial areas flows down to the Caspian
Sea. It has a catchment area of 10,200 km2 and average
annual rainfall of 500 mm. The main stream length of the
Gorganrud River catchment is 350 km. The Increasing water
withdrawal that leads to enhance wastewater discharge to the
river endangered the aquatic life of this ecosystem. As a
result, there is an increasing trend gap between current water
quality and standard water quality. Agricultural and agro-
industrial return flows, domestic wastewater of the cities–
rural area, and industrial wastewaters are known as the main
pollution sources of the surface and groundwater resources in
the Gorganrud River basins.

In this study, 11 physio-chemical parameters related to
seven monitoring stations are used for chemometric
analysis (Table 1).

2.2 CCA Method

In some sets of multivariate data, the variables are divided
naturally into two groups (i.e., response data and predictor
variable). A canonical correlation analysis can then be used
to investigate relationships between the two groups. As an
exploratory tool, it is used as a data reduction method. The
goal of CCA is to construct two new sets of canonical
variates U=αX and V=βY that are linear combinations of
the original variables such that the simple correlation
between U and V is maximal, subject to the restriction that
each canonical variate U and V has unit variance (to ensure
uniqueness, except for sign) and is uncorrelated with other
constructed variates within the set [17]. Assume that the
pþ qð Þ � pþ qð Þ correlation matrix between the variables
X1, X2, …, Xp and Y1, Y2, …, Yq takes the following form
when it is calculated from the sample for which the
variables are recorded:
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From this matrix, a q×q matrix B−1C′A−1C can be
calculated, and the eigenvalue problem can be considered
as [18]:

B�1C0A�1C� lI
� �

b ¼ 0 ð2Þ
It turns out that the eigenvalues l1>l2>

…>lr are then
the squares of the correlations between the canonical

variates. The r subscript is smaller than p and q. The
corresponding eigenvectors b1, b2, …, br give the coef-
ficients of the Y variables for canonical variates. The
coefficients of linear combination of X variables (Ui) and
the ith canonical variate for the X variables are given by the
elements of the ai vector [19].

ai ¼ A�1Cbi ð3Þ

In these calculations, it is assumed that the original X
and Y variables are in a standardized form with a mean of
zero and standard deviation of unity. The coefficients of the
canonical variates are for these standardized X and Y
variables.

2.3 PCA and PFA

PCA and PFA are multivariate statistical methods which
can be used for reducing complexity of input variables
when there are large volumes of information and it is
intended to have a better interpretation of variables [20, 21].
In mathematical terms, PCA and PFA involve the following
five major steps: (1) start by coding the variables X1, X2,…,
Xp to have zero means and unit variance; (2) calculate the

Table 1 Water quality parameters for surface water of the Gorganrud
River basin

Parameter Abbreviation Unit

Water temperature T °C

Electrical conductance EC μmhos/cm

Dissolved oxygen DO mg/l

5-Day biochemical oxygen demand BOD5 mg/l

Chemical oxygen demand COD mg/l

pH pH pH units

Nitrate NO�
3 mg/l

Total phosphorus TP mg/l

Turbidity Turb NTU

Total dissolved solids TDS mg/l

Total suspended solids TSS mg/l

Fig. 1 Territorial layout of the Gorganrud River basin and the location of the river sampling sites
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correlation matrix R; (3) find the eigenvalues l1, l2,…, lp
and the corresponding eigenvectors a1, a2,…, ap by solving
Eq. 4:

R� Ilj j ¼ 0: ð4Þ

(4) Discard any components that only account for a small
proportion of the variation in datasets and (5) develop the
factor loading matrix and perform a Varimax rotation on the
factor loading matrix to infer the principal parameters [22].
Details for mastering the art of PCA and PFA are published
elsewhere [23–25].

