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Abstract
In this paper, we consider the linear stability of ion-irradiated thin films where the
typical no-penetration boundary condition has been relaxed to a phase-change or
mass conservation boundary condition. This results in the modification of the bulk
velocity field by the density jump across the amorphous–crystalline interface as new
material enters the film and instantaneously changes volume. In other physical sys-
tems, phase change at a moving boundary is known to affect linear stability, but such
an effect has not yet been considered in the context of continuum models of ion-
induced nanopatterning. We also determine simple closed-form expressions for the
amorphous–crystalline interface in terms of the free interface, appealing directly to
the physics of the collision cascade, which was recently shown to strongly modify
the critical angle at which pattern formation is predicted to begin on an irradiated
target. We find that phase-change at the amorphous–crystalline boundary imparts a
strong ion, target, and energy dependence and, alongside a precise description of
the interfacial geometry, may contribute to a unified, predictive, and continuum-type
model of ion-induced nanopatterning valid across a wide range of systems. In par-
ticular, we consider argon-irradiated silicon, where the presence of phase-change at
the amorphous–crystalline interface appears to predict an experimentally observed,
strong suppression of pattern formation near 1.5 keV for that system.
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1 Introduction

Self-organized nanoscale pattern formation has been observed on semiconductor sur-
faces irradiated by broad ion beams since at least the 1960s [1]. Most commonly, when
the ion beam is inclined relative to the surface normal above a critical angle θC , black
ripples appear with wavevector oriented in the projected downbeam direction of the
ion beam, and with wavelengths in the tens or hundreds of nanometers depending on
the beam’s energy. Sometimes, especially on two-component or metal-seeded targets,
irradiation produces highly ordered structures such as hexagonal arrays of nanoscale
dots [2]. The potential to understand and exploit these phenomena for high-precision
nanoscale engineering at low cost has fueled decades of theoretical and experimen-
tal work (see reviews such as [3–6]), especially given significant existing use of ion
beams in the semiconductor industry, and an ever-growing array of industrial applica-
tions that would benefit from low-cost control over nanometer length scales. However,
although the mathematical framework of pattern formation theory [7, 8] provides a
powerful tool to understand these phenomena at a general level, the large number
of experimental parameters and associated, competing physical mechanisms has frus-
trated the development of a first-principles model capable of unifying all experimental
observations [5].

Soon after the earliest observations of ion-induced self-organization, theoretical
approaches focused on modeling the “collision cascade” of atomic displacements that
result from an energetic ion impact [9, 10]. Some of these displaced atoms are sput-
tered away from the target entirely (“erosion”), and it was realized early on that this
process could destabilize the surface [10, 11]. Many other atoms remain within the
target at new locations (“redistribution”), and in time,it was discovered that these
atoms had their own complementary effect on stability [12, 13]. An advantage of this
“atomistic” approach is that it exists within a long tradition of parallel inquiry through
computer simulation of single impacts, using, for example, full Molecular Dynamics
(MD) [14, 15] or the simplified, much faster Binary Collision Approximation (BCA)
[16, 17]. This synergy led eventually to the “Crater Function Framework” [18–20]—a
“coarse-graining” approach that enables the determination of model terms and coeffi-
cients directly from the statistics of single ion impact simulations. However, despite its
advantages, this approach only considers the evolution of the free surface, and treats
the underlying irradiated film as completely static, likely omitting important physics.

In contrast, several recent developments have suggested the importance of capturing
sub-surface dynamics using continuummodeling [21–24], which appear to be capable
of significantly influencing pattern formation. In particular, it has been shown that
room-temperature bombardment of semiconductors destroys the crystal lattice within
a layer near the surface, creating an amorphized film atop the target [25–33], and
it has been proposed for some time that this film could be effectively modeled as a
Newtonian fluidwith an “ion-enhanced” fluidity that, while remaining small compared
to typical liquids, is much larger than non-irradiated solids [21]. This fluidity allows
the relaxation of surface energy [22] as first analyzed by Orchard [34], as well as of
significant internal stresses that build up in the layer [35–41]. Although considered on
a phenomenological basis, models based on this “hydrodynamic” approach have led
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to striking agreement between theory and experiment within the continuum literature
for at least some experimental systems [23, 24, 42–45].

Intriguingly, both the atomistic and hydrodynamic perspectives have led to predic-
tions encouragingly similar to experimental observations [19, 24]. This naturally leads
to questions on the relative magnitude of what are ultimately two different physical
mechanisms, and preliminary studies suggest that a complete model of nanopatterning
must eventually contain both [43]. Unfortunately, progress toward a unified theoretical
framework bridging the two approaches has been slow, hampered by a large number
of physical mechanisms operating simultaneously (e.g., ion collision dynamics [9–11,
46, 47], defect generation and diffusion, stress buildup and relaxation [33, 40, 48,
49], surface energy minimization [34, 50, 51]), and a correspondingly large number of
parameters needed to characterize a given experiment (e.g., target species, ion species,
ion energy, ion flux, irradiation angle [3–6]). Nevertheless, progress has been made
by employing the pattern-forming framework described by Cross, Hohenberg, and
Greenside [7, 8] to develop predictions on (a) the presence or absence of spontaneous
pattern formation for a given experimental system, (b) the geometric characteristics
of patterns when present (e.g., ripple wavelength and orientation), and (c) the critical
parameter values (e.g., ion beam energy and incidence angle) at which patterns appear
or disappear. Much of our own group’s research has focused on the development and
study of increasingly comprehensive models of the early stages of pattern formation,
when surface amplitudes are small and governing equations can accordingly be lin-
earized, and, in general, we have found that models remain incomplete, requiring
additional physics to yield increased predictive power [5].

In this work, we present innovations at the modeling level consisting of (a) an
improved model for the location of the lower film boundary, that reproduces experi-
mental data on angle-dependent film thickness more closely than past treatments; and
(b) an accounting for the change in density that occurs at this lower boundary due
to target amorphization. Our analysis yields three primary findings: (1) the improved
modeling of this boundary produces a stark nonlinearity in the dependence of the film
stability on the irradiation parameters; (2) many parameters in the resulting model
can be estimated directly from software packages that simulate ion–solid interactions;
and (3) the resulting predictions are consistent with experimental observations of pat-
tern suppression for certain ion-target combinations when beam energy is increased
above a certain value [52, 53]. These findings further develop the insights provided by
hydrodynamic models of stress buildup and relaxation, yet also highlight the need for
greater experimental effort to understand the behavior of important parameters within
this framework.

2 Problem formulation

In this section, we present a continuum model for the ion-irradiated amorphous semi-
conductor film, containing many of the physical mechanisms described above, and
giving special attention to the ways it deviates from a more traditional fluid model.
The most important characteristics of this model are depicted schematically in Fig. 1.
There, we see ions with energy E bombard a silicon target (with typical thickness
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Fig. 1 Schematic depicting the physical system and key aspects of our model. Bombardment of a Silicon
wafer by energetic ions leads to amorphization of a thin film of material due to ion-induced collision
cascades (red ellipses), sputter erosion of the surface at a velocity V , and the imposition of an anisotropic
strain, which can lead to material flow. For ion incidence angles θ above a critical value θC , spontaneous
formation of ripple patterns is usually observed

in the hundreds of microns) at an incidence angle θ relative to the vertical. Upon
arriving at the upper interface h(x, t), the ions penetrate some distance (typically in
the nanometer range) before releasing their energy in a roughly elliptical region. The
average penetration distance and the size of the ellipse are comparable, and depend on
the ion energy. Cumulatively, this process has four primary results. First, it destroys
the crystal lattice near the surface, creating a thin amorphous layer of density ρa atop a
crystalline substrate of density ρc, separated by a lower interface g(x, t). Second, the
ions impart a strain within the amorphous layer consisting of both isotropic swelling
and deviatoric shearing. Third, the ions induce sputter erosion at the upper interface,
leading to the gradual recession of the upper interface z = h(x, t) at average speed
V . Finally, the recession of the upper interface allows ions to penetrate deeper into
the target, causing a corresponding recession of the lower interface z = g at the same
average speed V . Our ultimate objective is to understand the evolution of the free
surface h(x, t)—in particular, to accurately predict the critical irradiation angle θC at
which the surface transitions from flat (stable) to patterned (unstable), as well as the
dependence of this critical angle on experimental parameters such as the ion energy.
This will in turn require an accurate description of the amorphous film (the crystalline
region is assumed to be static).

