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Abstract

In this research, we present a novel enhanced flux continuity three-dimensional finite
element method for heterogeneous and anisotropic (possibly discontinuous) diffusion
problems on general meshes. We create a polygonal dual mesh 7,* and its submesh
7,7* from a primal mesh 7}, in such a manner that a set number of adjacent tetrahedral
elements of 7,"* are united to form each dual control volume of 7,*, which corresponds
to a primal vertex. The weak solution of the diffusion problem is approximated by
the piecewise linear functions on the subdual mesh 7,**. In order to capture the local
continuity of numerical fluxes across the interfaces, the proposed scheme gives the
auxiliary face unknowns interpolated by the multi-point flux approximation. Moreover,
the consistency, coercive, and convergence properties of the method are presented
within a rigorous theoretical framework. Numerical results are carried out to highlight
accuracy and efficiency.

Keywords Finite element - General meshes - Heterogeneous anisotropic (possibly
discontinuous) diffusion - Numerical flux continuity

B Ong Thanh Hai
othai@hcmus.edu.vn

Thi Hoai Thuong Nguyen
ngththuong @hcmus.edu.vn

Anh Ha Le
laha@hcmus.edu.vn

Vuong Nguyen Van Do
donguyenvanvuong @tdtu.edu.vn
Department of Analysis, Faculty of Mathematics & Computer Science, University of Science,

227 Nguyen Van Cu, Ho Chi Minh 700000, Vietnam

Applied Computational Civil and Structural Engineering Research Group, Faculty of Civil
Engineering, Ton Duc Thang University, Ho Chi Minh, Vietnam

3 Vietnam National University, Ho Chi Minh 700000, Vietnam

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-024-10347-1&domain=pdf

16 Page2of43 O.T.Haietal.

Mathematics Subject Classification 65N30 - 65N08 - 76S05

1 Introduction

The three-dimensional heterogeneous and anisotropic diffusion problems arising in the
wide range of fields have considerably drawn much attention from researchers in many
scientific applications such as oil reservoir simulation, hydrogeology, semiconductor,
biology model, and plasma physics. Particularly, we consider the following problem
on an open bounded connected polyhedral domain €2 in R3:

—div(AVu) = f inQ, (1

with the homogeneous Dirichlet boundary condition:

u=0 ondf. (2)

The source term f belongs to L?(2). The tensor A is piecewise Lipschitz continuous
on €2, and satisfied symmetric, positive definite. Therefore, for almost every x € €2,
we have

MEP? < A(E - <AEI?, VE eR, 3)

where A and X are positive values.
The variational form of (1) can be represented as

Find € Ho := Hj (2) such that

/A(x)Vﬁ(x) -Vu(x)dx = / fx)v(x)dx, Vve H(} (2). @)

Q Q

For this problem, we developed a novel efficient method to accurately approximate
the weak solution u. When carrying out this work, we met the following two main
difficulties: (i) the continuity of numerical fluxes regarding to the heterogeneous
and anisotropic diffusion problems (possibly discontinuous) must be imposed on the
numerical methods; (ii) they are designed to handle on general meshes. Note that the
standard finite element method cannot pass two challenges (i) and (ii).

In the literature of numerical methods for the problem (1)—(2), the finite volume
method is well known to find the approximate solutions of the heterogeneous and
anisotropic problems (4) on admissible meshes. The two-point formula, which is used
in this method to approximate the diffusion flux — f £ A(x)Vi(x) - ng odx through

any face f of each control volume K, guarantees the local conservation of the discrete
fluxes. Note that the geometry of grid cells is admissible to ensure the consistency prop-
erty of the two-point flux approximation. In [1], the authors proposed a cell-centered
finite volume scheme which treats material discontinuities for three-dimensional dif-
fusion equation. Its discrete normal flux is approximated by a linear combination of
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the directional flux along the line connecting cell centers and the tangent flux along the
cell faces. However, the problem is only considered on a scalar diffusion coefficient.

