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Landscape fragmentation and habitat loss are significant threats to the conservation of biological diversity. Creating and restoring

corridors between isolated habitat patches can help mitigate or reverse the impacts of fragmentation. It is important that restoration and

protection efforts be undertaken in the most efficient and effective way possible because conservation budgets are often severely limited.

We address the question of where restoration should take place to efficiently reconnect habitat with a landscape-spanning corridor.

Building upon findings in percolation theory, we develop a shortest-path optimization methodology for assessing the minimum amount of

restoration needed to establish such corridors. This methodology is applied to large numbers of simulated fragmented landscapes to

generate mean and variance statistics for the amount of restoration needed. The results provide new information about the expected level

of resources needed to realize different corridor configurations under different degrees of fragmentation and different characterizations of

habitat connectivity (Bneighbor rules^). These results are expected to be of interest to conservation planners and managers in the

allocation of conservation resources to restoration projects.
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1. Introduction

Landscape fragmentation and habitat loss resulting from

human impacts are significant threats to the conservation of

biological diversity [1,2]. Where restoration opportunities

exist, restoring prior habitat connections and creating new

corridors between isolated patches is one way to counter

the effects of fragmentation [3]. Much of the focus in

environmental restoration has been on specific approaches

for restoring individual sites (e.g., abandoned mines,

landfills, brownfields) or restoring particular types of

ecosystems (e.g., tall grass prairies, wetlands), although a

more general science of restoration ecology is now

emerging [3,4]. The need for landscape-scale approaches

to restoration, in addition to site-specific methods, has also

been recognized [5]. The restorations of wetlands, forests,

prairies, and other types of ecosystems are becoming an

integral part of the conservation missions of government

agencies and nongovernment organizations in the USA and

other countries (e.g., U.S. Fish and Wildlife Service, The

Nature Conservancy).

Because conservation resources are usually limited, it is

imperative that restoration be undertaken in the most ef-

ficient and cost-effective way possible. In regions of com-

peting land uses and multiple landowners, habitat may

need to be selectively restored and reconnected without a

wholesale expansion in the land area devoted to habitat [6].

In addition, in large, extensively fragmented landscapes,

the number of possibilities for reconnecting habitat is like-

ly to be enormous. Hence, quantitative analytical approach-

es are needed to address the questions of where and how

much to restore.

In recent years researchers have applied mathematical

optimization techniques to a variety of decision problems

in conservation planning. Optimization models have been

formulated for problems of selecting and designing nature

reserves (e.g., [7,8]; Williams et al., this volume) as well as

for problems of forest harvesting and conservation (e.g.,

[9,10]) and the delineation of wildlife corridors [11,12].

However, applications of mathematical optimization for

guiding habitat restoration analysis are only beginning to

be used (e.g., [13]) and, to our knowledge, have not yet

been applied at the landscape scale.

In this paper, we use the Bshortest path^ model from

operations research to statistically evaluate the amount of

restoration needed to reconnect a fragmented landscape.

Specifically, we ask, BHow does the minimum amount of

restoration needed to reconnect opposite edges of a land-

scape with a habitat corridor change with the extent of

fragmentation in the landscape?^ We apply our me-

thodology to simulated Bneutral^ landscapes, which have

been studied extensively by landscape ecologists (as dis-

cussed below). We calculate the mean and standard de-

viation of the minimum amount of restoration needed

under different levels of fragmentation and under different

definitions of connectivity based on Bneighbor rules.^
The results provide an introduction and first step toward

generating new policy-relevant information that is expect-

ed to be of interest to land managers and conservation

planners. More broadly, the methodology is a conceptual* Corresponding author.
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approach that can be used in a variety of different land-

scape contexts.

2. Background

2.1. Neutral landscape models

Habitat fragmentation at the landscape scale has been

investigated in simulations using spatially explicit neutral

models [14]. In such models, the landscape is treated as a

large number (N) of cells arranged in a rectangular lattice.

The process used to generate the landscape is Bneutral^ in

that it Bproduces an expected pattern [of fragmentation] in

the absence of specific landscape processes^ ([15], p. 19).

In the simplest neutral models, the cells are either habitat

or nonhabitat. Fragmentation is modeled by selecting some

proportion P of cells to designate, at random, as habitat.

Hence, PN of the cells are designated habitat and the

remaining (1 j P)N cells are designated nonhabitat. Pat-

terns of habitat generated by this process can be evaluated

with respect to different spatial attributes, including con-

nectivity, boundary length, and number of habitat clusters.

These patterns can provide insight into the ecological im-

plications of fragmentation in real landscapes and can

serve as a baseline for statistical comparisons to patterns in

real landscapes [16]. We chose to apply our analysis to

neutral landscapes because they have been well studied by

others, they are easily replicated and statistical results can

be readily derived, and they serve as a simplest-case start-

ing point on which to base analysis of more complex

landscapes.

2.2. Percolating clusters

Of interest to us in the analysis of habitat fragmen-

tation are the changes in habitat connectivity that result

from different proportions of habitat P in the neutral

landscape. To what extent are habitat connections lost as

the landscape becomes increasingly fragmented? Habitat

connectivity may be characterized as either structural or

functional [17]. Structural connectivity implies physical

contiguity, whereas functional connectivity is based on the

behavioral responses of organisms to the landscape Y the

ability of an organism to move from one patch to another.

One feature of fragmented landscapes that is important to

both structural and functional connectivity is the Bperco-

lating cluster^ [18].

