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Abstract
The free vibration behavior of a new advanced functionally graded (FG) nanobeam is
presented in this work using the recently proposed nonlocal higher-order shear defor-
mation theory. In the present theory, the stress tensor can satisfy the parabolic variation
of the shear stress distribution throughout the thickness direction and also fulfill the
requirement that the shear stress on the top and bottom surfaces of the FG nanobeam
is zero. Two common types of FG structures, namely, FG hardcore and FG softcore,
are considered here for analysis with three schemes. The material properties of the FG
nanobeam are assumed to vary continuously in both the longitudinal and transversal
directions according to a combined simple power-law distribution in terms of the vol-
ume fractions of the constituents. The governing equations of the FG nanobeam with
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simply supported boundary conditions are derived using the proposed higher-order
shear deformation plate theory. The nonlocal strain gradient theory is employed to
capture the microstructure-dependent effect. The influence of the structural geome-
try, the gradient index, and the nonlocal and length scale parameters on the vibration
frequency is investigated. Finally, many new results are also reported in the current
study, which will serve as a benchmark for future research.

Keywords Free vibration · Higher-order shear deformation theory · Multidirectional
FG beam · Nonlocal strain gradient theory

1 Introduction

Functionally graded materials (FGMs) are advanced composite materials charac-
terized by microscopically varying material properties throughout their structure,
resulting in a continuous transition fromone surface to another. Thesematerials exhibit
a spatial gradient inmacroscopicmechanical strength and thermal conductivity.Nowa-
days, the use of functionally graded structures has become increasingly prevalent in
various engineering sectors such as aerospace, aircraft, automotive, and others. One
of the significant advantages of functionally graded materials over traditional com-
posites is their ability to overcome interface challenges commonly encountered in
conventional materials.

In recent years, nanostructures such as nanorods, nanobeams, and nanoplates have
attracted considerable attention for their exceptional mechanical, thermal, chemical,
and electronic properties [1, 2]. These structures are increasingly used in micro/nano
electromechanical systems (MEMS/NEMS) and nano actuators, leading to a growing
interest in modeling micro and nanoscale structures. Size effects at the nanoscale
are widely acknowledged to be significant, prompting further development of design
and analysis methods to accurately simulate their impact on mechanical responses.
As a result, improved non-classical continuum-based elasticity theories with scale
parameters have been developed to provide a practical framework for considering size
effects without excessive computational costs.

One of the most common enhanced continuum-based theories of elasticity is Erin-
gen’s strain-driven nonlocal model [3, 4]. This model assumes that stress at any point
is represented by the convolution integral of elastic strain at each point of the medium
and a decaying kernel function, introducing a nonlocal constant to evaluate the inten-
sity of long-range interactions in the medium. To circumvent the difficulties inherent
in solving the corresponding integro-differential equations found in many structural
problems [5, 6], the subsequent differential law is commonly used to replace the orig-
inal nonlocal integral deformation. Interested readers are encouraged to consult the
review literature [7–9] and the articles cited therein.

Numerous studies have been conducted to investigate the mechanical responses
of nanostructures using these theories. Researchers have analyzed Euler–Bernoulli
nanobeams using nonlocal elasticity theory [10], studied the vibration behavior of
functionally graded nanobeams in thermal environments [11], explored the surface
effects on deformations of magneto–electro-elastic beams [12], and investigated the
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vibration and thermal buckling of nonlocal functionally graded nanobeams [13],
among other studies. Nonlocal beam theories have been employed to examine the
mechanical behavior ofmicro and nanostructures [14, 15], and comprehensive reviews
have been conducted on the benefits and drawbacks of nonlocal theory [8]. Further-
more, exact solutions for bending, buckling, and free vibration of functionally graded
carbon nanotube-reinforced composite nanobeams have been proposed based on non-
local theory [16], and static bending and buckling of functionally graded nanoscale
beams have been studied using nonlocal Timoshenko beam models [17]. A study
conducted by Ebrahimi and Barati [18] focused on the thermal vibration behavior of
functionally graded (FG) nanobeams subjected to different types of thermomechan-
ical loading, including uniform, linear, and nonlinear temperature rise. They utilized
a two-parameter elastic foundation based on the third-order shear deformation beam
theory and incorporated the nonlocal size-dependent effect to analyze the static and
dynamic behavior of isotropic and functionally graded beams at a small scale.

