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Abstract
Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro
and nano-devices, presenting specific applications in medicine, biochemistry, and
miniaturized industrial processes. In this work, we integrate analytical solutions
with numerical methodologies to explore the fluid dynamics of viscoelastic electro-
osmotic/pressure-driven fluid flows (described by the generalized Phan–Thien–Tanner
(gPTT) constitutive equation) in a microchannel under asymmetric zeta potential con-
ditions. The constitutive equation incorporates the Mittag–Leffler function with two
parameters (α and β), which regulate the rate of destruction of junctions in a network
model. We analyze the impact of the various model parameters on the velocity profile
and observe that our newly proposed model provides a more comprehensive depiction
of flow behavior compared to traditional models, rendering it suitable for modeling
complex viscoelastic flows.
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1 Introduction

Electro-osmosis is a flow-forcing method with particular applicability in medicine,
biochemistry, and miniaturized industrial processes, quite suitable for flows in micro
and nano-devices. In this type of flow, an external potential difference between the inlet
and outlet of the channel induces the flow of an electrolyte. This potential difference
acts on the ions near the wall region, which are not balanced because of the interaction
between the dielectric channelwalls and the fluid. Since these fluid layers have a higher
concentration of counter-ions (ions with the opposite charge of the wall), this fluid will
move by the action of the applied electric field, which then drags by viscous forces,
the electrically neutral core as a solid body [1]. This behavior has been extensively
described in the literature, first for Newtonian fluids [2–9] and more recently for some
non-Newtonian fluids [10–19].

This study focuses on the electro-osmotic (EO) flowof viscoelastic fluids, described
by more advanced models and particularly under the influence of asymmetric zeta
potentials at the channel walls. Asymmetric zeta potentials may arise in various
manufacturing techniques due to the use of different materials with differing dielectric
properties at distinct walls [20]. For instance, in soft lithography, microchannels are
often made of polydimethylsiloxane (PDMS), while the top wall is typically con-
structed from glass for optical access or another material for a different purpose
[20].

Given the significance of this topic, it is crucial to review the relevant recent
literature on the influence of asymmetric zeta potentials, and particularly for fluids
of complex rheology.

For instance, Afonso et al. [20] provided insightful analytical solutions for com-
bined EO and pressure-driven flows of viscoelastic fluids under asymmetric zeta
potentials at the channel walls. The viscoelastic fluids analyzed were described by
the linear Phan-Thien–Tanner (PTT) model and by the finite extensible nonlinear
elastic model with Peterlin’s approximation (FENE-P). Escandon et al. [21] presented
both analytical and numerical solutions for transient EO flows in microchannels. Their
study encompassed symmetric and asymmetric uniform zeta potentials, but was con-
cerned with Maxwell fluids which are devoid of a variable viscosity that is important
near the walls, where shear rates are high.

Sadek and Pinho [22] contributed with analytical solutions for the small amplitude
oscillatory shear flow (SAOS) of viscoelastic fluids induced by EO forcing. They
specifically explored the case of a straight microchannel with asymmetric wall zeta
potentials for the purpose of measuring linear viscoelastic fluid properties, hence
their rheological model was the multi-mode upper-convected Maxwell model. Their
analysis investigated the impact of relevant dimensionless parameters on normalized
velocity profiles and in the linear response of relevance in SAOS when an external
potential field was applied.

Sanchez et al. [23] obtained analytical solutions for an electrokinetic battery com-
prising parallel plates, driven by osmotic flow. Their work involved the use of the
Debye–Hückel approximation to calculate the electric double layer (EDL) potential
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coupled with asymmetric hydrodynamic slip. The authors explicitly addressed asym-
metries both in the Navier slip lengths and zeta potentials, providing insights into the
interplay of these boundary conditions.

