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Abstract
In this research, we present a novel enhanced flux continuity three-dimensional finite
element method for heterogeneous and anisotropic (possibly discontinuous) diffusion
problems on general meshes. We create a polygonal dual mesh T ∗

h and its submesh
T ∗∗
h from a primal mesh Th in such a manner that a set number of adjacent tetrahedral

elements of T ∗∗
h are united to form each dual control volume of T ∗

h , which corresponds
to a primal vertex. The weak solution of the diffusion problem is approximated by
the piecewise linear functions on the subdual mesh T ∗∗

h . In order to capture the local
continuity of numerical fluxes across the interfaces, the proposed scheme gives the
auxiliary face unknowns interpolated by themulti-point flux approximation.Moreover,
the consistency, coercive, and convergence properties of the method are presented
within a rigorous theoretical framework. Numerical results are carried out to highlight
accuracy and efficiency.
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1 Introduction

The three-dimensional heterogeneous and anisotropic diffusion problems arising in the
wide range of fields have considerably drawnmuch attention from researchers inmany
scientific applications such as oil reservoir simulation, hydrogeology, semiconductor,
biology model, and plasma physics. Particularly, we consider the following problem
on an open bounded connected polyhedral domain � in R3:

− div(�∇u) = f in �, (1)

with the homogeneous Dirichlet boundary condition:

u = 0 on ∂�. (2)

The source term f belongs to L2(�). The tensor � is piecewise Lipschitz continuous
on �, and satisfied symmetric, positive definite. Therefore, for almost every x ∈ �,
we have

λ|ξξξ |2 ≤ �(x)ξξξ · ξξξ ≤ λ|ξξξ |2, ∀ξξξ ∈ R
3, (3)

where λ and λ are positive values.
The variational form of (1) can be represented as

Find u ∈ H0 := H1
0 (�) such that∫

�

�(x)∇u(x) · ∇v(x)dx =
∫

�

f (x)v(x)dx, ∀v ∈ H1
0 (�). (4)

For this problem, we developed a novel efficient method to accurately approximate
the weak solution u. When carrying out this work, we met the following two main
difficulties: (i) the continuity of numerical fluxes regarding to the heterogeneous
and anisotropic diffusion problems (possibly discontinuous) must be imposed on the
numerical methods; (ii) they are designed to handle on general meshes. Note that the
standard finite element method cannot pass two challenges (i) and (ii).

In the literature of numerical methods for the problem (1)–(2), the finite volume
method is well known to find the approximate solutions of the heterogeneous and
anisotropic problems (4) on admissible meshes. The two-point formula, which is used
in this method to approximate the diffusion flux − ∫

f �(x)∇u(x) · nK ,σdx through

any face f of each control volume K , guarantees the local conservation of the discrete
fluxes.Note that the geometry of grid cells is admissible to ensure the consistency prop-
erty of the two-point flux approximation. In [1], the authors proposed a cell-centered
finite volume scheme which treats material discontinuities for three-dimensional dif-
fusion equation. Its discrete normal flux is approximated by a linear combination of
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the directional flux along the line connecting cell centers and the tangent flux along the
cell faces. However, the problem is only considered on a scalar diffusion coefficient.

Along with the cell-centered techniques, the potent hybrid techniques have been
successfully used to polygonal and polyhedral meshes, both structured and unstruc-
tured, that include extra unknowns on the edges, faces, and vertices in order to
approximate the solution u. In particular, we first mention the mixed finite element
method having the Raviart–Thomas basis functions. Its unknowns are the discrete
fluxes and discrete gradients. This method demands high refined grids to apply for
some highly heterogeneous and anisotropic cases. In [2], the authors introduced the
mixed finite volumemethod (MFV) based on the original developments from the finite
volume. This method can be carried out for any mesh type in arbitrary space dimen-
sion, and possesses the fluxes and the cell-centered unknowns.We also have the hybrid
finite volume (HFV) methods [3] using both cell and edge unknowns. Giving another
approach, the extensions of the discrete duality finite volumes (DDFV) method for
applications to three-dimensional diffusion problems are the CeVeFE-DDFV [4], the
CeVeDDFV-A [5], and the CeVeDDFV-B [6] methods. These methods are shown
to be complicated when applied to solving many engineering problems with diffu-
sion terms on a complex geometric computed domain. This is because the discrete
gradient, the discrete divergence, the discrete duality property, and the kernel of the
discrete gradient can be difficult to compute (e.g., volumes, faces) and describe for
more complex geometries of the boundary faces, the primal, secondary, diamond cells
(see [7, Remark 6], [6, Eq. (2)]). In addition, these schemes are limited to polyhedral
cells whose faces have only three or four sides. According to the literature review,
the numerical methods still have some mentioned drawbacks when applying to the
three-dimensional heterogeneous and anisotropic diffusion problems. From the above
drawbacks of the current schemes, our objective for this work is to investigate a novel
enhanced flux continuity three-dimensional finite element method (EFC-3DFEM) for
heterogeneous and anisotropic diffusion problems (4) on the general meshes. The
EFC-3DFEM scheme includes the following advantages:

1. Given a general primal mesh, the method is suitable for constructing the dual and
tetrahedral subdual meshes, ensuring that each dual control volume is indeed a
macroelement, the union of a fixed number of adjacent tetrahedra from the subdual
mesh T ∗∗

h (see [8, pp. 497–498]). The approximate space for the solution u of (4)
has piecewise linear basis functions on the tetrahedral subdual mesh T ∗∗

h ;
2. In order to guarantee the local continuity of fluxes, the discrete gradient and fluxes

are taken into account the anisotropic, heterogeneous tensor � (potentially discon-
tinuous) using the multi-point flux approximation approach;

3. With a mild assumption on geometry, the linear system is always symmetric and
positive definite, this helps to reduce the computational cost by the iterativemethods
for solving linear systems;

4. The scheme provides the exact solution u of (1), if the tensor � is piecewise
constant in polygonal sub-domains and the exact solution u is affine in each of
these sub-domains;

5. The scheme is demonstrated to achieve both strong dual consistencies and coercive
properties. Consequently, the approximate solution converges to the weak solution
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u as the mesh size tends to 0, even for fully heterogeneous anisotropic (possibly
discontinuous) diffusion problems;

6. The tetrahedral subdual mesh T ∗∗
h is built as an improved primal mesh, which

allows the scheme to provide greater precision at a same computational cost; and
7. Since the standard finite element programs which are based on tetrahedral meshes,

thus they may be used directly, the algorithm is simple to implement.

The framework of this study is organized as follows: in Sect. 2, we describe in detail the
construction of the dual mesh T ∗

h and its subdual meshes T ∗∗
h . Section 3 presents the

discretization of the EFC-3DFEM scheme to obtain a well-posed discrete variational
problem. It evidences that the associated linear algebraic system is positive definite and
symmetric, then it has the unique solution. In Sect. 4, the scheme is verified for strong,
dual consistencies and coercive properties. With these properties, we can present the
proof of the convergent results based on [3, Lemma 2.2]. Section 5 compares the
results of numerical experiments [9] for the diffusion issue with the heterogeneous
and anisotropic tensor (potentially discontinuous) and various mesh types. The paper
is concluded in the last section.

2 Construction of meshes

In this part, we go through how to create a dual mesh from a given primal mesh, along
with its submesh.

2.1 The primal mesh

Consider a discretization of � defined as a collection D = (Th,V, C, E,F) with

a. Th is a subset of � that is a family of non-empty, open, connected disjoint subsets
such that

⋃
K∈Th

K = �.

For each K ∈ Th , we denote its volume bymK , its circumscribed sphere’s diameter
by hK , and let h = max{hK , ∀K ∈ Th}.

b. V is a set of all vertices of Th . We denote two sets of all vertices inside �, and of
all vertices on ∂� by V� and V∂�, respectively.

c. C is a set of all mesh points of Th . Its elements are defined as follows: for each
K ∈ Th , its associatedmesh point xK is an interior point in K such that the segment
[xK , x] lies inside K for all points x ∈ K .

d. E is a set of all edges of Th . Its two subsets E� and E∂� contain interior edges and
boundary edges, respectively. For each edge e ∈ E , we denote the midpoint of e
by xe which is collected in the set CE , and has two subsets CE�

= {xe | e ∈ E�}
and CE∂�

= {xe | e ∈ E∂�}.
e. F is a set of all faces of Th whose two subsets consist of F� = {f | f inside �}

andF∂� = {f | f on ∂�}. For each f ∈ F�, there exist exactly two primal control
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Fig. 1 A primal vertex, the midpoint of a primal edge, the face point of a primal face, and the mesh point
of a primal element are represented by the symbols in (A), (B), (C), and (D)

volumes K , L ∈ Th sharing the common face f. Supposed that a segment joining
two points xK and xL intersects with f at a point xf called the face point of f.
For each f ∈ F∂�, a face point xf is an inner point of f such that for any x ∈ f,
[xf, x] ∈ f. These face points are collected in the set CF = CF�

∪ CF∂�
, where

CF�
= {xf | f ∈ F�} and CF∂�

= {xf | f ∈ F∂�}.
For the sake of simplicity, Fig. 1 introduces some symbols to points of these above
sets.

2.2 The dual mesh

The dual mesh is described as a collection D∗ = (
T ∗
h ,V∗, C∗, E∗,F∗) with

T ∗
h ,V∗, C∗, E∗, and F∗ are the sets of the dual control volumes, dual vertices, dual

mesh points, dual edges, and triangular dual faces, respectively. The dual mesh is later
utilized to construct the tetrahedral submesh. To create the dual mesh D∗ (see Algo-
rithm 1), we apply the method described in [10, Section 2] (with minor adjustments).

Algorithm 1 The construction of the dual mesh
Step 1: Establish a dual vertex for each mesh point xK of the primal element K in Th .
Step 2: Establish a dual vertex at the face point xf of each primal boundary face f in F ∩ ∂�.
Step 3: Establish a dual vertex at the midpoint xe of each primal edge e in E .
Step 4: Establish a dual vertex at each primal boundary vertex xV in V ∩ ∂�.

Step 5: Establish triangular dual faces that match to the primal edges.
Step 6: Establish triangular dual faces that match to the primal boundary vertices.

Step 7: Establish dual control volumes that correspond to primal vertices.
Step 8: Establish mesh points for dual control volumes.

Next, we describe in detail the implementation of each step in Algorithm 1 as
follows:

Constructing dual vertices

Step 1: The corresponding dual vertex of each primal element K in Th is selected to
represent the mesh point xK of K .

Step 2: Additionally, there are dual vertices at the face point xf of each primal
boundary face f in F ∩ ∂�.

Step 3: The midpoint xe of each primal edge e in E .
Step 4: The primal boundary vertices xV in V ∩ ∂�.
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Fig. 2 Triangular dual faces correspond to multiple primordial edges that are either in the domain interior
(A, four triangles), on a boundary edge (B, three triangles), or on a boundary edge (C, two triangles)

Constructing dual faces

Dual faces are formed by both primal edges and primal boundary vertices. We note
that in our architecture, the “face” are often notR3 hyperplanes, but ratherR2 surfaces
combinations. We generate the corresponding triangular dual faces (Step 5) for each
primal edge e in E as follows:

Step 5 (a): If e is inside of �, we can begin to construct a “face” by progressively
traversing all of its related primordial elements in a single direction. We
get triangular dual faces by utilizing this “face” and attaching themidpoint
xe (of e) to all of the vertices (see label A in Fig. 2).

Step 5 (b): There are two primordial boundary faces, f1∂�,e and f2∂�,e that share the
edge e if e is on the boundary ∂�. This allows us to also generate a “face”
in this case. The algorithm begins at one of the two primal boundary faces,
say f1∂�,e, and proceeds through the set Te of all primal elements with

e as their edges until it reaches the other boundary face f2∂�,e, and then

connects the midpoint of ewith the mesh point of f1∂�,e, the dual vertices

xK , for all K in Te and the mesh point of f2∂�,e.

Finally, the “face” is created by connecting the last mesh point of f2∂�,e to
themidpoint ofe. The triangular dual faces are then formed by connecting
the midpoint xe of e to all vertices of this “face” (see labels B and C in
Fig 2).

Step 6 (a): For each primal boundary vertex xV in V ∩ ∂�, we designate FxV as a set
of primal boundary faces, and ExV as a set of edges with xV as their vertex,
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Fig. 3 Triangular dual faces (used for boundary capping) correspond to a number of primordial boundary
vertices, including those on a boundary face (D), a 2-manifold boundary edge (E), and a corner point (F)

in the same way. There are two edges ef,1,ef,2 in ExV that correspond
to the boundary ∂f for each f in FxV . The procedure for constructing the
“face” corresponding to xV begins at the midpoint xef,1 for some f ∈ FxV
and connects to the face point xf and the midpoint xef,2 ; continue until
returning to the original point which is the midpoint xef,1 .

