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Abstract
Water pollution is a critical global problem. The fixed- bed continuous adsorption
column provides the most practical application in the industry for wastewater treat-
ment. The mass transfer process in the column can be described using a mass balance
differential equation, and a sorbate–adsorbent interaction rate equation. The objective
of this work was to describe the mass transfer in an adsorption column, analyzing the
differential equations of the process and their analytical solutions. A general rate equa-
tion with four parameters was proposed, adding a zero-order parameter. The general
model was solved using Laplace Transform method. The model proposed was applied
to describe the adsorption of hexavalent chromium on chitosan biopolymer. The the-
oretical solution found was satisfactory to estimate the experimental breakthrough
curves, and the estimated parameters allowed to predict other curves with different
operational conditions. The zero-order parameter added relates to the baseline height
of the breakthrough curve. The general model proposed generalizes already known
plug flow models based on a single rate equation. The present model uses the infor-
mation obtained from the column and from the equilibrium batch isotherm, which
constitutes a useful tool for describing the dynamic adsorption process and to make
decisions on column design.
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1 Introduction

The contamination of water sources due to the increase in toxic pollutants from efflu-
ents, generated by different humans activities, is one of the greatest environmental
problems facing mankind today [1–3]. Adsorption is a widely used method to treat
industrial waste gas and effluents due to its low cost, high efficiency, and easy opera-
tion [4, 5]. Based on the operation mode, adsorption can be generally classified into
static adsorption (Batch system) and dynamic adsorption (Continue system). Static
adsorption occurs in a closed system containing a desired amount of adsorbent con-
tacting with a certain volume of adsorbate solution, while dynamic adsorption usually
occurs in an open system where adsorbate solution continuously passes through a
column packed with adsorbent [4, 6]. Dynamic adsorption in fixed-bed columns has
advantages due to its simple mode of operation, is suitable for large volumes and easy
to scale up. The dynamic adsorption process is usually characterized by the so-called
breakthrough curves that represent the outlet concentration of pollutant effluent ver-
sus time in a fixed-bed column [7, 8]. In a typical breakthrough curve plot, the outlet
concentration remains constant near zero (i.e., the baseline of the curve) until the mass
transfer zone starts to reach the tower outlet. Then the outlet concentration rises with
s-shaped profile until the bed is saturated with solute [9] (Fig. 1). For column adsorp-
tion, how to determine the breakthrough curve is a very important issue because it
provides the basic information for the design of a column adsorption system [3, 4, 6].

Mathematical modeling and computational simulations have proven to bring an
advantage in terms of costs and time, helping to optimize the adsorption process.
Mathematical models can be used for the design, scaling, and optimization of adsorp-
tion columns; moreover, analytical solutions (when are available) play a key role in
the understanding of the dynamic of adsorption columns. Many mathematical models
have been developed to understand the adsorption mechanisms and predict the break-
through curve of a given adsorption system. Empirical models like Bohart–Adams
logistic model are widely used in the literature; however, even actually, an equivalent
formulation of the logistic model is commonly referenced as Thomas model in the
adsorption research literature [3, 10]. This seems to be amisattribution since the actual
Thomas model is a very different looking analytic expression [11]. Likewise, several
analytical kinetics models like BDTS, Wolborska, Clark, and MMTF models, among
others, are used to describe the breakthrough curves [5, 12]. Mathematical models of
the transfer process in the adsorption column can be described by using amass balance
differential equation, and a sorbate–adsorbent interaction equation, or system of equa-
tions, related to the rate of adsorption and the equilibrium isotherm observed in batch
experiments [13, 14]. Complex models of mass transfer process require the simulta-
neous solution of a set of coupled partial differential equations and analytical solution
may not be obtainable in closed form [13]. In this case, the numerical solution based on
the finite element method was studied by different authors to describe breakthrough
curves [15, 16]. However, these complex models solved numerically require large
calculation times, extensive experimentation to determine the parameters, and com-
putational resources [17]. Analytical solutions have been studied for particular models
based on a single rate equation: a linear rate equation was studied by Anzelius [18],
a quasi-chemical rate equation by Bohart and Adams [19], and a general model with
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Fig. 1 Scheme of the adsorption process in a continuous system. Ct is the solute concentration at the
exit of the column and C0 is the initial feed concentration. Experimental (points) and modeled (full line)
breakthrough curves are described in terms of the relative concentration Ct/C0 vs. time. The main goal in
this work is to develop a general model to predict the breakthrough curve for different operating conditions

a pseudosecond-order rate equation by Thomas [11]. The Thomas model provides a
useful description of dynamic adsorption and shows clearly the effect of the isotherm
shape on the breakthrough curve [13]. The Thomas model is based on the assumption
of Langmuir equilibrium isotherm, one of the most observed in adsorption process
[6, 16]. In this sense, Goldstein [20, 21] presented a general solution of the Thomas
model that, from our point of view, covers most of the cases studied previously in the
literature.