Conservation laws We begin in typical fashion with the differential form of mass
conservation,

∂ρ

∂t
+ ∇ · (ρ�v) = 0, (1)

where ρ = ρ(x, z, t) is the density of the amorphous film, and �v is the velocity field.
To accommodate the accumulation of radiation damage over time, we do not assume
that the density is constant. Next, we have the differential form of linear momentum
conservation,

ρ

(
∂ �v
∂t

+ �v · ∇�v
)

= ∇ · T, (2)
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where T is the stress tensor (we ignore body forces such as gravity in this treatment).
Because we expect the viscosity of the amorphous film to be very large even despite its
radiation-enhanced fluidity (see [50, 51, 53]; see also Chapter 6 of [41]), we take the
limit of small Reynolds number, which results in the simplified expression associated
with Stokes flow:

∇ · T = 0. (3)

Stress tensor: anisotropic plastic flowWe now define the stress tensor T, and in so
doing, introduce the first of several irradiation-specific modifications to a typical fluid
mechanics model. We let

T = −pI + 2η(Ė − Ėb), (4)

where Ė = 1
2

(∇�v + ∇�vT )
is the standard linear rate-of-strain tensor, but where the

additional term

Ėb = f ADD(θ) ≡ f AD

⎡
⎣

3
2 cos(2θ) − 1

2 0 3
2 sin(2θ)

0 1 0
3
2 sin(2θ) 0 − 3

2 cos(2θ) − 1
2

⎤
⎦ (5)

describes a phenomenon known as Anisotropic Plastic Flow (APF) [24, 37, 54–57].
Here f is the ion flux (through a plane perpendicular to the beam), AD is a proportion-
ality constant, and the matrixD describes a purely deviatoric flattening in the direction
〈sin(θ), 0,− cos(θ)〉 of the ion beam, accompanied by expansion in the orthogonal
direction. This simultaneous beam-oriented thinning and orthogonal expansion is also
sometimes known as “ion hammering” or a “pancake strain.”

Equation of state: ion-induced swelling Next, we turn to the equation of state,
where we encounter a second irradiation-specific feature of our model. As noted
above, we do not assume the film to have a constant density; instead, we propose a
simple model of the form

ρ(�) = ρa

1 + �(x, z, t)
, (6)

where ρa is the initial density of the freshly-amorphized material, and the variable �

represents radiation-induced “volumization”,which obeys a simple advection equation
of the form

∂�

∂t
+ �v · ∇� = f AI (7)

with f again the ion flux, and AI a proportionality constant. Optionally, Eqs. (6) and
(7) can be combined and, with the aid of Eq. (1), replaced by the single equation

∇ · �v = ρ

ρa
f AI . (8)
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These equations describe the phenomenon of Ion-Induced Swelling (IIS) [58–65], in
which the accumulation of radiation-induced damage results in a gradual increase
in film volume by a (relative) amount �(x, z, t), which accumulates at rate f AI .
However, although we forgo a classical incompressibility assumption to allow density
to depend on the ion-induced volumization,we continue to omit any dependence on the
pressure for mathematical convenience [63]. Hence, this formulation may be thought
of as a quasi-incompressible approximation.

Top boundary conditions: sputtering At the free upper interface, z = h(x, t), we
have

vI = �v · n̂ − V (θ)
ρc

ρ
,

[T] · n̂ = −γ κn̂,

(9)

where the first equation is the kinematic condition of mass conservation at an interface
movingwith normal velocity vI , butmodified to account for the process of ion-induced
sputter erosion at rate V (θ)

ρc
ρ

at the free surface (see the Appendix of [63] for a
derivation). The second is a typical statement of stress balance at a free surface with
constant surface energy γ and curvature κ .

Bottom boundary conditions: amorphization At the amorphous–crystalline inter-
face, z = g(x, t), we have

� = 0 −→ ρ = ρa (10)

stating that the density immediately on the amorphous side of the amorphous–
crystalline boundary should be ρa , as newly amorphized material has had no time
to be acted upon by IIS. Next, we need boundary conditions on the velocity field. In
contrast to prior studies, which have so far all employed the classic “no-penetration”
condition, we here use a generalized mass conservation condition on the normal com-
ponent of the velocity field:

[[ρ�v]] · n̂ = [[ρ]]vI , (11)

where [[·]] denotes the jump across the interface, and vI is the normal velocity of the
interface itself. This expression accounts for the fact that the amorphous–crystalline
boundary is associated with a phase-change from crystalline to amorphous, and that
the density of the two phases may not be equal [66]. For instance, if the density of the
amorphous phase is lower than the density of the crystalline phase, then conservation
of mass requires that the velocity on the amorphous side of a moving interface be
non-zero. Finally, we need a condition on the tangential velocity, and we choose the
“no-slip” condition

�v · t̂ = 0. (12)
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We refer the interested reader to [67] for a more general treatment involving a Navier
slip condition, which was found to have a negligible effect for realistic estimates of
the slip length.

Remarks From the perspective of traditional fluid mechanics models, the ion irra-
diation system we study here has five major, unusual features. First, we deduct from
the Newtonian viscous stress tensor an ion-induced stress-free strain rate, describ-
ing a phenomenon often called “ion hammering” [37, 68–70] or “pancake strain” [5,
41]. The resulting angle-dependent shear flow has been shown to be destabilizing
for certain irradiation geometries [24]. Second, a modified equation of state [63] is
introduced to allow “volumization” due to irradiation damage; however, the model
remains “quasi-incompressible” in the sense that the density remains independent on
the pressure. Third, the kinematic condition at the top free boundary must be modi-
fied to account for target sputtering—i.e., non-conservation of mass—at this surface.
Fourth, because amorphization of target material at the bottom boundary induces an
instantaneous increase in volume, conservation of mass requires a non-zero normal
velocity. Fifth, because the location of the lower interface arises due to amorphization
of material in a region anchored to the upper interface, the two interfaces move in
tandem. We now turn to a detailed exploration of this relationship, which constitutes
one of the major contribution of this work.

3 Lower interface position

Although the model described above is formulated with general upper- and lower-
boundary locations z = h(x, t) and z = g(x, t), a final unusual feature of ion-
irradiated films, in contrast with more typical fluid systems, is that the locations of
these two interfaces are not independent. Rather, they are linked by the irradiation
process itself, in which ions induce amorphization over some domain relative to their
entry point through the free surface, and this domain moves deeper into the film as the
surface recedes due to erosion. Hence, variations in the height of the top, free interface
h(x, t) should induce correspondingvariations in the height of the bottom, amorphous–
crystalline interface g(x, t). This correspondence is observable under cross-section
TEM imaging [42, 71]). In this section, we review how this relationship has been
modeled in the past and propose a meaningful improvement.