A series of papers by Barretta and co-workers [19, 20] indicated that when adopting
the classical Helmholtz-type kernel, Eringen’s model becomes ill-posed in formulat-
ing mechanical problems of bounded structures. This occurs due to the constitutive
boundary conditions inherent in the differentiation process of the strain-driven inte-
gral model being satisfied only by default in problems involving unbounded domains,
for example, in problems concerning dislocation and wave propagation studied by
Eringen. However, the inherent constitutive boundary conditions for bounded struc-
tures may be incompatible with the equilibrium requirements of the corresponding
problems, leading to inconsistent results. For instance, perhaps the most well-known
inconsistency is the conclusion that raising the nonlocal length scale parameter shows
a softening effect for all beam boundary edges except for cantilever nanobeams under
point loading conditions [21, 22]. This ill-posedness of Eringen’s strain-driven model
is also demonstrated in many recent papers [23–26].

Yang et al. [27] proposed the modified couple stress theory, which considers a
symmetric couple stress tensor and includes only one additional parameter. However,
the modified couple stress theory can be regarded as a special case of the modified
strain gradient theory. Recent theoretical works have focused on the mechanical and
dynamic behaviors of small-scaled structures using strain gradient theory andmodified
couple stress theory [28–32]. These gradient elasticity models have shown a stiffness
enhancement effect. It is important to note that nonlocal elasticity models and strain
gradient models describe distinct size-dependent mechanical and physical charac-
teristics of small-scaled materials and structures. To investigate the effects of these
two size-dependent phenomena on structural responses, researchers have developed
nonlocal strain gradient models. Papargyri-Beskou et al. [33] derived the governing
equation and boundary conditions for the buckling analysis of an Euler–Bernoulli
beam using the variational principle based on the simple theory of gradient elastic-
ity with surface energy. Lim et al. [34] proposed a nonlocal strain gradient theory
that combines both strain gradient and nonlocal elasticity models, aiming to evaluate
the impacts of nonlocal and length scale parameters on the mechanical and physical
responses of size-dependent structures. This model has attracted significant attention
from researchers studying small-scale structures.
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Fig. 1 FG beam geometry

Li et al. [35] investigated the free vibration analysis of nonlocal strain gradient
beams made of functionally graded material. They derived a size-dependent Timo-
shenko beam model considering through-thickness power-law variation and found
significant effects of such grading on natural frequencies and stiffness. Another study
by Li et al. [36] delved into the nonlinear bending and free vibration analyses of
similar beams, showing smaller nonlinear bending deflections and higher vibration
frequencies compared to linear counterparts due to intrinsic stiffening effects. Özmen
et al. [37] explored the thermomechanical vibration and buckling response of nonlocal
strain gradient porous FG nanobeams in magnetic and thermal fields. They demon-
strated the effects of nonlocal differential and strain gradient elasticities on softening
and stiffness enhancements. These studies contribute to understanding the complex
behavior of nanobeams under various conditions, aiding in the design of micro/nano
electromechanical systems. Other recent studies have focused on specific applications,
such as Daikh et al. [38] conducting a comprehensive study on the static deflection
and buckling stability of axially loaded FG carbon-nanotube-reinforced composite
(FGCNTRC) plates with temperature-dependent material properties.

The objective of this paper is to investigate the free vibration response of a
novel advanced functionally graded nanobeam. Based on the nonlocal theory, a size-
dependent hyperbolic shear deformation beam model is developed for the vibration
behavior of FG nanobeam using nonlocal theory. The most interesting feature of this
theory is that it accounts for a parabolic variation of the transverse shear strains across
the thickness and satisfies the zero traction boundary conditions on the top and bottom
surfaces of the beam without using shear correction factors. Governing equations of
FGM beam with simply supported boundary conditions are derived using new higher-
order shear deformation beam theory. The nonlocal theory is employed to capture the
microstructure-dependent effect. Analytical solutions for vibration are provided for
simply supported beams, and the obtained results are verified by comparing themwith
those reported in the literature to ensure the accuracy of the present theory. The influ-
ence of structure geometry, gradient index, and nonlocal scale parameters on vibration
frequency is investigated.
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2 Geometrical modeling andmaterial distribution functions

Auniformbeam in theCartesian coordinate system (x, z) with length “L” and thickness
“h” is shown in Fig. 1. The beam is made of ceramic and metal. Material properties are
graded continuously from surfaces to the core. The effective mechanical properties,
such as Young’s modulus (E), density (ρ), and Poisson’s ratio (υ), can be portrayed
by the law of mixture as

P(x , z) � Pm + (Pc − Pm)V (x , z), (1)

where Pm and Pc are the corresponding mechanical properties of the metal and the
ceramic constituents. V (x , z) is the volume fraction of the ceramic phase in the x and
z directions.