A percolating cluster is an assemblage of connected

habitat cells that extends from one edge of a landscape

lattice (e.g., the north edge) to the opposite (south) edge

(figure 1). In addition to providing a path between opposite

edges, a percolating cluster also tends to have many in-

tertwining branches that spread out across the lattice. If a

percolating cluster exists, it is theoretically possible for an

organism to move from one edge of the lattice to the other

along a path of habitat cells [16]. In neutral models, it is

usually assumed that organisms are restricted to using only

habitat cells Y and we make this assumption here as well.

The likelihood that a percolating cluster exists depends

on both the proportion of habitat P and the way in which

connectivity between cells is defined (neighbor rules, dis-

cussed below). When connectivity is defined in terms of

nearest neighbor cells (i.e., cells that share a common

edge), the Bcritical threshold^ value of P is 0.59275 in

rectangular lattices [19]. For P slightly below this threshold

a percolating cluster is unlikely to exist, but as P passes

through the critical threshold the situation changes rapidly

with a percolating cluster becoming very likely, even at

one or two percentage points above the threshold. At the

critical threshold Y when approximately 59.3% of the cells

are designated at random as habitat Y the chance of a

percolating cluster is about 50%.

The critical threshold also has implications for other

aspects of landscape connectivity. At values of P greater

than the threshold, the landscape is characterized by a few

large habitat clusters, including a percolating cluster, which

contains a majority of habitat cells. Below the critical

threshold, the landscape is characterized by many small,

disconnected habitat clusters [15]. At values of P near the

critical threshold, the random conversion of a few habitat

cells to nonhabitat may sever the percolating cluster and

greatly reduce overall connectivity [16,20]. Hence, the

critical threshold is a distinct transition point between a

landscape that is largely connected and one that is largely

disconnected.

2.3. Neighbor rules for connectivity

Whether or not an organism perceives a landscape as

being connected depends on the scale at which fragmen-

tation takes place relative to the movement capabilities of

the organism [16,20]. Some organisms may be able to

move across gaps in habitat that pose barriers to other

organisms. To model scale phenomena, different neighbor

Figure 1. Percolating cluster. A 10 � 10 lattice of 100 cells is shown.

Sixty habitat cells (shaded) have been specified randomly (P = 0.60).

Dark-shaded cells belong to the percolating cluster, which connects the

north and south edges (under the nearest neighbor rule). Light-shaded cells

belong to smaller clusters or are isolated. A shortest path (Bbackbone^)

through the percolating cluster is indicated.
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rules can be used to define or measure connectivity. Neigh-

bor rules specify whether or not a connection exists bet-

ween two cells, that is, whether or not a hypothetical

organism could move directly from one cell to the other.

In this paper, we consider three neighbor rules that have

been used previously in neutral landscape models [14,20]

(figure 2):

(i) Nearest-neighbor rule (a cell is directly connected to

each of its four edge-adjacent cells)

(ii) Next-nearest-neighbor rule (a cell is directly con-

nected to each of its eight edge- and corner-adjacent

cells)

(iii) Third-nearest-neighbor rule (a cell is directly

connected to each of the 12 nearest cells)

An organism that perceives connectivity according to

the nearest neighbor rule would be much more sensitive to,

and restricted by, fragmentation than an organism gov-

erned by the third-nearest neighbor rule. The former

organism would view a one-cell gap in habitat as a barrier

to movement, but the latter organism would not. In the real

world, the applicability of a particular neighbor rule to a

particular species depends on the scale of the lattice (cell

size) relative to the range of movement for the species

[14,20]. If the cell size were relatively small so that an

organism could Bjump^ across a one-cell gap, then the

third-nearest neighbor rule would be appropriate, but if

larger cells were used, the nearest neighbor rule might

better represent that organism’s movement capability.

The critical thresholds for the formation of percolating

clusters for the second- and third-nearest neighbor rules are

about 0.407 and 0.292, respectively Y much smaller than

0.593 for the nearest neighbor rule [18]. An organism

operating under the third nearest neighbor rule would be

expected to be able to traverse a (neutral) landscape in

which only about 29.2% of the cells were habitat cells.

Hence, landscapes remain functionally connected at much

higher levels of fragmentation under the second- and third-

nearest neighbor rules than under the nearest-neighbor rule.

3. Methods

3.1. Connectivity and corridors

In large fragmented landscapes, many alternative pat-

terns of restoration may be possible for reestablishing

habitat connectivity. In this paper, we address the use of

corridors to reconnect habitat. The pros and cons of habitat

corridors have been debated extensively in the conserva-

tion literature [21Y25]. Corridors provide species with

access to needed resources and help species (re)colonize

patches after local extinction. However, corridors may also

promote the spread of diseases and exotic species,

synchronize local population fluctuations [26], and func-

tion as bottlenecks that can be exploited by predators.

Nevertheless, in a review of 32 published wildlife corridor

studies, Beier and Noss [25] conclude that the evidence

Bgenerally supports the utility of corridors as a conserva-

tion tool^ (p. 1,249).

The types of corridor configurations we consider are

based on shortest paths, which are relevant for at least two

reasons. The first is one of efficiency. From the perspective

of a conservation planner, minimizing the amount of res-

toration needed to establish a connecting corridor is like-

ly to be an important goal, which shortest paths can help

achieve. The second reason is to promote ecological pro-

cesses that involve the migration and dispersal of plants

and animals. A shortest path is the most direct spatial

connection between two patches that contain resources

needed by an organism. Long, meandering corridors, in

contrast, reduce the functional connectivity between

patches, increasing the risk that an organism will fail to

complete the interpatch journey [27,28]. Hence, we seek to

systematically identify connecting corridors that require

as little restoration as possible and that provide direct

connections.

In a fragmented landscape, a corridor exists (by defi-

nition) if a percolating cluster is present and does not exist

otherwise. If a percolation cluster exists, the connecting

corridor may be a fairly straight line or may meander quite

a bit, depending on the extent and pattern of fragmentation.