The objective of the present work is to describe the mass transfer process in an
adsorption column through the analysis of the differential equations and their ana-
lytical solutions. The solution proposed by Goldstein was generalized by adding an
independent parameter to the adsorption Langmuir type rate equation, which includes
new solutions and allows to describe a variety of breakthrough curves. The model
proposed was solved using Laplace Transform method. From the solution obtained,
the characteristics of the adsorption curves in relation to the equilibrium isotherms
parameters, kinetics parameters, and operational conditions of the column were stud-
ied. The theoretical curves obtainedwere validatedwith experimental curves of Cr(VI)
adsorption on chitosan and reused chitosan particles, at different operating conditions.
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2 Adsorptionmodel

When a solute in the liquid phase enters a column packed with a solid adsorbent, the
mass transfer process in the column is described by the following differential equation

ν
∂c

∂z
+ ∂c

∂t
+ ρr

∂q

∂t
− D

∂2c

∂z2
= 0, (1)

where z (cm) represents the spatial coordinate, given by the height of the column, t
(min) is the temporal coordinate, c (mgL−1) is the concentration of the solute in the
liquid phase, q (mgg−1) is the concentration of the solute in the solid adsorbent, v

(cmmin−1) is the interstitial velocity, ρr (gL−1) is the relative density of the adsorbent,
and D (cm2min−1) is the axial diffusion coefficient [9]. The term corresponding to
axial diffusion will be neglected in what follows considering a plug flow model [13].

The rate of sorbate uptake ∂q
∂t describes themass transfer rate of the sorbate from the

liquid to the solid phase and is commonly represented by a set of equations comprising
the equilibrium constraints to which the mass transfer rate expression must reduce at
long times [13]. In simplest models, the rate of the sorption process is expressed as a
single rate equation in terms of c and q concentrations.

∂q

∂t
= F(c, q). (2)

The form and degree of complexity of the rate equation (2) are responsible for the
essential differences among themodels proposed in the literature to predict the adsorp-
tion breakthrough curves [14, 22, 23]. In the present work, the rate equation of sorbate
uptake was represented by Eq. (3) that includes four parameters, adding a zero-order
parameter and comprising several cases described in the literature:

∂q

∂t
= kc − k1q − k2cq − k3, (3)

where we assume that k, k1 ≥ 0 and not both are null. The parameters of this equation
are related to the adsorption kinetics and to the equilibrium isotherm, when ∂q

∂t = 0:

qe = kce − k3
k1 + k2ce

. (4)

If k �= 0, this formula corresponds to a generalized Langmuir isotherm with a zero-
order term and the equilibrium parameters k̂ j = k j

k , for j = 1...3, can be estimated
from batch experiments. Table 1 shows different adsorption models widely used in
the literature, and their relationship with the parameters of the general model pro-
posed (3). A linear rate equation was described by Anzelius [18], which is analogous
to the equation used to describe heat transfer in a packed bed or double cross-flow
heat exchanger. On the other hand, linear rate equations assuming only fluid film
driving force or solid film driving force were described by Cooper [24]. A quasi-
chemical kinetic rate equation was proposed by Bohart and Adams [19] assuming
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that the adsorption rate is proportional to the concentration of adsorbate. Finally, a
pseudosecond-order reversible reaction kinetic equation was described by Thomas
[11] assuming a Langmuir equilibrium isotherm (Table 1).

2.1 Normalized equations

Assuming that the liquid solution containing a constant solute concentration (c0) enters
the column; the initials and boundary conditions, for the column initially free of solute,
are:

{
c = c0, for t > 0 and z = 0
q = 0, for t ≥ 0 and z ≥ νt

The saturation concentration of the solute in the adsorbent (qsat) is obtained taking
c = c0 and

∂q
∂t = 0 in Eq. (3):

qsat = kc0 − k3
k1 + k2c0

(5)

Then, considering the normalized concentrations: u = c/c0,w = q/qsat and applying
the following change of variables that rescale the spatial and temporal variables:

x = ρr
z

ν
, y = c0

qsat

(
t − z

ν

)
(6)

the normalized system was obtained:

∂u
∂x + ∂w

∂ y = 0
∂w
∂ y = ku − aw − buw − d

(7)

with boundary conditions:

{
u(0, y) = 1, for y > 0,
w(x, 0) = 0, for x ≥ 0,

where

a = qsat
c0

k1, b = qsatk2 and d = k3
c0

(8)

which satisfy a + b + d = k.