Step 6 (b): By using this “face,” we connect the boundary vertex xV with all of its
vertices to create triangular dual faces.

Obviously, the triangular dual face construction can be generated with the boundary
∂� by taking the intersection of multiple faces (see labels D, E, and F in Fig. 3). The
aforementioned steps are designed to produce capping “face” that match to boundary
primordial vertices, guaranteeing that the boundary ∂� is represented with the same
accuracy in both the dual mesh and the primary mesh.

Creating dual control volumes corresponding to primal vertices

Polyhedrons M of the dual mesh T ∗
h are constructed by gathering all the triangular

dual faces corresponding to one primal vertex xV ∈ V (Step 7). There are two cases:

Step 7 (a): If xV is in the interior of �, then its related dual control volume MxV is
formed from all triangular dual faces associated with primal edges con-
nected to xV (see label A in Fig. 4).

Step 7 (b): If xV is on the boundary ∂�, MxV is formed from the triangular dual faces
of primal edges connected to xV and covered with the boundary triangular
dual faces corresponding to xV (see labels B and C in Fig. 4).
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Fig. 4 Dual polygons in dual mesh corresponding to a interior primal node (A, green), two boundary primal
nodes (B, blue) and (C, yellow)

Creating mesh points of dual control volumes

Step 8: The mesh point xM associated with each dual control volume M in T ∗
h will be

identified with the primal vertex xV associated with M if xV in M , whereas the set C∗
includes two subsets: C∗

� = {xM | xM ∈ �} and C∗
∂� = {xM | xM ∈ ∂�}.

Remark 1 [11, Algorithm 1] of the 3D-SC-FEMmethod can build triangular dual faces
similarly to Algorithm 1 by connecting the vertices of its dual faces to the midpoints
of primal edges and the boundary primal nodes. Hence, as mentioned in [11, Remark
3.2 ], constructing the dual mesh of the EFC-3DFEM method is feasible for real life,
complex geometries, as demonstrated in [12, 13].

Remark 2 The dual mesh T ∗
h is a non-overlapping partition of �, which is different

from the overlapping secondary mesh of the DDFV method (see [7, Remark 1]).

2.3 The subdual tetrahedral mesh

The subdual mesh collection, like the primal and dual meshes, is defined as D∗∗ =(
T ∗∗
h ,V∗∗, C∗∗, E∗∗,F∗∗), where T ∗∗

h is a finite family of tetrahedrons T such that⋃
T∈T ∗∗

h

T = �; F∗∗, E∗∗, and V∗∗ are the faces, edges, and vertices of the mesh T ∗∗
h ,

respectively; C∗∗ is the finite set of tetrahedrons mesh points T in T ∗∗
h . By connecting

themesh point xM of each control volumeM in the dualmeshT ∗
h with all of the vertices

of its triangular dual faces to produce tetrahedrons (see Fig. 5), we may decompose
each control volume M into tetrahedrons and produce the subdual mesh D∗∗.
Remark 3 For actual complex geometries, as seen in [10, 14], the dual mesh T ∗

h can be
constructed. Additionally, piecewise linear approximations may be used on universal
meshes, thanks to its tetrahedral subdual mesh T ∗∗

h .
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Fig. 5 An illustration of creating tetrahedrons (of the subdual mesh) from a dual control volume: 24
tetrahedrons of the subdual mesh are created from the dual polygon (green) in Fig. 4

Remark 4 By construction of T ∗∗
h , we see that

(a) The set V∗∗ only consists of three subsets C, C∗, and CE containing mesh points
of the primal mesh, mesh points of the dual mesh, midpoints of primal edges,
respectively; V∗∗ = V∗∗

� ∪V∗∗
∂� with V∗∗

� = C ∪C∗
� ∪CE�

, V∗∗
∂� = C ∪C∗

∂� ∪CE∂�
,

and CE = CE�
∪ CE∂�

. Furthermore, for each M ∈ T ∗
h , the set V∗∗

M of its vertices
is defined by

V∗∗
M = CM ∪ CEM ∪ {xM }, (5)

where xM is the mesh point of M , CM = {xK ∈ C | xK is a vertex of M}, EM =
{e ∈ E | xM is a vertex of e}, and CEM = {xe ∈ CE | e ∈ EM }.

(b) The set T ∗∗
h only has the following subsets:

T ∗∗
� :=

{
T = (xMxK xL xe) ∈ T ∗∗

h

∣∣ f/∈∂� ∀f∈F∗∗
T ,

xM∈C∗,xe∈CE and xK ,xL∈C
}

,

T ∗∗
∂� :=

{
T = (xMxK xfxe) ∈ T ∗∗

h

∣∣ ∃f∈F∗∗
T ∩∂�,

xK∈C,xM∈C∗,xe∈CE and xf∈CF∂�

}
,

where F∗∗
T is a set of all triangular faces in T .

(c) Each T = (xMxK xL xe) ∈ T ∗∗
� can be partitioned into two sub-tetrahedrons

TK := (xMxK xfxe) and TL := (xMxL xfxe), where f = ∂K ∩ ∂L , its face point
xf is an intersecting point between a segment [xK , xL ] and a face f.
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Remark 5 Because the subdual mesh D∗∗ is formed by decomposing each control
volume M in T ∗

h , it satisfies

M =
⋃

T∈T ∗∗
xM

T , (6)

where xM is themesh point ofM , and T ∗∗
xM = {T ∈ T ∗∗

h | xM is a vertex T }.Moreover,
for any two different dual elements M, N ∈ T ∗

h with two mesh points xM , xN , we
have

T ∗∗
xM ∩ T ∗∗

xN = ∅. (7)

Remark 6 In [11], the staggered cell-centered finite element method (SC-FEM) pre-
sented the construction of dual and subdual meshes, where the vertices of its subdual
mesh include in vertices and mesh points of the primal mesh. By this geometry, the
SC-FEMscheme could not imposed the numerical flux continuity. Therefore, themesh
construction of the EFC-3DFEM scheme are absolutely different from the ones of the
SC-FEM scheme.

Remark 7 From geometrical construction of the dual and subdual meshes, we observe
that each dual control volume M ∈ T ∗

h is indeed a macro-element-the union of some
fixed number of adjacent tetrahedrons of the subdual mesh T ∗∗

h (see [8, pp. 497–498]).

3 The EFC-3DFEM scheme

In this section, we construct the approximate space for the solution u. On this space,
we define the projection and the discrete gradient operators in two cases depending on
the characteristics of the tensor �. Using these spaces and operators, we may express
the discrete version of the problem (4) from which the corresponding linear algebraic
systems are derived.

3.1 Spaces and discrete functional characteristics

In order to estimate the solution u of (4), the piecewise linear basis functions on the
subdual mesh T ∗∗

h and approximations uP in R of u(xP ) at nodes xP in V∗∗ are
used. The values {uP }xP∈V∗∗ are elements of a vector uh . This vector belongs to the
following space:

Hh = {uh := (uP )xP∈V∗∗ , uP ∈ R}. (8)

Suppose h∗∗ := max
{
hT = diam(T ), ∀T ∈ T ∗∗

h

}
where hT is the circumscribed

sphere’s diameter of the tetrahedral T ∈ T ∗∗
h , if h → 0 then h∗∗ → 0.

Since we impose the homogeneous Dirichlet boundary condition (2) (i .e., uP = 0
with xP ∈ V∗∗

∂�) on the approximate solution, we need to deal with inner nodes by
creating the following subset of Hh
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H0
h = {uh ∈ Hh : uP = 0, ∀xP ∈ V∗∗

∂�}. (9)

This space has all basis vectors in
{
vQh

}
xQ∈V∗∗

�

, where each element of a basis vector

vQh :=
(
v
Q
P

)
xP∈V∗∗ is given by v

Q
P =

{
1 xP = xQ,

0 xP �= xQ,
.

The discrete gradient ∇� and the projection operator � must be defined in the
following ways on the space Hh in order to construct the discrete version of (4):

To fulfill the continuity of fluxes across interfaces across primal control volumes,
which are specified on each tetrahedron T in T ∗∗

h , must take into consideration the
tensor� (which may be discontinuous in the case where two different approximations
of � on T are �K on T ∩ K �= ∅, and �L on T ∩ L �= ∅, with L, K ∈ Th). As a
result, their definitions are divided into the following two situations depending on the
properties of �:

• Case 1. Homogeneous tensors (� = λI, where I is the 3D identity tensor, and λ

is a positive constant)

For any uh = (uP )xP∈V∗∗ ∈ H0
h (i .e. uP = 0, ∀xP ∈ V∗∗

∂�), we define

�uh(x) = P1uh(x) :=
∑

xP∈V∗∗
�

uP L1,P (x), (10)

where L1,P is the Lagrange basis function of degree 1 at xP in V∗∗
� .

Given that �uh(x) is a piecewise polynomial of degree 1, the related discrete
gradient ∇�uh on each T in T ∗∗

h is constant. The restriction of the discrete gradient
∇�uh on each T in T ∗∗

h may be written as

(∇�uh)T = −(uK − uM )n(xM xL xe) − (uL − uM )n(xM xK xe) − (ue − uM )n(xM xK xL )

3mT

= −uKn(xM xL xe) − uLn(xM xK xe) − uMn(xK xL xe) − uen(xM xK xL )

3mT
, (11)

with mT is the volume of the tetrahedron T = (xMxK xL xe); n(xM xL xe), n(xM xK xe),
n(xK xL xe), and n(xM xK xL ) are four outward normal vectors of T at triangular faces
(xMxL xe), (xMxK xe), (xK xL xe), and (xMxK xL), respectively. Their magnitudes are
equal to the area of these faces m(xM xL xe), m(xM xK xe), m(xK xL xe), and m(xM xK xL ),
respectively.

• Case 2: Heterogeneous and anisotropic tensors.

Due to Remark 4.(b), two operators � and ∇� will be defined on each T ∈ T ∗∗
� and

T ∈ T ∗∗
∂� .

Let us first consider on each tetrahedron T := (xMxK xL xe) ∈ T ∗∗
� . By Remark

4.(c), the tetrahedron T has two sub-tetrahedrons TK = (xMxK xfxe) and TL =
(xMxL xfxe) with f ∈ ∂K ∩ ∂L and its face point xf. Remark that TK , TL are
inside two elements K , L ∈ Th , respectively, then the approximation values of �

123



16 Page 12 of 43 O. T. Hai et al.

on TK and TL are equal to �K and �L , respectively, where �K = 1
mK

∫
K �(x)dx

and �L = 1
mL

∫
L �(x)dx . The piecewise linear function �uh(x) on T must thus be

determined by values at each of vertices of TK and TL . To do this, we must propose
an auxiliary unknown uM

f at xf, as follows:

�uh(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uM , x = xM ,

uK , x = xK ,

uL , x = xL ,

ue, x = xe,

uM
f , x = xf.

(12)

and to define the restrictions of ∇�uh by

(∇�uh)TK =
−uMn(xK xexf) − uK nK

(xM xexf)
− uen(xM xK xf) − uMf n(xM xK xe)

3mTK
on TK ,

(13)

(∇�uh)TL =
−uMn(xL xexf) − uLnL(xM xexf)

− uen(xM xL xf) − uMf n(xM xL xe)

3mTL
on TL ,

(14)

where nK
(xM xexf) and n

L
(xM xexf) are the outward vectors of TK and TL at triangular face

(xMxexf).
In order to fulfill the local continuity of the numerical flux over the triangular face

(xMxexf) inside f, the auxiliary unknown uM
e is selected by

�K (∇�uh)TK · nK
(xM xexf) + �L(∇�uh)TL · nL

(xM xexf) = 0. (15)

Substituting (13) and (14) in (15), it reads

βMuM + βK uK + βLuL + βeue + βfu
M
f = 0, (16)

with

βK =
(
�KnK

(xM xexf)

)
· nK

(xM xexf)

3mTK
, βL =

(
�LnL

(xM xexf)

)
· nL

(xM xexf)

3mTL
,

βM =
(
�Kn(xK xexf)

) · nK
(xM xexf)

3mTK
+

(
�Ln(xL xexf)

) · nL
(xM xexf)

3mTL
,

βe =
(
�Kn(xM xK xf)

) · nK
(xM xexf)

3mTK
+

(
�Ln(xM xL xf)

) · nL
(xM xexf)

3mTL
,

βf =
(
�Kn(xM xK xe)

) · nK
(xM xexf)

3mTK
+

(
�Ln(xM xL xe)

) · nL
(xM xexf)

3mTL
.
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Fig. 6 Two tetrahedrons
T = (xM xK xL xe) and
T̂ = (xN xK xL xe) have the
common triangular face
(xK xL xe)

The above coefficients satisfy

βK + βL + βM + βe + βf = 0. (17)