In the case of meandering corridors, it may be possible to

realize a shorter connection by restoring a few select cells

from nonhabitat to habitat. If a percolating cluster does not

yet exist but can be created, then corridors of differing

length can potentially be realized, depending on which and

how many cells are to be restored.

We consider two types of shortest-path habitat corri-

dors, the Bgeometric shortest path^ and the Bleast-restora-

tion path.^ For convenience, we concern ourselves with

corridors that span the landscape in the northYsouth di-

rection, although our analysis applies equally well to the

eastYwest direction. Corridors that are required to connect

Figure 2. Neighbor rules. A direct connection exists between the center

cell (shaded) and: cells labeled B1^ under the nearest neighbor rule; cells

labeled B1^ and B2^ under the next-nearest neighbor rule; and cells labeled

B1,^ B2,^ and B3^ under the third-nearest neighbor rule.
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both northYsouth and eastYwest edges simultaneously are

beyond the scope of this paper. The percolation studies

discussed above analyze connectivity along one direction-

al axis but not both, so we have followed this precedent.

We note that the problem of delineating corridors for both

directional axes can be modeled as a BSteiner tree^
problem in networks [29]. Sessions [11] and Williams [12]

used Steiner tree models to optimize a system of corridors

for linking several habitat patches or nature reserves.

3.2. Geometric shortest paths

In a lattice of size L � L (= N cells), the shortest path

from the north edge to the south edge is a straight line or

column of L habitat cells, L units long. We call this a

geometric shortest path (GSP) (figure 3a). Under the near-

est neighbor rule, the GSP corridor that could be restored

most efficiently would be the column containing a min-

imum number of nonhabitat cells. Such a column can be

readily identified by inspection or by a simple automated

search procedure. This approach may also be applied to the

next-nearest-neighbor rule. When the third-nearest neigh-

bor rule is used, a more complicated search procedure is

needed because not all cells in a column need to be habitat

for a GSP to exist; connectivity is maintained even if one-

cell gaps of nonhabitat exist. The straight line implied by a

GSP may not be a practical or desirable shape for a habitat

corridor in some contexts. However, because the straight

line represents one extreme of what can theoretically be

achieved, it is useful in that it provides a baseline against

which other configurations can be compared.

3.3. Least-restoration paths

If meandering paths are allowed, then reconnecting

opposite edges of the landscape may be achievable with

fewer restored cells than required by the GSP. A path that

connects opposite edges with a minimum number of re-

stored cells is referred to as a least-restoration path (LRP)

(figure 3b). The problem of finding an LRP can be stated

as the Bshortest path problem,^ which is a well-known

problem in network design (see, e.g., [30]). This problem

is simply to find the shortest path between an origin node

and a destination node (o and d ) in a network, where one

can travel only along the nodes and arcs of the network

(figure 4). The shortest path problem can be formulated

as a zeroYone linear programming model, which can be

solved to optimality using commercially available linear

programming software (one of the first such formulations

appears in Dantzig [31]). Here we develop a version of the

shortest-path model that finds LRPs on cellular lattices.

The following notation is used.

J is the set of all cells (habitat and nonhabitat alike).

Aj is the set of cells i that are directly connected to cell j

as determined by the specified neighbor rule.

Xij is a zeroYone decision variable; it is 1 if the least-

Figure 3. Habitat paths. Two identical 10 � 10 landscapes are shown, each with 50 habitat cells (shaded), P = 0.50. A percolating cluster from north to

south does not exist (under the nearest neighbor rule), but can be established by restoring nonhabitat cells. (a) A minimum of four nonhabitat cells need

to be restored (black) to establish a geometric shortest habitat path; the length of this path is ten units. (b) A least-restoration habitat path from north to

south can be established by restoring only two nonhabitat cells; the length of this path is 13 units.

Figure 4. NodeYarc network. A network of nodes and arcs is shown to be

analogous to a cellular lattice. Cells are represented by nodes, and direct

connections between cells are represented by arcs. The arcs shown follow

the nearest neighbor rule. BDummy^ origin and destination nodes (o and

d) facilitate application of the shortest path model to the lattice.
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restoration path includes a direct connection from cell

i to cell j, that is, if it includes path segment (i, j), and

is 0 otherwise. Note that the Xij variables are defined

only for pairs of cells that are directly connected

according to the specified neighbor rule.

Bj is a zeroYone parameter; it is 1 if cell j is currently

nonhabitat, and 0 if cell j is currently habitat.

Least-restoration path model:

Minimize:
X

j2J

BJ

X

i2Aj

Xij ð1Þ

Subject to:
X

j2Ao

Xoj ¼ 1 ð2Þ

X

j2Aj

Xij �
X

k2Aj

Xjk ¼ 0; for all cells j ð3Þ

X

j2Ad

Xjd ¼ 1 ð4Þ

The objective (1) is to minimize the total number of

restored cells needed in a corridor that connects opposite

edges of the landscape. This is calculated by counting the

number of nonhabitat cells j that are entered by the LRP.

Constraint (2) requires that one path segment extending

away from the origin cell o must be selected. Here, the

origin is a Bdummy^ cell at the north edge of the lattice

(figure 4). Constraint (3) requires that whenever the path

enters a cell j, it must also leave the cell; this constraint is

written for each cell j except o and d. Finally, constraint (4)

requires that one selected path segment must enter the

destination d, where d is a dummy cell at the south edge of

the lattice. Dummy cells o and d have no restoration costs

and are specified as being directly connected, respectively,

to all cells at or near the north and south edges, depending

on the neighbor rule used. We note that constraint (2) is

redundant because it is implied by constraints (3) and (4).