Functionally graded materials with coatings find applications in various industrial
components like turbine blades, cutting tools, and aircraft engines. Due to the com-
plexity of these structures, there is a demand for both analytical and numerical analysis.
This paper introduces a mathematical model for multidirectional functionally graded
structures, a novel contribution to the field. This analysis considers two prevalent
types of FG structures: FG hardcore (HC) and FG softcore (SC), examined through
three schemes: FG-A, FG-B, and FG-C (Fig. 2). The material properties of the FG
nanobeam are assumed to undergo continuous variation in both longitudinal and trans-
verse directions, following a combined simple power-law distribution as illustrated in
Fig. 3.

(a): (b): 

(c):

Fig. 2 Types of FG structures
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(a): (b): 

(c): (d): 

Fig. 3 Material distribution schemes

2.1 Hardcore FG beam (HC)

(a) HC FG-A beam

VFG−A(x , z) �
[( |2z|

h

)p

− 1

][( |2x − L|
L

)k
− 1

]
. (2)

(b) HC FG-B beam

VFG−B(z) �
[( |2z|

h

)p

− 1

]
. (3)

(c) HC FG-C beam

VFG−C(x) �
[( |2x − L|

L

)k
− 1

]
. (4)

2.2 Soft-core FG beam (SC)

(a) SC FG-A beam

VFG−A(x , z) � 1 −
[( |2z|

h

)p

− 1

][( |2x − L|
L

)k
− 1

]
. (5)
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(b) SC FG-B beam

VFG−B(z) � 1 −
[( |2z|

h

)p

− 1

]
. (6)

(c) SC FG-C beam

VFG−C(x) � 1 −
[( |2x − L|

L

)k
− 1

]
. (7)

3 Kinematic equations

3.1 Displacement field

The formulation is constrained to linear elastic material behavior. The displacement
field is selected under the following assumptions:

– The axial and transverse displacements are divided into bending and shear compo-
nents.

– The bending component of axial displacement resembles that described by the CBT.
– The shear component of axial displacement leads to higher-order variations of shear
strain, resulting in shear stress vanishing on the top and bottom surfaces of the beam.

With these assumptions, the displacement fields of various higher-order shear defor-
mation beam theories are provided in a general form [39]:

u(x , z, t) � u0 − z
∂w0

∂x
+ f (z)ϕx , (8a)

w(x , z, t) � w0, (8b)

with,

f (z) � hsinh
( z
h

)
− 3z3

2h2
. (9)

And

g(z) � f ′(z). (10)

The values u0 and w0 are the displacement components in the x and z directions,
respectively, and ϕx is the rotation of the cross-section of the beam. The deformations
associated with the displacements are

εxx � ε0xx − zε1xx + f (z)ε2xx , (11a)
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γxz � d f (z)

dz
ϕx . (11b)

Therefore, we obtain the deformations in the form:

ε0xx � du

dx
, (12a)

ε2xx � dϕx

dx
, (12b)

ε1xx � d2w

dx2
. (12c)

The constitutive relations can be written as follows:

{
σxx

τxz

}
�
[
Q11 0
0 Q66

]{
εxx

γxz

}
. (13)

The stiffness coefficients are expressed as follows:

Q11 � E(z)

1 − υ2 , Q66 � E(z)

2(1 + υ)
. (14)

3.2 Resulting efforts

The resultants of forces and moments can be expressed in terms of stresses in the
following form:

⎧⎨
⎩

Nxx

Mxx

Pxx

⎫⎬
⎭ �

h/2∫
−h/2

⎧⎨
⎩

1
z

f (z)

⎫⎬
⎭σxxdz, (15a)

Qxz �
h/2∫

−h/2

d f (z)

dz
τxzdz. (15b)