From (16), let us mention that all along the paper, we assume that βf �= 0. The linear
combination of uM , uK , uL and ue is provided as the auxiliary unknown uM

f :

uM
f = β̃T

MuM + β̃T
K uK + β̃T

L uL + β̃T
e ue, (18)

with

β̃T
K = −βK

βf
, β̃T

L = −βL

βf
, β̃T

M = −βM

βf
, β̃T

e = −βe

βf
. (19)

As a consequence of (17), these above coefficients satisfy

β̃T
M + β̃T

K + β̃T
L + β̃T

e = 1. (20)

Remark 8 Let us consider two tetrahedrons T := (xMxK xL xe) and T̂ :=
(xN xK xL xe) in T ∗∗

h , see Fig. 6.
On the tetrahedrons T and T̂ , the tensor � is heterogeneous and anisotropic, then

there exist two auxiliary unknowns given by

uM
f = β̃T

MuM + β̃T
K uK + β̃T

L uL + β̃T
e ue, (21)

uN
f = β̃ T̂

N uN + β̃ T̂
K uK + β̃ T̂

L uL + β̃ T̂
e ue. (22)

Note that β̃ T̂
N uN �= β̃T

MuM , thus uM
f may be different from uN

f . Consequently,�uh(x)
is discontinuous at xf.
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Substituting (18) into (13) and (14), the discrete gradient (∇�uh)T depends on four
nodal values uM , uK , uL , and ue expressed by

(∇�uh)TK = −uM ñxMTK − uK ñ
xK
TK

− uL ñ
xL
TK

− ueñ
xe
TK

3mTK
, (23)

(∇�uh)TL = −uM ñxMTL − uK ñ
xK
TL

− uL ñ
xL
TL

− ueñ
xe
TL

3mTL
, (24)

where

ñxMTK = n(xK xexf) + β̃T
Mn(xM xK xe), ñxKTK = nxK(xM xexf) + β̃T

Kn(xM xK xe),

ñxeTK = n(xM xK xf) + β̃T
e n(xM xK xe), ñxLTK = β̃T

L n(xM xK xe),

ñxMTL = n(xL xexf) + β̃T
Mn(xM xL xe), ñxLTL = nxL(xM xexf) + β̃T

L n(xM xL xe),

ñxeTL = n(xM xL xf) + β̃T
e n(xM xL xe), ñxKTL = β̃T

Kn(xM xL xe),

and these vectors satisfy

ñxMTK + ñxKTK + ñxeTK + ñxLTK = 000, ñxMTL + ñxLTL + ñxeTL + ñxKTL = 000, (25)

due to (20).
In summary, for any uh ∈ Hh , the piecewise polynomial �uh(x) of degree one

and the piecewise constant function ∇�(uh)(x) are determined on each T ∈ T ∗∗
� as

follows:

�Tuh(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uM , x = xM ,

uK , x = xK ,

uL , x = xL ,

ue, x = xe,

β̃T
MuM + β̃T

K uK + β̃T
L uL + β̃T

e ue, x = xf,

(26)

(∇�uh)T (x) =
{

(∇�uh)TK ∀x ∈ TK ,

(∇�uh)TL ∀x ∈ TL ,
(27)

where (∇�uh)TK , (∇�uh)TL are presented in (23), (24).
For each T := (xMxK xexf) ∈ T ∗∗

∂� , due to Remark 4.(b), T is inside K ∈ Th ,
as there is only an approximation �K of the tensor � on T . Since there is only one
approximation tensor �K for � on T , the functions �Tuh(x) and (∇�uh)T (x) can
be determined by

�T (uh)(x) =
∑

xP∈V∗∗
T

uP L1,P (x), (∇�uh)T (x) =
∑

xP∈V∗∗
T

uP∇L1,P (x), ∀x ∈ T ,

(28)
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where V∗∗
T is a set of all vertices of T .

Using the definitions (10), (11), (26), (27), and (28), we formulate the issue (4) in
the following discrete form:

Findinguh := (uP )xP∈V∗ ∈ H0
h, such that

∑
T∈T ∗∗

h

∫
T

(�∇�uh) · ∇�vh dx =
∑

T∈T ∗∗
h

∫
T
f (x)�(vh) dx, ∀vh ∈ H0

h . (29)

And we introduce the following definition:

Definition 1 An approximate gradient discretization for the EFC-3DFEM scheme is
defined by (Hh, h,�,∇�), where

• The set of discrete unknownsHh is a finite-dimensional vector space presented in
(8).

• The space step h is the maximum positive real circumscribed sphere’s diameter
for all elements of Th .

• The mapping � : Hh → L2(�) has the definition of its restriction on each
T ∈ T ∗∗

h presented by (10) for homogeneous tensor � case, and by (26) for
anisotropic, heterogeneous tensor � case.

• The mapping ∇� : Hh → L2(�)3 has the definition of its restriction on each
T ∈ T ∗∗

h presented by (11) for homogeneous tensor � case, and by (27) for
anisotropic, heterogeneous tensor � case.

3.2 The algebraic system of the EFC-3DFEM scheme

To construct the systemof linear equations from the discrete problem (29), we continue
by selecting its test vectors vh as basis vectors v

Q
h ofH0

h with xQ in V∗∗
� in two steps:

Step 1. For each xM ∈ C∗
� ⊂ V∗∗

� , we take vh = vMh in (29). Due to Remark 5, two
sets supp{�(vMh )}, supp{∇�vMh } belong to M . Thus, (29) can be rewritten as

∑
T∈T ∗∗

xM

∫

T

(�∇�uh) · ∇�vMh dx =
∑

T∈T ∗∗
xM

∫
T
f (x)�(vMh ) dx . (30)

By (5), all unknowns in (30) consist only of uM , {uK , xK ∈ CM } and
{ue, e ∈ EM }.
Therefore, the computational process can be expressed by the following sys-
tem in matrix form:

MMMU∗ +KKK ∗U = FFF ∗, (31)

where U∗ = (uM )xM∈C∗
�

∈ R|C∗
�|, the notation

∣∣C∗
�

∣∣ represents the car-

dinality of set C∗
�, and U = (uP )xP∈(C∪CE�

) ∈ R
d . The diagonal matrix

MMM ∈ R|C∗
�|×|C∗

�| has each diagonal element equal to
∑

T∈T ∗∗
xM

∫
T

(
�∇�vMh

) ·
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∇�vMh dx , with xM ∈ C∗
�. The matrix KKK ∗ ∈ R|C∗

�|×d has each
component determined by

∑
T∈T ∗∗

xM

∫
T

(
�∇�vPh

) · ∇�vMh dx , with d =
(|C| + |E�|), xM ∈ C∗

�, and xP ∈ CM ∪ CEM . The vector FFF ∗ is equal to(∑
T∈T ∗∗

xM

∫
T f (x)�(vMh ) dx

)
xM∈C∗

�

. The system (31) leads to

U∗ = MMM−1FFF ∗ −MMM−1KKK ∗U, (32)

which means that, for each xM ∈ C∗
�, the unknown uM can be expressed as a

combination of {uK }xK∈CM , {ue}e∈E�
, and the source term f .

Step 2. For each xK ∈ C ⊂ V∗∗
� and xe ∈ CE ⊂ V∗∗

� , by taking vh = vKh and
vh = veh , (29) can be rewritten as

∑
T∈T ∗∗

xK

∫

T

(�∇�uh) · ∇�vKh dx =
∑
T∈T ∗∗

xK

∫
T
f (x)�(vKh ) dx, (33)

∑
T∈T ∗∗

xe

∫

T

(�∇�uh) · ∇�veh dx =
∑

T∈T ∗∗
xe

∫
T
f (x)�(veh ) dx, (34)

where

T ∗∗
xK := {

T ∈ T ∗∗
h | T has a vertex xK

}
,

T ∗∗
xe := {

T ∈ T ∗∗
h | T has a vertex xe

}
.

Similar as Step 1, the computational process is also presented by the following
matrix form as

MMM ∗U∗ +KKK U = FFF , (35)

where d = (|C| + |E�|), the vector FFF ∈ R
d , and two matrices MMM ∗ ∈

R
d×|C∗

�|,KKK ∈ R
d×d .

Substituting (32) into (35), it implies

A · U = F, (36)

with A = KKK − MMM ∗MMM−1KKK ∗ ∈ R
d×d , F = FFF − MMM ∗MMM−1FFF ∗ ∈ R

d ,
U = (uP )xP∈(C∪CE�

) ∈ R
d . Note that the system (36) only depends on

the unknowns of {uK }xK∈C and {ue}e∈E�
, therefore the proposed scheme is

called the edge-cell finite element scheme.

Remark 9 If the homogeneous Dirichlet boundary condition (2) is replaced by a Neu-
mann or Robin boundary condition, the EFC-3DFEM schememust have the additional
unknowns {ue}e∈E∂�

, {uf}f∈F∂�
, and {uQ}xQ∈C∗

∂�
.
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It is now necessary to demonstrate the existence and originality of the solution for (36)
where the stiffness matrix A is a symmetric positive definite matrix. The exact claim
reads as follows:

Proposition 1 The stiffness matrix A in (36) is symmetric and positive definite.

Proof When the tensor � is isotropic, (10) and (11) show that the EFC-3DFEM is
equivalent to the standard finite element on the tetrahedral subdual mesh T ∗∗

h . Thus,
the stiffness matrix A is always symmetric and positive definite.

For the heterogeneous and anisotropic tensor � case, due to the Schur com-
plement property (see [15, Theorem 1.12, p. 34]), it helps to notice that if the

matrix S =
(

MMM KKK ∗
MMM ∗ KKK

)
is symmetric and positive definite, then the matrix A :=

KKK −MMM ∗MMM−1KKK ∗ ∈ R
d×d is also symmetric and positive definite.

Obviously, we verify that S is symmetric, since we have the symmetric tensor �

and the following result for any uh = (uP )xP∈V∗∗
�
, vh = (vP )xP∈V∗∗

�
∈ H0

h

ÛTSV̂ =
∑

T∈T ∗∗
h

∫
T

�∇�uh · ∇�vh dx =
∑

T∈T ∗∗
h

∫
T

�∇�vh · ∇�uh dx = V̂ TSÛ,

(37)

where Û =
(
U∗
U

)
, V̂ =

(
V ∗
V

)
, U∗ = (uM )xM∈C∗

�
, xV ∗ = (vM )xM∈C∗

�
, U =

(uP )xP∈(C∪CE�

) and xV = (vP )xP∈(C∪CE�

). Note that V∗∗
� = (

C∗
� ∪ C ∪ CE�

)
due to

Remark 4 (a).
To verify the positive definite property of S, we need to prove that

ÛTSÛ =
∑

T∈T ∗∗
h

∫
T

�∇�uh · ∇�uh dx > 0, (38)

for any uh ∈ H0
h such that uh �= 0.

From the property (3), the right-hand side of (38) can be estimated by

∑
T∈T ∗∗

h

∫
T

�∇�uh · ∇�uh dx ≥ λ
∑

T∈T ∗∗
h

∫
T

∇�uh · ∇�uh dx, (39)

in which
∫
T ∇�uh · ∇�uh dx ≥ 0 for all T ∈ T ∗∗

h . Moreover, since uh �= 0 and
uh ∈ H0

h (i .e., uP = 0, ∀xP ∈ V∗∗
∂�), we always have at least one tetrahedron T0

satisfying one of the following two cases:

Case 1. With T0 := (xMxK xexf) ∈ T ∗∗
∂� , we use (11) and values ue = uf = 0 at

xe, xf ∈ ∂� to compute

λ

∫
T0

∇�uh · ∇�uh dx
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= λ

9mT

⎡
⎢⎢⎣

(
uMn(xK xexf) + uKn(xM xexf)

)2
> 0, if uM , uK �= 0,(

uMn(xK xexf)

)2
> 0, if uM �= 0,(

uKn(xM xexf)

)2
> 0, if uK �= 0,

(40)

where
(
uMn(xK xexf) + uKn(xM xexf)

) �= 000 if uM , uK �= 0.
Case 2. With T0 := (xMxK xL xe) ∈ T ∗∗

� having two sub-tetrahedrons T0,K =
(xMxK xexf) and T0,L = (xMxL xexf), we use (27) to compute

λ

∫
T0

∇�uh · ∇�uh dx = λ

9mT0,K

(
III (1)
T0

)2 + λ

9mT0,L

(
III (2)
T0

)2
,

where

III (1)
T0

=
(
uM ñxMTK + uK ñ

xK
TK

+ uL ñ
xL
TK

+ ueñ
xe
TK

)
,

III (2)
T0

=
(
uM ñxMTL + uK ñ

xK
TL

+ uL ñ
xL
TL

+ ueñ
xe
TL

)
.