In addition to linear programming methods, the short-

est path problem can also be solved by any of several

computationally efficient algorithms (see [32]). In this re-

search, we have used a modified version of the basic short-

est path algorithm presented by Hillier and Lieberman

[30].

In identifying the LRP of a landscape, it may turn out

that multiple LRPs of different lengths all require the same

(minimum) number of restored cells. We would then be

interested in the LRP having the shortest length, although

more than one such LRP may exist. For example, in figure

3b, an LRP requires restoring two cells. A minimum-length

LRP that can be realized by restoring two cells is 13 cells

long, and there are three such paths. Other longer LRPs (14

or more cells long) can also be achieved by restoring two

cells.

3.4. Corridor analysis

We evaluate both GSPs and LRPs as a mathematical

means for efficiently reconnecting habitat in fragmented

landscapes. We assess the differences in both the amount

of restoration needed and path length between these two

types of paths in 48 � 48 cell landscape lattices (N = 2,304

cells), under each of the three neighbor rules defined above

(nearest neighbor, next-nearest neighbor, and third-nearest

neighbor). For each neighbor rule, a range of habitat

proportions (values of P) was used to simulate different

degrees of fragmentation. We used the critical threshold as

a reference point and varied P in increments of plus or

minus ten percentage points. For the nearest neighbor rule,

habitat densities between 0.093 and 0.893 were simulated.

The densities were 0.107 to 0.907 for the next-nearest

neighbor rule and 0.092 to 0.692 for the third-nearest

neighbor rule. Habitat densities of 0.792 and higher were

not evaluated for the third-nearest neighbor rule because

both GSPs and LRPs are virtually guaranteed to exist at the

outset Y no restoration is likely to be needed.

For each combination of parameters (value of P and

neighbor rule), 200 fragmented lattices were generated. In

each lattice the locations of PN habitat cells were

determined randomly (the actual number of habitat cells

was the integer part of PN). Specifically, the x- and y-axis

coordinates of each habitat cell were determined by

random numbers taken from a uniform distribution.

In each random lattice, we found both a GSP and an

LRP by the methods described above. Solutions for the

GSP problem indicate the minimum number of cells that

would need to be restored to create a habitat column 48

units long that connects the north and south edges of the

lattice. In contrast, solutions to the LRP problem indicate

the minimum number of cells that would need to be res-

tored to create any north-to-south habitat path Y not neces-

sarily a straight column, but likely a meandering path. As

pointed out above, different LRPs may be possible, each

requiring the same (minimum) number of restored cells.

These alternate optima (if they exist) may have different

total lengths, however, and our methodology selects the

LRP having the shortest length.

For each set of 200 random lattices, the mean and stan-

dard deviation were calculated for (a) the number of re-

stored cells needed in a GSP, (b) the number of restored

cells needed in the LRP, and (c) the (minimum) length of

the LRP. As well, in each case, the algorithm determined

the number of lattices (out of 200) that initially contained a

north-to-south path (i.e., a percolating cluster). Obviously,

these lattices required no restoration to achieve an LRP.

Computing was done on a Dell Optiplex personal com-

puter and the optimization algorithm was written in Visual

Fortran 6.0. For each set of 200 simulations, computing

times were about 1.75 h. In this amount of time the al-

gorithm generated 200 random lattices and performed all

optimization and statistical computations for both GSPs

and LRPs.
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4. Results

In this section we report the results of four sets of

simulations (tables 1Y4). In each of the first three sets, one

of the three neighbor rules was applied to a range of habitat

densities (P). In the fourth set, results for 48 � 48 lattices

are compared to parallel results for 24 � 24 lattices.

4.1. Nearest neighbor rule

For the nearest neighbor rule (table 1), as the proportion

of habitat P increases from 0.093 to 0.893, the frequency

with which a percolating clusters appears increases Y not

gradually, but with a sharp transition at the critical

threshold (table 1, column 6). This is consistent with the

results of other percolation experiments (e.g., [18]). At

the critical threshold (P = 0.593), about half of the 200

random lattices (94 lattices) contain a percolating cluster,

as expected. At values of P below the critical threshold,

none or very few of the landscapes contain a percolating

cluster, and at values of P above the threshold, all or nearly

all landscapes have a percolating cluster.

At the low habitat proportion of 0.093, on average

38 or 39 cells is the minimum number that would need to

be restored to create a landscape-spanning GSP (table 1,

column 2). Here, the lattice column with the largest amount

of existing habitat has nine or ten habitat cells; the

remaining cells would then need to be restored to complete

the column. As the value of P is increased, the amount of

restoration needed declines. At a habitat proportion of

0.893, only a single cell (1.060 cells), on average, would

need to be restored. Some landscapes (about 19% of the

landscapes; see Appendix) already contain a GSP at this

habitat density. Overall, the number of cells to restore for a

GSP declines from 48 to zero as the habitat proportion is

increased from zero to one (figure 5). The variation (stan-

Table 1

Nearest neighbor rule, 48 � 48 grid (2,304 cells).