In our current investigation, the focus is on the application of a more advanced
rheological constitutive equation, the gPTT model, incorporating the Mittag-Leffler
function as a function of the trace of the stress tensor. This model introduces two addi-
tional fitting constants, enhancing its capability to describe the rheological properties
of viscoelastic fluids [24]. Initially explored in Couette and pressure-driven flows, as
well as combined EO/pressure-driven and annular flows (refer to [18, 25–27]), the
gPTT model has been recently scrutinized in studies addressing EO flow.

Herrera-Valencia et al. [28] introduced an advanced rheological model called the
generalized exponential thixotropic-elasto-viscoplastic-banded model. It effectively
predicts several non-Newtonian and complex fluid behaviors, including shear-
thinning/shear-thickening, yield stress, thixotropy/rheopexy, and shear banding flow.
This is achieved through a combination of a nonlinear generalization of the Burgers
model with a structured exponential equation, to account for structural changes of the
material induced by the flow. The authors conducted an analytical investigation of
the EO flow of a viscoelastic fluid in microchannels, and found that their new model
successfully captures the essential physics needed to describe the enhancement and
conversion of both linear and nonlinear electrokinetic rheological flows.

Teodoro et al. [29] derived an approximate and a numerical solution for laminar
viscoelastic fluid flow through a parallel flat plate microchannel driven by EO and
external pressure forces considering the gPTT rheological model. Their approach
incorporates a nonlinear Navier slip law at the wall, depicting a power-law behavior
on shear stress. The Debye–Hückel approximation for the electric potential in the EDL
is applied, assuming symmetric zeta potentials at the wall. Additionally, Hernandez
et al. [30] investigated numerically the EO flow in a microchannel with a viscoelastic
fluid, using the gPTT model as a constitutive equation to explore the thermodiffusion
effect, comparing results with those obtained through the linear PTT model [31].

In this study, we develop a new semi-analytical solution for the EO microchan-
nel flow of viscoelastic fluids (described by gPTT constitutive equation), under
asymmetric wall zeta potentials. Our investigation explores the influence of both pure
EO and the combined effects of EO and pressure gradient forces in the fluid flow,
taking into account the fluid rheology, the EDL thickness, and the ratio of wall zeta
potentials. These findings, together with the developed analytical solutions, provide
valuable insights for industries involved in this field. Furthermore, the obtained results
can be used as effective tools for validating Computational Fluid Dynamics (CFD)
codes. We are not aware of experimental data for polymer solutions in this flow or
in fully developed duct flows of large aspect ratio, but the fluids used by [32–35] are
adequate for fitting by the gPTT constitutive equation.

The remainder of this paper is organized as follows: the next section presents
the governing equations, followed by the new semi-analytical solution in Sect. 3, the
discussion of the results in Sect. 4, and the closure of the paper in Sect. 5.
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Fig. 1 Schematic of the flow in a parallel plate microchannel

2 Governing equations

TheEOflow in amicrochannel under asymmetric zeta potentials of a viscoelastic gPTT
fluid is shown schematically in Fig. 1, where x and y represent the streamwise and
transverse directions, respectively, and the channel width is 2H . EO flows typically
have velocities of the order of ∼ 0.1 mm/s and consequently we are dealing here
with a very low Reynolds number flow, also called creeping flow, which typically
develops very quickly, hence in most of the microchannel the flow has conditions
of fully developed flow. The flow is driven by the applied external electric field in
the streamwise direction (Ex ) and the electric charge density, ρe, is associated with
the spontaneously formed EDLs, that in here are assumed not to be affected by the
imposed electric field (this is the case for weak electric fields).

The electric field is related to a potential,�, byE = −∇�, with� = ψ +φ, where
φ is the applied streamwise potential and ψ is the equilibrium induced potential at
the channel walls, that is associated with the interaction between the ions of the fluid
and the dielectric properties of the wall. The induced potential ψ can be assumed
independent of the applied potential φ provided the latter is not too strong [12].

The assumptions used here are all consistent with the so-called standard electroki-
netic model where local EO velocities are small, EDLs are thin, and applied electric
potentials are weak, so that the effect of the flow on the charge distribution and electric
fields is negligible.