Obviously, the two vectors III (1)
T0

and III (2)
T0

are different from000, sincewe have the
property (25), and the set {uM , uK , uL , ue} satisfies at most three non-zero
elements and at least one element equal to 0. Therefore, we get

λ

∫
T0

∇�uh · ∇�uh dx > 0. (41)

Owning to (39)–(41), we obtain

ÛTSÛ ≥ λ
∑

T∈T ∗∗
h

∫
T

∇�uh · ∇�uh dx ≥ λ

∫
T0

∇�uh · ∇�uh dx > 0. (42)

This ends the proof of Proposition 1. ��

4 Convergence analysis

When applied to the isotropic tensor situation, the EFC-3DFEM method is similar
to the traditional Finite Element Method (FEM) based on first-order Lagrange basis
functions on T ∗∗

h , and convergence is always ensured.
We study here the convergence of the EFC-3DFEM method for the anisotropic

and heterogeneous tensor situation (possibly discontinuous). This work begins by
introducing the following twooperators: Sh : C∞

c (�) → R andWh : (C∞
c (�)

)3 → R

defined by

Sh(ϕ) =
[
‖�(ϕϕϕh) − ϕ‖2L2(�)

+ ‖∇�ϕϕϕh − ∇ϕ‖2L2(�)

]1/2
,
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with ϕ ∈ C∞
c (�), ϕϕϕh := (ϕ(xP ))xP∈V∗∗ ∈ H0

h,

and Wh(ϕϕϕ) = max
vh∈Hh\{000}

1

‖∇�vh‖(L2(�))
3

∫
�

[∇�vh · ϕϕϕ + �(vh) div(ϕϕϕ)] dx,

with ϕϕϕ ∈ (
C∞
c (�)

)3
.

As consequence of [16, Lemma 2.2 and Corollary 2.3], if the EFC-3DFEM scheme
satisfies the strong consistency

lim
h→0

Sh(ϕ) = 0, ∀ϕ ∈ C∞
c (�), (43)

the dual consistency

lim
h→0

Wh(ϕϕϕ) = 0, ∀ϕϕϕ ∈ (
C∞
c (�)

)3
, (44)

and the coercive property, i .e., there exists a positive constant C independent of h,
such that

‖�vh‖L2(�) ≤ C‖∇�vh‖(L2(�))
3 , ∀vh ∈ Hh, (45)

then its convergence is verified, and

‖∇u − ∇�uh‖(L2(�))
3 → 0, as h → 0, (46)

‖u − �uh‖L2(�) → 0, as h → 0. (47)

Next, rather than proving the strong, dual consistencies (43), (44) and the coercive
property directly, this work simplifies the process by checking these properties for a
variant form of the EFC-3DFEM scheme, referred to as the EFC-3DFEMb scheme.
The description of this scheme is as follows:

Findinguh ∈ H0
hsuch that∑

T∈T ∗∗
h

∫
T

(�∇�uh) · ∇�vh dx =
∑

T∈T ∗∗
h

∫
T
f (x)P1vh dx, ∀vh :=(vP )xP∈V∗∗ ∈ H0

h,

(48)

where the polynomial P1vh represents a first-order Lagrange basis function on the
subdual mesh T ∗∗

h , with a value P1vh(xP ) = vP assigned at each point xP ∈ V∗∗.
In the purpose of presenting the proof for the convergence of the EFC-3DFEMb

scheme, we need to introduce the following definitions and notations:

Definition 2 An approximate gradient discretization for the EFC-3DFEMb scheme is
defined by (Hh, h, P1,∇�), where

• The set of discrete unknownsHh is a finite-dimensional vector space presented in
(8).
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• The space step h is the maximum positive real circumscribed sphere’s diameter
for all elements of Th .

• the mapping P1 : Hh → L2(�) is a first-order Lagrange basis functions on
subdual mesh T ∗∗

h , with vh = (vP )xP∈V∗∗ ∈ Hh , and a value P1vh(xP ) = vP
assigned at each point xP ∈ V∗∗.

• The mapping ∇� : HD : Hh → L2(�)3 has the definition of its restriction on
each T ∈ T ∗∗

h presented by (11) for homogeneous tensor � case, and by (27) for
anisotropic, heterogeneous tensor � case.

The dual and strong consistencies for the EFC-3DFEMb scheme are evidenced
by their properties measured through the following operators Ŝh and Ŵh as outlined
below:

Ŝh(ϕ) =
[
‖P1ϕϕϕh − ϕ‖2L2(�)

+ ‖∇�ϕϕϕh − ∇ϕ‖2
(L2(�))

3

]1/2
, ∀ϕ ∈ C∞

c (�), (49)

with ϕϕϕh := (ϕ(xP ))xP∈V∗∗ ∈ H0
h , and for all ϕϕϕ ∈ (

C∞
c (�)

)3

Ŵh(ϕϕϕ) = max
vh∈Hh\{000}

1

‖∇�vh‖(L2(�))
3

∫
�

[∇�vh · ϕϕϕ + P1vh div(ϕϕϕ)] dx . (50)

By utilizing the results presented in (70) and (71) from Proposition 2, along with
Corollary 1, it can be demonstrated that the EFC-3DFEM scheme also satisfies the
strong and dual consistency properties for the anisotropic and heterogeneous tensor
situation (potentially discontinuous).

Let us now prove that the EFC-3DFEMb scheme satisfies the strong, dual con-
sistency, and coercive properties. For given operators � and ∇� specified on each
tetrahedron T in T ∗∗

h as described in Sect. 3, we need to define the following subsets
of T ∗∗

h in relation to the tensor �:

T ∗∗
const = {

T ∈ T ∗∗
h | �(x) is constant on T

}
,

T ∗∗
� = {

T ∈ T ∗∗
h | �(x) is discontinuous on T

}
.

For any tetrahedron T := (xMxK xL xe) ∈ T ∗∗
h \T ∗∗

const, it has two sub-tetrahedrons
TK := (xMxK xexf) and TL := (xMxL xexf), see Fig. 7.

In addition, we need to introduce the following geometrical notations used in lem-
mas and theorems:

(i) The sets V(1)
T , V(2)

T , and V(3)
T contain pairs and triples of vertices that can be

defined as

V(1)
T = {xM , xK , xL , xe} ,

V(2)
T = {(xM , xK ), (xM , xL), (xM , xe), (xK , xL), (xK , xe), (xL , xe)} ,

V(3)
T = {(xM , xK , xL), (xM , xL , xe), (xM , xK , xe), (xK , xL , xe)} .
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Fig. 7 A tetrahedron
T = (xM xK xL xe) with four
vertices xM ∈ C∗, xK , xL ∈ C,
and an edge point xe with
e ∈ E�

(ii) For each pair (xN , xQ) ∈ V(2)
T , the notation [xN xQ] represents an edge, with its

midpoint denoted as C[xN xQ ] and its length as m[xN xQ ].
(iii) For each triple (xN , xQ, xR) ∈ V(3)

T , the notation (xN xQxR) is a triangular face,
with its centroid denoted as C(xN xQxR), and its area as m(xN xQxR).

(iv) For a point xN ∈ V(1)
T and a triple (xQ, xR, xS) ∈ V(3)

T , dxN(xQxRxS)
is the distance

from xN to the face (xQxRxS).
(v) The point xT is the centroid of the tetrahedron T .
(vi) The following notations

f[xM xe] = (
xT ,C[xM xe],C(xM xK xe),C(xM xL xe)

)
,

f[xK xe] = (
xT ,C[xK xe],C(xM xK xe),C(xK xL xe)

)
,

f[xL xe] = (
xT ,C[xL xe],C(xM xL xe),C(xK xL xe)

)
,

f[xM xK ] = (
xT ,C[xM xK ],C(xM xK xe),C(xM xK xL )

)
,

f[xM xL ] = (
xT ,C[xM xL ],C(xM xL xe),C(xM xK xL )

)
,

f[xK xL ] = (
xT ,C[xK xL ],C(xM xK xL ),C(xK xL xe)

)
,

are six quadrangular faces constructed by connecting the centroid xT to centroids
on boundary triangular faces and edges of T .

(vii) Using the above faces, the vertices xM , xK , xL , and xe involved in
{
f[xM xe],f[xK xe],

f[xL xe]
}
,
{
f[xM xK ],f[xK xe],f[xK xL ]

}
,
{
f[xM xL ],f[xL xe],f[xK xL ]

}
, and

{
f[xM xe],

f[xL xe],f[xK xe]
}
are connected in order to form the polygons PxM , PxK , PxL ,

and Pxe , respectively. These polygons lie in the tetrahedron T and satisfy

T = PxM ∪ PxK ∪ PxL ∪ Pxe .
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(viii) For each pair (xN , xQ) ∈ V(2)
T , the polygon PxN has the outward normal vector

nxN xQ at f[xN xQ ] ≡ f[xQxN ]. The vector nxN xQ has a magnitude
∣∣nxN xQ

∣∣ equal
to the area mf[xN xQ ] and also satisfies nxN xQ = −nxQxN .

(ix) For each pair (xN , xQ) ∈ V(2)
T , dxN xQ is the distance from xN ∈ V(1)

T to the face
f[xN xQ ], and it satisfies dxN xQ = dxQxN .

(x) Besides, we introduce an operator�0
h defined onHh , specifically as follows: for

any uh ∈ Hh , on each T = (xMxK xL xe), �0
h(uh) is a characteristic function

such that

�0
h(uh(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uM if x ∈ PxM ,

uK if x ∈ PxK ,

uL if x ∈ PxL ,

ue if x ∈ Pxe .

(51)

(xi) To estimate the convergence, Hh is endowed with the norm

‖uh‖21,T ∗∗
h

=
∑

∈T ∗∗
h

T :=(xM xK xL xe)

⎡
⎢⎢⎣

|nxM xK |
dxM xK

(uK − uM )2 + |nxM xL |
dxM xL

(uL − uM )2

+|nxM xe |
dxM xe

(uxe − uM )2 + |nxK xL |
dxK xL

(uL − uK )2

+|nxK xe |
dxK xe

(ue − uK )2 + |nxL xe |
dxL xe

(ue − uL )2

⎤
⎥⎥⎦ . (52)

The next step is to examine the characteristics of the discrete gradient ∇� as follows:

Lemma 1 For (Hh, h, P1,∇�) being a family of discretizations in the sense of Def-
inition 2, which satisfies the below assumptions: for any T := (xMxK xL xe) ∈
T ∗∗
h \(T ∗∗

� ∪ T ∗∗
const), there exists a positive constant δ independent of h, such that

Assumption A1
min

{
dxK(xM xexf), d

xL
(xM xexf), d

xM
(xK xL xe), d

xe
(xM xK xL )

}

max
{
dxK(xM xexf), d

xL
(xM xexf)

} ≥ δ,

and

Assumption A2
min

{|nxK xe |, |nxM xe |, |nxL xe |, |nxK xL |, |nxM xK |, |nxM xL |}

max

{
m(xM xK xe),m(xM xL xe),m(xK xexf),m(xL xexf),

m(xM xexf), m(xM xK xf), m(xM xL xf)

} ≥ δ.

Then, for any T ∈ T ∗∗
h \ T ∗∗

� , the discrete gradient ∇�uh is written as

mT (∇�uh)T = (uK − uM )(nxM xK + εεεxM xK ) + (uL − uM )(nxM xL + εεεxM xL )

+ (ue − uM )(nxM xe + εεεxM xe) + (uL − uK )(nxK xL + εεεxK xL )

+ (ue − uK )(nxK xe + εεεxK xe) + (ue − uL)(nxL xe + εεεxL xe), (53)

where the vectors
{
nxN xQ , εεεxN xQ

}
(xN ,xQ)∈V(2)

T
satisfy

lim
h→0

|εεεxM xK |
|nxM xK | = lim

h→0

|εεεxM xL |
|nxM xL |

= lim
h→0

|εεεxM xe |
|nxM xe |

= lim
h→0

|εεεxK xL |
|nxK xL |
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= lim
h→0

|εεεxK xe |
|nxK xe |

= lim
h→0

|εεεxL xe |
|nxL xe |

= 0. (54)

Proof In the subdual mesh, each tetrahedron T := (xMxK xL xe) ∈ T ∗∗
h \T ∗∗

� can
be separated into two tetrahedrons, each including sub-tetrahedrons TK and TL . The
tensor � is approximated by �K and �L , respectively. Thus, the discrete gradient
(∇�uh)T , which depends on �K and �L , is presented in the following cases:

Case 1. If �K = �L , the discrete gradient (∇�uh)T takes a form similar to (11). It
is then computed as

mT (∇�uh)T = − (ue − uK )
1

4

[
n(xM xK xL ) − n(xM xL xe)

]

− (ue − uL)
1

4

[
n(xM xK xL ) − n(xM xK xe)

]

− (ue − uM )
1

4

[
n(xM xK xL ) − n(xK xL xe)

]

− (uL − uK )
1

4

[
n(xM xK xe) − n(xM xL xe)

]

− (uK − uM )
1

4

[
n(xM xL xe) − n(xK xL xe)

]

− (uL − uM )
1

4

[
n(xM xK xe) − n(xK xL xe)

]
. (55)

Additionally, the geometrical properties of T (refer to Fig. 7) are as follows:

nxK xe = −1

4

[
n(xM xK xL ) − n(xM xL xe)

]
, nxM xe = −1

4

[
n(xM xK xL ) − n(xK xL xe)

]
,

nxL xe = −1

4

[
n(xM xK xL ) − n(xM xK xe)

]
, nxK xL = −1

4

[
n(xM xK xe) − n(xM xL xe)

]
,

nxM xK = −1

4

[
n(xM xL xe) − n(xK xL xe)

]
, nxM xL = −1

4

[
n(xM xK xe) − n(xK xL xe)

]
.