(1) P (2) No. of rest cells GSP (3) Length GSP (4) No. of rest cells LRP (5) Length LRP (6) No. of percolating clusters

0.093 (214) 38.490 (1.245) 48.0 36.135 (1.165) 51.085 (2.181) 0

0.193 (444) 32.210 (1.366) 48.0 26.615 (1.489) 55.230 (3.289) 0

0.293 (675) 26.765 (1.497) 48.0 18.175 (1.362) 60.630 (4.422) 0

0.393 (905) 21.445 (1.529) 48.0 10.650 (1.535) 65.710 (6.077) 0

0.493 (1,135) 16.645 (1.634) 48.0 4.485 (1.149) 71.395 (8.604) 1

0.593* (1,366) 12.260 (1.242) 48.0 0.620 (0.660) 73.110 (10.704) 94

0.693 (1,596) 8.055 (1.101) 48.0 0 (0) 58.915 (2.700) 200

0.793 (1,827) 4.185 (1.091) 48.0 0 (0) 52.505 (1.170) 200

0.893 (2,057) 1.060 (0.645) 48.0 0 (0) 48.965 (0.569) 200

(1) P, the proportion of habitat cells in lattice (actual number of habitat cells); asterisk indicates critical threshold for a percolating cluster under the

given neighbor rule.

(2) The mean minimum number of nonhabitat cells that would need to be restored to create a geometric shortest path (standard deviation).

(3) Length, in cell units, of the geometric shortest path.

(4) The mean minimum number of nonhabitat cells that would need to be restored to create a least-restoration path (standard deviation).

(5) The mean minimum length, in cell units, of the least-restoration path (standard deviation).

(6) The number of random realizations, out of 200, in which a percolating cluster appeared.

Table 2

Next-nearest neighbor rule, 48 � 48 grid (2,304 cells).

(1) P (2) No. of rest cells GSP (3) Length GSP (4) No. of rest cells LRP (5) Length LRP (6) No. of percolating clusters

0.107 (246) 37.475 (1.196) 48.0 22.225 (1.478) 58.424 (1.967) 0

0.207 (476) 31.535 (1.407) 48.0 12.050 (1.272) 60.597 (2.863) 0

0.307 (707) 26.100 (1.446) 48.0 4.770 (1.126) 65.100 (6.030) 0

0.407* (937) 20.790 (1.589) 48.0 0.615 (0.661) 66.663 (9.369) 97

0.507 (1,168) 16.030 (1.590) 48.0 0 (0) 56.429 (1.442) 200

0.607 (1,398) 11.600 (1.342) 48.0 0 (0) 52.831 (0.744) 200

0.707 (1,628) 7.305 (1.254) 48.0 0 (0) 50.920 (0.502) 200

0.807 (1,859) 3.530 (1.072) 48.0 0 (0) 49.359 (0.389) 200

0.907 (2,089) 0.705 (0.546) 48.0 0 (0) 48.284 (0.214) 200

(1) P, the proportion of habitat cells in lattice (actual number of habitat cells); asterisk indicates critical threshold for a percolating cluster under the

given neighbor rule.

(2) The mean minimum number of nonhabitat cells that would need to be restored to create a geometric shortest path (standard deviation).

(3) Length, in cell units, of the geometric shortest path.

(4) The mean minimum number of nonhabitat cells that would need to be restored to create a least-restoration path (standard deviation).

(5) The mean minimum length, in cell units, of the least-restoration path (standard deviation).

(6) The number of random realizations, out of 200, in which a percolating cluster appeared.
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dard deviation) in the number of restored cells is relatively

small for each value of P, indicating that the mean is a

reliable indicator of the amount of restoration needed to

form a GSP.

At values of P below the critical threshold (0.593),

percolating clusters are not likely to occur, so some cells

would need to be restored to create an LRP. At P = 0.093,

the average minimum number of cells that would need to

be restored is about 36 (table 1, column 4). The average

minimum length of the LRP is about 51 units (table 1,

column 5). In comparison to the GSP, the LRP requires

about two fewer restored cells but is three units longer

at this value of P. As P increases, the number of restored

cells needed declines with P until the critical threshold is

reached. At the critical threshold, just over half a cell is

needed on average to establish an LRP. At higher habitat

densities, all lattices already contain a percolating cluster,

so no cells would need to be restored to create an LRP.

Here, too, the standard deviation in the number of restored

cells in the LRP is relatively small, suggesting that the

mean is a reliable indicator for the amount of restoration

needed.

For every value of P (except 0 and 1.0), the average

minimum number of restored cells needed to create an LRP

is less than the average minimum number needed to create

a GSP (figure 5). This difference (table 1, column 2 minus

column 4) is relatively small at very low and very high

values of P, but grows as P approaches the critical

threshold from either direction. The difference appears to

be largest (about 12 cells) at or slightly below the critical

threshold. At values of P less than the critical threshold,

these differences occur because the LRP has more flexi-

bility to exploit the existing pattern of habitat cells,

whereas the GSP is constrained to be one of the lattice

columns. At values of P greater than the critical threshold

but less than 1.0, no restoration is needed for an LRP

because it already exists (as part of the percolating cluster),

whereas creating GSP tends to require some restoration.

Table 3

Third-nearest-neighbor rule, 48 � 48 grid (2,304 cells).

(1) P (2) No. of rest cells GSP (3) Length GSP (4) No. of rest cells LRP (5) Length LRP (6) No. of percolating clusters

0.092 (211) 16.670 (0.917) 48.0 13.015 (1.075) 52.388 (2.728) 0

0.192 (442) 12.525 (1.005) 48.0 5.015 (1.155) 59.493 (5.545) 0

0.292* (672) 8.815 (1.063) 48.0 0.460 (0.564) 64.122 (8.591) 115

0.392 (903) 5.720 (0.996) 48.0 0 (0) 52.472 (1.385) 200

0.492 (1,133) 3.535 (0.812) 48.0 0 (0) 49.781 (0.497) 200

0.592 (1,363) 1.525 (0.755) 48.0 0 (0) 48.651 (0.336) 200

0.692 (1,594) 0.350 (0.477) 48.0 0 (0) 48.145 (0.198) 200

(1) P, the proportion of habitat cells in lattice (actual number of habitat cells); asterisk indicates critical threshold for a percolating cluster under the

given neighbor rule.