2.2 Analytical solution

To solve the system (7), we assume first that b �= 0, solutions for b = 0 can be
obtained from solutions for b �= 0 as we will see later. Introducing a differential
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function ψ(x, y) such that u = ψy , and w = −ψx , then the first equation is verified
and from the second equation results:

−ψxy = kψy + aψx + bψxψy − d.

Further assuming ψ(0, 0) = 1, results that ψ(x, 0) = 1, for x ≥ 0, and ψ(0, y) =
1 + y, for y ≥ 0. Now, following Goldstein [20], let us define

F(x, y) = exp {b[ψ(x, y) + x − y − 1]} ,

then

Fx = Fb(ψx + 1)

Fy = Fb(ψy − 1) (9)

and

Fxy = Fxb(ψy − 1) + Fbψxy

= Fb(ψx + 1)b(ψy − 1) + Fb(−kψy − aψx − bψxψy + d)

= Fb
[−ψx (b + a) − ψy(−b + k) − b + d

]
= Fb

[−(a + b)(ψx + 1) − (k − b)(ψy − 1)
]

= −(a + b)Fx − (k − b)Fy

since d = k − a − b. Then

Fxy + (k − d)Fx + (k − b)Fy = 0,

with

F(x, 0) = exp(bx) for x ≥ 0,

F(0, y) = 1 for y ≥ 0.

We applied the Laplace transform over y:

F = L(F(x, y), y → p),

then results

pFx − Fx (x, 0) + (k − d)Fx + (k − b)(pF − F(x, 0)) = 0

with boundary condition F(0, p) = 1
p , which results an initial value problem over

F(x)

(p + k − d)Fx + (k − b)pF = k exp(bx), F(0) = 1

p
,
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8 Page 8 of 21 J. B. Dima et al.

with solution:

F = k

(k − b)p + (p + k − d)b

(
exp(bx) − exp

(−p(k − b)

p + k − d
x
))

+ 1

p
exp

(−p(k − b)

p + k − d
x
)

that we express as

F = k

p + (k − d)b
exp(bx) − k

p + (k − d)b
exp

(−p(k − b)x

p + k − d

)

+ 1

p
exp

(−p(k − b)x

p + k − d

)
. (10)

The inverse transform of the F terms can be obtained from known formulas and
procedures, see Appendix A, resulting in

F = exp(bx) exp
(
− (k − d)

k
by

)
+ exp(bx) exp

(
− (k − d)

k
by

)

× J
(
kx,

(k − d)(k − b)

k
y
)

+ J
(
(k − b)x, (k − d)y

)

= exp(bx) exp
(
− (k − d)

k
by

) (
1 − J

(
kx,

(k − d)(k − b)

k
y
))

+ J
(
(k − b)x, (k − d)y

)
, (11)

for k �= 0, and

F = J
(
(k − b)x, (k − d)y

)
, (12)

for k = 0. In both cases, the formula for F is valid for x, y ≥ 0 assuming k−b, k−d ≥
0.

The function J is a characteristic of these systems and is defined by

J (x, y) = 1 − e−y
∫ x

0
e−τ I0(2(τ y)

1
2 )dτ. (13)

where I0 is the modified Bessel function of the first kind, order 0.
Then, to find now the function u, we observed from (9) that

u = 1 + Fy

bF
. (14)

Considering first the case k �= 0 (11), we define

N = uF = F + Fy/b,
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and applying the Laplace transform over y: N = L(N (x, y), y → p), we have

N = F + 1

b

(
pF − F(x, 0)

)
= F + p

b
F − 1

b
exp(bx).

Observing that

p

b
F = k − d

kp + (k − d)b
exp

(−p(k − b)x

p + k − d

)
+ p

(kp + (k − d)b)b
exp(bx)

we have

N = d

kp + (k − d)b
exp(bx) − d

kp + (k − d)b
exp

(−p(k − b)x

p + k − d

)

+ 1

p
exp

(−p(k − b)x

p + k − d

)
(15)

and then, applying the inverse transform

N = d

k
exp(bx) exp

(
− (k − d)

k
by

)(
1 − J

(
kx,

(k − d)(k − b)

k
y
))

+J
(
(k − b)x, (k − d)y

)
.