Motivation The first work to explicitly include this dependence appears to be [24,
72], which placed the lower interface directly below the upper interface; i.e., a vertical
translation,

g(x, t) = h(x, t) − h0. (13)

This relationship captures the general correspondence betweenupper and lower bound-
aries, and its initial application led to a predicted critical angle θC = 45◦, in good
agreement with experiments [24]. However, it does not exhibit any dependence on the
ion incidence angle θ , and in particular fails to describe the thinning of the amorphous
film that occurs as the ion beam approaches grazing incidence (θ → 90◦).
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Fig. 2 Schematic depicting Sigmund’s approximation of deposited energy using Gaussian ellipses, and
illustrating the method of locating the amorphous–crystalline interface that is implied by this approximation

More recently, several authors have proposed an alternative approach [42, 63, 64,
73], in which the lower interface remains a simple translation of the top interface by
a distance h0, but the translation occurs in the direction θ of the incident ion beam,
hence

g(x, t) = h(x − h0 sin(θ), t) − h0 cos(θ). (14)

This highly plausible relationship does exhibit dependence on θ , and, indeed, cor-
responds to a film that thins as θ → 90◦. However, whereas Eq. (14) predicts that
the film thickness goes to zero at grazing incidence, experiments show that the film
retains a comfortably non-zero thickness in this limit [21, 42, 43, 71, 74]. Even more
worryingly, when this interface location is used, the predicted bifurcation angle drops
from 45◦ to only 30◦, far below the observed value [65].

These concerns motivate a more careful treatment than the simple geometric
approaches described above, in hopes of obtaining a result somewhere between
Eqs. (13) and (14). We here propose the following strategy:

1 characterizing the region 	A(�xI , θ) amorphized by ions entering at �xI at angle θ ;
2 constructing a union of amorphous regions	A for all entry points �xI on the surface;
3 and identifying the bottom boundary of the region so constructed.

An alternative way of describing this approach is to imagine “dragging” the region
	A(�xI , θ) over the free surface z = h(x, t), in which case, for every point 〈xT , zT 〉
on the top surface, there exists a unique corresponding point 〈xB, zB〉 on the bottom
surface with the same slope, whose location must be determined.

FormulationWe begin by characterizing the amorphized region	A, and we follow
the well-established model of Sigmund [9, 10], who approximated the average distri-
bution of energy deposited by the collision cascade as a Gaussian ellipsoid oriented
along the ion beam (see Fig. 2). Assuming an ion entry point at the origin, and mean,
downbeam ion penetration distance a, and standard deviations α and β of energy
release in the downbeam and crossbeam directions, the energy distribution for a single
ion implantation event is then

123



Interfacial phase-change and geometry modify nanoscale... Page 9 of 33 1

ED(x̃, z̃) = 1

2παβ
exp

(
− (z̃ − a)2

2α2 − x̃2

2β2

)
, (15)

where (x̃, z̃) are co-ordinates oriented in the “crossbeam” and “downbeam” directions,
respectively, which can be converted to lab-frame co-ordinates via the transformation

x̃ → x cos(θ) + z sin(θ),

z̃ → x sin(θ) − z cos(θ).
(16)

We then have, in laboratory (i.e., Cartesian) co-ordinates (x,z),

ED(x, z) = 1

2παβ
exp

(
− (x sin(θ) − z cos(θ) − a)2

2α2 − (x cos(θ) + z sin(θ))2

2β2

)
,

(17)

Now we consider the level curves of this function. If we introduce the constant E0 =
1

2παβ
, and define another constant EA representing an amorphization threshold, then

the ellipse within which amorphization occurs is defined via the expression

F(x, z) = 1
2

(
(a+z cos(θ)−x sin(θ))2

α2 + (x cos(θ)+z sin(θ))2

β2

)

= ln
(

E0
EA

)
= 2, (18)

where we have set ln
(

E0
EA

)
= 2 to indicate that we expect amorphization within the

second standard deviation boundary. Finally, to find the point on the bottom interface,
we invoke the “dragging” analogy, and look for the location on the bottom half of this
level curve which has the same slope as the corresponding point on the top curve. This
can be stated

∇F · 〈1, hx 〉 = 0, (19)

where hx denotes the slope of the free interface at the point where the ion enters the
film. Equations (18) and (19) represent a system of two equations for two unknowns.

A simplifying limit For any ion entry point
(
xT , zT

)
on the top surface, let us label

the corresponding point on the bottom surface
(
x B, zB

)
as depicted in Fig. 2, and let

us furthermore characterize the horizontal and vertical distances between these points
using functions X (θ, hx ) and Z (θ, hx ) as follows:

x B = xT + X (θ, hx ) = xT +
[
X(θ, 0) + ∂X

∂hx
(θ, 0)hx + O

(
h2x

)]
,

zB = zT − Z (θ, hx ) = zT −
[
Z(θ, 0) + ∂Z

∂hx
(θ, 0)hx + O

(
h2x

)]
,

(20)
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where we have expanded X and Z in the small slope hx , which is evaluated at x = xT ,
and where the quantity ∂Z

∂hx
(θ, 0) = 0 due to the geometry of the construction. Now,

because our upper and lower surfaces satisfy z = h(x, t) and z = g(x, t), respectively,
it follows from Eqs. (20) that

g
(
x B, t

)
= h

(
xT , t

)
− Z(θ, 0) + O

(
h2x

)

= h

(
x B − X(θ, 0) − ∂X

∂hx
(θ, 0)hx + O

(
h2x

)
, t

)
− Z(θ, 0) + O

(
h2x

)

(21)

and from here, expanding the expression on the second line in |hx | 	 1 and keeping
only leading order terms gives

g
(
x B, t

)
= h

(
x B − X(θ, 0), t

)
− Z(θ, 0) + O

(
h2x

)
. (22)

We refer the reader to the Appendix for additional details.

Result Equation (22) indicates that to leading order in a small slope, the location of
the bottom boundary does not depend on that slope, and can be found by replacing the
tangent vector t̂ = 〈1, hx 〉 with the coordinate vector î = 〈1, 0〉 in Eq. (19). Equipped
with this knowledge, the solution for the displacement becomes straightforward. The
linear equation (19) yields an expression for X in terms of Z which can be substituted
into the quadratic equation (18), for which the larger (i.e., more positive) solution is
chosen. The result is

x0(θ) = X(θ, 0) = a sin(θ) + 2

(
(α2 − β2) sin(θ) cos(θ)√
α2 cos2(θ) + β2 sin2(θ)

)
,

h0(θ) = Z(θ, 0) = a cos(θ) + 2

(√
α2 cos2(θ) + β2 sin2(θ)

)
,

(23)

which are surprisingly concise forms, and all parameters a, α, β may be obtained
directly from simulation software, such as SRIM [16]. In principle, we only require
that a, α, β describe a bivariate Gaussian that is associated with “damage” to the
substrate; we do not strictly require that it be the recoil distribution, power deposition,
or any other quantity. In the present work, we use the distribution of the final resting
places of the bombarding ions as a proxy for the “damaged region”, reasoning that an
ion only stops moving once it has deposited all of its energy. Equations (22) and (23)
also indicate the strongly appealing feature that the lower interface remains a direct
translation of the upper interface, but in a more complex direction 〈x0(θ), h0(θ)〉
than either the “vertical” case (13) or “diagonal” case (14). In fact, we can define an
“effective interface displacement angle”

(θ) = tan−1
(
x0(θ)

h0(θ)

)
(24)
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that lies in between 0 and θ to characterize this direction.

Some interesting limits We note that the above expressions are easily specialized
to previously studied interface relations by taking appropriate limits. First, a certain
“angle-independence” limit

lim
θ→0

x0(θ) = 0,

lim
θ→0

h0(θ) = (a + 2α)
(25)

yields the “vertical translation” case used in [24, 72]. Next, the “vanishing cross-beam
width” limit

lim
β→0

x0(θ) = (a + 2α) sin(θ),

lim
β→0

h0(θ) = (a + 2α) cos(θ)
(26)

yields the “diagonal translation” relation used in [42, 63, 64]. Finally, the “spherical
collisions” limit

lim
β→α

x0(θ) = a sin(θ),

lim
β→α

h0(θ) = a cos(θ) + 2α
(27)

though receiving less attention recently has been previously considered at least by
[12, 75] as a simplifying assumption broadly appropriate for low-energy noble gas ion
irradiation of Si.