We simplify the Eq. (14) to obtain

⎧⎨
⎩

Nxx

Mxx

Pxx

⎫⎬
⎭ �

⎡
⎣ A11 B11 C11

B11 D11 F11
C11 F11 H11

⎤
⎦
⎧⎨
⎩

ε0xx
ε1xx
ε2xx

⎫⎬
⎭, (16a)

Qxz � J66γxz , (16b)
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with

{A11, B11, D11, C11, F11, H11} �
h/2∫

−h/2

Q11

{
1, z, z2, f (z), z f (z), f (z)2

}
dz,

(17a)

J66 �
h/2∫

−h/2

Q66

[
d f (z)

dz

]2
dz. (17b)

3.3 Strain energy

The strain energy functional of the FG beam is given by the following formula:

δU � 1

2

∫
V

[
σxxεxx + τxzγxz

]
dV . (18)

Hence, we can rewrite the strain energy of the beam in the following form:

δU � 1

2

∫
A

[
Nxx

dδu

dx
+ Mxx

d2δw

dx2
+ Pxx

dδϕx

dx
+ Qxzδϕx

]
dxdz. (19)

3.4 Kinetic energy

The kinetic energy of the beam at any instant can be expressed as follows:

T � 1

2

∫
A
ρ(x , z)

(
∂2u

∂t2
+

∂2w

∂t2

)
dxdz. (20)

3.5 Hamilton’s principle

The kinematic hypotheses (displacement field) being defined for the geometry and
the type of excitation studied, the vibrational approach systematically includes the
following points:

(1) Calculation of deformations.
(2) Construction of the Hamilton functional.
(3) Externalization of the Hamilton functional.

In order to obtain the kinetic and strain energy, Hamilton’s principle is written as

∫ t2

t1
(δU − δT )dt � 0. (21)
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3.6 Equations of motion

The appropriate equations of motion for displacement can be derived by using Hamil-
ton’s principle. By substituting Eqs. (19) and (20) into Eq. (21), we obtain

∂Nxx

∂x
� I0

∂2u0
∂t2

− I1
∂3w0

∂x∂t2
+ I3

∂2ϕx

∂t2
, (22a)

∂2Mxx

∂x2
� I0

∂2w0

∂t2
+ I1

∂3u0
∂x∂t2

− I2
∂4w0

∂x2∂t2
+ I4

∂3ϕx

∂x∂t2
, (22b)

∂Pxx
∂x

− Qxz � I3
∂2u0
∂t2

− I4
∂3w0

∂x∂t2
+ I5

∂2ϕx

∂t2
, (22c)

where the inertias are defined by

{I0, I1, I2, I3, I4, I5} �
h/2∫

−h/2

ρ(z)
{
1, z, z2, f (z), z f (z), f (z)2

}
dz. (23)

3.7 Nonlocal strain gradient theory

Lim et al. [34] introduced a stress function that incorporates both strain gradient stress
and nonlocal elastic stress fields, which can be expressed as

σi j � σ
(0)
i j − dσ (1)

i j

dx
, (24)

where σ
(0)
i j represents the classical stress corresponding to strain εkl , and σ

(1)
i j denotes

the higher-order stress corresponding to strain gradient εkl, x . Additionally, their
expressions can be described as follows:

σ
(0)
i j �

∫ L

0
Ci jklα0

(
x , x ′, e0a

)
εkl, x

(
x ′)dx ′, (25a)

σ
(1)
i j � l2

∫ L

0
Ci jklα1

(
x , x ′, e1a

)
εkl, x

(
x ′)dx ′. (25b)

In this context,Ci jkl represents an elastic constant, and l is the material length scale
parameter introduced to account for the influence of the strain gradient stress field. e0a
and e1a are the nonlocal parameters introduced to consider the significance of the non-
local elastic stress field. According to the nonlocal kernel functions α0

(
x , x ′, e0a

)
and
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α1
(
x , x ′, e1a

)
, the general constitutive relation for nonlocal strain can be expressed

as per Eringen [4]:

(26)

[
1 − (e1a)

2∇2
] [

1 − (e0a)
2∇2
]
σi j � Ci jkl

[
1 − (e1a)

2∇2
]
εkl

− Ci jkl l
2
[
1 − (e0a)

2∇2
]
∇2εkl .