The solution is then u(x, y) = N
F , whenever x, y, k − b, k − d ≥ 0, and we remark

that can be expressed in terms of dimensionless parameters b̂ = b
k , d̂ = d

k with
dimensionless variables kx , ky. Indeed, for example, F given in (11) can be expressed
as:

F = exp( bk kx) exp
(
−(1 − d

k ) bk ky
) (

1 − J
(
kx, (1 − d

k )(1 − b
k )ky

))
+ J

(
(1 − b

k )kx, (1 − d
k )ky

)
,

and a similar expression can be obtained for N . Thus, since a
k + b

k + d
k = 1, the general

solution for k �= 0 is
u(x, y) = û(kx, ky)

where û(x, y) corresponds to the solution for k = 1, that is with parameters such that
â + b̂ + d̂ = 1, and is given by:

û(x, y) = d̂ A(x, y) + B(x, y)

A(x, y) + B(x, y)
(16)

where

A(x, y) = exp
(
b̂(x − (1 − d̂)y)

) (
1 − J

(
x, (1 − b̂)(1 − d̂)y

))

B(x, y) = J
(
(1 − b̂)x, (1 − d̂)y

)
,
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with independent parameters b̂, d̂ ∈ (−∞, 1].
Let us consider now the case k = 0 (12), i.e., a > 0 and a + b + d = 0. In this

case, a formula for u can be obtained directly from (14):

u(x, y) = 1 − dJy(−bx,−dy)

bJ (−bx,−dy)
,

for x, y ≥ 0 assuming −b,−d ≥ 0. As in the previous case, u can be expressed in
terms of dimensionless parameters b̃ = b

a , d̃ = d
a with dimensionless variables ax ,

ay:

u(x, y) = 1 −
d
a Jy

(− b
a ax,− d

a ay
)

b
a J

(− b
a ax,− d

a ay
) ,

and then the general solution for k = 0 is:

u(x, y) = ũ(ax, ay)

where ũ(x, y) corresponds to the solution for k = 0, a = 1, 1 + b̃ + d̃ = 0 and is
given by:

ũ(x, y) = 1 − (1 + b̃)

(−b̃)

Jy(−b̃x, (1 + b̃)y)

J (−b̃x, (1 + b̃)y)
. (17)

with independent parameter b̃ ∈ [−1, 0].
Considering finally the case when b = 0, we observe that the system (7) becomes

linear and can be solved directly by applying the Laplace Transform method. The
solution obtained in this way is

u(x, y) = d
k + (

1 − d
k

)
J
(
kx,

(
1 − d

k

)
ky

)

for k �= 0, and
u(x, y) = 1 − ax exp(−ay)

for k = 0.Now, considering the standard properties of the function J (seeAppendixB),
it can be seen that these solutions corresponds to taking the limit b → 0 in the general
formulas for û(x, y) and ũ(x, y). In fact, taking b̂, b̃ → 0 in (16) and (17), we have:

û(x, y) = d̂ + (1 − d̂)J (x, (1 − d̂)y)

and
ũ(x, y) = 1 − x exp(−y).

2.3 Normalized breakthrough curves

Setting x and varying y ∈ (0,∞) in û(x, y) and ũ(x, y), normalized breakthrough
curves were obtained for the cases k �= 0 and k = 0, respectively. Normalized break-
through curves were analyzed regarding independent parameters and considering the
normalized equilibrium isotherms.
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Fig. 2 A Normalized breakthrough curves (16) and B normalized equilibrium isotherms (18). x = 10 and
d̂ = 0 in all cases: (1) b̂ = 1, Bohart–Adams case, associated to a rectangular isotherm; (2) b̂ = 0.5,
breakthrough curve related to Langmuir isotherm; (3) b̂ = 0, Anzelius case, associated to a linear isotherm;
(4) b̂ = −0.7, unfavorable case, associated to a convex isotherm

Considering first the case k �= 0, with normalized breakthrough curve û(x, y)
(16), there are two independent parameters b̂ = b

k and d̂ = d
k . The corresponding

normalized equilibrium isotherm is obtained by setting ∂w
∂ y = 0 in (7):

we = kue − d

a + bue
= ue − d̂

1 − b̂ − d̂ + b̂ue
. (18)

Figure2 shows different cases of normalized breakthrough curves related to the
normalized equilibrium isotherms. Typical breakthrough curves are s-shaped curves
and the slope at the inflection point characterizes the adsorption performance. It can
be seen that the slope of the curve depends on the value of b̂. The extreme case b̂ = 1
corresponds to a normalizedbreakthrough curve associated to a rectangular normalized
isotherm we = 1, which is the most favorable adsorption case. The case 0 < b̂ < 1
corresponds to a normalized breakthrough curve related to Langmuir type adsorption
isotherm and b̂ = 0 represents a normalized breakthrough curve corresponding to a
linear isotherm, whereas for b̂ < 0, an unfavorable adsorption occurs with a convex
isotherm.