Comparison to data In Fig. 3, we compare our ellipse-based displacements (23),
along with “vertical” and “diagonal” displacements (25)–(26), to angle-dependent
data on film thickness inferred from experiments for 1000 eV Ar+ → Si [43]. To
determine the parameter values a, α, β in Eq. (23), we used the mean and standard
deviations of final ion locations as simulated by the Binary Collision Approximation
code TRI3DST [17]. It is immediately evident that the predictions by the ellipse-based
model, which lie between the “vertical” and “diagonal” models, are much better than
either.

4 Linear stability analysis

We have now defined all aspects of our model, and are ready to analyze the predicted
stability of the irradiated film to perturbations. In this section, we provide a concise
summary of our analysis and a statement of the stability result. Full details of the
analysis are described in the Appendix.

Conversion to moving frame Ion bombardment and the associated sputter removal
of atoms cause the surface of the target to gradually recede at an average speed V

123



1 Page 12 of 33 T. P. Evans, S. A. Norris

Fig. 3 Film thickness prediction
using theoretical expression
h0(θ) from Eq. (23) compared
to film thickness inferred from
[43] for 1keV Ar+ → Si. Model
parameters a = 3.45, α = 1.55,
β = 1.38 were obtained from
the final resting positions of ions
using simulation software
TRI3DST (“BCA”). Also shown
are the predictions of the
“vertical” translation assumption
(25) and the “diagonal”
translation assumption (26)

that depends on the ion and target species, the ion energy E and flux f , and the ion
incidence angle θ . This speed may be expressed

V = f 	Y (θ), (28)

where f is the ion flux, 	 is the atomic volume of the target species, and Y (θ) is
the sputter yield, which has units of sputtered atoms per incident ion. As described
above, the receding free interface z = h(x, t) causes an associated recession of the
amorphous–crystalline interface z = g(x, t), and it is convenient to perform analyses
in a frame of reference that recedes along with these interfaces. This is accomplished
via the substitutions

h → h − V t

g → g − V t

vI ,h → vI ,h − V (k̂ · n̂)

z → z − V t

�v → �v − V k̂,

(29)

The most notable consequence of this conversion is that at the amorphous–crystalline
interface z = g(x, t), the velocity in the bulk acquires an additional term V k̂—that is,
in the moving frame of reference, material now appears to move through the bottom
boundary with velocity V k̂.

Steady state solution We next look for steady state solutions (∂/∂t → 0) consist-
ing of flat surfaces (g(x, t) = 0, h(x, t) = h0(θ)) exhibiting translation symmetry
(∂/∂x → 0). These assumptions lead to a system of boundary value problems in the
variable z.
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In the amorphous bulk, we have

∂

∂z
(ρ0w0) = 0,

ηu0zz = 0,

−p0z + 2ηw0zz = 0,

ρ0 = ρa

1 + �0
,

w0�0z = f AI .

(30)

At flat amorphous–crystalline interface z = 0, we have

�0 = 0,

u0 = 0,

w0 = V

(
ρc

ρa

)
,

(31)

which represent the steady-state equations of the no-slip and mass conservation con-
ditions, respectively, in the downward-translating frame. At the flat-free interface
z = h0(θ), we have

0 = w0 − V
ρc

ρ0
,

u0,z = 2 f ADD13,

p0 = 2η(w0z − f ADD33)

(32)

as in [65],where thefirst equation is the steady-state equation of themodifiedkinematic
condition, and the second two equations are due to the steady-state stress balance
T0 · n̂0 = 0 at the upper interface.

These equations admit solutions ��0(z) = [ρ0(z), u0(z), w0(z), p0(z),�0(z)] of
the form

ρ0(z) = ρa√
1 + 2 f AI

ρa
ρc

z
V

,

u0(z) = 2 f ADD13z,

w0(z) = V

(
ρc

ρa

)√
1 + 2 f AI

ρa

ρc

z

V
,

p0(z) = 2 f AIη√
1 + 2 f AI

ρa
ρc

z
V

− 2 f ADηD33,

�0(z) =
√
1 + 2 f AI

ρa

ρc

z

V
− 1,

(33)
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where Di j simply denotes the component of the tensor described in Eq. (5). We note
that (a) Anisotropic Plastic Flow causes a linear shear flow in the x direction, (b)
Ion-Induced Swelling induces a nontrivial z-dependence in most quantities, and (c)
Boundary Amorphization multiplies all instances of the velocity V by ρc

ρa
> 1. In the

“small swelling” limit discussed below and in our previous work [63–65], we find that
this steady state also has an associated steady in-plane stress of

T0,xx = 6 f ADη cos(2θ) + 2 f AIη, (34)

which we refer to later. See also discussion in [65] where the above expression was
compared with experimental results due to [41].

Linearization in normal modesWe now expand the governing equations described
above in the neighborhood of steady-state solutions, via the expressions

��(x, z, t) → ��0(z) + ε ��1(x, z, t)

h(x, t) → h0(θ) + εh1(x, t)

g(x, t) → 0 + εg1(x, t),

(35)

representing small perturbations ��1 = [ρ1, u1, w1, p1,�1] to the steady state fields
��0(z). The linearized equations occurring at O(ε) are

ρ1t + ρ0u1x + ρ0zw1 + ρ0w1z + ρ1zw0 + ρ1w0z = 0,

−p1x + η(2u1xx + u1zz + w1xz) = 0,

−p1z + η(w1xx + 2w1zz + u1xz) = 0,

ρ1 = −ρ∗�1

(1 + �0)2
,

�1t + u0�1x + w0�1z + w1�0z = 0

(36)

in the amorphous bulk. At amorphous–crystalline interface,z = 0,

�0,z(z; 0, h0)g1 + �1(z; 0, h0) = 0,

u0zg1 + u1 + g1x (w0 − V ) = 0,

−g1xu0 + w0zg1 + w1 =
(

ρa − ρc

ρa

)
g1t ,

(37)

and we note that the last of these is due to conservation of mass at the interface,
representing one of the main contributions of the present work. At z = h0,

h1t = w1 − u0h1x + h1w0z + Vρc

ρ2
0

(ρ0zh1 + ρ1, )

η(u1z + w1x ) − h1x T
11
0 = 0,

−p1 + 2ηw1z + T 33
0z = 0,

(38)
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where the first equation is due to the linearization of the kinematic condition modified
to reflect sputtering. For details of its derivation, we refer the reader to [63]. The second
two equations are due to the linearization of the stress balance at the free interface,

T0 · n̂1 +
[
∂T0

∂z
· h1 + T1

]
· n̂0 = �0, (39)

where n̂0 =< 0, 0, 1 > and n̂1 =< −h1x ,−h1y, 0 >. As in [65], T 11
0 denotes the

upper-left component of steady-state stress tensor T0, and T 33
0 denotes the bottom-

right component. The component indices are denoted as superscripts to distinguish
them from the subscripts which elsewhere denote terms in the expansion. We seek
solutions to the above linear equations using the ansatz

h1(x, t) → h̃1 exp(σ t + ikx),

g1(x, t) → g̃1 exp(σ t + ikx),

��1(x, z, t) → �̃
�1(z) exp

(
σ t + ikx

)
,

(40)

i.e., we exploit linear superposition to study a single Fourier mode with wavenumber
k and look for a solution exhibiting exponential growth or decay at the rate σ . This
step leads to a system of boundary value problems for ��1(z) that include the growth
rate σ as an eigenvalue, implicitly defining σ = σ(k).