3 Results and Discussion

3.1 Relationship Between Physical and Chemical
Parameters

According to Table 1 there are five variables in the response
data set, i.e., physical parameters including T, DO,
TDS, Turb, TSS, and six variables in the predictor set,
i.e., chemical parameters including BOD5, COD, NO

�
3 ,

TP, EC, and pH. CCA results indicated that correlation
coefficient for canonical variates 1, 2, and 3 were 0.94,
0.86, and 0.72, respectively. Correlation coefficients for
fourth and fifth canonical variates were 0.38 and 0.45,

and then they were neglected in conclusion. Among the
first three canonical variates, only the first and second
canonical correlation was statistically significant (p value<
0.05). Therefore, there is no real evidence of any
relationships between the physical and chemical varia-
bles based on canonical variate 3. It is pointed out that
the first and second canonical variates represent the
most variations in the response and predictor data set.
Thus based on correlation coefficients of the first and
second canonical variates, it can be concluded that a
strong relationship between physical and chemical
parameters exists in the Gorganrud River.

3.2 Identification of Important Monitoring Stations

Early correlation symmetrical matrix R is formed with
dimensions 7×7 (equivalent to the number of input
variables or stations) for PCA application. From solving
Eq. 4, seven eigenvalues are obtained. Then for each of the
eigenvalue, seven eigenvectors are calculated. Finally,
using obtained eigenvectors, seven principal components
(PCs) are computed. The characteristics of the PCs are
presented in Table 2.

In this table, eigenvalues, variance proportion, and
cumulative variance proportion are shown. Clearly, the
first three components accounted approximately 48.59%,
31.35%, and 19.49% of the total variance in the data
sets, respectively. These three components together

Table 2 Descriptive statistics
of created PCs PCs Eigen value Variance proportion Cumulative variance proportion

PC1 3.40 48.59 48.59

PC2 2.20 31.35 79.94

PC3 1.36 19.49 99.43

PC4 0.04 0.57 100.00

PC5 2E-05 2.3E-04 100.00

PC6 3E-06 4.9E-05 100.00

PC7 3E-08 3.6E-07 100.00

Table 3 Eigenvectors obtained
through PFA application Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7

ST1 0.242 0.065 0.968 0.006 −3E-05 −6E-05 −2E-06
ST2 0.262 0.950 0.169 −0.006 0.001 −1E-04 −3E-05
ST3 0.644 0.763 0.013 0.046 −0.002 −1E-04 −1E-04
ST4 0.780 0.620 −0.040 −0.071 0.001 0.002 6E-07

ST5 0.822 0.358 0.433 −0.090 0.002 0.000 1E-04

ST6 0.905 0.292 0.307 −0.036 −0.002 −8E-04 −6E-05
ST7 0.869 0.326 0.338 0.153 0.000 4E-05 2E-05
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accounted for about 99.43% of the total variance and
the rest only accounted for about 0.57%. Therefore, our

discussions will focus only on the three components
calculated as:

PC1 ¼ 0:242ST1 þ 0:262ST2 þ 0:644ST3 þ 0:780ST4 þ 0:822ST5 þ 0:905ST6 þ 0:869ST7

PC2 ¼ 0:065ST1 þ 0:950ST2 þ 0:763ST3 þ 0:620ST4 þ 0:358ST5 þ 0:292ST6 þ 0:326ST7

PC3 ¼ 0:968ST1 þ 0:169ST2 þ 0:103ST3 � 0:040ST4 þ 0:433ST5 þ 0:307ST6 þ 0:338ST7

ð5Þ

where STi is the monitoring station, the subscripts denote
the station numbers, and the coefficients are the eigenvec-
tors. PC1 (Eq. 5) indicated that there are difference between
ST1 and ST2 coefficients and other coefficients. So the two
coefficients have little effects on PC1 leading to realize that
these stations are less important in monitoring water quality
variations. In addition, based on the results of PC2, ST has

lowest absolute loading (eigenvector) values and a similar
trend could be obtained for PC3. However, any conclusion
based upon the PC1, PC2, and PC3 would be inappropriate
since they only accounted for 48.59%, 31.35%, and 19.49%
of the total variance, respectively. For determining the
important water quality stations, a PFA technique should be
established. In the PFA technique, similar to PCA, the