Figure3 shows the effect of d̂ parameter on normalized breakthrough curves and
the corresponding normalized equilibrium isotherms. It is observed that parameter d̂
does not change the general profile of the curve but raises or lowers the initial part
of the breakthrough curve, where the outlet concentration remains constant (i.e., the
baseline) (Fig. 3A). Also, the corresponding normalized adsorption isotherm (Fig. 3B)
does not cross the origin and corresponds to an adsorption loss for d̂ > 0, or gain for
d̂ < 0.

The baseline height of the normalized breakthrough curve can be calculated taking
the limit for y tending to 0 in (16). Taking into account that J (x, 0) = e−x , it turns
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Fig. 3 Effect of parameter d̂ on: A normalized breakthrough curves (16) and B normalized equilibrium
isotherms (18). x = 10 and b̂ = 0.5 in all cases: (1) d̂ = −0.15; (2) d̂ = 0, (3) d̂ = 0.15

out that A(x, 0) = ebx (1 − e−x ), B(x, 0) = ebxe−x and

û(x, 0) = d̂ + (1 − d̂)e−x . (19)

It can be observed that the baseline height does not depend on the b̂ parameter and
that it approaches d̂ for large x .

Considering now the case k = 0, a > 0, with normalized breakthrough curve
ũ(x, y) (17), there is a single independent parameter b̃ = b

a , such that −1 ≤ b̃ ≤ 0.
The corresponding normalized equilibrium isotherm is:

we = 1 + b̃

1 + b̃ue
. (20)

Figure4 shows different cases of normalized breakthrough curves related to the
normalized equilibrium isotherms. It can be seen that the normalized breakthrough
curves are concave and the normalized equilibrium isotherms correspond to unfavor-
able adsorption cases, but with an initial adsorption gain since d̃ = −(1 + b̃) ≤ 0.
The extreme case b̃ = 0 is associated to a rectangular normalized isotherm we = 1
and corresponds to the solid diffusion model with a linear driving force.

The baseline height of the normalized breakthrough curve, in this case, can be
calculated taking the limit for y tending to 0 in (17):

ũ(x, 0) = 1 − (1 + b̃)x = 1 + d̃x . (21)

2.4 Particular cases of normalized solutions

Particular cases of the equation system (7) were proposed and solved by different
authors. These models studied in the past correspond to particular values of b̂, d̂ and b̃
parameters of the normalized solutions obtained in the present work. Assuming k �= 0
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Fig. 4 A Normalized breakthrough curves (17) and B normalized equilibrium isotherms (20). x = 10 in
all cases: (1) b̃ = 0, solid diffusion with a linear driving force, associated to a rectangular isotherm; (2)
b̃ = −0.4; (3) b̃ = −0.8

and setting b̂ = 1 in (16), the following solution is obtained:

û(x, y) = d̂(ex − 1) + e(1−d̂)y

ex − 1 + e(1−d̂)y
.

This is the only case where the solution does not depend on function J and coincides
with the Bohart–Adams [19] solution when d̂ = 0 (Fig. 2, case 1). This solution is
the most widely used in the literature because it can be approximated with a logistic
function [3, 10].

As was previously observed, considering the case b̂ = 0 in the normalized solution
(16) results:

û(x, y) = d̂ + (1 − d̂)J (x, (1 − d̂)y).

In particular, when d̂ = 0, this solution coincides with the one described by
Anzelius [18] for a heat transfer problem (Fig. 2, case 3), whereas when d̂ = 1,
the solution is constant and correspond to a film diffusion model with a linear driving
force, studied by Cooper [24]. The case when k = 0 and b̃ = 0 (Fig. 4, case 1) also
was described in Cooper [24] and corresponds to the solid diffusion model with a
linear driving force:

ũ(x, y) = 1 − x exp(−y).

Finally, the case k > 0, d̂ = 0 and 0 < b̂ < 1 was solved by Thomas [11]
and analyzed by Hiester and Vermeulen [25] and Goldstein [20, 21] (Fig. 2, case 2).
This model assume a pseudosecond-order reaction rate for the interaction, and it is
associated with the Langmuir adsorption isotherm.

The model proposed in the present work generalizes the one proposed by Gold-
stein [20], adding an independent zero-order term d to Eq. (7). As was shown in (19)
and (21), the parameter d relates to the baseline height of the breakthrough curve and
represents a constant gain or lose in the adsorption system. The addition of d parame-
ter to the model proposed generalized already known models that includes zero-order
terms, like the linear rate film and solid diffusion models [13, 23, 24] (Table 1). A
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model that include a zero-order term was also studied by Van Genuchten [26], to
describe the chemical transport in solids, assuming a linear rate equation.