(56)

Substituting (56) into (55), we have

mT (∇�uh)T =(ue − uK )nxK xe + (ue − uL)nxL xe + (ue − uM )nxM xe

+(uL − uK )nxK xL + (uK − uM )nxM xK + (uL − uM )nxM xL .

(57)

It is noted that the formula (57) is equivalent to (53), where all vectors εεεxK xe ,
εεεxL xe , εεεxM xe , εεεxK xL , εεεxM xK , and εεεxM xL are set to 000.

Case 2. If �K �= �L

(
such that lim

h→0
‖�K − �L‖ = 0

)
, equation (27) for the dis-

crete gradient (∇�uh)T is given as follows:
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• Case 2a. On TK = (xMxK xexf), the discrete gradient (∇�uh)TK is established
as

mTK (∇�uh)TK = (uK − uM )(nxM xK +εεεKxM xK ) + (uL−uM )(nxM xL+εεεKxM xL )

+ (ue − uM )(nxM xe + εεεKxM xe) + (uL − uK )(nxK xL + εεεKxK xL )

+ (ue − uK )(nxK xe + εεεKxK xe) + (ue − uL)(nxL xe + εεεKxL xe),

(58)

Considering the assumptions A A1 and A A2, as h → 0, the values in (17)
obtain the following limits:

− βK

βf
→ dxL(xM xexf)

dxK(xM xexf) + dxL(xM xexf)

, − βM

βf
→ 0,

− βL

βf
→ dxK(xM xexf)

dxK(xM xexf) + dxL(xM xexf)

, − βe

βf
→ 0.

The vectors in (58) satisfy the following convergences:

|εεεKxK xe |
|nxK xe | =

∣∣∣∣
(

−m[xK xL ]
m[xK xf]

βe

βf
− 1 + mT

mTK
+ mT

mTK

βK

βf

)∣∣∣∣
3m(xM xK xe)

m(xM xLC[xK xe])
→ 0,

|εεεKxL xe |
|nxL xe | =

∣∣∣∣
(

−m[xK xL ]
m[xK xf]

βe

βf
+ 1 + mT

mTK

βL

βf

)∣∣∣∣
3m(xM xK xe)

m(xM xKC[xL xe])
→ 0,

|εεεKxM xe |
|nxM xe | =

∣∣∣∣m[xK xL ]
m[xK xf]

(
− βe

βf
+ βM

βf

)∣∣∣∣
3m(xM xK xe)

m(xK xLC[xM xe])
→ 0,

|εεεKxK xL |
|nxK xL | =

∣∣∣∣
(

−1 − mT

mTK

βL

βf
− 1 + mT

mTK
+ mT

mTK

βK

βf

)∣∣∣∣
3m(xM xK xe)

m(xM xeC[xK xL ])
→ 0,

|εεεKxM xK |
|nxM xK | =

∣∣∣∣
(
1 − mT

mTK
− mT

mTK

βK

βf
+ m[xK xL ]

m[xK xf]
βM

βf

)∣∣∣∣
3m(xM xK xe)

m(xL xeC[xM xK ])
→ 0,

|εεεKxM xL |
|nxM xL | =

∣∣∣∣
(

−1 − mT

mTK

βL

βf
+ m[xK xL ]

m[xK xf]
βM

βf

)∣∣∣∣
3m(xM xK xe)

m(xK xeC[xM xL ])
→ 0, (59)

as h → 0.
• Case 2b. On TL = (xMxL xexf), the results can be computed as in Case 2a,
specifically as follows:

mTL (∇�uh)TL = (uK − uM )(nxM xK + εεεLxM xK ) + (uL − uM )(nxM xL + εεεLxM xL )

+ (ue − uM )(nxM xe + εεεKxM xe) + (uL − uK )(nxK xL + εεεLxK xL )

+ (ue − uK )(nxK xe + εεεLxK xe) + (ue − uL)(nxL xe + εεεLxL xe),

(60)
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whose vectors satisfy

|εεεLxN xQ |
|nxN xQ | → 0, ∀(xN , xQ) ∈ V(2)

T , h → 0. (61)

From (58)–(61), we obtain the formula (∇�uh)T as given in (53), where the
vectorsεεεxN xQ are determined byεεεKxN xQ andεεεLxN xQ on TK and TL , respectively,

for all (xN , xQ) ∈ V(2)
T .

If T := (xMxK xexf) ∈ T ∗∗
const, the tensor � has only one approximation �K on T ,

then (∇�uh)T is expressed as in (57):

mT (∇�uh)T = (ue − uK )nxK xe + (ue − uM
f )nxL xe + (ue − uM )nxM xe

+ (uM
f − uK )nxK xf + (uK − uM )nxM xK + (uM

f − uM )nxM xf .

(62)

��
Lemma 2 Let (Hh, h, P1,∇�) be a family of discretizations in the sense of Definition
2 and let δ be a positive constant independent of h such that

Assumption A3
∣∣∣∣∣
(
�Kn(xM xK xe)

) · nK
(xM xexf)

mTK
−

(
�Ln(xM xL xe)

) · nK
(xM xexf)

mTL

∣∣∣∣∣

≥ δmax

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
�KnK

(xM xexf)

)
· nK

(xM xexf)

mTK
+

(
�LnK

(xM xexf)

)
· nK

(xM xexf)

mTL
,∣∣∣∣∣

(
�Kn(xM xK xf)

) · nK
(xM xexf)

mTK
−

(
�Ln(xM xL xf)

) · nK
(xM xexf)

mTL

∣∣∣∣∣

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(63)

for any T := (xMxK xL xe) ∈ T ∗∗
� .

On each sub-tetrahedron TK and TL of T , the discrete gradient ∇�uh is rewritten as

|TK |(∇�uh)TK = (uK − uM )τττ TK
xM xK + (uL − uM )τττ TK

xM xL + (ue − uM )τττ TK
xM xe

+ (uL − uK )τττ TK
xK xL + (ue − uK )τττ TK

xK xe + (ue − uL)τττ TK
xL xe , (64)

|TL |(∇�uh)TL = (uK − uM )τττ TL
xM xK + (uL − uM )τττ TL

xM xL + (ue − uM )τττ TL
xM xe

+ (uL − uK )τττ TL
xK xL + (ue − uK )τττ TL

xK xe + (ue − uL)τττ TL
xL xe , (65)

respectively, and

|τττ TK
xN xQ |, |τττ TL

xN xQ | ≤ C1|nxN xQ |, (xN , xQ) ∈ V(2)
T , (66)
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where the positive constant C1 depends on δ.

Proof Substituting (20) into the first equation in (27) yields

(∇�uh)TK = −

[
(ue − uK ) τττ

TK
xK xe + (ue − uL) τττ

TK
xL xe + (ue − uM ) τττ

TK
xM xe+

(uL − uK ) τττ
TK
xK xL + (uK − uM ) τττ

TK
xM xK + (uL − uM ) τττ

TK
xM xL

]

3mTK
,

(67)

with

τττ TK
xM xK =

(
β̃T
MnK

(xM xexf) − β̃T
Kn(xK xexf)

)
, τττ TK

xK xL =
(
−β̃T

L n
K
(xM xexf)

)
,

τττ TK
xM xe =

(
−n(xK xexf) + β̃T

Mn(xM xK xf)

)
, τττ TK

xM xL =
(
−β̃T

L n(xK xexf)

)
,

τττ TK
xK xe =

(
β̃T
Kn(xM xK xf) − β̃T

e n
K
(xM xexf)

)
, τττ TK

xL xe =
(
β̃T
L n(xM xK xf)

)
. (68)

Regarding assumptions A A2 and A A3, the inequalities between the magnitudes of
the aforementioned vectors and

{|nxN xQ |}
(xN ,xQ)∈V(2)

T
are as follows:

∣∣∣τττ TK
xM xK

∣∣∣ ≤ max
{
|β̃T

M |, |β̃T
K |
}

(|nK
(xM xexf)| + |n(xK xexf)|) ≤ δ + 3

δ2
|nxM xK |,

∣∣∣τττ TK
xM xL

∣∣∣ ≤ 1

δ2
|nxM xL |,∣∣∣τττ TK

xM xe

∣∣∣ ≤ max
{
1,
∣∣∣β̃T

M

∣∣∣
}

(|n(xK xexf)| + |n(xM xK xf)|) ≤ 2(δ + 3)

δ2
|nxM xe |,∣∣∣τττ TK

xK xL

∣∣∣ ≤ 1

δ2
|nxK xL |,∣∣∣τττ TK

xK xe

∣∣∣ ≤ max
{∣∣∣β̃T

K

∣∣∣ ,
∣∣∣β̃T

e

∣∣∣
} (

|n(xM xK xf)| + |nK
(xM xexf)|

)
≤ 2

δ2
|nxK xe |,∣∣∣τττ TK

xL xe

∣∣∣ ≤ 1

δ2
|nxL xe |,

where the coefficients β̃T
M , β̃T

K , β̃
T
L , and β̃T

e are given in (19) and satisfy the following
upper bounds:

∣∣∣β̃T
M

∣∣∣ ≤ 1 + |β̃T
K | + |β̃T

L | + |β̃T
e | ≤ 1 + 3

δ
,

∣∣∣β̃T
K

∣∣∣ =
∣∣∣∣∣∣

(
�KnK

(xM xexf)

)
· nK

(xM xexf)

3mTK βf

∣∣∣∣∣∣ ≤ 1

δ
,

∣∣∣β̃T
e

∣∣∣ =
∣∣∣∣∣
(
�Kn(xM xK xf)

) · nK
(xM xexf)

3mTK βf
−

(
�Ln(xM xL xf)

) · nK
(xM xexf)

3mTLβf

∣∣∣∣∣ ≤ 1

δ
,
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∣∣∣β̃T
L

∣∣∣ =
∣∣∣∣∣∣

(
�LnL

(xM xexf)

)
· nL

(xM xexf)

3mTLβf

∣∣∣∣∣∣ ≤ 1

δ
.

In this expression, the coefficient C1 = 2(δ+3)
δ2

satisfies (66). ��
Proposition 2 Under the assumptions A A1–A A3, let (Hh, h, P1,∇�) be a family of
discretizations in the sense of Definition 2. A positive constant δ independent of h
satisfies the following conditions:

Assumption A4
dxK xe
m[xK xe] ,

dxL xe
m[xL xe] ,

dxM xe
m[xM xe] ,

dxK xL
m[xK xL ] ,

dxK xM
m[xK xM ] ,

dxL xM
m[xL xM ] ≥ δ,

Assumption A5

min
Q∈{K ,L}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m
f
TQ
(xM xK C[xL xe])

,m
f
TQ
(xM xLC[xK xe])

,m
f
TQ
(xK xLC[xM xe])

,

m
f
TQ
(xK xeC[xM xL ])

,m
f
TQ
(xL xeC[xM xK ])

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

max

⎧⎨
⎩
m(xM xKC[xL xe]),m(xM xLC[xK xe]),m(xK xLC[xM xe]),
m(xK xeC[xM xL ]),m(xL xeC[xM xK ])

⎫⎬
⎭

≥ δ,

where the planar parts f
TQ
(xM xKC[xL xe]), f

TQ
(xM xLC[xK xe]), f

TQ
(xK xLC[xM xe]), f

TQ
(xK xeC[xM xL ])

andf
TQ
(xL xeC[xM xK ]) of the respective faces (xMxKC[xL xe]), (xMxLC[xK xe]), (xK xLC[xM xe]),

(xK xeC[xM xL ]), and (xL xeC[xM xK ]) are within the tetrahedron TQ for each Q ∈
{K , L}.
Assumption A6

ρTK
hT

,
ρTL
hT

≥ δ,

Then, the EFC-3DFEMb scheme is coercive, meaning that there exists a positive
constant C2 independent of h such that

‖P1vh‖L2(�) ≤ C2‖∇�vh‖(L2(�))
2 , ∀vh ∈ Hh . (69)

The EFC-3DFEMb scheme also satisfies the following limits:

lim
h→0

Ŝh(ϕ) = 0, ∀ϕ ∈ C∞
c (�), (70)

lim
h→0

Ŵh(ϕϕϕ) = 0, ∀ϕϕϕ ∈ (
C∞
c (�)

)3
, (71)

where the operators Ŝh and Ŵh are defined by (49) and (50), respectively.