Along with the cell-centered techniques, the potent hybrid techniques have been
successfully used to polygonal and polyhedral meshes, both structured and unstruc-
tured, that include extra unknowns on the edges, faces, and vertices in order to
approximate the solution u. In particular, we first mention the mixed finite element
method having the Raviart-Thomas basis functions. Its unknowns are the discrete
fluxes and discrete gradients. This method demands high refined grids to apply for
some highly heterogeneous and anisotropic cases. In [2], the authors introduced the
mixed finite volume method (MFV) based on the original developments from the finite
volume. This method can be carried out for any mesh type in arbitrary space dimen-
sion, and possesses the fluxes and the cell-centered unknowns. We also have the hybrid
finite volume (HFV) methods [3] using both cell and edge unknowns. Giving another
approach, the extensions of the discrete duality finite volumes (DDFV) method for
applications to three-dimensional diffusion problems are the CeVeFE-DDFV [4], the
CeVeDDFV-A [5], and the CeVeDDFV-B [6] methods. These methods are shown
to be complicated when applied to solving many engineering problems with diffu-
sion terms on a complex geometric computed domain. This is because the discrete
gradient, the discrete divergence, the discrete duality property, and the kernel of the
discrete gradient can be difficult to compute (e.g., volumes, faces) and describe for
more complex geometries of the boundary faces, the primal, secondary, diamond cells
(see [7, Remark 6], [6, Eq. (2)]). In addition, these schemes are limited to polyhedral
cells whose faces have only three or four sides. According to the literature review,
the numerical methods still have some mentioned drawbacks when applying to the
three-dimensional heterogeneous and anisotropic diffusion problems. From the above
drawbacks of the current schemes, our objective for this work is to investigate a novel
enhanced flux continuity three-dimensional finite element method (EFC-3DFEM) for
heterogeneous and anisotropic diffusion problems (4) on the general meshes. The
EFC-3DFEM scheme includes the following advantages:

1. Given a general primal mesh, the method is suitable for constructing the dual and
tetrahedral subdual meshes, ensuring that each dual control volume is indeed a
macroelement, the union of a fixed number of adjacent tetrahedra from the subdual
mesh 7,** (see [8, pp. 497-498]). The approximate space for the solution u of (4)
has piecewise linear basis functions on the tetrahedral subdual mesh ’Z;l**;

2. In order to guarantee the local continuity of fluxes, the discrete gradient and fluxes
are taken into account the anisotropic, heterogeneous tensor A (potentially discon-
tinuous) using the multi-point flux approximation approach;

3. With a mild assumption on geometry, the linear system is always symmetric and
positive definite, this helps to reduce the computational cost by the iterative methods
for solving linear systems;

4. The scheme provides the exact solution u of (1), if the tensor A is piecewise
constant in polygonal sub-domains and the exact solution u is affine in each of
these sub-domains;

5. The scheme is demonstrated to achieve both strong dual consistencies and coercive
properties. Consequently, the approximate solution converges to the weak solution
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u as the mesh size tends to 0, even for fully heterogeneous anisotropic (possibly
discontinuous) diffusion problems;
6. The tetrahedral subdual mesh 7,** is built as an improved primal mesh, which
allows the scheme to provide greater precision at a same computational cost; and
7. Since the standard finite element programs which are based on tetrahedral meshes,
thus they may be used directly, the algorithm is simple to implement.

The framework of this study is organized as follows: in Sect. 2, we describe in detail the
construction of the dual mesh 7,* and its subdual meshes 7,"*. Section 3 presents the
discretization of the EFC-3DFEM scheme to obtain a well-posed discrete variational
problem. It evidences that the associated linear algebraic system is positive definite and
symmetric, then it has the unique solution. In Sect. 4, the scheme is verified for strong,
dual consistencies and coercive properties. With these properties, we can present the
proof of the convergent results based on [3, Lemma 2.2]. Section 5 compares the
results of numerical experiments [9] for the diffusion issue with the heterogeneous
and anisotropic tensor (potentially discontinuous) and various mesh types. The paper
is concluded in the last section.

2 Construction of meshes

In this part, we go through how to create a dual mesh from a given primal mesh, along
with its submesh.

2.1 The primal mesh

Consider a discretization of 2 defined as a collection D = (7, V, C, £, F) with

a. 7 is a subset of Q that is a family of non-empty, open, connected disjoint subsets

such that
J%=2a
KeTy,

Foreach K € 75, we denote its volume by m g, its circumscribed sphere’s diameter
by hg, and let h = max{hg, VK € 7}.

b. Vis a set of all vertices of 7;,. We denote two sets of all vertices inside 2, and of
all vertices on 92 by Vg and Vg, respectively.

c. C is a set of all mesh points of 7;. Its elements are defined as follows: for each
K € Ty, its associated mesh point x is an interior pointin K such that the segment
[xk, x] lies inside K for all points x € K.

d. & is aset of all edges of 7). Its two subsets Eq and g contain interior edges and
boundary edges, respectively. For each edge e € £, we denote the midpoint of e
by xe which is collected in the set Cg, and has two subsets Cg, = {xc | € € Eq}
and Cgm = {xe | e € 539}.