(2) The mean minimum number of nonhabitat cells that would need to be restored to create a geometric shortest path (standard deviation).

(3) Length, in cell units, of the geometric shortest path.

(4) The mean minimum number of nonhabitat cells that would need to be restored to create a least-restoration path (standard deviation).

(5) The mean minimum length, in cell units, of the least-restoration path (standard deviation).

(6) The number of random realizations, out of 200, in which a percolating cluster appeared.

Table 4

Corridor restoration and length as a fraction of landscape width (nearest neighbor rule).

(1) P (2) Rest GSP (3) Rest LRP (4) Length GSP (5) Length LRP

0 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)

0.093 0.802 (0.779) 0.753 (0.749) 1.0 (1.0) 1.064 (1.038)

0.193 0.671 (0.643) 0.554 (0.560) 1.0 (1.0) 1.151 (1.115)

0.293 0.558 (0.523) 0.379 (0.388) 1.0 (1.0) 1.263 (1.194)

0.393 0.447 (0.410) 0.222 (0.236) 1.0 (1.0) 1.369 (1.265)

0.493 0.347 (0.312) 0.093 (0.107) 1.0 (1.0) 1.487 (1.361)

0.593* 0.255 (0.220) 0.013 (0.022) 1.0 (1.0) 1.523 (1.383)

0.693 0.168 (0.136) 0 (0.001) 1.0 (1.0) 1.227 (1.203)

0.793 0.087 (0.063) 0 (0) 1.0 (1.0) 1.094 (1.076)

0.893 0.022 (0.006) 0 (0) 1.0 (1.0) 1.020 (1.006)

1.0 0 (0) 0 (0) 1.0 (1.0) 1.0 (1.0)

(1) P, the proportion of habitat cells in lattice; asterisk indicates critical threshold for a percolating cluster under the nearest neighbor rule.

(2) Ratio of the mean number of restored cells in the geometric shortest path to the landscape width, L = 48 (L = 24).

(3) Ratio of the mean number of restored cells in the least-restoration path to the landscape width, L = 48 (L = 24).

(4) Ratio of the length of a geometric shortest path to the landscape width, L = 48 (L = 24).

(5) Ratio of the mean minimum length of the least-restoration path to the landscape width, L = 48 (L = 24).
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On the other hand, for every value of P (except 0 and

1.0), the average length of the LRP is greater than the

length of the GSP, which remains constant at 48 units. In

exploiting the existing habitat pattern, the LRP will

meander to some extent, depending on the value of P

(table 1, column 5). At very low and very high habitat

densities, the LRPs are nearly straight from north to south,

close to the length and configuration of a GSP. At low

densities, since many restored cells are needed anyway, the

LRP tends to be straight minimize the number of restored

cells. At high densities, nearly full columns of habitat cells

already exist, so that the LRP and the GSP are nearly the

same.

However, at middle values of P (as P approaches the

critical threshold from either direction) the length of the

LRP increases. The LRP appears to reach a maximum

length at the critical threshold (figure 6). Here, the per-

colating cluster is sparse or may not quite exist, and al-

though few or no restored cells are needed to form an LRP,

the LRP is forced to meander quite a bit to realize this low

level of needed restoration. At the critical threshold, the

mean LRP length is about 73 units, 52% longer than the

GSP.

The variation (standard deviation) in the length of the

LRP follows an interesting pattern. At very low and very

high values of P, the variation is relatively small,

suggesting some level of uniformity among the 200 simu-

lations. However, as P approaches the critical threshold

Figure 5. Under the nearest neighbor rule, the minimum number of restored cells needed is shown as a function of habitat proportion (P) for the

following cases. (1) Geometric shortest habitat path on a 48 � 48 lattice, mean T one standard deviation; (2) least-restoration habitat path on a 48 � 48

lattice, mean T one standard deviation.

Figure 6. The length (in cell units) of the least-restoration habitat path is

shown as a function of habitat proportion (P) for the 48 � 48 lattice. (1)

Nearest neighbor rule, mean T one standard deviation; (2) next-nearest

neighbor rule, mean only (maximum standard deviation = 9.369 for P =

0.407); (3) third-nearest neighbor rule, mean only (maximum standard

deviation = 8.591 for P = 0.292).
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from below, the standard deviation increases both abso-

lutely and relative to the mean. The standard deviation

appears to reach a maximum at the critical threshold,

where it is nearly 15% of the mean, and then falls sharply

once the critical threshold is surpassed (table 1, column 5,

and figure 6). Hence, in lattices having a habitat proportion

near or somewhat below the critical threshold, the

reliability of the mean as an indicator declines, and the

actual length of an LRP becomes more difficult to predict.

4.2. Next-nearest-neighbor rule

Many of the results for the next-nearest-neighbor rule

(table 2) parallel those of the nearest neighbor rule,

although there are some interesting differences. The mean

number of restored cells needed to create a GSP is the

same under the two rules (slight differences in the values

of column 2 of tables 1 and 2 result from slight differences

in the respective values of P). The connections that exist

between diagonal cells under the next-nearest-neighbor

rule provide no advantage in forming a GSP.

However, diagonal connections permit a sharp drop in

the amount of restoration needed to form an LRP. The

mean number of restored cells needed declines from about

36 cells to 10.65 cells as P increases from 0.093 to 0.393

under the nearest neighbor rule (table 1, column 4). The

corresponding decline for the next-nearest neighbor rule

is from about 22 cells to 0.6 cells for similar values of

P (table 2, column 4) Y a drop of 38% or more for each

value of P relative to the nearest neighbor rule.