The symbol ∇2 represents the Laplacian operator. In this study, we assume that
e � e0 � e1. The complete nonlocal strain gradient constitutive relation can be
formulated as follows:

[
1 − μ∇2

]
σi j � Ci jkl

[
1 − λ∇2

]
εkl , (27)

where μ � (ea)2 and λ � l2.
Hence, the constitutive relations for a nonlocal shear deformable functionally

graded nanobeam can be represented as

σxx − μ
∂2σxx

∂x2
� Q11

(
εxx − λ

∂2εxx

∂x2

)
, (28a)

τxz − μ
∂2σxx

∂x2
� Q66

(
γxz − λ

∂2γxz

∂x2

)
. (28b)

Thus, the equation governing stress resultants is

Nxx − μ
∂2Nxx

∂x2
�
(
1 − λ2

∂2

∂x2

)[
A11

∂u0
∂x

− B11
∂2w0

∂x2
+ C11

∂ϕx

∂x

]
, (29a)

Mxx − μ
∂2Mxx

∂x2
�
(
1 − λ2

∂2

∂x2

)[
B11

∂u0
∂x

− D11
∂2w0

∂x2
+ F11

∂ϕx

∂x

]
, (29b)

Pxx − μ
∂2Pxx
∂x2

�
(
1 − λ2

∂2

∂x2

)[
C11

∂u0
∂x

− F11
∂2w0

∂x2
+ H11

∂ϕx

∂x

]
, (29c)

Qxz − μ
∂2Qxz

∂x2
�
(
1 − λ

∂2

∂x2

)
[J66ϕx ]. (29d)

Substituting Eqs. (29) into Eqs. (22) to obtain

(30a)

(
1 − λ∇2

)(
A11

∂2u0
∂x2

− B11
∂3w0

∂x3
+ C11

∂2ϕ1
x

∂x2

)

−
(
1 − μ∇2

)(
I0

∂2u0
∂t2

+ I1
∂3w0

∂x∂t2
− I3

∂2ϕx

∂t2

)
� 0,
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(30b)

(
1 − λ∇2

)(
B11

∂3u0
∂x3

− D11
∂4w0

∂x4
+ F11

∂3ϕ1
x

∂x3

)

−
(
1 − μ∇2

)(
I0

∂2w0

∂t2
− I1

∂3u0
∂x∂t2

+ I2
∂4w0

∂x2∂t2
− I4

∂3ϕx

∂x∂t2

)
� 0,

(30c)

(
1 − λ∇2

)(
C11

∂2u0
∂x2

− F11
∂3w0

∂x3
+ H11

∂2ϕx

∂x2
− J66ϕx

)

−
(
1 − μ∇2

)(
−I3

∂2u0
∂t2

+ I4
∂3w0

∂x∂t2
− I5

∂2ϕx

∂t2

)
� 0.

4 Analytical solution

The equations of motion are analytically solved for free vibration problems. Navier’s
solution method is used to determine the analytical solutions for a simply supported
beam. We assume that the solution is of the following form:

u0 �
∞∑

m�1

Umcos(βx)e
iωt , (31a)

w0 �
∞∑

m�1

Wmsin(βx)e
iωt , (31b)

ϕx �
∞∑

m�1

Xmcos(βx)e
iωt , (31c)

whereβ � mπ/L , andω denotes the natural frequency, andUm , Wm , Xm are arbitrary
parameters. By replacing the Eqs. (31) in (30), the equations of motion become as
follows:

(
[L] − ω2[M]

)⎧⎨
⎩

Um

Wm

Xm

⎫⎬
⎭ �

⎧⎨
⎩
0
0
0

⎫⎬
⎭, (32)

where the matrix [L] and [M] are the stiffness and mass matrix, respectively

[L] �
(
1 + λβ2

)⎡⎣ L11 L12 L13

L12 L22 L23

L13 L23 L33

⎤
⎦, (33a)
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[M] �
(
1 + μβ2

)⎡⎣M11 M12 M13

M12 M22 M23

M13 M23 M33

⎤
⎦, (33b)

with

L11 � −A11β
2, L12 � B11β

3, L13 � −C11β
2,

L22 � −D11β
4, L23 � F11β

3, L33 � −
(
H11β

2 + J66
)
, (34)

and

M11 � −I0, M12 � I1β,

M13 � −I 3,

M22 � −I0 − I2β
2, M23 � I4β, M33 � −I5. (35)