Simplifying limits The boundary value problems resulting from (36)–(38) and the
application of the ansatz (40) do not admit a simple closed-form solution. For analytical
tractability, we employ two simplifying limits that we have described more fully
elsewhere [65]:

• small dimensionless deformation rates f AI h0(θ)
V (θ)

	 1, f ADh0(θ)
V (θ)

	 1
• small dimensionless wavenumber kh0(θ) 	 1

The first limit is justified by the observation in Ref. [64] that the contribution to the
dispersion relation for arbitrary swelling rate AI—obtained computationally—very
closely resembles a constant multiple of the contribution in the small swelling limit
AI → 0, as well as the evident smallness of the parameter as observed experimentally
[60–62]. An additional advantage is that these “slow deformation” limits allow the
elimination of interaction terms as shown in [65], ensuring linearity in AI and AD .

The second limit is justified by the observation that in ion irradiation of pure mate-
rials, the transition from stability to instability occurs first at long wavelengths with
wavenumbers near k = 0 (i.e., the bifurcation is of “Type II” in the classification of
Cross andHohenberg [7, 8]). Thiswavelength is small compared to the amorphous film
thickness, hence we have dimensionless quantity kh0(θ) 	 1 available for long-wave
expansion.

Exploiting the long-wave limit, we formally expand (in dimensional quantities) as

�̃
�1(z) = �̃

�10(z) + �̃
�11(z)k + �̃

�12(z)k
2...,

σ = σ0 + σ1k + σ2k
2...

(41)
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in order to avoid a change of variables, while noting that it is entirely equivalent to
the expansion in dimensionless (kh0). We refer the reader to the Appendix of [65]
where a similar retroactive non-dimensionalization was carried out. The expansion
above then leads to Eqs. (A.2)–(A.23) in the Appendix of the present work, and their
solution provides our main analytical result, Eq. (42).

Dispersion relationWith the simplifications just described, the linearizedgoverning
equations become tractable, and admit a solution ��1 with eigenvalue σ(k).

Of primary interest to us is the real part of σ :

Re (σ ) = − f

[
3AD

(
ρa

ρc

)
cos (2θ + (θ))

cos ((θ))

+ AI

2

(
ρa

ρc

)2

+ 	Y (θ)

h0(θ)

(
1 − ρa

ρc

)](
kh0(θ)

)2 + . . .

(42)

where

tan ((θ)) = x0(θ)

h0(θ)
(43)

is again the “effective interface displacement angle” (θ) defined in Eq. (24).
Equation (42) reveals the expected pattern-forming behavior of the irradiated sur-

face. If the term in brackets is positive, then long-wave Fourier modes decay, and
patterns are suppressed. However, if the term in brackets is negative, then long-wave
Fourier modes grow, and patterns are expected to appear. Furthermore, because the
term in brackets depends on the incidence angle θ , we can identify the critical angle θC
at which the system transitions from stability (perturbations decay; no patterns form)
to instability (perturbations grow; patterns form).

Discussion Equation (44) is a generalization of previous results [24, 63–65], and
can be interpreted accordingly. The first term in Eqs. (44) describes the effect of
Anisotropic Plastic Flow (APF),modified here by the effect of differing phase densities
and a generalized bottom boundary location. In the limit of equal densities ρa = ρc
and vertical boundary displacement x0 = 0, we recover the long-wavelength limit
of the result obtained in Ref. [24]. Similarly, the second term describes the effect of
Ion-induced Isotropic Swelling (IIS), again modified by the effect of differing phase
densities. In the limit of equal densities we recover the long-wave version of the result
obtained in Ref. [63]. The third term, which is new, describes an additional, direct
effect of the density change across the lower interface. Like the IIS term, this term
is stabilizing for all incidence angles, but unlike that term, its value increases with
increasing angle.

We pause to note howEq. (42) cleanly illustrates the influence of the bottom bound-
ary location by way of the “effective interface displacement angle” (θ) appearing in
the APF term. At one extreme is the “vertical displacement” approximation(θ) = 0;
this leads to a term of the form cos(2θ) in Eq. (42), which changes sign (and hence
stability) at 45◦ as seen in Ref. [24]. At the other extreme is the “diagonal displace-
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ment” approximation (θ) = θ ; this leads to a term of the form cos(3θ)
cos(θ)

in Eqn. (42),
which changes sign (and therefore stability) at 30◦, as seen in Ref. [65].

For the “ellipsedragging” boundary location proposed here, we expect the APF
term to change sign at a intermediate values of θ between 30◦ and 45◦, depending on
the shape of the ellipse. Furthermore, even in the absence of IIS, the new stabilizing
term associatedwith boundary amorphization increases the critical angle θC somewhat
above the value at which the APF term changes sign. Together, and in marked con-
trast to the “diagonal” translation model, these features provide a means to maintain
agreement with experimental observations of θC ≈ 45◦ for the Ar+ → Si system.

5 Results

In this section, we explore the implications of the result (42), including comparison
with relevant experimental data, and using the TRI3DST software to estimate relevant
collision parameters.

Stability boundary The growth rate in Eq. (42) can be expressed more succinctly
if we divide through by f AD

ρa
ρc
, yielding the non-dimensional form

Re (�) =
[

− 3
cos (2θ + (θ))

cos ((θ))
− 1

2
P1 − P2R(θ)

]
(kh0)

2 , (44)

where

� = σ

f AD

ρc

ρa
,

P1 = AI

AD

ρa

ρc
,

P2 = 	Y (0)

ADh0(0)

(
ρc

ρa
− 1

)
,

R(θ) = Y (θ)

h0(θ)

h0(0)

Y (0)

(45)

are all dimensionless. In this formulation, we have separated the third term in brackets
into a constant P2 times an angle-dependent function R(θ). To determine the critical
angle θC separating stable parameter combinations (� < 0 for all k) and unstable
combinations (� > 0 for some k), we set the coefficient in brackets equal to zero
and plot the resulting level curves. This requires a functional form for R(θ), which
contains the yield Y (θ) and film thickness h0(θ). Because our predicted film thickness
(20) uses Sigmund’s Gaussian ellipse model [10], we also use that model’s predictions
for sputter yield. The resulting stability phase diagram is shown in Fig. 4, with curves
depicting boundaries in (P2, θ)-space for different values of the parameter P1.

Comparison to experimentWeobserve that the stability boundary in Fig. 4 is highly
nonlinear, with a sudden increase in the critical angle θc from around 50◦ to 75◦ in
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Fig. 4 The critical angle θC as a function of the dimensionless phase-change parameter P2, for various
choices of the dimensionless swelling parameter P1

the vicinity of P2 ≈ 0.75. This striking behavior may offer insight into some puzzling
behavior of the commonly studied Ar+ → Si system [53]. At an energy of 1 keV, this
system exhibits a critical angle θc ≈ 45◦ [76], whereas at higher energies it has been
reported that ripples are no longer seen for any incidence angle below 65◦ [53]. At the
time, this lack of patterning could not be explained by any existing models, leading
authors to hypothesize the existence of some missing, “unconditionally stabilizing”
mechanism [53, 63–65].

As noted above, the new boundary amorphization term P2R(θ) in Eq. (44) is stabi-
lizing for all angles of incidence. Moreover, according to Fig. 4, the 45-degree critical
angle observed at 1 keVwould imply a value of P2 ≈ 0.6,which is rather near the sharp
transition from low to high angles of incidence. Hence, if P2 were to increase even
modestly as the energy increases beyond 1 keV, the critical angle would be expected
to increase sharply, and could readily surpass the value of 65◦, which was the most
oblique incidence angle studied in [53].