In this study, we have also excluded the effects of finite ionic size and volume. The
impact of the former in the symmetric case was previously examined in [18].

At the walls, the no-slip condition is applied and also asymmetric zeta potentials
are considered. Since the flow is fully developed, the velocity and stress fields only
depend on the transverse coordinate y [20].

The flow due to combined EO/pressure gradient forcings can easily occur, as
observed in experimental works [36–39] in microchannels. The mixed EO and
pressure-driven flows can be imposed by using the electrodes to apply the external
electric field along the channel, while the pressure gradient is formed by creating a
pressure head difference between the inlet and exit reservoirs (calculation can be used
to account for entrance and exit losses but often these are negligible in comparisonwith
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the fully developed channel loss). For this numerical study, we considered combined
EO/pressure gradient forcings.

The equations governing the flow of an isothermal incompressible fluid are the
continuity equation

∇ · u = 0, (1)

and the linear momentum equation

ρ
Du
Dt

= −∇ p + ∇ · τ + ρeE (2)

where u is the velocity vector, D
Dt is the material derivative, p is the pressure, t is the

time, ρ is the fluid density, τ is the extra-stress tensor, E is the electric field, and ρe is
the electric charge density in the fluid.

2.1 Constitutive equation

To obtain a closed system of equations, a constitutive equation for the extra-stress
tensor, τ , must be defined. In 2019, Ferrás et al. [24] proposed a new differential
rheological model based on the Phan–Thien–Tanner constitutive equation (PTTmodel
[40, 41]), derived from the Lodge–Yamamoto type of network theory for polymeric
fluids. The new model considers a more general function for the rate of destruction of
junctions, the Mittag–Leffler function, where two fitting coefficients are included, in
order to achieve additional fitting flexibility [24].

The Mittag–Leffler function is given by,

Eα,β (z) =
∞∑

j=0

z j

� (α j + β)
, (3)

with theGamma function (� ()) definedby� (t) = ∫ ∞
0 xt−1e−xdx ,wherewe consider

α and β to be positive real numbers and z ∈ C, with C the set of complex numbers.
When α = β = 1, the Mittag–Leffler function reduces to the exponential function,
and when β = 1 the original one-parameter Mittag-Leffler function, Eα is obtained
[42].

The gPTT constitutive equation is given by

K (τkk)τ + λ
�
τ = 2ηpD, (4)

where τkk is the trace of the extra-stress tensor, λ is the relaxation time, ηp is the
polymeric viscosity coefficient, D is the rate of deformation tensor, and the function
K (τkk) is given by

K (τkk) = � (β) Eα,β

(
ελ

ηp
τkk

)
. (5)
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The normalization � (β) is used to ensure that K (0) = 1 (for all choices of β) and

ε represents the extensibility parameter.
�
τ represents the upper-convected derivative,

defined as

�
τ = ∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · (∇u) , (6)

where ∇u is the velocity gradient.
The influence of parameters α and β on fluid rheology is quite elaborate. Ferrás and

Afonso [43] showed that increasing α and ε results in a response similar to increasing
the number of arms q of a branched molecule in the extended PTT (PTT-X) model
(a simplified version of the extended pom-pom (XPP) model [44]), leading to an
increase in shear-thinning behavior. It should be noted that for steady shear flows with
an imposed pressure gradient, a decrease in α (with ε kept constant) leads to higher
Weissenberg number [24]. Althoughwe expect an increase in elasticitywith increasing
α, since in the original XPP model [44], more arms generally lead to higher elasticity
due to increased entanglement. The true physical meaning of the β parameter is more
complex, as it is used in both the Mittag-Leffler function and the normalization of the
gPTT kernel.

Further details on the model, including its material functions and the proce-
dures required to quantify all the model coefficients from data obtained in classical
rheological flows, can be found in [24, 25, 43].