For the classical theory (CPT),

L13 � L23 � L33 � 0 and M13 � M23 � M33 � 0. (36)

5 Numerical results

In this section, several numerical examples are presented and discussed in detail to
demonstrate the influences of various parameters, such as nonlocal parameters, length
scale parameters, length-to-thickness ratio, and power-law index, on the free vibra-
tion response of FG nanobeams. The analyzed FG beam is made of a mixture of
metal (Aluminum, Al) and ceramic (Alumina-Al2O3). The material properties of both
Aluminum and Alumina are given as follows:

AluminumAl: Em � 70GPa, ρm � 2702 kg/m3, υm � 0.3,

AluminaAl2O3: Ec � 3960GPa, ρc � 3800 kg/m3, υm � 0.3.

The non-dimensional functions of deflection, axial stress, shear stress, and trans-
verse stress are defined by

ω � ω
L2

h

√
ρm

Em
. (37)
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Table 1 Comparison of the non-dimensional fundamental natural frequency of FG beams with various
boundary conditions (L/h � 5)

Sources p

0 0.5 1 2 5 10

Thai et al. [1] (TBT) 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816

SBT [1] 5.1531 4.4110 3.9907 3.6263 3.3998 3.2811

Simsek [2] (TBT) 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816

Simsek [2] (SBT) 5.1531 4.4114 3.9907 3.6263 3.3998 3.2811

Vo et al. [3] (TBT) 5.1528 4.4019 3.9716 3.5979 3.3743 3.2653

Nguyen et al. [4] (HBT) 5.1528 4.4019 3.9716 3.5979 3.3743 3.2653

Present 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816

5.1 Comparison study

Tovalidate the accuracy and effectiveness of the suggestedmodel for predicting the free
vibration characteristics of FG beams, the numerical outcomes are cross-referenced
with previously published findings. Table 1 illustrates the comparison between the
current results and those from studies by Thai and Vo [40], Şimşek [41], Vo et al. [42],
and Nguyen et al. [39]. The theories utilized encompass the third-order shear deforma-
tion theory (TBT), the sinusoidal shear deformation theory (SBT), and the hyperbolic
shear deformation theory (HBT). In this comparison, the volume fraction varies across
the transverse direction according to the function (1/2 + z/h)p. It is evident that the
disparities between the current findings and the cited literature are negligible. Hence,
the proposed model demonstrates precision, resilience, and efficiency in analyzing the
current model.

5.2 Parametric study

5.2.1 Effect of power-law indexes

Table 2 presents the effect of power-law indexes p and k on the dimensionless fre-
quencies of various schemes of FG beams. Additionally, Fig. 4 describes the effect of
power-law index p on the dimensionless frequencies of various schemes of bi-coated
beams (k � 2, L/h � 10, μ � λ � 0). Firstly, both types of FG-C beams, hardcore
beams and softcore beams, are ignored in the plot because they are independent of “p.”
The increase in index p leads to an augmentation of the proportion of ceramic in FG-A
hardcore beams and a reduction of the proportion of ceramic in FG-A softcore (SC)
beams; therefore, the dimensionless frequency increases for FG-A hardcore beams
and decreases for FG-A softcore (SC) beams.

The effect of power-law index k on the dimensionless frequencies of various
schemes of FG beams (p � 2, L/h � 10, μ � λ � 0) is plotted in Fig. 5. As
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Table 2 Effect of power-law indexes p and k on the dimensionless frequencies of various schemes of FG
beams (L/h � 10, μ � λ � 0)