Table 4 Descriptive statistics of created PCs for spring and summer seasons

PCs Spring Summer

Eigenvalue Variance
proportion

Cumulative variance
proportion

Eigenvalue Variance
proportion

Cumulative variance
proportion

PC1 4.53 41.18 41.18 5.50 50.04 50.04

PC2 3.29 29.92 71.09 2.73 24.85 74.89

PC3 1.28 11.66 82.75 1.32 12.02 86.92

PC4 1.05 9.53 92.29 1.23 11.19 98.10

PC5 0.55 4.98 97.26 0.11 0.97 99.08

PC6 0.30 2.74 100.00 0.10 0.93 100.00

PC7 3E-16 3E-15 100.00 3E-15 3E-15 100.00

PC8 2E-16 2E-15 100.00 2E-16 2E-15 100.00

PC9 1E-16 1E-15 100.00 7E-17 6E-16 100.00

PC10 5E-17 5E-16 100.00 6E-17 5E-16 100.00

PC11 2E-17 2E-16 100.00 5E-18 5E-17 100.00

Table 5 Descriptive statistics of created PCs for autumn and winter seasons

PCs Autumn Winter

Eigenvalue Variance
proportion

Cumulative variance
proportion

Eigenvalue Variance
proportion

Cumulative variance
proportion

PC1 6.12 55.66 55.66 4.57 41.55 41.55

PC2 3.09 28.09 83.75 3.13 28.43 69.97

PC3 1.05 9.54 93.29 2.18 19.83 89.80

PC4 0.51 4.61 97.90 0.75 6.78 96.58

PC5 0.19 1.72 99.62 0.32 2.91 99.48

PC6 0.04 0.38 100.00 0.06 0.52 100.00

PC7 3E-15 2E-15 100.00 3E-16 3E-15 100.00

PC8 1E-16 1E-15 100.00 1E-16 1E-15 100.00

PC9 2E-17 2E-16 100.00 3E-18 3E-17 100.00

PC10 2E-18 2E-17 100.00 1E-18 9E-18 100.00

PC11 1E-18 9E-18 100.00 5E-19 5E-18 100.00
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number of factors is equal to the number of variables.
Table 3 shows the eigenvectors, which assess the coef-
ficients for formation of factors. In the research, the
correlation coefficient considered significant is the one that
is greater than 0.75 (or >75%). The main reason of
selecting the conservative criterion is that the study area
(Gorganrud River basin) is large and the river system is
highly nonlinear and dynamic. In addition, some research-
ers [11, 16] proposed approximately similar value which is
used in this research. The stations with less rotated factor
correlation coefficients than mentioned value are not
considered principal stations. Table 3 indicated that all
monitoring stations have coefficient values which are
greater than 0.75. Therefore, to explain the annual variation
of the data set, all water quality monitoring stations are
considered important and thereby their location in the river
system could be suitable.

3.3 Data Analysis Based on Seasonal Water Quality
Parameters

Eleven variables related to water quality parameters
have been used for each season. So there are four
seasonal correlation symmetrical matrixes for spring,
summer, autumn, and winter seasons. Similar to
previous section, after solving Eq. 4 for correlation
matrixes, the characteristics of 11 PCs for each season is
calculated (Tables 4 and 5). In this section, according to
PCA results, PCs with eigenvalues higher than 1 are
selected, as a result, only four PCs for spring and summer
and three for autumn and winter are allocated. The PCs
indicated 92.29%, 98.10%, 93.29%, and 89.80% of total
variance proportion of input variables in spring, summer,
autumn, and winter seasons, respectively. In addition,
eigenvectors are obtained through PCA application

Table 6 PCs correlation coefficients for spring and summer seasons

Variables Spring Summer

PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

T 0.979 0.077 −0.082 0.116 0.029 −0.123 0.563 0.681 0.050 0.448 −0.038 0.116

pH 0.213 0.840 −0.363 0.314 −0.065 −0.124 0.885 −0.401 −0.031 0.213 0.086 0.042

EC 0.400 0.120 0.805 0.381 −0.013 0.182 0.877 0.341 −0.240 −0.189 −0.043 0.136

Turb −0.651 0.620 0.094 0.349 0.178 0.169 −0.787 0.610 −0.021 0.039 −0.052 −0.061
TDS 0.720 0.537 0.041 −0.414 0.105 0.092 0.774 0.602 0.166 0.000 0.040 −0.100
TSS −0.958 0.262 0.055 −0.038 0.012 0.091 −0.732 0.659 −0.049 −0.145 −0.059 −0.059
DO 0.394 −0.414 −0.637 0.346 0.242 0.297 −0.509 0.710 −0.429 0.085 0.201 0.077