To explore this possibility further, we attempt to construct energy-dependent esti-
mates for each parameter in the model, and present the associated critical angle
predictions. Values of the collision parameters Y , a, α, β are obtained using the sim-
ulation package TRI3DST [17], which allows (E, θ) and R(E, θ) to be determined
empirically. Based on the findings of [65] that Ion-Induced Swelling does not seem
to play a strong role in the Ar+ → Si system, we assume that AI 	 AD and so set
P1 = 0. Finally, we need an estimate for P2(E). Within this parameter, the film thick-
ness h0 and yield Y can readily be determined using TRI3DST, but the Anisotropic
Plastic Flow parameter AD cannot.

The value of AD is much more difficult to estimate, and existing estimates in
the nuclear stopping regime vary quite a bit [39, 43, 77] (although estimates in the
electronic stopping regimeare fairlywell-developed [37, 78]).Here,we take an indirect
approach. As noted above in Eq. (34), our model predicts a steady stress of T0,xx =
6 f ADη cos(2θ) when AI = 0, implying that
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Fig. 5 a Predicted values of the dimensionless parameter P2 for various energies using the assumptions
described in the main text. b Associated predicted critical angles obtained from Eq. (44). For the value
P1keV
2 = 0.6 implied by experimental observations at 1 keV [76], the sharp increase in critical angle

occurring around 1.5 keV is consistent with experimental observations at higher energies [53]

AD ∼ η−1T0,xx , (46)

i.e., a scaling for AD can be determined from those of fluidity and the steady stress.
Now, the work of Davis on ion-assisted deposition [79] has been used to argue that

T0,xx ∼ E− 7
6 for the case of pure ion irradiation without concurrent deposition [42].

Moreover, the work of Vauth and Mayr on ion-enhanced fluidity [50] has frequently
been used to argue that η−1 ∼ E

h0
[19, 53, 73, 76, 80]. If we combine these predictions,

we obtain

P2(E) ≈ P1keV
2

Y (0, E)

Y (0, 1keV)

(
E

1keV

) 1
6

. (47)

If we further take P1keV
2 ≈ 0.6 as discussed above, then we obtain the predicted

parameter values shown in Fig. 5a. We see that P2 is, indeed, expected to increase
under these assumptions, and if we insert this result into Eq. (44) and solve numerically
for θC , we obtain the behavior shown in Fig. 5b. We observe that the predicted critical
angle increases around 1.5 keV for our hypothesized values of P1 and P2, consistent
with the disappearance of ripples at 65◦ observed in [53] for Ar+-irradiated Si.

Physical intuition We conclude this section by developing some physical intu-
ition as to why, exactly, the Boundary Amorphization mechanism is unconditionally
stabilizing, and why it and a correct model of interfacial geometry must be handled
simultaneously. The former follows directly from the nature of the amorphization
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boundary condition (11). This condition induces an extra, inward-normal component
of the velocity field at the amorphous–crystalline boundary, with the magnitude of this
extra velocity determined by the amorphization rate— hence the erosion rate Y (θ).
Because the extra velocity component is directed in the normal direction, it has the
effect of directing newly amorphized material away from the peaks of the lower inter-
face. Now, although we saw in Sect. 3 that the lower interface is not directly below the
upper interface, we also noted in Sect. 4 that ion-induced nanopatterns tend to exhibit
“long-wave” behavior. Therefore, the peaks and valleys of the upper and lower inter-
faces are nearly aligned, and so the “extra” flow due to amorphization moves toward
the valleys of the upper interface, which is stabilizing.

The mechanism just described is independent of the angle of the ion beam, and
hence, unconditionally stabilizing. Nevertheless, the angle-dependent film thickness
h0(θ) plays a crucial role. For a fixed inward-normal velocity profile along the
amorphous–crystalline interface, the stabilization just described is the greatest when
the film thickness is least (because the thinner the film, the less room this extra flow
component has to dissipate). When the film thickness is taken as a constant with

respect to the incidence angle (the “vertical translation” limit), the 	Y (θ)
h0(θ)

(
1 − ρa

ρc

)
term must under-predict stabilization, as the denominator is too large. Similarly, if
the film thickness is taken to decay as cos(θ) (the “diagonal translation” limit), this
same term grows too quickly in θ , developing a singularity at θ = 90◦, and dra-
matically over-predicting stabilization in the approach to grazing incidence. Hence a
proper treatment of Boundary Amorphization and its contribution to thin-film stability
requires a more detailed treatment of angle-dependent film thickness.

6 Conclusions

Here we review the main contributions offered and questions highlighted in this work.

Improved interfacial modeling leads to better predictionsAs described above, the
amorphous–crystalline interface has previously been modeled variously as flat [72,
81], a vertical translation of the free interface [24, 65], or a “diagonal” translation of
the free interface [42, 63]. However, as we have previously shown, the choice of an
interface relation leads to significant differences in predictions for the critical angle θC ,
complicating the reconciliation of theory and experiment [65]. In response, we have
derived an improved description of the lower interface position, informed directly
by collision cascade statistics that are obtainable from simulations. This approach
produces excellent agreement with experimentally inferred film thicknesses for 1keV
Ar+ → Si, and predictions of the critical angle in between those of simple “vertical”
and “diagonal” interface translations. Most importantly, this more accurate boundary
location eliminates a significant source of uncertainty from past models.

At the same time, we have also considered a refinement in the treatment of the
amorphous–crystalline interfacial physics, by including the change in density accom-
panying the crystalline-to-amorphous phase-change. This mechanism produces an
additional term in the dispersion relation, which is increasingly stabilizing as the inci-
dence angle θ increases. This term leads to a sudden, sharp increase in the critical angle
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above a certain value of the dimensionless parameter P2. Subject to the hypotheses
on the energy dependence of P2 described above, this coincides quite well with the
energetic regime at which patterns appear to be strongly suppressed for Ar+ → Si.
Finally, we remark that the present model cannot explain the return of patterns at
much higher energies [53]; however, the assumptions of the Davis scaling [79] have
certainly broken down well before these energies. This naturally provides an avenue
for future work.

Need for unified models of viscosity and stressWhile the modeling improvements
described here appear to offer improved predictive capability, they also highlight sig-
nificant modeling uncertainties in the treatment of key physical constants. Namely, the
parametric dependence of the ion-enhanced fluidity η−1 and ion-induced stress AD

remain largely unknown, frustrating efforts to unify predictions across target species,
ion species, ion energy (especially at much higher energies, as noted immediately
above), and ion flux.

Although the idea of an ion-enhanced fluidity dates to at least [21, 22], there remains
no experimentally verified first-principles explanation for the origin of this effect.
Many works needing estimates of the fluidity extrapolate from a single molecular
dynamics study [50, 51], while a few others draw inferences from a limited number of
experiments on irradiated cantilevers [39, 41]. Within the ion-induced nanopatterning
literature, we are aware of only one model attempting to make predictions based on
underlying physics [40].

Similarly, the idea of an ion-induced stress has been used within the literature since
at least [36]. At high ion energies (the “electronic stopping” regime [16, 48, 78]),
a plausible physical model of the effect exists [37, 56, 70], but at low energies (the
“nuclear stopping” regime [16, 48, 78]), its use is essentially phenomenological [5,
24]. Here, we have used the energy dependence proposed by Davis [79], an analogy
first used within the ion-induced nanopatterning literature by [42]. However, with-
out a direct physical model, the conditions under which this analogy holds remain
speculative.