Proof We verify the existence of a positive constant C3 depending on � and δ such
that

‖vh‖21,T ∗∗
h

≤ C3‖∇�vh‖2
(L2(�))

2 , ∀vh ∈ Hh, (72)

as follows: For any tetrahedron T := (xMxK xL xe) ∈ T ∗∗
h , the formula for ∇�vh in

classifying T can be obtained by
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Case 1: If T ∈ T ∗∗
const, (∇�vh)T is then calculated as given in (57). This equation

satisfies

ve − vK = (∇�vh)T · (xe − xK ), ve − vL = (∇�vh)T · (xe − xL),

ve − vM = (∇�vh)T · (xe − xM ), vL − vK = (∇�vh)T · (xL − xK ),

vK − vM = (∇�vh)T · (xK − xM ), vL − vM = (∇�vh)T · (xL − xM ),

Therefore,

‖(∇�vh)T ‖2 ≥ |ve − vK |2
m2[xK xe]

, ‖(∇�vh)T ‖2 ≥ |ve − vL |2
m2[xL xe]

,

‖(∇�vh)T ‖2 ≥ |ve − vM |2
m2[xM xe]

, ‖(∇�vh)T ‖2 ≥ |vL − vK |2
m2[xK xL ]

,

‖(∇�vh)T ‖2 ≥ |vM − vK |2
m2[xK xM ]

, ‖(∇�vh)T ‖2 ≥ |vL − vM |2
m2[xL xM ]

. (73)

Additionally, mT
m2[xK xe]

≥ δ2

3
|nxK xe |
dxK xe

frommT ≥ m(xK ,xe,f[xK xe]) = 1
3dxK xe |nxK xe |

and dxK xe ≤ m[xK xe]. In the same manner, it has

mT

m2[xL xe]
≥ δ2

3

|nxL xe |
dxL xe

,
mT

m2[xM xe]
≥ δ2

3

|nxM xe |
dxM xe

,
mT

m2[xK xL ]
≥ δ2

3

|nxK xL |
dxK xL

,

mT

m2[xK xM ]
≥ δ2

3

|nxK xM |
dxK xM

,
mT

m2[xL xM ]
≥ δ2

3

|nxL xM |
dxL xM

,
mT

m2[xK xe]
≥ δ2

3

|nxK xe |
dxK xe

.

(74)

From Eqs. (73) and (74), it follows that

mT ‖(∇�vh)T ‖2 ≥ 1

6
mT

⎡
⎢⎣

|ve−vK |2
m2[xK xe]

+ |ve−vL |2
m2[xL xe]

+ |ve−vM |2
m2[xM xe]

+
|vL−vK |2
m2[xK xL ]

+ |vM−vK |2
m2[xK xM ]

+ |vL−vM |2
m2[xL xM ]

⎤
⎥⎦

≥ δ2

18

⎡
⎣

|nxK xe |
dxK xe

(ve − vK )2 + |nxL xe |
dxL xe

(ve − vL)2 + |nxM xe |
dxM xe

(ve − vM )2+
|nxK xL |
dxK xL

(vL − vK )2 + |nxM xK |
dxM xK

(vK − vM )2 + |nxM xL |
dxM xL

(vL − vM )2

⎤
⎦ .

(75)

Case 2: If T ∈ T ∗∗
h \ T ∗∗

const, ∇�uh is defined by (27). Considering ∇�vh on TK , it
has

ve − vK = (∇�vh)TK · (xe − xK ), ve − vM
f = (∇�vh)TK · (xe − xf),

ve − vM = (∇�vh)TK · (xe − xM ), vM
f − vK = (∇�vh)TK · (xf − xK ),
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vK − vM = (∇�vh)TK · (xK − xM ), vM
f − vM = (∇�vh)TK · (xf − xM ),

Therefore,

‖(∇�vh)TK ‖2 ≥ |ve − vK |2
m2[xK xe]

, ‖(∇�vh)TK ‖2 ≥
∣∣ve − vM

f

∣∣2
m2[xfxe]

,

‖(∇�vh)TK ‖2 ≥ |ve − vM |2
m2[xM xe]

, ‖(∇�vh)TK ‖2 ≥
∣∣vM

f − vK
∣∣2

m2[xK xf]
, (76)

‖(∇�vh)TK ‖2 ≥ |vM − vK |2
m2[xK xM ]

, ‖(∇�vh)TK ‖2 ≥
∣∣vM

f − vM
∣∣2

m2[xM xf]
. (77)

Then, the inequality is established as

mTK ‖(∇�vh)TK ‖2 ≥ 1

6
mTK

⎡
⎢⎢⎣

|ve−vK |2
m2[xK xe]

+
∣∣ve−vM

f

∣∣2
m2[xexf]

+ |ve−vM |2
m2[xM xe]

+
∣∣vM

f −vK
∣∣2

m2[xK xf]
+ |vM−vK |2

m2[xK xM ]
+

∣∣vM
f −vM

∣∣2
m2[xM xf]

⎤
⎥⎥⎦ . (78)

In the same manner, the inequality on the tetrahedron TL can be obtained as

mTL‖(∇�vh)TL‖2 ≥ 1

6
mTL

⎡
⎢⎢⎣

|ve−vL |2
m2[xL xe]

+
∣∣ve−vM

f

∣∣2
m2[xexf]

+ |ve−vM |2
m2[xM xe]

+
∣∣vM

f −vL
∣∣2

m2[xL xf]
+ |vM−vL |2

m2[xL xM ]
+

∣∣vM
f −vM

∣∣2
m2[xM xf]

⎤
⎥⎥⎦ . (79)

Besides, by the assumptions A A4-A A6, it holds that

mT

m2[xK xe]
≥ dxK xe |nxK xe |

3m2[xK xe]
≥ δ2

3

|nxK xe |
dxK xe

,

mTK

m2[xM xK ]
≥

dxM xK mf
TK
(xL xeC[xM xK ])

3m2[xM xK ]
≥ δ3

|n[xM xK ]|
d[xM xK ]

,

mTL

m2[xL xe]
≥ 1

3

dxL xemf
TL
(xM xK C[xL xe])

m2[xL xe]
≥ δ3

|n[xL xe]|
d[xL xe]

,

mTL

m2[xM xL ]
≥ 1

3

dxM xLmf
TL
(xK xeC[xM xL ])

m2[xL xe]
≥ δ3

|n[xM xL ]|
d[xM xL ]

,

min
{
mTK ,mTL

}
m2[xK xL ]

≥ δ
dxK xLmf[xK xL ]

m2[xK xL ]
≥ δ3

|n[xK xL ]|
d[xK xL ]

,

mT

m2[xM xe]
≥ 1

3

dxM xemf[xM xe]
m2[xM xe]

≥ δ
|n[xM xe]|
dxM xe

,
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mTK

m2[xK xf]
≥ mTK

m2[xK xL ]
,

mTL

m2[xL xf]
≥ mTL

m2[xK xL ]
,

because of m[xK xL ] ≥ m[xK xf], m[xL xf]. (80)

Substituting (80) into the inequalities (78) and (79) yields:

6mT ‖ (∇�vh)T ‖2

≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

mTK
m2[xK xe]

(ve − vK )2 + mTL
m2[xL xe]

(ve − vL)2 + mTK
m2[xM xK ]

(vK − vM )2 +
mT

m2[xM xe]
(ve − vM )2 + mTL

m2[xM xL ]
(vL − vM )2 +

mTK
m2[xK xf]

(
vM
f − vK

)2 + mTL
m2[xL xf]

(
vM
f − vL

)2 +
mT

m2[xM xf]

(
vM
f − vM

)2 + mT
m2[xexf]

(
vM
f − ve

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≥ min

{
δ3

2
, δ

(
1 + 1

2δ

)}

⎡
⎣

|n[xK xe]|
d[xK xe] (ve − vK )2 + |n[xL xe]|

d[xL xe] (ve − vL)2 + |n[xM xK ]|
d[xM xK ] (vK − vM )2 +

|n[xM xe]|
dxM xe

(ve − vM )2 + |n[xM xL ]|
d[xM xL ] (vL − vM )2 + |n[xK xL ]|

d[xK xL ] (vL − vK )2

⎤
⎦ .

(81)

From (75) and (81), we choose C3 = 1

min
{

δ3
12 , δ

6

(
1+ 1

2δ

)
, δ2

36

} to satisfy the inequality

(72), which is the sum of (81) for all T ∈ T ∗∗
h .

Next, on each T ∈ T ∗∗
h , P1vh is written as

P1vh(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0
hvh(x) + ∇P1vh |T · (x − xM ), if x ∈ PxM ,

�0
hvh(x) + ∇P1vh |T · (x − xK ), if x ∈ PxK ,

�0
hvh(x) + ∇P1vh |T · (x − xL), if x ∈ PxL ,

�0
hvh(x) + ∇P1vh |T · (x − xe), if x ∈ Pxe ,

(82)

where the restriction ∇P1vh |T of ∇P1vh on T is given as

mT ∇P1vh |T =(ve − vK )nxK xe + (ve − vL)nxL xe + (ve − vM )nxM xe

+(vL − vK )nxK xL + (vK − vM )nxM xK + (vL − vM )nxM xL , (83)

and the operator �0
h is defined as given in (51).

The following result is obtained by applying the triangle inequality to (82)

‖P1vh‖L2(�) ≤ ‖�0
hvh‖L2(�) + h‖∇P1vh‖(L2(�))

2 . (84)
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By employing the Cauchy–Schwarz inequality in (83), we can continue estimating the
terms ‖∇P1vh‖(L2(�)) and ‖�0

hvh‖L2(�) as follows:

∑
T∈T ∗∗

h

mT |∇P1vh |

≤
∑

T∈T ∗∗
h

⎡
⎣ (ve − vK )2

|nxK xe |
dxK xe

+ (ve − vL)2
|nxL xe |
dxL xe

+ (ve − vM )2
|nxM xe |
dxM xe

+(vL − vK )2
|nxK xL |
dxK xL

+ (vK − vM )2
|nxM xK |
dxM xK

+ (vL − vM )2
|nxM xL |
dxM xL

⎤
⎦

⎡
⎢⎢⎢⎣

∑
T∈T ∗∗

h
T=(xM xK xL xe)

∑
(xN ,xQ)∈V(2)

T

|nxN xQ |dxN xQ

⎤
⎥⎥⎥⎦ .

Taking note that mT = 2
3

∑
(xN ,xQ)∈V(2)

T

|nxN xQ |dxN xQ and using the definition in (52),

the above inequality can be rewritten as

‖∇P1vh‖2
(L2(�))

3 ≤ 3

2
m� ‖vh‖21,T ∗∗

h
, (85)

where m� represents the volume of �.

According to [17, Lemma 5.3], there exists a positive constant C4 independent of
h such that

‖�0
hvh‖L2(�) ≤ C4‖vh‖21,T ∗∗

h
, ∀vh ∈ Hh . (86)

By combining (72) with (84)–(86), one can deduce

‖P1vh‖L2(�) ≤
(
C4 + 3

2
hm�

)
‖vh‖21,T ∗∗

h
≤ C3

(
C4 + 3

2
hm�

)
‖∇�vh‖2

(L2(�))
3 .

(87)

For a sufficiently small value of h, there exists a positive constant C2 >

C3
(
C4 + 3

2hm�

)
that is independent of h and satisfies the coercive property (69)

for the EFC-3DFEMb scheme.
Next, we will prove that the EFC-3DFEMb scheme has the strong consistency

property (70).
For any ϕ ∈ C∞

c (�), there exists a vector ϕϕϕh such that the values of its elements
are taken from (ϕ(xP ))xP∈V∗∗ ∈ H0

h . According to [17, Lemma 4.3], there exists a
positive constant C5 that is independent of h, and satisfies

‖∇�ϕϕϕh − ∇ϕ‖
(L2(�))

3 ≤ C5h. (88)
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Combining the result of [18, Lemma 3.1] with this, one can write

‖P1ϕϕϕh − ϕ‖L2(�) ≤ h‖∇ϕ‖
(L2(�))

3 . (89)

After establishing the strong consistency of the EFC-3DFEMb scheme, it is necessary
to prove the dual consistency property (71) as follows:

For any ϕϕϕ ∈ (
C∞
c (�)

)3, the operators I and {Ii }i=1,3 are defined by

I (ϕϕϕ) =
∫

�

[∇�vh · ϕϕϕ + P1vh divϕϕϕ] dx = I1(ϕϕϕ) + I2(ϕϕϕ) + I3(ϕϕϕ),

I1(ϕϕϕ) =
∑

T∈T ∗∗
const

mT∇�vh · ϕϕϕT

+
∑

T∈T ∗∗
h \{T ∗∗

const∪T ∗∗
� }

T :=(xM xK xL xe)

[
mTK (∇�vh)TK · ϕϕϕTK + mTL (∇�vh)TL · ϕϕϕTL

]

+
∑

T∈T ∗∗
�

[
mTK (∇�vh)TK · ϕϕϕTK + mTL (∇�v)TL · ϕϕϕTL

]
,

I2(ϕϕϕ) =
∑

T∈T ∗∗
h

T :=(xM xK xL xe)

[∫
PxM

(
�0

hvh(x)
)
divϕϕϕ dx + ∫

PxK

(
�0

hvh(x)
)
divϕϕϕ dx∫

PxL

(
�0

hvh(x)
)
divϕϕϕ dx + ∫

Pxe

(
�0

hvh(x)
)
divϕϕϕ dx

]
,

(90)

I3(ϕϕϕ) =
∑

T∈T ∗∗
h

T :=(xM xK xL xe)

⎡
⎢⎢⎢⎣

∫
PxM

(∇P1vh |T · (x − xM )) divϕϕϕ dx

+ ∫
PxK

(∇P1vh |T · (x − xK )) divϕϕϕ dx∫
PxL

(∇P1vh |T · (x − xL)) divϕϕϕ dx

+ ∫
Pxe

(∇P1vh |T · (x − xe)) divϕϕϕ dx

⎤
⎥⎥⎥⎦ ,

with vh ∈ Hh, I1(ϕϕϕ) =
∫

�

∇�v · ϕϕϕ dx, I2(ϕϕϕ) + I3(ϕϕϕ)

=
∑

T∈T ∗∗
h

T :=(xM xK xL xe)

∫
T
[P1vh divϕϕϕ] dx .