BOD5 0.734 0.541 0.164 0.193 0.286 −0.153 −0.857 −0.074 0.381 0.269 −0.109 0.176

COD −0.206 0.782 −0.059 −0.509 0.270 0.102 0.819 0.392 0.087 0.380 −0.118 −0.095
TP −0.721 0.587 −0.158 0.282 −0.079 −0.160 −0.462 −0.290 −0.064 0.830 0.069 −0.070
NO�

3 −0.499 −0.635 0.149 0.047 0.528 −0.211 0.040 0.277 0.943 −0.120 0.133 0.011

Table 7 PCs correlation coefficients for autumn and winter seasons

Variables Autumn Winter

PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

T −0.847 −0.241 0.287 0.367 −0.040 0.074 −0.177 0.640 0.662 0.338 0.049 −0.070
pH −0.781 0.529 0.047 −0.283 0.160 0.047 −0.037 0.979 −0.156 0.091 0.081 −0.043
EC 0.787 0.040 0.584 −0.001 0.183 0.057 0.929 −0.084 0.258 0.195 −0.152 −0.046
Turb 0.907 −0.290 0.304 −0.023 −0.019 0.009 0.897 0.304 0.111 −0.300 0.034 0.024

TDS 0.328 0.869 0.178 0.318 −0.054 0.034 0.904 −0.027 0.407 0.050 0.058 −0.100
TSS 0.936 −0.334 0.039 −0.096 −0.033 −0.039 0.603 0.127 −0.539 0.496 −0.280 0.069

DO −0.847 0.509 −0.093 −0.085 −0.074 0.036 −0.262 −0.800 0.463 0.252 0.111 0.041

BOD5 0.667 0.693 −0.076 −0.257 0.032 0.055 0.653 −0.608 −0.166 0.269 0.321 0.017

COD 0.596 0.527 −0.460 0.328 0.214 −0.044 0.708 0.641 −0.130 −0.044 0.238 0.112

TP −0.577 −0.766 −0.109 0.026 0.260 0.023 −0.686 0.462 0.493 0.248 0.039 0.098

NO�
3 −0.719 0.443 0.510 −0.021 0.070 −0.146 −0.472 0.096 −0.825 0.218 0.177 −0.093
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(Tables 6 and 7) for each season. It should be pointed out
that for retaining the PCs, a criterion equal to 10−6 is
used. It resulted to six PCs for each season (Tables 6 and
7). In these tables, most effective variables to form the
PCs are shown by bold font. Table 6 shows that T and
TSS as two water quality parameters that have the highest
absolute loading (eigenvector) values for the first com-
ponent (PC1) in spring season. However, important
parameters based on PC1 for summer are pH, EC,
BOD5, and COD. Furthermore, the important parameters
for autumn and winter seasons are presented by bold font
in Table 7. Similar to the previous section, any conclusion
based on PC1 in all seasons would be inappropriate since
they only accounted for 41.18%, 50.04%, 55.66%, and
41.55% of the total variance in spring, summer, autumn,
and winter seasons, respectively. For example, in order
to select the important parameter in spring season,
although T is the most important parameter in formation
of PC1, it has the lowest effect on formation of PC2
(0.077). Also, in the winter, although EC is the most
important parameter based on PC1, it is one of the few
parameters which affected PC2. Many details are
available in Tables 6 and 7.