These two uncertainties are intimately related, because a fluid’s viscosity dictates
its ability to relax bulk stresses induced by the ion beam. This in turn affects the steady
stress predicted to arise due to Anisotropic Plastic Flow. As we saw above, this steady
stress takes the form |T0| = 6 f ADη—the product of the two unknown quantities. In
certain circumstances, an empirical measurement of this product is sufficient to com-
pare with theory [24]. However, a full understanding of ion-induced pattern formation
requires independent estimates of these distinct quantities.
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Appendix A: Details of linear stability analysis

A.1 Expansion: small perturbative wavenumber k

Here, we show the details of the long-wave expansion. As described in the main text,
we expand as

σ = 0 + kσ1 + k2σ2 + O(k3), (A.1)

and we obtain the following systems at each order in k.
At O(1):

ρ0zw̃10 + ρ0w̃
′
10 + ρ̃′

10w0 + ρ̃10w0z = 0,

ũ′′
10 = 0,

− p̃′
10 + 2ηw′′

10 = 0,

ρ̃10 = −ρa�̃10

(1 + �0)2
,

w0�̃
′
10 + w̃10�0z = 0.

(A.2)

At z = 0,

�0zg1 + �̃10 = 0,

ũ10 + u0z g̃1 = 0,

w̃10 + w0z g̃1 = 0.

(A.3)

At z = h0,

w̃10 + h̃1w0z + Vρ∗

ρ2
0

(ρ0z h̃1 + ρ̃10) = 0,

ηũ′
10 = 0,

− p̃10 + 2ηw̃′
10 + T 33

0z = 0.

(A.4)

At O(εk):

σ1ρ̃10 + iρ0ũ10 + ρ0zw̃11 + ρ0w̃
′
11 + ρ̃′

11w0 + ρ̃11w0z = 0,

− i p̃10 + η(ũ′′
11 + iw̃′

10) = 0,

− p̃′
11 + η(2w̃′′

11 + i ũ′
10) = 0,

ρ̃11 = −ρa�̃11

(1 + �0)2
,

σ1�̃10 + iu0�̃10 + w0�̃
′
11 + w̃11�0z = 0.

(A.5)
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At z = 0,

�̃11 = 0,

ũ11 + i g̃1(w0 − V ) = 0,

− i g̃1u0 + w̃11 =
(

ρa − ρc

ρa

)
σ1g̃1.

(A.6)

At z = h0,

σ1h̃1 = w̃11 − u0i h̃1 + Vρc

ρ2
0

ρ̃11,

η(ũ′
11 + iw̃10) − i h̃1T

11
0 = 0,

− p̃11 + 2ηw̃′
11 = 0.

(A.7)

At O(εk2):

σ1ρ̃11 + σ2ρ̃10 + iρ0ũ11 + ρ0zw̃12 + ρ0w̃
′
12 + ρ̃′

12w0 + ρ̃12w0z = 0,

− i p̃11 + η(−2ũ10 + ũ′′
12 + iw̃′

11) = 0,

− p̃′
12 + η(−w̃10 + 2w̃′′

12 + i ũ′
11) = 0,

ρ̃12 = −ρa�̃12

(1 + �0)2
,

σ1�̃11 + σ2�̃10 + iu0�̃11 + w0�̃
′
12 + w̃12�0z = 0

(A.8)

at z = 0,

�̃12 = 0,

ũ12 = 0,

w̃12 =
(

ρa − ρc

ρa

)
σ2 g̃1,

(A.9)

and at z = h0,

σ2h̃1 = w̃12 + Vρc

ρ2
0

ρ̃12,

η(ũ′
12 + iw̃11) = 0,

− p̃12 + 2ηw̃′
12 = 0.

(A.10)

A.2 Third expansion: small swelling rate fAI

A third expansion in small swelling rate f AI is motivated by two observations. First,
from previous results [64], it is known that the effect of even large swelling rates is
highly self-similar at all wave numbers, and uniformly stabilizing for long waves.
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Second, as was seen in [63, 65], the expansion in small swelling rate is conducive
to analytical solution; while it may be possible to solve the long-wave equations for
arbitrary swelling rate analytically (as in [64]), the Appendix in [65] suggests that the
linearized equations are substantially more complicated even in the long-wave limit.
Hence we take

α = α0 + f AIα1 + ...,

ρ0 = ρ00 + f AIρ01 + ...,

...

σ1 = σ10 + f AIσ11 + ...,

ρ̃10 = ρ̃100 + f AI ρ̃111 + ...,

...

(A.11)

In following with [65], we shall only write out explicitly the equations expanded in
f AI , as the equations for the leading order terms are obvious from the above (simply
by appending a “0” to the subscript of each term). We then obtain the following.

Steady state at O( f AI ):

∂

∂z
(ρ00w01 + ρ01w00) = 0,

ηu01zz = 0,

− p01z + 2ηw01zz = 0

ρ01 = −ρa�01

(1 + �00)2
,

w00�01z + w01�00z = 1.

(A.12)

At z = 0:

�01 = 0,

u01 = 0,

w01 = 0.

(A.13)

At z = h0,

w01 + Vρc
ρ01

ρ2
00

= 0,

u01z = 0,

−p01 + 2ηw01z = 0.

(A.14)
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At O(ε f AI ):

ρ00zw̃101 + ρ01zw̃100 + ρ00w̃101z + ρ01w̃100z + ρ̃100zw01,

+ ρ̃101zw00 + ρ̃100w01z + ρ̃101w00z = 0

ũ101zz = 0,

− p̃101z + 2ηw̃101zz = 0,

w00�̃101z + w01�̃100z + w̃100�01z + w̃101�00z = 0,

ρ̃101 = −ρa(�00�̃101 + �̃101 − 2�01�̃100)

(1 + �00)3
.

(A.15)

At z = 0:

�01z g̃1 + �̃101 = 0,

ũ101 + u01zg1 = 0,

w̃101 + w01zg1 = 0.

(A.16)

At z = h0:

w̃101 + h̃1w01z + Vρc
(ρ00(ρ01zh1 + ρ̃101) − 2ρ01(ρ00zh1 + ρ̃100))

ρ3
00

= 0,

ũ′
101 = 0,

− p̃101 + 2ηw̃′
101 + T 33

01z = 0.

(A.17)

At O(εk f AI ):

σ10ρ̃101 + σ11ρ̃100 + i(ρ00ũ101 + ρ01ũ100) + (ρ00zw̃111 + ρ01zw̃110),

+ (ρ00w̃
′
111 + ρ01w̃

′
110) + (ρ̃′

110w01 + ρ̃′
111w00) + (ρ̃110w01z + ρ̃111w̃00z) = 0,

− i p̃101 + η(ũ′′
111 + iw̃′

101) = 0,

− p̃′
111 + η(2w̃′′

111 + i ũ′
101) = 0,

σ10�̃101 + σ11�̃100 + i(u00�̃101 + u01�̃100) + w00�̃
′
111,

+ w01�̃
′
110 + w̃110�01z + w̃111�00z = 0,

ρ̃111 = −ρa(�00�̃111 + �̃111 − 2�01�̃110)

(1 + �00)3
.

(A.18)

At z = 0:

�̃111 = 0,

ũ111 + i g̃1w01 = 0,

−i g̃1u01 + w̃111 =
(

ρa − ρc

ρa

)
σ11g̃1.

(A.19)
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At z = h0:

σ11h̃1 = w̃111 − u01i h̃1 + Vρc(ρ00ρ̃111 − 2ρ01ρ̃110)

ρ3
00

,

− i h̃1T
11
01 + η{ũ′

111 + iw̃101} = 0,

− p̃111 + 2ηw̃′
111 = 0.

(A.20)

At O(εk2 f AI ):

σ10ρ̃111 + σ11ρ̃110 + (σ20ρ̃101 + σ21ρ̃100) + i(ρ00ũ111 + ρ01ũ110),

+ (ρ00zw̃121 + ρ01zw̃120) + (ρ00w̃
′
121 + ρ01w̃

′
120),

+ (ρ̃′
120w01 + ρ̃′

121w00) + (ρ̃120w01z + ρ̃121w00z) = 0,

− i p̃111 + η(−2ũ101 + ũ′′
121 + iw̃′

111) = 0,

− p̃′
121 + η(−w̃101 + 2w̃′′

121 + i ũ′
111) = 0,

σ10�̃111 + σ11�̃110 + σ20�̃101 + σ21�̃100 + i(u00�̃111 + u01�̃110),

+ w00�̃
′
121 + w01�̃

′
120 + w̃120�01z + w̃121�00z = 0,

ρ̃121 = −ρa(�00�̃121 + �̃121 − 2�01�̃120)

(1 + �00)3
.