2.2 Electric potential

When a liquid comes into contact with a dielectric surface, the interactions between
the ions and the wall lead to a spontaneous charge distribution within both the fluid
and the wall. The wall becomes charged, attracting counter-ions from the fluid while
repelling co-ions. Consequently, an electrically charged layer forms in the fluid in close
proximity to the wall, known as the electric double layer (EDL). For more details, see
[1]. The induced potential field within the EDL can be given by a Poisson equation:

∇2ψ = −ρe

ε
, (7)

where ψ denotes the EDL potential and ε is the dielectric constant of the solution. For
fully developed flow, this simplifies to

d2ψ

dy2
= −ρe

ε
. (8)

The net electric charge density in the fluid, ρe, can be given by the Boltzmann
distribution:

ρe = −2n0ez sinh

(
ez

kBT
ψ

)
, (9)
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where n0 is the ion density, e the elementary charge, z the valence of the ions, T the
absolute temperature, and kB the Boltzmann constant. Combining this with Eq. (8)
for the induced potential equation leads to the Poisson-Boltzmann equation:

d2ψ

dy2
= 2n0ez

ε
sinh

(
ez

kBT
ψ

)
. (10)

Assuming the Debye–Hückel linearization principle, a valid approximation for small
values of ψ [11, 14, 18, 20] and of the remaining ratio in the argument of sinh, then
sinh x ≈ x in Eq. (10). The assumption of small ezξ/kBT , where ξ is the maximum
value ofψ at the wall, is equivalent to a small ratio of electrical to thermal energies, so
the temperature effect on the potential distribution is negligible. For instance, for an
electrolyte in water at ambient temperature, this implies a zeta potential of less than
about 26mV leading to ezξ

kBT
∼ 1 [14]. Under these conditions, the Poisson-Boltzmann

equation (Eq. (10)) for the 2D channel flow simplifies to

d2ψ

dy2
= κ2ψ, (11)

where κ2 = 2n0e2z2/εkBT is the Debye–Hückel parameter, which is related to the
thickness of the Debye layer, λD = 1/κ , also called the EDL thickness.

Integrating Eq. (11) together with the boundary conditions for different zeta poten-
tial at the walls, specifically ψ (y = −H) = ξ1 and ψ (y = H) = ξ2, leads to the
following induced electric field, ψ :

ψ (y) = ξ1
(
�1e

κ y − �2e
−κ y) (12)

with �1 = Rξ eκH−e−κH

2sinh(2κH)
and �2 = Rξ e−κH−eκH

2sinh(2κH)
, where Rξ = ξ2

ξ1
denotes the ratio of

zeta potentials of the two walls. This equation is valid for −H ≤ y ≤ H , and when
Rξ = 1, the symmetric potential profile is recovered [11, 18].

With the induced potential, the electric charge density, ρe (Eq. (9) with the Debye-
Hückel linearization principle) becomes

ρe = −εκ2ξ1
(
�1e

κ y − �2e
−κ y) = −εκ2ξ1�

− (y) (13)

where the operator �± (y) = �1eκ y ± �2e−κ y is a hyperbolic function of the trans-
verse variable y which depends on the ratio of zeta potentials and on the thickness of
the Debye layer.

3 Semi-analytical solution for the EO flow of a gPTT fluid under
asymmetric zeta potentials

We derive the analytical solution considering a fully developed flow for EO of a gPTT
fluid under asymmetric zeta potentials (cf. Figure1). The momentum equation, Eq.
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(2), simplifies to

dτxy
dy

= Px − ρeEx , (14)

where Px ≡ dp
dx is a constant streamwise pressure gradient, τxy the shear stress, and

Ex ≡ − dφ
dx is the imposed constant streamwise gradient of electric potential. This

equation is valid regardless of the rheological constitutive equation considered.
For this flow, the constitutive equation for the gPTTmodel (Sect. 2.1) can be further

simplified, leading to

K (τkk)τxx = 2λγ̇ τxy, (15)

K (τkk)τyy = 0, (16)

K (τkk)τxy = ηpγ̇ , (17)

where the velocity gradient γ̇ is a function of y (γ̇ (y) ≡ du
dy ) and τkk = τxx +τyy +τzz

is the trace of the extra- stress tensor. Under fully developed flow conditions, τzz = 0,
thus the trace of the extra-stress tensor becomes τkk = τxx .