3.4 Extraction of Important Seasonal Water Quality
Parameters

As demonstrated in the previous section, the PCA is not
proper technique for extracting the important seasonal
water quality parameters and it should be carried out by
means of the PFA technique. Thus, using PFA method,
results of the eigenvalues for each season are plotted in
Figs. 2, 3, 4, and 5. Also, Tables 8 and 9 contain the
eigenvectors or rotated factor correlation coefficients for
each season. Similar to previous section, a criterion as 10−6

is used to retain the principal factors. Furthermore, an
absolute rotated factor correlation coefficient value equal to
0.95 (or >95%) is considered for selecting the important
parameter contributing to seasonal variations of the water
quality of Gorganrud River. It is pointed out, if the value of
this criterion is selected close to 1, the numbers of less
importance stations or parameters increase. Therefore, due
to negative impact of ignored stations is more than ignored
parameters, the value of 0.95 was considered for choosing
the principal seasonal water quality parameters. Besides,
another scenario is run by the value of 0.90 for selecting the
principal seasonal water quality parameters.
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Fig. 3 Eigenvalues of principal factors in summer season
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Fig. 2 Eigenvalues of principal factors in spring season
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According to Tables 8 and 9, for rotated factor
correlation coefficient value equal to 0.95 (first scenario),
the important parameters in contributing to water quality
variations for one season may not be important for another
season. The numbers of important variables in spring,
summer, autumn, and winter seasons are 2, 5, 3, and 2
parameters, respectively. In contrast with other seasons,
summer, and autumn seasons have the more important
parameters because in these seasons, the Gorganrud River
has the least amount of flow leading to deteriorate water
quality of the river. However, water temperature parameter
is one of the most important parameters in summer and
winter seasons because in these seasons it affects water
quality more than the other seasons. Furthermore, Table 8
denotes that in summer, TP and NO�

3 are included in the
important parameters. In the Gorganrud River basin, the
most volumes of phosphate and nitrate fertilizers are

commonly used in summer. In addition, in summer, activity
of aquatic plants is very high. So the mentioned reasons
cause TP and NO�

3 to have more variations. Generally, the
important parameters in the spring season are electrical
conductivity and turbidity, while important parameters for
summer season are water temperature, turbidity, total
phosphorous, nitrate, and total suspended solids. However,
the main parameters attributed to autumn are pH, total
dissolved solids, and dissolved oxygen; and that attributed
to winter are water temperature and dissolved oxygen.

In the second scenario, the rotated factor correlation
coefficient value is selected to be 0.90. In this scenario, the
numbers of important variables in spring, summer, autumn,
and winter seasons achieved as five, seven, six, and six
parameters, respectively. It concluded that the summer has
the more important parameters. Generally, the important
parameters in the spring season are electrical conductivity,

Table 8 Rotated factor (F.) correlation coefficients for spring and summer seasons

Variables Spring Summer

F. 1 F. 2 F. 3 F. 4 F. 5 F. 6 F. 1 F. 2 F. 3 F. 4 F. 5 F. 6

T −0.573 0.697 0.316 −0.016 0.173 0.235 0.075 0.986 −0.013 0.059 0.076 0.109

pH 0.471 0.636 0.576 0.124 −0.132 0.091 −0.893 0.396 −0.087 −0.143 −0.082 0.102

EC −0.079 0.230 0.058 −0.091 0.953 −0.145 −0.279 0.668 −0.649 −0.205 0.019 0.113

Turb 0.970 −0.036 −0.012 0.178 0.153 −0.050 0.967 −0.091 0.210 0.092 0.039 −0.051
TDS −0.376 0.490 0.433 0.635 0.143 −0.088 −0.089 0.854 −0.434 0.218 −0.165 0.001

TSS 0.787 −0.486 −0.178 0.135 −0.155 −0.266 0.987 −0.113 0.013 0.092 0.030 −0.057
DO −0.259 0.116 −0.017 −0.196 −0.160 0.925 0.902 0.137 0.065 −0.260 −0.063 0.304

BOD5 −0.102 0.866 0.210 0.256 0.358 0.039 0.420 −0.439 0.633 0.346 0.329 −0.047
COD 0.383 0.101 0.158 0.854 −0.182 −0.238 −0.291 0.944 −0.092 0.033 −0.062 −0.101
TP 0.939 0.000 0.105 −0.042 −0.243 −0.214 0.028 −0.082 0.979 −0.177 −0.025 0.036