In addition, normalized solutions (16) and (17) were obtained using the Laplace
Transform, unlike Goldstein, who used an operational method that is very difficult to
reference today. The use of Laplace transform also offers the possibility of generaliz-
ing the studied system considering other types of boundary conditions or interaction
equations.

3 Application to experimental studies

3.1 Experimental work

Experimental work to analyze the adsorption of Cr(VI) in a fixed-bed experimental
column using chitosan flakes was carried out to calibrate and validate the proposed
model.

Shrimps shells (Pleoticus muelleri) were used for the extraction of chitin and
chitosan. The shells were provided by the seafood industries from Puerto Madryn,
Patagonia-Argentina. Chitosan particles (CH)were obtained by deacetylation of chitin
according to the method proposed by Dima et al. [27].

Experimental adsorption isotherms in batch systems and breakthrough curves were
determined using chitosan particles (CH) and also reused chitosan particles (CHR).
Reused chitosan particles are CH particles which were utilized in batch adsorption
tests and subsequently subjected to desorption in water. CHR adsorption experiments
were utilized to validate the applicability of the general model including the zero-order
parameter d in the normalized system (7).

Batch studies using CH and CHR were performed according to Dima et al. [27].
Adsorption experiments were carried out by using 80mg of CH or CHR parti-
cles in 50mL of Cr(VI) solutions of different initial concentrations ranging from
50 to 400mgL−1. All the experiments to investigate the adsorption of Cr(VI) ions
onto CH or CHR were carried out in batch tests at pH=4, under constant stir-
ring.

The fixed-bed column studies with CH and CHR to obtain breakthrough curves
were performed according to Dima et al. [3] using a laboratory-scale glass column
with an internal diameter of 2cm and a length of 15cm. The column was packed
with CH or CHR to obtain defined bed heights of the adsorbent (1.5, 2 and 3cm).
Cr(VI) solutions at pH=4 with different initial concentrations c0 = 40mgL−1

for CHR, and 90, 150mgL−1 for CH, were fed continuously at the bottom of the
column using a peristaltic pump. Exit chromium solution was collected at regular
intervals, until column saturation and Cr(VI) concentrations were determined [3].
For batch and dynamic adsorption experiments, Cr(VI) concentration was measured
by 1.5-diphenylcarbazide method, using a UV–visible spectrophotometer operated at
540nm.
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Fig. 5 A Breakthrough curves for the adsorption of chromium (VI) in columns filled with (1) chitosan
(CH); (2) reused chitosan (CHR), and B corresponding batch equilibrium isotherms. Predicted curves (full
lines) and experimental data (points)

3.2 Modeling of the adsorption equilibrium isotherms

Equilibrium isotherms of Cr(VI) onto CH andCHRwere determined through a nonlin-
ear regression consideringEq. (4) (Fig. 5B). Previous studies [27] and the experimental
equilibrium points suggest a Lagmuir type concave isotherm, so only the case k �= 0
was considered. The estimated equilibrium parameters for chitosan (CH) (Fig. 5B,
curve 2) resulted: k̂1 = 0.023gL−1, k̂2 = 0.004gmg−1 and k̂3 = 0mgL−1, cor-
responding to a classical Langmuir isotherm. For reused chitosan (CHR) (Fig. 5B,
curve 1) the estimated parameters were: k̂1 = 0.141gL−1, k̂2 = 0.002gmg−1 and
k̂3 = 1.083mgL−1. It can be observed that the equilibrium sorption isotherm for CHR
is described by a quasi linear isotherm that corresponds to an unfavorable case, due to
the decrease of the solid adsorption capacity. Moreover, the zero-order term, k̂3 > 0,
of the equilibrium isotherm corresponding to CHR suggests an adsorption loss.

3.3 Estimation of model parameters and validation of the breakthrough curves

Model breakthrough curves of relative concentration were programmed in R [28]
and compared, through nonlinear regression, with experimental breakthrough curves.
Since k > 0 the normalized solution is u(x, y) = û(kx, ky) (16) and taking into
account the change of variables (6) the breakthrough curve for a column of height h
will be:

c(h, t)

c0
= û

(
kρr

h

ν
, k

c0
qsat

(
t − h

ν

))
for t >

h

ν
. (22)

Setting the column design parameters (c0, h and ν), the rest of the parameters were
calculated in an iterative procedure as follows:

1. The parameter d̂ was set according to (8): d̂ = k̂3
c0
.

123



8 Page 16 of 21 J. B. Dima et al.

Table 2 Values of model estimated parameters for CH and CHR

Batch equilibrium parameters

CH: k̂1 = 0.023 (gL−1), k̂2 = 0.004 (gmg−1)