Using Eq. (13), we can now integrate Eq. (14) resulting in the following shear stress
distribution:

τxy = εκξ1Ex�
+ (y) + Px y + c1, (18)

where c1 is a shear stress integration constant, obtained later from the boundary
conditions.

Dividing Eq. (15) by Eq. (17), K (τxx ) cancels out, and an explicit relationship
between the streamwise normal stress and the shear stress is found:

τxx = 2
λ

ηp
τ 2xy . (19)

Now combining Eqs. (17), (18), and (5), the following velocity gradient profile is
obtained,

γ̇ (y) = �(β)

ηp
Eα,β

(
2ελ2

η2p

(
εκξ1Ex�

+ (y) + Px y + c1
)2

)
(
εκξ1Ex�

+ (y) + Px y + c1
)
, (20)

which can be rewritten in dimensionless form as

du

dy
= �(β)Eα,β

(
2εWi2

κ2

(
ϒ y − κ�

+
(y) + τ 1

)2)(
ϒ y − κ�

+
(y) + τ 1

)
, (21)

123



The effect of asymmetric zeta potentials... Page 9 of 18     1 

where Wi = λκush is the Weissenberg number and ush is the Helmholtz-
Smoluchowski EO velocity, defined as ush = − εξ1Ex

ηp
, u = u

ush
, y = y

H , κ = κH ,

and τ 1 = c1H
ηpush

. The non-dimensional parameter ϒ = − H2Px
εξ1Ex

represents the ratio of

pressure to EO driving forces and �
+

(y) = �1eκ y + �2e−κ y , with �1 = Rξ eκ−e−κ

2sinh(2κ)

and �2 = Rξ e−κ−eκ

2sinh(2κ)
. For simplicity, the dimensionless quantities were based on the

zeta potential at the bottom wall.
For pure EO flow ϒ = 0, the velocity profile can be obtained by integrating the

velocity gradient profile (Eq. (21)), subject to the no-slip boundary condition at the
top (+) or bottom (-) walls, u (y = −1) = u (y = 1) = 0. Simplifying Eq. (21) we
obtain,

u (y) = �(β)

∞∑

j=0

(
2εWi2

κ2

) j
1

� (α j + β)

(∫ y

−1

(
−κ�

+
(z) + τ 1

)2 j+1
dz

)
,

(22)

with z a dummy variable.
Following some algebraic manipulations, Eq. (22) can be further simplified,

resulting in the following nested sum expression for the velocity profile,

u (y) = �(β)

( ∞∑

j=0

2εWi2

κ2 (�(α j + β))

⎡

⎣
2 j+1∑

m=0

(
2 j + 1

m

) (
τ 1

m)

{2 j+1−m∑

i=0

(
2 j + 1 − m

i

)(−κ�1
)2 j−m−i+1 (−κ�2

)i

κ (2 j − 2i − m + 1)
e(2 j−2i−m+1)κ y

}⎤

⎦
)

+c2,

(23)

with c2 obtained using u (1) = 0, and given by,

c2 = −�(β)

( ∞∑

j=0

2εWi2

κ2 (�(α j + β))

⎡

⎣
2 j+1∑

m=0

(
2 j + 1

m

) (
τ 1

m)

{2 j+1−m∑

i=0

(
2 j + 1 − m

i

)(−κ�1
)2 j−m−i+1 (−κ�2

)i

κ (2 j − 2i − m + 1)
e(2 j−2i−m+1)κ

}⎤

⎦
)

. (24)