Using the above operators, we can rewrite Ŵh(ϕϕϕ) as

Ŵh(ϕϕϕ) = max
vh∈Hh

1

‖∇�vh‖
∫

�

[∇�vh · ϕϕϕ + P1vh div(ϕϕϕ)] dx = max
vh∈Hh

1

‖∇�vh‖ I (ϕϕϕ).
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In addition, based on Lemma 1, I1(ϕϕϕ) can be rewritten as

I1(ϕϕϕ) =
∑

T∈T ∗∗
h \T ∗∗

�

⎡
⎣ (vK − vM )(nxM xK + εεεxM xK ) + (vL − vM )(nxM xL + εεεxM xL )+

(ve − vM )(nxM xe + εεεxM xe) + (vL − vK )(nxK xL + εεεxK xL )+
(ve − vK )(nxK xe + εεεxK xe) + (ve − vL )(nxL xe + εεεxL xe)

⎤
⎦ · ϕϕϕT

+
∑

T∈T ∗∗
�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
(vK − vM )τττ

TK
xM xK + (vL − vM )τττ

TK
xM xL + (ve − vM )τττ

TK
xM xe

+(vL − vK )τττ
TK
xK xL + (ve − vK )τττ

TK
xK xe + (ve − vL )τττ

TK
xL xe

]
· ϕϕϕTK +

[
(vK − vM )τττ

TL
xM xK + (vL − vM )τττ

TL
xM xL + (ve − vM )τττ

TL
xM xe+

(vL − vK )τττ
TL
xK xL + (ve − vK )τττ

TL
xK xe + (ve − vL )τττ

TL
xL xe

]
· ϕϕϕTL

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(91)

with ϕϕϕT = 1
mT

∫
T ϕϕϕ dx , ϕϕϕTK = 1

mTK

∫
TK

ϕϕϕ dx and ϕϕϕTL = 1
mTL

∫
TL

ϕϕϕ dx .

By the Green expression, the operator I2(ϕϕϕ) can be rewritten as

I2(ϕϕϕ) =
∑

T∈T ∗∗
h

T :=(xM xK xL xe)

⎡
⎣ (vM − vK )ϕϕϕxM xK · nxM xK + (vM − vL)ϕϕϕxM xL · nxM xL+

(vM − ve)ϕϕϕxM xe · nxM xe + (vK − vL)ϕϕϕxK xL · nxK xL+
(vK − ve)ϕϕϕxK xe · nxK xe + (

vL − vCe

)
ϕϕϕxL xe · nxL xe

⎤
⎦ ,

with ϕϕϕxM xK = 1

|nxM xK |
∫
f[xM xK ]

ϕϕϕdγ , ϕϕϕxM xL = 1

|nxM xL |
∫
f[xM xL ]

ϕϕϕdγ ,

ϕϕϕxM xe = 1

|nxM xe |
∫
f[xM xe]

ϕϕϕdγ , ϕϕϕxK xL = 1

|nxK xL |
∫
f[xK xL ]

ϕϕϕdγ ,

ϕϕϕxK xe = 1

|nxK xe |
∫
f[xK xe]

ϕϕϕdγ , ϕϕϕxL xe = 1

|nxL xe |
∫
f[xL xe]

ϕϕϕdγ . (92)

To estimate I1(ϕϕϕ) and I2(ϕϕϕ), we introduce the operators Ri on the space
(
C∞
c (�)

)3,
where i ranges from 1 to 3, as follows:

R1(ϕϕϕ) =
∑

T∈T ∗∗
h \T ∗∗

�
T :=(xM xK xL xe)

∑
(xN ,xQ)∈V(2)

T

(|nxN xQ | + |εεεxN xQ |) dxN xQ (ϕϕϕT − ϕϕϕxN xQ

)2
,

(93)

R2(ϕϕϕ) =
∑

T∈T ∗∗
h \T ∗∗

�
T :=(xM xK xL xe)

(ϕϕϕT )2
∑

(xN ,xQ)∈V(2)
T

( |εεεxN xQ |
|nxN xQ |dxN xQ

)
, (94)

R3(ϕϕϕ) =
∑

T∈T ∗∗
�

T :=(xM xK xL xe)

∑
(xN ,xQ)∈V(2)

T⎡
⎣|nxN xQ |dxN xQ

(
τττ
TK
xN xQ · ϕϕϕTK + τττ

TL
xN xQ · ϕϕϕTL − nxN xQ · ϕϕϕxN xQ

|nxN xQ |

)2
⎤
⎦ , (95)
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for any ϕϕϕ ∈ (
C∞
c (�)

)3.
Using the above operators Ri for i ranging from 1 to 3, and applying the Cauchy–

Schwarz inequality, one obtains

|I1(ϕϕϕ) + I2(ϕϕϕ)|2 ≤ ‖v‖21,T ∗∗
h

[R1(ϕϕϕ) + R2(ϕϕϕ) + R3(ϕϕϕ)] , ∀ϕϕϕ ∈ (
C∞
c (�)

)3
. (96)

In (93) for R1(ϕϕϕ), using the regularity of ϕϕϕ ∈ (
C∞
c (�)

)3 yields the existence of
Cϕϕϕ > 0, which depends on ϕϕϕ, such that

|ϕϕϕT − ϕϕϕxN xQ |2 ≤ Cϕϕϕh
2, for each (xN , xQ) ∈ V(2)

T . (97)

Combining the above result with the property (54) in Lemma 1, there exists a positive
constant C6 > 0 that is independent of h such that

|R1(ϕϕϕ)| ≤ C6m�h
2(1 + εεε(h)), with lim

h→0
εεε(h) = 0, (98)

where m� represents the volume of the domain �.
Hence,

|R1(ϕϕϕ)| → 0, as h → 0. (99)

For R2(ϕϕϕ), with property (54), one can obtain

|R2(ϕϕϕ)| → 0, as h → 0. (100)

For R3(ϕϕϕ), using the Cauchy–Schwarz inequality, one can find that a positive constant
C7 depends on ϕϕϕ, such that

(
τττ
TK
xN xQ · ϕϕϕTK + τττ

TL
xN xQ · ϕϕϕTL − nxN xQ · ϕϕϕxN xQ

|nxN xQ |

)2

=

⎡
⎢⎢⎢⎣

τττ
TK
xN xQ

|nxN xQ | · (ϕϕϕTK − ϕϕϕxN xQ

) + τττ
TL
xN xQ

|nxN xQ | · (ϕϕϕTL − ϕϕϕxN xQ

)

+
(

τττ
TK
xN xQ

|nxN xQ | + τττ
TL
xN xQ

|nxN xQ | − nxN xQ
|nxN xQ |

)
· ϕϕϕxN xQ

⎤
⎥⎥⎥⎦

2

≤ 3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
|τττ TKxN xQ |
|nxN xQ |

)2 (
ϕϕϕTK − ϕϕϕxN xQ

)2

+
(

|τττ TLxN xQ |
|nxN xQ |

)2 (
ϕϕϕTL − ϕϕϕxN xQ

)2

+
(

|τττ TKxN xQ |
|nxN xQ | s + |τττ TLxN xQ |

|nxN xQ | + 1

)2

|ϕϕϕxN xQ |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ C7, ∀(xN , xQ) ∈ V(2)
T .

(101)
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By applying (101) and utilizing mT = 2
3

∑
(xN ,xQ)∈V(2)

T
dxN xQ |nxN xQ | in the formula

(95), one can find that there exists a positive constant C8 > 0, dependent only on ϕϕϕ,
such that

|R3(ϕϕϕ)| ≤ C8

∑
T∈T ∗∗

�

mT . (102)

According to [19, Theorem 3.8], it is established that

∑
T∈T ∗∗

�

mT → 0, as h → 0, (103)

One can observe that the dimension of the zones where the tensor �(x) is piecewise
Lipschitz continuous is one or two.

From Eqs. (102) and (103), it follows that

|R3(ϕϕϕ)| → 0, as h → 0. (104)

Applying Holder’s inequality and utilizing (85) leads to

|I3(ϕϕϕ)| ≤ h ‖∇P1(v)‖(L2(�))
3 ‖div(ϕϕϕ)‖L2(�) ≤ h

√
3

2
m� ‖vh‖1,T ∗∗

h
‖div(ϕϕϕ)‖L2(�) ,

(105)

and therefore

|I3(ϕϕϕ)| → 0, as h → 0. (106)

Combining the inequalities (72), (96), (105) and for each ϕϕϕ ∈ (
C∞
c (�)

)3, one can
obtain

1

‖∇�vh‖(L2(�))
3
|I (ϕϕϕ)| ≤

√
C3

‖vh‖1,T ∗∗
h

‖vh‖1,T ∗∗
h

√
(R1(ϕϕϕ) + R3(ϕϕϕ) + R2(ϕϕϕ))

+
√
C3

‖vh‖1,T ∗∗
h

h
√
3m� ‖vh‖1,T ∗∗

h
‖div(ϕϕϕ)‖L2(�) , ∀vh ∈ Hh .

(107)

Regarding the convergences of (99), (100), and (104) with the above inequalities, it
can be concluded for each ϕϕϕ ∈ (

C∞
c (�)

)3 that
1

‖∇�vh‖(L2(�))
3
|I (ϕϕϕ)| → 0, as h → 0, ∀vh ∈ Hh \ {000}.

As a result, the strong consistency property (71) has been proven. ��
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Corollary 1 Let (Hh, h,�,∇�) be a family of discretizations in the sense of Definition
1. If the EFC-3DFEMb scheme satisfies the coercive, dual, and strong consistency
properties under the assumptions of Proposition 2, then the EFC-3DFEM scheme
also satisfies the coercive, dual, and strong consistency properties.

Proof For any vh ∈ Hh , with the definitions of �vh in (26) and P1vh in (48), we get
the following inequality:

‖�vh − P1vh‖L2(�) ≤ h
(
‖∇P1vh‖(L2(�))

3 + ‖∇�vh‖(L2(�))
3

)
. (108)

Substituting (72) and (85) into the above inequality, we get

‖�vh − P1vh‖L2(�) ≤ C9h‖∇�vh‖(L2(�))
3 (109)

where C9 is a positive constant independent of h.
By (109) and the coercivity (69) of P1, a positive constant C10 is defined and

independent of h such that

‖�vh‖L2(�) ≤ ‖�vh − P1vh‖L2(�) + ‖P1vh‖L2(�) ≤ C10‖∇�vh‖(L2(�))
3 , (110)

which means that the EFC-3DFEM scheme is coercive.
Let ϕ ∈ C∞

c (�), and consider a vector ϕϕϕh whose elements are taken from
(ϕ(xP ))xP∈V∗∗ ∈ Hh . Utilizing the triangle inequality in (89) and (109), we estimate
the error between �(ϕϕϕh) and ϕ as follows:

‖�ϕϕϕh − ϕ‖L2(�) ≤ ‖�ϕϕϕh − P1ϕϕϕh‖L2(�) + ‖P1ϕϕϕh − ϕ‖L2(�)

≤ h
[
C9‖∇�ϕϕϕh‖(L2(�))

3 + ‖∇ϕ‖
(L2(�))

3

]
. (111)

Hence,

‖�ϕϕϕh − ϕ‖L2(�) → 0, as h → 0. (112)

Combining the above with the convergence of (88), the EFC-3DFEM scheme satisfies
the strong consistency property (43). From Proposition 1 and (109), it also satisfies
the dual consistency (44). ��

5 Numerical experiments

In this section, three benchmark tests [9] are carried out to verify the numerical results
for the convergence of EFC-3DFEM scheme with the following methods:

• FEM-T4 – The standard linear finite element method on a tetrahedral mesh [20];
• SUSHI – A scheme using stabilization and hybrid interfaces [21];
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• CeVeFE-DDFV–Adiscrete dualityfinite volume schemewith cell/vertex/face+edge
unknowns [22];

• VAG – The vertex approximate gradient scheme [23]; and
• MFD-GEN –Themimetic finite difference of generalized polyhedral meshes [24];

The above list includes the FEM-T4 method because the EFC-3DFEM method is
equivalent to this approach on the tetrahedral subdual mesh T ∗∗

h in the isotropic tensor
situation. Except for the FEM-T4 method, the remaining methods satisfy the local
conservativity of the fluxes, which is particularly essential for handling heterogeneous,
anisotropic (possibly discontinuous) diffusion (e.g., Tests 2 and 3).