Under the next-nearest-neighbor rule, like the nearest

neighbor rule, the mean length of the LRP appears to reach

a maximum at the critical threshold (P = 0.407). A com-

parison of LRP lengths for the two rules shows an inter-

esting trend (column 5 in tables 1 and 2). At low habitat

densities Y at values of P equal to or less than about 0.4 Y
the LRP is somewhat longer under the next-nearest

neighbor rule than under the nearest neighbor rule (figure

6). This occurs because, at low densities, a longer, me-

andering path requiring fewer restored cells is able to

connect the north and south edges under the next-nearest

neighbor rule. This same path, however, would not provide

connectivity under the nearest neighbor rule. An LRP

would require more restored cells under the nearest

neighbor rule, but a shorter LRP would result. At larger

values of P, however, the LRP becomes shorter under the

next-nearest neighbor rule. The maximum LRP length is

about 67 units (at P = 0.407), 9% less than the maximum

length of about 73 units (at P = 0.593) under the nearest

neighbor rule.

4.3. Third-nearest neighbor rule

Under the third-nearest neighbor rule (table 3), in

comparison to the other two rules, much less restoration

is needed at each value of P to reestablish connectivity.

GSPs under this rule require, on average, no more than

45% as many restored cells as under the nearest and next-

nearest neighbor rules. Similarly, LRPs require, on aver-

age, no more than 36 and 49% as many restored cells as

under the nearest neighbor rule and next-nearest-neighbor

rule, respectively.

This reduction in restoration is expected, as organisms

operating under this rule can traverse one-cell gaps in

habitat. In fact, to minimize the amount of restoration

needed, the algorithm tries to identify paths in which hab-

itat cells are separated by nonhabitat gaps. At low values of

P, the resulting habitat path is likely to resemble a series of

Bstepping stones.^ Hence, under this neighbor rule, con-

nectivity can be achieved with relatively few restored cells

even at low habitat densities.

4.4. Comparison to other lattice sizes

To give some indication of the effects of a change in

landscape scale, we performed parallel experiments using

24 � 24 (576-cell) lattices, and compared the results to

those for the 48 � 48 lattices. We found that for each value

of P the mean number of restored cells scaled much more

closely to L, the width of the landscape, than to N, the total

area. Hence, a doubling of width (24 to 48) or fourfold

increase in area resulted in roughly a doubling of the

number of restored cells for both GSPs and LRPs (table 4).

Similarly, the length of the LRP scaled more closely to L

than to N, although this relationship became somewhat

weaker as the critical threshold was approached from

below. At the critical threshold, the length of the LRP was

52% longer than L in the 48 � 48 lattice, but only 38%

longer than L in the 24 � 24 lattice (table 4). The 24 � 24

lattice may also be interpreted as representing the 48 � 48

landscape, but at a lower resolution (larger cell size).

Under this interpretation, the fourfold increase in cell size

of the 24 � 24 lattice resulted in roughly a doubling of the

amount of restoration needed.

5. Discussion

Previous studies in neutral landscape modeling have

investigated the implications of landscape fragmentation

on habitat connectivity and organism mobility. In this

paper, we investigate implications of the reverse process,

habitat restoration, for increasing connectivity by establish-

ing corridors. Although we model fragmentation as a ran-

dom process, we model corridor restoration as a deliberate

decision-making process that can be Boptimized^ to mini-

mize the amount of restoration or minimize corridor length.

Our results may be used to predict the expected minimum

amount of restoration needed to establish a connecting

corridor in a simple fragmented landscape of rectangular

cells.

The benefits of targeting restoration to minimize the

amount of restoration needed can be large in comparison to

restoration that is undertaken in an ad hoc or random
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fashion. As an illustration, consider a 48 � 48 lattice in

which 50% of the cells are habitat cells (P = 0.5) and the

remaining cells are nonhabitat. Under the nearest neighbor

rule, if nonhabitat cells were restored at random, about 230

cells (10% of the total lattice area) would need to be

restored to realize a connecting path by establishing a

percolating cluster. This is the number of cells needed to

make P equal to 0.6, just above the critical threshold. In

contrast, in the same landscape, it would be possible to

establish a geometric shortest path by restoring only 16 or

17 cells. Furthermore, only four or five restored cells

would be needed for a least-restoration path. This example

indicates that shortest-path connections offer potential

savings of more than 90% over ad hoc restoration.

Although these results are based on simulated landscapes,

they are suggestive of the efficiencies that may be realized

if restoration efforts in real landscapes are carried out in a

coordinated and systematic manner.

These results provide new information that should be

useful to planners and decision makers for prioritizing

conservation resources for real landscapes. For example,

conservation funds might be directed toward fragmented

landscapes in which P is below the critical threshold, as

such landscapes are unlikely to have an existing connecting

path. Furthermore, in allocating restoration funds to

multiple landscapes, resources might be distributed to

ensure that a connecting path is realized in a maximum

number of landscapes. Of course, optimization procedures

would need to be applied directly to the landscape(s) in

question to identify specific restoration needs, but our

research provides an advance estimate of what these needs

are likely to be, given the level of fragmentation and the

neighbor rule for connectivity.

The GSP and LRP corridors generated here are two of

many possible corridor configurations. The two are likely

to be very different, especially near the critical threshold

where the LRP is likely to meander quite a bit. Conserva-

tion planners may then be interested in other corridors that

represent a compromise between the two Y corridors that

are less expensive than the GSP but provide a more direct

connection than the LRP. Compromise paths, which high-

light efficient tradeoffs between the amount of restoration

and directness, can be identified through multiobjective

mathematical programming (e.g., [33]).