τ 1 is obtained by solving numerically u (−1) = 0.
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Table 1 RMSE for εWi2 = 0.5
and α = 0.5

j Rξ = 0.5 Rξ = −1

2 8.834 × 10−2 5.197 × 10−2

4 1.819 × 10−2 8.889 × 10−3

8 4.78 × 10−4 1.597 × 10−4

16 2.207 × 10−6 1.472 × 10−6

4 Results and discussion

4.1 Assessment of the series solution

In this section, we compare the velocity profile given by Eq. (22) (obtained by a
numerical quadrature rule, and referred to as numerical solution) with the analytical
solution given byEq. (23). The numerical results were obtained using theMathematica
software.

For the numerical solution, we first obtain τ 1 using the secant method to find the
root of,

�(β)

∞∑

j=0

(
2εWi2

κ2

) j
1

� (α j + β)

(∫ 1

−1

(
−κ�

+
(z) + τ 1

)2 j+1
dz

)
= 0. (25)

The τ 1 value obtained is then substituted in Eq. (22), and the numerical velocity profile
is finally obtained.

The analytical solution given by Eq. (23) is composed by an infinite series. There-
fore, we need to assess the number of terms required in the series to achieve a precise
and accurate solution. To do this, we used as a reference the numerical solution.

The new truncated solution is obtained from Eq. (23), truncating the sum with
j + 1 terms. To validate the solution a reference “exact” case with 201 equidistant
mesh points across the channel height (2H ) was considered and the error measured
as the root mean squared error (RMSE) obtained at these points by

RMSE =
√√√√1

n

n∑

i=1

(u(y)num − u(y)t )
2,

where u(y)num is the reference numerical value of the velocity and u(y)t is the velocity
value for the truncated series. Three different values of εWi2 were considered: 0.5, 1,
and 2 and twodifferent values for Rξ :−1 and 0.5.We setβ = 1 and tested twodifferent
values of α, 0.5 and 1.5. We only change the values of α, because this parameter is
the most sensitive to changes in the series.

Tables 1, 2, and 3 show the RMSE for εWi2 = 0.5, 1, and 2, respectively, and
considering α = 0.5, Rξ = 0.5, and −1. As the number of terms in the series (Eq.
(23)) increases, the error decreases as expected.This parametric studyprovides insights
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Table 2 RMSE for εWi2 = 1
and α = 0.5

j Rξ = 0.5 Rξ = −1

2 1.038 × 100 4.550 × 10−1

4 5.23 × 10−1 1.889 × 10−1

8 9.679 × 10−2 2.433 × 10−2

16 1.092 × 10−3 1.198 × 10−4

20 6.757 × 10−5 5.342 × 10−6

Table 3 RMSE for εWi2 = 2
and α = 0.5

j Rξ = 0.5 Rξ = −1

2 1.503 × 101 2.660 × 100

4 1.226 × 101 1.585 × 100

8 6.571 × 100 4.63 × 10−1

16 7.132 × 10−1 2.118 × 10−2

20 1.546 × 10−1 3.042 × 10−3

Table 4 RMSE for εWi2 = 2
and α = 1.5

j Rξ = 0.5 Rξ = −1

2 7.898 × 10−2 4.268 × 10−2

4 2.231 × 10−3 9.7 × 10−4

8 2.635 × 10−6 1.927 × 10−6

into the behavior of the truncated solution. For instance, as εWi2 increases (refer to
Table 2 and 3), and with Rξ = 0.5, the series solution exhibits slower convergence.
On the other hand, for lower εWi2 values, the series solution converges very rapidly.
Table 4 shows the RMSE for εWi2 = 2, α = 1.5, and considering Rξ = 0.5 and
−1. Notably, as α increases, the error decreases more rapidly with an increase in the
number of terms in the series (even for high values of εWi2). We experimented with
a higher number of terms in the series for cases with high εWi2 and low α, and found
that a favorable balance between computation time, simplicity, and solution accuracy
could be achieved for j = 20.