CHR: k̂1 = 0.141 (gL−1), k̂2 = 0.002 (gmg−1)

Breakthrough curve parameters
Operational conditions k ρr d̂ b̂ RMSE

CH: c0 = 90, h = 2, ν = 0.95 0.070 80.300 0.005 0.936 0.014

CHR: c0 = 40, h = 2, ν = 0.95 0.251 13.160 0.195 0.252 0.017

c0 (mgL−1), h (cm), ν (cmmin−1), k (Lg−1 min−1), ρr (gL−1)

2. Parameter d̂ and the equilibrium parameters k̂1, k̂2 (for each curve) were used to
obtain the normalized parameter b̂ = b

k according to (8) and (5):

b̂ = c0(1 − d̂)

k̂1 + k̂2c0
k̂2. (23)

3. The kinetic parameter k and the relative densityρr were estimated throughnonlinear
regressions from experimental data (Following an L-BFGS-B algorithm in R [28]).

4. The parameter d̂ was recalculated using the baseline height of the experimental
breakthrough curves according to (19):

Baseline = d̂ + (1 − d̂)e−x = d̂ + (1 − d̂)e−ρr
h
ν (24)

5. Steps 2 to 4 were repeated until no differences were found in the recalculated
parameters. If d̂ was the previously estimated parameter and d̂∗ is the recalculated
value in step 4, we stop the estimation procedure if |d̂ − d̂∗| < 10−5 (value that
was reached at most in the third iteration).

Table 2 shows all estimated parameters for CH and CHR (k, ρr, b̂ and d̂) and the

root-mean square errors (RMSE =
√∑

(cexp − cmodel)2/N ).
For CH, a column with the following operational conditions was estimated:

initial concentration c0 = 90mgL−1, height h = 2cm and interstitial velocity
ν = 0.95cmmin−1 (Fig. 5A, curve 2). The value of b̂ obtained is close to 1, which cor-
responds to a favorable adsorption (Fig. 2A, case 1 rectangular isotherm,Bohart–Adam
case). On the other hand, for CHR, a column with the following operational condi-
tions was estimated: c0 = 40mgL−1, h = 2cm, and ν = 0.95cmmin−1 (Fig. 5A,
curve 1). In this case, the value of b̂ is lower than 1; as b̂ approaches zero, the system
corresponds to an unfavorable adsorption (Fig. 2A, case 3; Anzelius, linear isotherm
case).

The experimental breakthrough curve with CHR was determined to validate the
applicability of the general model including the parameter d, when the solid adsorbent
in the column changes its adsorption capacity. The experimental breakthrough curve
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Table 3 Normalized parameters
and errors for predicted CH
breakthrough curves considering
the batch adsorption experiments
and estimated parameters

Operational conditions d̂ b̂ RMSE

c0 = 90, h = 3, ν = 0.95 0.052 0.892 0.116

c0 = 90, h = 1.5, ν = 0.95 0.006 0.935 0.071

c0 = 150, h = 2, ν = 0.95 0.033 0.932 0.106

c0 (mgL−1), h (cm), ν (cmmin−1)

of the column filled with CH was compared to that of the column containing CHR
(reused chitosan) and it can be observed that CHR curve shifts upward due to the lower
adsorption capacity of theCHRand the lower retention of chromium in the solid phase.
This is reflected in the estimated parameters: for CHR, the values of b̂ decreased
and the baseline value d̂ increased (Table 2, Fig. 5A) which is consistent with its
poor adsorption performance since the particle adsorbs less chromium from the liquid
stream. The models generally used in the literature to describe breakthrough curves
assume a baseline height equal zero. However, the increased in baseline height was
observed by different authors for high initial concentration of solute and in different
researches of desorption–adsorption cycles in fixed-bed columns [29–32]. The general
model proposed in this work incorporates the adsorption loss observed in the CHR
through the zero-order parameter d. This parameter allows to describe the initial part
of the curve (baseline), achieving an adequate fit of the experimental breakthrough
curve.

3.4 Breakthrough curves predictions

New breakthrough curves can be obtained using only the experimental baseline
height (d̂ parameter), without estimating the parameters k and ρr. The same esti-
mated parameters from the CH column described in the previous section (Table 2):
k = 0.07Lg−1 min−1 and ρr = 80.30gL−1 were used to predict other breakthrough
curveswith different operational conditions, changing initial concentration and column
height (Fig. 6). The parameter d̂ was calculated using the baseline of the experimental
breakthrough curve according to (24) and then normalized parameter b̂ was calcu-
lated according to (23) for each predicted curve (Table 3). The predicted curves were
compared with the experimental data and, in all cases, showed a satisfactory agree-
ment with the experimental breakthrough curves, considering that no parameter was
estimated to fit the curves (Fig. 6, Table 3).