We have presented the methodology solely in terms

where restoration should or could take place to realize

efficient habitat corridors. However, conservation decisions

are typically made within a dynamic context of shifting

land uses and ownership patterns. Land that is presently

suitable habitat may be at risk of development. Hence,

decisions to restore degraded parcels may need to be made

in tandem with decisions to preserve parcels that are at risk

of losing their habitat values. Trade-offs may exist between

restoration and preservation in that different corridor

configuration may be possible, depending on the number

of restored cells vs the number of preserved cells in the

corridor. The analysis of such tradeoffs is another task for

multiobjective optimization and is suggested as an area for

future research.

Corridors such as the GSP and LRP represent the min-

imum in resources that would be needed to establish a

single path between one edge of the landscape and the

other. Some (possibly many) habitat patches or clusters

may remain unconnected to a GSP or LRP corridor, de-

pending on the extent of fragmentation. In real landscapes,

the GSP and LRP, as Bminimalist^ approaches, may not be

optimal or even adequate once other restoration objectives

are taken into account. Other possible objectives are to

minimize the extent of habitat edge or maximize the total

restored area. To meet such objectives, a more robust

network of habitat with more extensive connectivity might

be needed. Nevertheless, as efficient connections, GSPs

and LRPs may represent a good first step in advance of

more extensive restoration.

Our analysis is based on a number of simplifying as-

sumptions: the landscape is modeled as a rectangular grid,

habitat is a yes/no attribute, and fragmentation is a simple

random process. Extensions of the research would involve

relaxing these assumptions. First, although rectangular

grids have advantages (they are commonly used and are

compatible with raster GIS), the shortest-path method-

ology may be applied to other regular tessellations Y
triangles and hexagons Y for which percolation thresholds

have been derived (see, e.g., [18]). The results of a

corridor restoration analysis applied to these tessellations

are expected to differ from the rectangular grid results.

Deriving statistical results for landscapes that have irreg-

ularly shaped parcels would be problematic, however,

due to the difficulty of controlling for parcel area and

adjacency.

Second, landscapes typically contain multiple types of

habitat, rather than a single type. Our analysis, although

presented in terms of a generic habitat type, is equally

applicable to landscapes of multiple habitat types Y we

would only to need to specify in advance the habitat type to

which a nonhabitat cell would be restored (e.g., the prior

habitat condition). A related issue is that of restoration

cost. In the above analysis, we have considered the amount

(area) of restoration needed rather than the cost of

restoration. In heterogeneous landscapes, per-cell land

acquisition costs and restoration costs are likely to be

nonuniform, and the path of lowest cost (LCP) may

therefore be different from the LRP. Land managers are

likely to be interested in the LCP, but LCPs are unique to

individual landscapes. Due to the many possible distribu-

tions of land costs, LCPs are unfortunately not nearly as

amenable to statistical analysis as LRPs. However, in

relatively homogeneous landscapes, per-cell costs may be

fairly uniform, in which case the LRP would be a good

surrogate for the LCP.

The third assumption to relax is that habitat fragmen-

tation may need to be represented as a more complex

process than the simple random process used here. Real

fragmentation patterns and patterns of land use may exhibit
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spatial correlation and hierarchical properties. These

complicating factors have already been explored to some

extent in the analysis of fragmentation (e.g., [34Y36]), and

this research could help guide the next steps of the analysis

of restoration.

6. Summary and conclusions

In this paper we have developed a conceptual method-

ology for statistically quantifying the amount of restoration

that would be needed to reconnect opposite edges of a

simulated fragmented landscape. This method builds on

prior results of percolation theory and neutral landscape

modeling. Landscape parameters addressed here include

landscape size (number of cells), level of fragmentation,

and neighbor rule for connectivity. We use Bshortest path^
optimization models to identify the mean and variance of

the minimum amount of restoration needed for each of two

corridor types. The principal finding is that even exten-

sively fragmented landscapes can be efficiently recon-

nected with a restored corridor, although the relationship

between the level of fragmentation and amount of

restoration needed is nonlinear. The information gained

from this analysis is a first step toward developing a

broader body of knowledge that is expected to be useful to

planners and decision makers for allocating resources for

the large-scale restoration of fragmented landscapes.

Because simulated landscapes are approximations of real

landscapes, these results should be viewed as approximate

benchmarks with respect to applicability to real landscapes.

Extensions of this research would build upon analytic

methods presented here and elsewhere to better address the

complexities of real landscapes.
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Appendix

Depending on the proportion of habitat (P), a percolating

cluster Y and hence a least-restoration path Y may exist in a

fragmented landscape before restoration. Similarly, a geo-

metric shortest path may already exist as well. The

likelihood that a GSP exists can be readily derived for

simple random landscapes for the nearest neighbor and next-

nearest neighbor rules. (The expression of this likelihood for

the third nearest neighbor rule is more complex and is

beyond the scope of this paper.)

Let P also denote the (independent) probability that a cell

is designated habitat. We wish to find the probability that at

least one northYsouth column in the L � L lattice contains

L habitat cells. The probability that an individual column

contains L habitat cells is PL, and the probability that a

column contains fewer than L habitat cells is 1 j PL. The

probability that all L columns in the lattice contain fewer

than L habitat cells is, then, (1 j PL)L. Finally, the

probability that at least one column contains L habitat cells

is the complement of this, or 1 j (1 j PL)L. In a 48 � 48

lattice, for example, this probability is only 6.14 � 10j10 at

the critical threshold (P = 0.593). Even at a very high habitat

density of P = 0.893, the probability is only about 0.19.

Hence, for densities at which percolating clusters (with

meandering paths) are virtually guaranteed to exist, GSPs

are unlikely.
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