p k HC-FGM SC-FGM

FG-A FG-B FG-C FG-A FG-B FG-C

2 2 3.7836 2.9848 4.7152 5.1211 5.6573 6.0876

6 3.9711 2.9848 6.0446 5.0149 5.6573 6.2329

8 3.9998 2.9848 6.2723 4.9951 5.6573 6.2555

10 4.0178 2.9848 6.4189 4.9820 5.6573 6.2696

6 2 4.3017 5.0688 4.7152 4.7417 5.9505 6.0876

6 4.5575 5.0688 6.0446 4.4689 5.9505 6.2329

8 4.5961 5.0688 6.2723 4.4172 5.9505 6.2555

10 4.6201 5.0688 6.4189 4.3831 5.9505 6.2696

8 2 4.4102 5.4698 4.7152 4.6395 6.0195 6.0876

6 4.6793 5.4698 6.0446 4.3172 6.0195 6.2329

8 4.7197 5.4698 6.2723 4.2557 6.0195 6.2555

10 4.7449 5.4698 6.4189 4.2152 6.0195 6.2696

10 2 4.4837 5.7375 4.7152 4.5653 6.0674 6.0876

6 4.7615 5.7375 6.0446 4.2053 6.0674 6.2329

8 4.8032 5.7375 6.2723 4.1363 6.0674 6.2555

10 4.8291 5.7375 6.4189 4.0907 6.0674 6.2696

the previous analysis, the FG-B beams are ignored in the plot because they are inde-
pendent of “k.” From this figure, the increase in index k leads to an increase in the
proportion of ceramic in FG-A hardcore beams and a decrease in the proportion of
ceramic in FG-A softcore beams. As a result, the dimensionless frequency increases
for FG-A hardcore beams and decreases for FG-A softcore (SC) beams.

5.2.2 Effect of the thickness ratio

Table 3 illustrates the effect of the thickness ratio L/h on the dimensionless frequencies
of various schemes of FG beams. The graphs in Fig. 6 show the effect of the thickness
ratio L/h on the dimensionless frequencies of various schemes of FG beams (p � k �
5, μ � λ � 0). From this figure, it is apparent that as the thickness ratio L/h increases,
the dimensionless frequencies increase across all types of beams. Furthermore, beyond
L/h > 15, the dimensionless frequencies remain nearly constant irrespective of the
beam type. Thus, it can be inferred that the maximum dimensionless frequencies are
achieved for FG-C softcore beams.

5.2.3 Effect of the nonlocal and the length scale parameters

The size-dependent effects represented by the nonlocal and length scale parameters are
tabulated in Table 4. Figure 7 describes the effect of the nonlocal parameter μ on the
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Fig. 4 Effect of power-law indexes p on the dimensionless frequencies of various schemes of FG beams
(k � 2, L/h � 10, μ � λ � 0)

Fig. 5 Effect of power-law index k on the dimensionless frequencies of various schemes of FG beams (p �
2, L/h � 10, μ � λ � 0)
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Table 3 Effect of the thickness ratio L/h on the dimensionless frequencies of various schemes of FG beams
(μ � λ � 0)

p � k L/h HC-FGM SC-FGM

FG-A FG-B FG-C FG-A FG-B FG-C

2 5 3.6564 2.9047 4.5049 4.8286 5.4419 5.8161

10 3.7836 2.9848 4.7152 5.1211 5.6573 6.0876

15 3.8091 3.0006 4.7583 5.1827 5.7009 6.1433

30 3.8247 3.0102 4.7849 5.2209 5.7276 6.1776

6 5 4.3847 4.8866 5.7750 4.1949 5.7083 5.9549

10 4.5575 5.0688 6.0446 4.4689 5.9505 6.2329

15 4.5925 5.1054 6.0999 4.5271 5.9998 6.2899

30 4.6139 5.1279 6.1340 4.5634 6.0301 6.3251

8 5 4.5349 5.2633 5.9926 3.9987 5.7701 5.9765

10 4.7197 5.4698 6.2723 4.2557 6.0195 6.2555

15 4.7571 5.5115 6.3297 4.3102 6.0703 6.3127

30 4.7801 5.5371 6.3651 4.3442 6.1015 6.3480

10 5 4.6359 5.5141 6.1326 3.8484 5.8129 5.9900

10 4.8291 5.7375 6.4189 4.0907 6.0674 6.2696

15 4.8683 5.7828 6.4776 4.1420 6.1192 6.3270

30 4.8924 5.8106 6.5138 4.1739 6.1512 6.3623

dimensionless frequencies of various schemes of FG beams (p � k � 1, L/h � 10).
As observed, an increase in the nonlocal parameter μ leads to a permanent decrease
in the beam stiffness and consequently the dimensionless frequencies across all beam
types. Conversely, it can be inferred that the minimum frequencies are attained for
hardcore FG beams.