NO�
3 0.049 −0.245 −0.946 −0.185 −0.085 0.031 0.041 0.141 −0.066 0.987 0.012 −0.017

Table 9 Rotated factor (F.) correlation coefficients for autumn and winter seasons

Variables Autumn Winter

F. 1 F. 2 F. 3 F. 4 F. 5 F. 6 F. 1 F. 2 F. 3 F. 4 F. 5 F. 6

T 0.455 −0.379 0.779 −0.208 −0.019 −0.015 0.197 0.143 0.963 −0.076 −0.042 0.070

pH 0.986 0.010 −0.036 −0.130 0.094 −0.013 −0.173 0.836 0.500 0.103 −0.082 0.060

EC −0.624 0.409 −0.104 −0.094 0.651 0.008 0.871 0.042 −0.132 0.425 0.195 0.064

Turb −0.906 0.195 −0.187 −0.088 0.314 0.004 0.784 0.568 −0.226 0.047 0.089 −0.040
TDS 0.123 0.952 0.051 0.227 0.158 0.008 0.932 0.103 −0.065 0.156 0.289 0.095

TSS −0.921 0.104 −0.350 0.024 0.133 0.012 0.106 0.306 −0.233 0.908 0.128 0.004

DO 0.964 0.057 0.131 −0.099 −0.200 −0.021 0.052 −0.952 0.059 −0.158 0.245 −0.052
BOD5 −0.102 0.743 −0.616 0.170 0.157 −0.068 0.338 −0.250 −0.507 0.316 0.683 0.005

COD −0.183 0.565 −0.260 0.759 −0.066 −0.006 0.418 0.843 0.018 0.183 0.265 −0.103
TP 0.098 −0.946 0.304 −0.006 −0.030 −0.035 −0.283 −0.074 0.903 −0.240 −0.175 −0.104
NO�

3 0.787 0.140 0.343 −0.318 0.294 0.239 −0.918 0.212 −0.154 0.223 0.144 0.132
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turbidity, dissolved oxygen, total phosphorous, and nitrate
while important parameters for summer season are water
temperature, turbidity, total phosphorous, nitrate, total
suspended solids, dissolved oxygen, and chemical oxygen
demand. However, the main parameters attributed to
autumn are pH, turbidity, total dissolved solids, total
suspended solids, dissolved oxygen, and total phosphorous;
and those attributed to winter are water temperature, total
dissolved solids, total suspended solids, dissolved oxygen,
total phosphorous, and nitrate.

4 Conclusions

In this research, water quality of the Gorganrud River basin
from 1996 to 2002 is evaluated. To achieve this goal,
canonical correlation analysis, principal component analy-
sis, and principal factor analyses are used. The following
conclusions are drawn in the study through:

a. Generally, multivariate statistical techniques such as
CCA, PCA, and PFA were effective tool for environ-
mental quality assessment of the Gorganrud River.

b. CCA results indicated strong relationship between
physical and chemical parameters in the Gorganrud
River.

c. Results from the PFA technique showed that all water
quality monitoring stations are considered important in
explaining the annual variance of the data set, and
thereby the location of them in the river system could
be suitable.

d. In the first scenario (rotated factor correlation coeffi-
cient value equal to 0.95) the important parameters in
the spring season were EC and Turb, while important
parameters for summer season were T, Turb, TP, NO�

3 ,
and TSS. However, the main parameters attributed to
autumn were pH, TDS, and DO; and that attributed to
winter were T and DO.

e. In the second scenario (rotated factor correlation
coefficient value equal to 0.90) the important parame-
ters in the spring season were EC, Turb, DO, TP, and
NO�

3 while important parameters for summer season
were T, Turb, TP, NO�

3 , TSS, DO, and COD. However,
the main parameters attributed to autumn are pH, Turb,
TDS, TSS, DO, and TP; and that attributed to winter
were T, TDS, TSS, DO, TP, and NO�

3 .
f. Generally, important parameters in contributing to

water quality variations in the first and second
scenario for one season may not be important for
another season.

g. The presented methodology in this study can be a good
tool for authorities in order to program the monitoring
stations and water quality parameters.
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