The proposed model uses both the data obtained from the column and the equilib-
rium batch adsorption information to describe the experimental breakthrough curve
and can be used to predict other curves with different operating conditions. Starting
from a specific adsorbent–adsorbate curve, other curves can be predicted for the same
system by changing the operating conditions within certain limits.
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Fig. 6 Predicted and experimental breakthrough curves for the columns filled with CH at different operating
conditions. Predicted curves (full line) and experimental curves (points)

4 Conclusion

Themass transfer process in an adsorption columnwasmodeled and described through
the analysis of the process differential equations and their analytical solutions. In
this work, a general Lagmuir type rate equation with four parameters that covers
several cases described in the literature was considered, adding one more parameter to
the equations already proposed. The solution found was validated with experimental
breakthrough curves. Thegeneral solution foundwas applied to describe the adsorption
of the highly toxic transition metal Cr(VI) on the biopolymer chitosan and reused
chitosan. The model proposed generalized already known plug flow models based on
a single rate equation. The zero-order parameter d relates to the baseline height of
the breakthrough curve achieving an adequate fit of the experimental breakthrough
curve. The model proposed uses both the data obtained from the column and the
information from the equilibrium batch adsorption. The appliedmethod of the Laplace
Transform was adequate to solve the problem and also offers the possibility to study
more general systems. The theoretical solution found was satisfactory to estimate the
CH andCHR breakthrough curves, the estimated parameters for CH allowed to predict
other breakthrough curves with different operational conditions, without the need to
estimate the parameters. The general model proposed represents an option to describe
and predict the adsorption process for wastewater treatment in fixed-bed columns.

Appendix A: Inverse Laplace transforms

In what follows, we sketch how the inverse Laplace transform terms can be obtained.
We observed that all terms of F and N in (10) and (15) correspond to expressions

of the type C 1
p−q exp

(−pz
p+r

)
, for certain C , q, r and z that do not depend of p. We will

show that

L−1
(

1

p − q
exp

( −pz

p + r

)
, p → y

)
= exp(qy) exp

( −qz

q + r

)
J
( r z

q + r
, (q + r)y

)
,

(A1)
and from this formula, in fact, results all the inverse transformed terms of F and N .
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First, we observed that for z = 0, the formula becomes elementary:

L−1
(

1

p − q
, p → y

)
= exp(qy).

Now, for z �= 0, we recall that

L
(
I0(2z

1
2 y

1
2 )

)
= 1

p
exp

( z

p

)
.

If we consider q = 0 in (A1) and denoting

1

p
exp

( −pz

p + r

)
= −

∫ z

0

1

p + r
exp

( −pτ

p + r

)
dτ + 1

p

we have, taking into account the definition of J (13),

L−1
(
1

p
exp

( −pz

p + r

))
= 1 −

∫ z

0
L−1

(
1

p + r
exp

( −pτ

p + r

))
dτ

= 1 − e−r y
∫ z

0
L−1

(
1

p
exp

(−pτ + rτ

p

))
dτ

= 1 − e−r y
∫ z

0
e−τL−1

(
1

p
exp

(rτ
p

))
dτ

= 1 − e−r y
∫ z

0
e−τ I0(2τ

1
2 (r y)

1
2 ) dτ = J (z, r y).

Finally, to show the general case, we observed that

L−1
(

1

p − q
exp

( −pz

p + r

))
= exp(qy)L−1

(
1

p
exp

(−pz − qz

p + q + r

))
.

Adding and subtracting A = qz
q+r to the quotient within the last exponential, we obtain

−pz − qz

p + q + r
= −p(z − A)

p + q + r
− A

and then

L−1
(
1

p
exp

(−pz − qz

p + q + r

))
= e−AL−1

(
1

p
exp

(−p(z − A)

p + q + r

))

= e−A J
(
(z − A), (q + r)y

)

from which the general formula (A1) follows.
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Appendix B: J function properties

The following properties result directly from the definition (13) and its Laplace trans-
form:

J (x, 0) = e−x , J (0, y) = 1
limy→∞ J (x, y) = 1, limx→∞ J (x, y) = 0

J (x, y) + J (y, x) = 1 + e−(x+y) I0
(
2(xy)

1
2
)

Jx (x, y) = −e−(x+y) I0
(
2(xy)

1
2
)

Jy(x, y) = e−(x+y)
( x
y

) 1
2 I1(2(xy)

1
2 )
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