e. JF is a set of all faces of 7, whose two subsets consist of Fo = {f | £ inside 2}
and Fyq = {£ | £ on 9R2}. For each £ € Fgq, there exist exactly two primal control
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° * n ° 2
(A) A primal vertex  (B) The midpointof ~ (C) The face point (D) The mesh pointof (E) The mesh point of
a primal edge of a primal face a primal element a dual control volume

Fig. 1 A primal vertex, the midpoint of a primal edge, the face point of a primal face, and the mesh point
of a primal element are represented by the symbols in (A), (B), (C), and (D)

volumes K, L € 7, sharing the common face £. Supposed that a segment joining
two points xx and xz intersects with £ at a point x¢ called the face point of £.
For each £ € Fjq, a face point x¢ is an inner point of £ such that for any x € £,
[xf, x] € £. These face points are collected in the set Cr = Cx, U Cr,,, where
Cro =1{xe | £ € Foland Cr,, = {x¢ | £ € Fyq}.

For the sake of simplicity, Fig. 1 introduces some symbols to points of these above
sets.

2.2 The dual mesh

The dual mesh is described as a collection D* = ( wa V5 CFER, f*) with

A V*,C*, E%, and F* are the sets of the dual control volumes, dual vertices, dual
mesh points, dual edges, and triangular dual faces, respectively. The dual mesh is later
utilized to construct the tetrahedral submesh. To create the dual mesh D* (see Algo-
rithm 1), we apply the method described in [10, Section 2] (with minor adjustments).

Algorithm 1 The construction of the dual mesh

Step 1: Establish a dual vertex for each mesh point xg of the primal element K in 7,.

Step 2: Establish a dual vertex at the face point x¢ of each primal boundary face £ in F N 9.
Step 3: Establish a dual vertex at the midpoint xe of each primal edge e in £.

Step 4: Establish a dual vertex at each primal boundary vertex xy in V N 9.

Step 5: Establish triangular dual faces that match to the primal edges.
Step 6: Establish triangular dual faces that match to the primal boundary vertices.

Step 7: Establish dual control volumes that correspond to primal vertices.
Step 8: Establish mesh points for dual control volumes.

Next, we describe in detail the implementation of each step in Algorithm 1 as
follows:

Constructing dual vertices

Step 1: The corresponding dual vertex of each primal element K in 7}, is selected to
represent the mesh point xg of K.

Step 2: Additionally, there are dual vertices at the face point x¢ of each primal
boundary face £ in F N 9.

Step 3: The midpoint x. of each primal edge e in £.

Step 4: The primal boundary vertices xy in V N 9€2.
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(B) Primal edge on
a boundary face

(C) Primal edge on
a boundary edge
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(A)Primal edge in
the interior

Fig.2 Triangular dual faces correspond to multiple primordial edges that are either in the domain interior
(A, four triangles), on a boundary edge (B, three triangles), or on a boundary edge (C, two triangles)

Constructing dual faces

Dual faces are formed by both primal edges and primal boundary vertices. We note
that in our architecture, the “face” are often not R hyperplanes, but rather R? surfaces
combinations. We generate the corresponding triangular dual faces (Step 5) for each
primal edge e in £ as follows:

Step 5 (a):

Step 5 (b):

Step 6 (a):

@ Springer

If e is inside of €2, we can begin to construct a “face” by progressively
traversing all of its related primordial elements in a single direction. We
get triangular dual faces by utilizing this “face” and attaching the midpoint
Xe (of e) to all of the vertices (see label A in Fig.?2).

There are two primordial boundary faces, £ {1397 cand £ 39 o that share the
edge e if e is on the boundary 0€2. This allows us to also generate a “face”
in this case. The algorithm begins at one of the two primal boundary faces,
say filiﬂ,e’ and proceeds through the set 7. of all primal elements with
e as their edges until it reaches the other boundary face £ %Q’e, and then
connects the midpoint of e with the mesh point of £ 59’ o> the dual vertices
xg, for all K in 7¢ and the mesh point of f%sz,e-

Finally, the “face” is created by connecting the last mesh point of £ %Q oo
the midpoint of e. The triangular dual faces are then formed by connecting
the midpoint x. of e to all vertices of this “face” (see labels B and C in
Fig 2).