The relative errors on the subdual mesh T ∗∗
h in L2, H1 semi-norm, and energy norm

of proposed EFC-3DFEM scheme denoted by erl2, ergrad, and ener are computed as
follows:

erl2 =

⎛
⎜⎜⎝

∑
T∈T ∗∗

h

∫
T |uh − u|2dx

∑
T∈T ∗∗

h

∫
T |u|2dx

⎞
⎟⎟⎠

1/2

, (113)

ergrad =

⎛
⎜⎜⎝

∑
T∈T ∗∗

h

∫
T |∇�uh − ∇u|2dx
∑

T∈T ∗∗
h

∫
T ∇u|2dx

⎞
⎟⎟⎠

1/2

, (114)

ener =

⎛
⎜⎜⎝

∑
T∈T ∗∗

h

∫
T [�(∇�uh − ∇u)] · (∇�uh − ∇u) dx

∑
T∈T ∗∗

h

∫
T (�∇u) · ∇u dx

⎞
⎟⎟⎠

1/2

, (115)

where u is the the exact solution and uh = (uP )xP∈N ∗∗ is the numerical result uh
at vertices of the subdual mesh T ∗∗

h . Besides, umin and umax are defined as the
minimum and maximum values of the approximate solutions. Additionally, their rates
of convergence are expressed for each number of mesh i ≥ 2 as follows:

ratiol2 = −3
log (erl2(i)/erl2(i − 1))

log (nu(i)/nu(i − 1))
, (116)

ratiograd = −3
log (ergrad(i)/ergrad(i − 1))

log (nu(i)/nu(i − 1))
, (117)

ratioener = −3
log (ener(i)/ener(i − 1))

log (nu(i)/nu(i − 1))
, (118)

with nu denotes the number of unknowns in the linear system.
Additionally, four different fundamental mesh types of primal meshes are studied:

the uniform tetrahedral mesh (Mesh 1), the checkerboard mesh (Mesh 2), the prism
mesh with general bases (Mesh 3), and the locally refined mesh (Mesh 4) (see Fig. 8).
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Fig. 8 Four types of primal meshes: (a) Mesh 1: uniform tetrahedral mesh, (b) Mesh 2: checkerboard mesh,
(c) Mesh 3: prism mesh with general bases, and (d) Mesh 4: locally refined mesh

Table 1 Convergence of the EFC-3DFEM scheme for Test 1 on Mesh 1

nu erl ratioerl ergrad ratiograd ener ratioener umin umax

860 1.133e–02 1.053e–01 1.005e–01 8.555e–03 1.991

6232 3.172e–03 1.929 5.933e–02 0.828 5.667e–02 0.868 2.141e–03 1.998

47,408 8.425e–04 1.960 3.147e–02 0.914 3.007e–02 0.937 5.354e–04 1.999

369,760 2.175e–04 1.977 1.621e–02 0.957 1.548e–02 0.969 1.338e–04 1.999

Test 1 Mild anisotropy.

Considering a constant, anisotropic permeability tensor �1 and a regular solution u1
determined on the unit cubic domain �, a non-homogeneous Dirichlet condition on
the domain boundary ∂� is as follows:

�1(x, y, z) =
⎛
⎝ 1 0.5 0
0.5 1 0.5
0 0.5 1

⎞
⎠ , (119)

u1(x, y, z) = 1 + sin(πx) sin

(
π

(
y + 1

2

)
sin

(
π

(
z + 1

3

)))
. (120)

The minimum and maximum values of the solution u1 on � are equal to 0 and 2,
respectively. The primal meshes are Mesh 1 and Mesh 2.

It can be observed in Table 1 that when the mesh is refined, the EFC-3DFEM
delivers good convergence and the rate is of 1.9 in L2-norm, nearly 0.9 in H1-norm
and energy norm. Besides, the EFC-3DFEM scheme is higher accurate than FEM-T4
in the relative errors as indicated in Fig. 9. On a finer mesh of the subdual mesh T ∗∗

h ,
the numerical results are really obtained.

From Table 2, the EFC-3DFEM delivers also good convergence and the rate
increases to 1.98 in L2−norm, 0.947 in H1−norm and 0.949 in the energy norm.
The EFC-3DFEM presents smaller errors in L2−norm than VAG, CeVeFE-DDFV,
and SUSHI schemes as shown Fig. 10 with the same primal mesh size.
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Fig. 9 The relative errors in L2 norm (a), H1 semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM and FEM-T4 schemes for Test 1 on Mesh 1

Table 2 Convergence of the EFC-3DFEM scheme for Test 1 on Mesh 2

nu erl ratioerl ergrad ratiograd ener ratioener umin umax

252 3.348e–02 2.173e–01 2.163e–01 8.555e–03 1.991

1824 1.037e–02 1.776 1.467e–01 0.595 1.448e–01 0.608 2.141e–03 1.997

13,824 2.754e–03 1.964 8.150e–02 0.871 8.03483e–02 0.873 5.354e–04 1.999

107,520 7.098e–04 1.983 4.264e–02 0.947 4.200e–02 0.949 1.338e–04 1.999

Table 3 Convergence results of the EFC-3DFEM scheme for Test 2 on Mesh 3

nu erl2 ratiol2 ergrad ratiograd ener ratioener umin umax

8410 2.923e–02 2.679e–01 2.781e–01 -8.842e–01 1.047

57,420 8.156e–03 1.994 1.074e–01 1.428 1.136e–01 1.398 -8.609e–01 1.049

183,030 3.771e–03 1.996 6.908e–02 1.141 7.405e–02 1.108 -8.641e–01 1.048

421,240 2.175e–03 1.981 5.199e–02 1.023 5.584e–02 1.016 -8.616e–01 1.049

Test 2 Heterogeneity and anisotropy.

On the cubic domain � of Mesh 3, a second test is considered with smoothly variable
permeability tensor as

�2(x, y, z) =
⎛
⎝ y2 + z2 + 1 −xy −xz

−zy x2 + z2 + 1 −yz
−xz −yz x2 + y2 + 1

⎞
⎠ . (121)

A regular solution u2 is given as

u2(x, y, z) = x3y2z + x sin(2πxz) sin(2πxy) sin(2π z), (122)

which implies a non-homogeneous Dirichlet condition on the boundary ∂�. The min-
imum and maximum values are equal to −0.862 and 1.0487, respectively.
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Fig. 10 The relative errors in L2 norm (a), H1 semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM, VAG, CeVeFE-DDFV, MFD-GEN, and SUSHI schemes for Test 1 on Mesh 2

3 3.5 4 4.5 5 5.5 6
−3

−2.5

−2

−1.5

−1

−0.5

log10(Number of unknowns)

lo
g 10

(T
he

 re
la

tiv
e 

er
ro

r i
n 

L2  n
or

m
)

EFC−3DFEM
VAG
CeVeFE−DDFV
MFD−GEN
SUSHI

(a)

3 3.5 4 4.5 5 5.5 6
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

log10(Number of unknowns)

lo
g 10

(T
he

 re
la

tiv
e 

er
ro

r i
n 

H
 1  s

em
i−

no
rm

)

EFC−3DFEM
VAG
CeVeFE−DDFV
SUSHI

(b)

3 3.5 4 4.5 5 5.5 6
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

log10(Number of unknowns)

lo
g 10

(T
he

 re
la

tiv
e 

er
ro

r i
n 

en
er

gy
 n

or
m

)

EFC−3DFEM
VAG
CeVeFE−DDFV
MFD−GEN
SUSHI

(c)

Fig. 11 The relative errors in L2 norm (a), H1 semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM, VAG, CeVeFE-DDFV, MFD-GEN, and SUSHI schemes for Test 2 on Mesh 3

Test 3 Strong discontinuous heterogeneous permeability.

The domain � partitioned into the following sub-domains � =
4⋃

i=1
�i is given by

�1 = [0, 1] × [0, 0.5] × [0, 0.5],
�2 = [0, 1] × (0.5, 1] × [0, 0.5],
�3 = [0, 1] × (0.5, 1] × (0.5, 1],
�4 = [0, 1] × [0, 0.5] × (0.5, 1].

The permeability tensor is defined as

�3(x, y, z) =
⎛
⎝αi

x 0 0
0 αi

y 0
0 0 αi

z

⎞
⎠ , (123)

and the exact solution is as follows:

u3(x, y, z) = αi sin(2πx) sin(2π y) sin(2π z), (124)

for (x, y, z) ∈ �i , where the coefficient αi is given in Table 4. The minimum and
maximum values of u3 on � are −100 and 100, respectively.
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Table 4 The coefficients
αix , α

i
y , α

i
z , αi for Test 3 on each

sub-domain �i

i 1 2 3 4

αix 1 1 1 1

αiy 10 0.1 0.01 100

αiz 0.01 100 10 0.1

αi 0.1 10 100 0.01
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Fig. 12 The relative errors in L2 norm (a), H1 semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM, VAG, CeVeFE-DDFV, MFD-GEN, and SUSHI schemes for Test 3 on Mesh 4

Table 5 Convergence results of the EFC-3DFEM scheme for Test 3 on Mesh 4

nu erl2 ratiol2 ergrad ratiograd ener ratioener umin umax

152 8.505e–01 8.506e–01 8.505e–01 −185.055 185.055

940 1.734e–01 2.618 1.734e–01 1.875 2.723e–01 1.875 −113.946 113.946

6536 4.137e–02 2.217 4.137e–02 1.151 1.291e–01 1.154 −102.948 102.948

48,592 1.020e–02 2.094 1.020e–02 1.060 6.367e–02 1.057 −100.675 100.675

374432 2.542e–03 2.041 2.542e–03 1.024 3.172e–02 1.024 −100.163 100.163

The permeability tensor �3 is discontinuous across the interfaces separating four
sub-domains. The exact solution u3 is designed to be continuous and ensures the
conservation of the normal flux across such interfaces. Note that, the homogeneous
Dirichlet boundary condition is imposed in this case.

According to Fig. 11 and Table 3 of Test 2 on Mesh 3, Fig. 12 and Table 5 of Test 3
onMesh 4, the EFC-3DFEM converges and the rates in L2-norm is nearly 2; however,
the H1-norm and energy norm are nearly 1. Furthermore, with the samemesh size, the
EFC-3DFEM offers less L2−norm error than the VAG, CeVeFE-DDFV, and MFD-
GEN schemes on Test 2; and than the VAG, MFD-GEN schemes on Test 3 as shown
in Figs. 11 and 12.

Clearly, in the above numerical results, the convergence rate of EFC-3DFEM in
L2-norms, which is nearly 2, is greater than the rate estimated as 1 in (111).
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6 Conclusion

The EFC-3DFEM is represented in this research for three-dimensional heterogeneous
and anisotropic diffusion problems on generic meshes with discontinuities in the per-
meability tensor �. A primal mesh, a dual mesh, and a tetrahedral subdual mesh were
used in the design. Based on the results in this study, the following conclusions can
be drawn:

• The EFC-3DFEM possesses four important properties: (i) The stiffness matrix is
symmetric andpositive definite, (ii) The discrete unknowns are linear combinations
at the center points and edge points of the primal mesh, (iii) It benefits from the
local continuity of numerical fluxes, and (iv) Leveraging the ability to construct
the dual mesh in complex geometric domains (see Remark 1), the subdual mesh
is also constructed to align with real-world geometry.

• Within a rigorous theoretical framework, we demonstrate the convergence of the
approximate solution for the full diffusion tensor (possibly discontinuous) and
general polyhedral meshes.

• The construction of the dual and subdual meshes (see Remark 7) constitutes the
core aspect of the macroelement technique [8]. This construction ensures stabil-
ity by employing this technique when extended to address the three-dimensional
Stokes, Oseen, Navier Stokes problems, including cases with variable viscosity,
as demonstrated in the two-dimensional case [25].

• The numerical results indicate that the convergence rates are nearly 2 in the L2-
norm. In the cases of the H1-norm and energy norm, the rates are close to 1, as
expected.

• Furthermore, the method is facilitated for direct implementation in the conven-
tional finite element codes based on tetrahedral meshes.
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