(A.21)

At z = 0:

�̃121 = 0,

ũ121 = 0,

w̃121 =
(

ρa − ρc

ρa

)
σ21g̃1.

(A.22)

At z=h0:

σ21h̃1 = w̃121 + Vρc

(
ρ00ρ̃121 − 2ρ01ρ̃120

ρ3
00

)
,

ũ′
121 + iw̃111 = 0,

− p̃121 + 2ηw̃′
121 = 0.

(A.23)

A.3 Solution

In the limit of small cross-terms, the same as in [65] and discussed in the main text,
we obtain

σ = 0 + σ10(kh0) + f AIσ11(kh0) + σ20(kh0)2 + f AIσ21(kh0)2

+O(
(kh0)3, ( f AI )

2
)

(A.24)
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where

σ10 =
−2 f ADi D13

[
1 + g̃1

h̃1

]
[
1 − (

1 − ρc
ρa

) g̃1
h̃1

] , (A.25)

σ11 = 0, (A.26)

σ20 =
[ − 2 f AD

(
D11 − D33

) + g̃1
h̃1

V
h0

(
1 − ρc

ρa

)]
[
1 − (

1 − ρc
ρa

) g̃1
h̃1

] (A.27)

and

σ21 =
−ρa

ρc

[
2 ρc

ρa
+ ( g̃1

h̃1

)2(1 − ρc
ρa

)(
1 + 2 ρc

ρa

) − g̃1
h̃1

(
1 + 2 ρc

ρa
− 2 ρc

ρa

2)]
2
[
1 − (

1 − ρc
ρa

) g̃1
h̃1

]2 . (A.28)

Taking

g̃1

h̃1
= exp

( − ikx0(θ)
)

(A.29)

as described in the main text and collecting terms at each order of k recovers our main
result, Eq. (44).

Appendix B: Mass-conservation boundary condition

We may express conservation of mass as

d

dt

∫
	

ρ(�x, t)dV =
∫

∂	

ρ(�x, t)[vI − �v(�x, t) · n̂]
dA

+
∫

∂	

S1(�x, t)dA +
∫

	

S2(�x, t)dV , (B.30)

whereρ(�x, t) is the scalar density field,	 is a control volume, VI is the normal velocity
of the interface ∂	 whose differential surface element is d A, �v is the bulk velocity
field of the substrate that the interface moves through, and n̂ is the normal vector to
the differential surface element d A. S1 represents a surface source and S2 represents
a bulk (volumetric) source. Because we are interested in the conservation of mass at
the amorphous–crystalline boundary z = g, and we expect no mass-sources either at
the surface or in the bulk, we take the sources S1, S2 → 0. Letting the control volume
Vol(	) → 0, conservation requires
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∫
∂	

ρ(�x, t)[vI − �v(�x, t) · n̂g
]
d A = 0, (B.31)

hence

(
ρ(�x, t)[vI − �v(�x, t) · n̂g

])
amorphous

=
(

ρ(�x, t)[vI − �v(�x, t) · n̂g
])

crystalline
,(B.32)

or

(
ρa

[
vI − �va · n̂g

]) =
(

ρc
[
vI − �vc · n̂g

])
. (B.33)

Since the underlying crystalline substrate receives vanishingly little energy com-
pared to the amorphous layer, we anticipate that |�vc| 	 |�va |, such that �vc ≈ �0 in
comparison. Then rearrangement leads to

�va · n̂ =
(
1 − ρc

ρa

)
vI (B.34)

at z = g, or, as a jump relation,

[[ρ�v] · n̂ = [[ρ]]vI ,g, (B.35)

as in the main text. It is noteworthy that when [[ρ]] = 0, such that the density of the
crystalline and amorphous phases are assumed to be equal, we immediately restore
the more typical no-penetration condition. Equivalently, we point out that the common
use of the no-penetration condition throughout the literature on hydrodynamic-type
approaches to ion-induced pattern formation literature implicitly takes the crystalline
and amorphous phases to have the same density. One of the primary results of the
present work is that this irradiation-induced change of phase significantly affects the
linear stability of the film.

Next, we convert to the traveling frame via

�v → �v − V k̂. (B.36)

Then, we have

vI ,g → vI ,g − V k̂ · n̂g (B.37)
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due to ongoing erosion. These lead to

ρa �va · n̂g = (ρa − ρc)(vI ,g − V k̂ · n̂g) + ρaV k̂ · n̂g,
�va · n̂g =

(
ρa − ρc

ρa

)
(vI ,g − V k̂ · n̂g) + V k̂ · n̂g,

�va · n̂g =
(
1 − ρc

ρa

)
vI ,g −

(
1 − ρc

ρa

)
V k̂ · n̂g + V k̂ · n̂g,

�va · n̂g =
(
1 − ρc

ρa

)
vI ,g +

(
ρc

ρa

)
V k̂ · n̂g.

(B.38)

We now drop the subscript a as it is clear that the only bulk velocity field under
consideration is that of the amorphous layer. In principle,we havemade the assumption
that the motion of the amorphous bulk is much faster than that of the underlying
crystalline substrate. It is also clear that when ρa = ρc (i.e., there is no density drop
across the interface), and if we assume the typical no-slip condition u = 0 at z = g,
we recover

�v = V k̂. (B.39)

This is as was seen in [63]. From

�v · n̂g =
(
1 − ρc

ρa

)
vI ,g +

(
ρc

ρa

)
V k̂ · n̂g, (B.40)

the steady-state equation is easily obtained, and we find the following expansions in
Fourier modes.
At O(εk0),

g̃1w0z + w̃100 = 0. (B.41)

At O(εk1),

− i g̃1u0 + w̃110 = σ10

(
1 − ρc

ρa

)
g̃1. (B.42)

At O(εk2),

w̃120 = σ20

(
1 − ρc

ρa

)
g̃1. (B.43)

Expansion in f AI is straightforward. Then we arrive at the boundary conditions in
the main text. We note that this condition is more typical of the solidification theory
literature, and is featured prominently in Chapter 9 of [66] and elsewhere, while
being largely absent frommost other resources on continuummechanics, where phase
transitions are seldom of interest.
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Appendix C: Coefficients for small-slope expansion of lower interface

From the |hx | 	 1 expansion in the main text, and, bringing our notation into align-
ment with Fig. 2, we obtain

zB(θ, hx ) = zT −
⎡
⎣a cos(θ)+2

⎛
⎝√

α2 cos2(θ)+β2 sin2(θ)

√
ln( E0

EA
)

2

⎞
⎠

⎤
⎦+O(h2x ),

(C.44)

and

x B(θ, hx )

= xT + a sin(θ) + 2

⎛
⎝ (α2 − β2) sin(θ) cos(θ)√

α2 cos2(θ) + β2 sin2(θ)

√
ln( E0

EA
)

2

⎞
⎠

− hx

(
a cos(θ) + (α2−β2)

(
4(α2+β2) cos(2θ) + (α2−β2)(3+cos(4θ))

)
(α2 cos2(θ) + β2 sin2(θ))3/2

)

+ O(h2x ).

(C.45)

In the above, it is clear that theO(hx ) term in zB(θ, hx ) is identically zero, and the next
term in the expansion is nonlinear in hx ; its form is therefore irrelevant to the linear
stability analysis of our present interest. The O(hx ) correction to x B(θ, hx ) remains
irrelevant as discussed in the main text.
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