Figure 8 illustrates the effect of the length scale parameter λ on the dimensionless
frequencies of various schemes of FG beams (p � k � 1, L/h � 10). It is crucial
to note that as the length scale parameter λ increases, the dimensionless frequencies
of different schemes of FG beams increase significantly. This can be attributed to the
enhancement in beam stiffness. Additionally, it is noteworthy that the frequencies of
hardcore FG beams are lower than those of softcore FG beams.

6 Conclusion

This study investigates the inherent vibrational characteristics of an innovative func-
tionally graded nanobeam. Specifically, we explore two prevalent types of functionally
gradedmaterial (FGM) structures: hardcore FGM and softcore FGM, each comprising
three distinct configurations. The FGM nanobeam under consideration has material
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Fig. 6 Effect of the thickness ratio L/h on the dimensionless frequencies of various schemes of FG beams
(p � k � 5, μ � λ � 0)

properties that continuously change in both longitudinal and transverse directions, fol-
lowing a composite power-law distribution based on constituent volume fractions. We
employ a novel higher-order shear deformation plate theory to establish the governing
equations for the FGM beam, with the beam subjected to simply supported bound-
ary conditions. Additionally, we incorporate the nonlocal strain gradient theory to
account for microstructure-dependent effects. Based on the numerical results, several
conclusions can be drawn. Firstly, the choice of beam schemes, whether hardcore or
softcore, and the specific distribution patterns of materials (FG-A, FG-B, and FG-C)
significantly influence the stiffness of the beam, thereby affecting the fundamental fre-
quencies of the system. Furthermore, the data clearly illustrate that an increase in the
nonlocal parameter reduces beam stiffness, and decreasing the length scale parameter
also results in decreased stiffness [43–50].
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Table 4 Effect of the nonlocal parameterμ and the length scale parameterλ on the dimensionless frequencies
of various schemes of bi-coated beams (p � k � 1, L/h � 10)

μ λ HC-FGM SC-FGM

FG-A FG-B FG-C FG-A FG-B FG-C

0 0 3.3207 1.0573 3.5255 5.3113 5.5128 5.9447

0.5 3.4016 1.0830 3.6114 5.4408 5.6472 6.0896

1 3.4807 1.1082 3.6954 5.5672 5.7784 6.2311

1.5 3.5580 1.1328 3.7775 5.6909 5.9068 6.3695

2 3.6336 1.1569 3.8578 5.8119 6.0324 6.5050

0.5 0 3.2416 1.0321 3.4416 5.1849 5.3816 5.8032

0.5 3.3207 1.0573 3.5255 5.3113 5.5128 5.9447

1 3.3978 1.0818 3.6074 5.4348 5.6409 6.0829

1.5 3.4733 1.1059 3.6876 5.5555 5.7662 6.2180

2 3.5472 1.1294 3.7660 5.6736 5.8888 6.3502

1 0 3.1680 1.0087 3.3634 5.0671 5.2594 5.6714

0.5 3.2452 1.0333 3.4454 5.1907 5.3876 5.8096

1 3.3207 1.0573 3.5255 5.3113 5.5128 5.9447

1.5 3.3944 1.0808 3.6038 5.4293 5.6352 6.0767

2 3.4666 1.1037 3.6804 5.5447 5.7551 6.2060

1.5 0 3.0992 0.9868 3.2903 4.9570 5.1451 5.5482

0.5 3.1747 1.0108 3.3706 5.0779 5.2705 5.6834

1 3.2485 1.0343 3.4489 5.1959 5.3930 5.8155

1.5 3.3207 1.0573 3.5255 5.3113 5.5128 5.9447

2 3.3913 1.0798 3.6005 5.4243 5.6300 6.0711

2 0 3.0346 0.9662 3.2218 4.8538 5.0379 5.4326

0.5 3.1086 0.9898 3.3004 4.9721 5.1608 5.5651

1 3.1809 1.0128 3.3771 5.0877 5.2807 5.6944

1.5 3.2515 1.0353 3.4521 5.2007 5.3980 5.8209

2 3.3207 1.0573 3.5255 5.3113 5.5128 5.9447
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Fig. 7 Effect of the nonlocal parameter μ on the dimensionless frequencies of various schemes of bi-coated
beams (p � k � 1, L/h � 10)

Fig. 8 Effect of the length scale parameter λ on the dimensionless frequencies of various schemes of bi-
coated beams (p � k � 1, L/h � 10)
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