The velocity profiles obtained by the numerical solution of Eq. (22) and the analyti-
cal solution obtained by Eq. (23) for different j are shown in Figs. 2 and 3, where u/ush
is the normalized velocity profile. These particular results indicate that the velocity
profile converges to the correct profile as the number of terms in the series increases,
and that this convergence is slower for lower values of α.
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Fig. 2 Velocity profiles for β = 1, Rξ = 0.5 and κ̄ = 20. (a) α = 0.5, εWi2 = 1; (b) α = 1.5, εWi2 = 2

Fig. 3 Velocity profiles for β = 1, Rξ = −1 and κ̄ = 20. (a) α = 0.5, εWi2 = 1; (b) α = 1.5, εWi2 = 2

4.2 Discussion

4.2.1 Pure EO and asymmetric zeta potentials

In this section, we explore the impact of the Mittag-Leffler function parameters, α and
β, on the distribution of the velocity profile under pure EO driving forces (across the
channel). We consider different values of εWi2 and Rξ , allowing for a comparison of
results with those obtained for the exponential PTT model.

Figure4 compares the velocity profiles obtained for EO flow under asymmetric zeta
potentials considering two different εWi2 values and different values of α (Fig. 4a)
and β (Fig. 4b) for κ = 20 and Rξ = 0.5.

In Fig. 4a (β = 1), we observe that for increasing εWi2 and decreasing α the flow
rate increases, leading to an increase of the skewed pluglike profile. In Fig. 4b (α = 1),
a similar qualitative behavior is obtained, i.e., increasing εWi2 and decreasing β, the
flow rate increases. However, there are quantitative differences with the effect of α
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Fig. 4 Velocity profiles for Rξ = 0.5, κ = 20 and εWi2 = 0.5 and 1 a β = 1, α = 0.5, 1 and 1.5; b
α = 1, β = 0.5, 1 and 1.5

Fig. 5 Velocity profiles for Rξ = −1, κ = 20 and εWi2 = 0.5 and 1 a β = 1, α = 0.5, 1 and 1.5; b
α = 1, β = 0.5, 1 and 1.5

being stronger than the effect of β. These variations are consistent with enhanced
shear-thinning leading to lower viscosities in the wall region.

Figure5 compares the velocity profiles obtained for EO flow under asymmetric zeta
potentials considering two different εWi2 values and different values of α (Fig. 5a)
and β (Fig. 5b) at κ = 20 and Rξ = −1.

In Fig. 5a (β = 1), we observe that for increasing εWi2 and decreasing α, the flow
rate increases, leading to an increase of an anti-symmetric pluglike profile. In Fig. 5b
(α = 1), a similar qualitative behavior is obtained, i.e., increasing εWi2 and decreasing
β, the flow rate increases. However, there are quantitative differences with the effect
of α being stronger than the effect of β. The pronounced flow with the increasing of
εWi2 is associated with the shear-thinning behavior of the fluid. It is also clear from
the plots of Figs. 4, 5, 6 that the two EDL are thin, typically not exceeding 10% of the
channel half-width, as required by the assumptions invoked.

Figure6 shows the variation of coefficient τ 1, for a purely EO viscoelastic flow,
as a function of the ratio of zeta potentials, Rξ . We consider α = β = 1 (which
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Fig. 6 Variation of τ1, for
purely EO viscoelastic flow, as a
function of the ratio of zeta
potentials, Rξ considering
κ = 20, β = 1 and α = 1 and
1.5

corresponds to the exponential PTT model) and α = 1.5 and β = 1. By looking at the
results, we see that for Rξ = 1, we have τ 1 = 0, in agreement with the results obtained
for the symmetric case studied by Afonso et al. [11, 20]. For Rξ < 1, τ 1 is always
negative, its value decreases but its magnitude increases with the increase of εWi2,
indicating that the shear stress in real value, is also decreasing as εWi2 increases. For
Rξ > 1, τ 1 is always positive and increases with εWi2, which indicates that the shear
stress is higher as we increase the shear-thinning behavior of the fluid. The case α < 1
was not considered, due to convergence problems at high values of εWi2.

Since one of the goals of thiswork is to provide a tool for validating future numerical
implementations of thismodel in general numerical codes, theMathematica numerical
codes used to obtain the solution are provided as supplementary material.

4.2.2 Mixed driving forces and asymmetric zeta potentials

For combined EO and pressure-driven flows, Eq. (21) has to be integrated numeri-
cally if ϒ 	= 0. The influence of the new model on the velocity profile was assessed
considering ϒ = 2.5 and Rξ = 0.5 and ϒ = −2 and Rξ = −1. We also considered
different values for α and β.

Figure7 presents the velocity profiles obtained for combined EO/pressure gradient
forcings under asymmetric zeta potentials. We consider two different εWi2 values
and different values of α (Fig. 7a) and β (Fig. 7b) for κ = 20, Rξ = 0.5 and ϒ = 2.5
(adverse pressure gradient).

In Fig. 7a (β = 1) and b (α = 1), the velocity profiles show a double peak due to
the retarding action of the pressure gradient. We observe a consistent pattern, related
to what was found in Fig. 4, where an increase in εWi2 and a decrease in α correspond
to an increase in the flow rate because the shear-thinning led to lower wall viscosities.
Notably, the impact of α on the flow rate is more pronounced compared to the effect
of β.

In Fig. 8, we keep the parameters consistent with those in Fig. 7, except for the
updated values of Rξ = −1 and ϒ = −2 (indicating a favorable pressure gradient).
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Fig. 7 Velocity profiles for Rξ = 0.5, ϒ = 2.5, κ = 20 and εWi2 = 0.5 and 1 a β = 1, α = 0.5, 1 and
1.5; b α = 1, β = 0.5, 1 and 1.5

Fig. 8 Velocity profiles for Rξ = −1, ϒ = −2, κ = 20 and εWi2 = 0.5 and 1 a β = 1, α = 0.5, 1 and
1.5; b α = 1, β = 0.5, 1 and 1.5

In Fig. 8, (a) with varying α and setting β = 1, and (b) with varying β and setting
α = 1, the velocity profiles exhibit an increase with the increase of εWi2 and a
decrease in α. Again this is attributed to shear-thinning effects, resulting in higher
shear rates near the walls.

Remark The diverse array of flow behaviors observed, stemming from the variation
in different model parameters and flow conditions, offers valuable insights for under-
standing and predicting the flow patterns of rheologically characterized viscoelastic
fluids. While the analysis presented here provides insights into such behavior, it does
not comprehensively cover all possible flows of interest, given the limited number of
parameter values considered. To facilitate more targeted studies, we share the codes
used in this research in the supplementary material section, enabling the industrial
sector and academia to replicate and further develop these results.
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5 Conclusions

We have developed an analytical solution expressing the velocity profile in a series
form for the EO flow of a gPTT fluid. This solution was used to illustrate how various
model parameters impact the velocity profiles. As anticipated, a decrease in α and β

for the same εWi2 leads to an increase in flow velocity. Consequently, when Rξ > 0,
a more pronounced skewed pluglike profile is observed, whereas Rξ < 0 results in a
more pronounced anti-symmetric pluglike profile.

The influence of β is less evident due to its dual role in affecting the rate of
destruction of junctions. It serves as a parameter in the Mittag-Leffler function and
also functions as a normalization factor. This dual impact contributes to the sub-
tlety of its influence. Our newly proposed model offers a broader description of flow
behavior compared to traditional models, making it applicable in the modeling of
complex viscoelastic flows.

These analytical and semi-analytical solutions not only serve as valuable tools for
validating CFD codes but also enhance our comprehension of the behavior of the
model in simple shear flows. This expanded understanding facilitates more accurate
modeling of complex viscoelastic flows.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10665-024-10387-7.
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