For each primal boundary vertex xy in V N 92, we designate F, as a set
of primal boundary faces, and &y, as a set of edges with xy as their vertex,
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(E) Primal
vertex on a
boundary
(D) Primal vertex o edgy
a boundary face
(F) Primal
vertex at
a corner
point

Fig. 3 Triangular dual faces (used for boundary capping) correspond to a number of primordial boundary
vertices, including those on a boundary face (D), a 2-manifold boundary edge (E), and a corner point (F)

Step 6 (b):

in the same way. There are two edges ef 1, e in &, that correspond
to the boundary 0 £ for each £ in . The procedure for constructing the
“face” corresponding to xy begins at the midpoint x., | for some £ € Fy,
and connects to the face point x¢ and the midpoint xe, ,; continue until
returning to the original point which is the midpoint xe. ;.

By using this “face,” we connect the boundary vertex xy with all of its
vertices to create triangular dual faces.

Obviously, the triangular dual face construction can be generated with the boundary
d%2 by taking the intersection of multiple faces (see labels D, E, and F in Fig. 3). The
aforementioned steps are designed to produce capping “face” that match to boundary
primordial vertices, guaranteeing that the boundary 9<2 is represented with the same
accuracy in both the dual mesh and the primary mesh.

Creating dual control volumes corresponding to primal vertices

Polyhedrons M of the dual mesh 7,* are constructed by gathering all the triangular
dual faces corresponding to one primal vertex xy € V (Step 7). There are two cases:

Step 7 (a):

Step 7 (b):

If xy is in the interior of €2, then its related dual control volume M, is
formed from all triangular dual faces associated with primal edges con-
nected to xy (see label A in Fig. 4).

If xy is on the boundary 92, My, is formed from the triangular dual faces
of primal edges connected to xy and covered with the boundary triangular
dual faces corresponding to xy (see labels B and C in Fig. 4).
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(B) A boundary
primal node

== (C) A boundary
=l /primal node
NGt

(A) A interior
primal node

Fig.4 Dual polygons in dual mesh corresponding to a interior primal node (A, green), two boundary primal
nodes (B, blue) and (C, yellow)

Creating mesh points of dual control volumes

Step 8: The mesh point xj; associated with each dual control volume M in 7, will be
identified with the primal vertex xy associated with M if xy in M, whereas the set C*
includes two subsets: C¢, = {xy | xp € R} and C, = {xy | xy € 0R}.

Remark 1 [11, Algorithm 1] of the 3D-SC-FEM method can build triangular dual faces
similarly to Algorithm 1 by connecting the vertices of its dual faces to the midpoints
of primal edges and the boundary primal nodes. Hence, as mentioned in [11, Remark
3.2 ], constructing the dual mesh of the EFC-3DFEM method is feasible for real life,
complex geometries, as demonstrated in [12, 13].

Remark 2 The dual mesh 7," is a non-overlapping partition of €2, which is different
from the overlapping secondary mesh of the DDFV method (see [7, Remark 1]).

2.3 The subdual tetrahedral mesh

The subdual mesh collection, like the primal and dual meshes, is defined as D** =
(7;;**’ VR CHE EF L F **), where 7,** is a finite family of tetrahedrons 7' such that
U T = Q; F*, £, and V** are the faces, edges, and vertices of the mesh ",
TeT ™
respectively; C** is the finite set of tetrahedrons mesh points T in 7,"*. By connecting
the mesh point xj; of each control volume M in the dual mesh 7, with all of the vertices
of its triangular dual faces to produce tetrahedrons (see Fig. 5), we may decompose
each control volume M into tetrahedrons and produce the subdual mesh D**.

Remark 3 For actual complex geometries, as seen in [10, 14], the dual mesh 7, can be
constructed. Additionally, piecewise linear approximations may be used on universal
meshes, thanks to its tetrahedral subdual mesh 7,**.

@ Springer



An enhanced flux continuity three-dimensional... Page9of43 16

Vs gl S
L)/ d/V &

e B Jie g )

Fig. 5 An illustration of creating tetrahedrons (of the subdual mesh) from a dual control volume: 24
tetrahedrons of the subdual mesh are created from the dual polygon (green) in Fig.4

Remark 4 By construction of 7,**, we see that

(a) The set V** only consists of three subsets C, C*, and Cg containing mesh points
of the primal mesh, mesh points of the dual mesh, midpoints of primal edges,
respectively; V** = VE U VIE with VE = CUCE UCg,, Vg = CUC;o UCs,q,
and Cg = Cg, U Cg,,. Furthermore, for each M € 7%, the set V}; of its vertices
is defined by

Vif =Cy U CgM U{xm}, (@)

where x); is the mesh point of M, Cyy = {xx € C | xg is a vertex of M}, Ey =
{e € £ | xpisavertex of e}, and Cg,, = {xe € Cg | e € Ey).
(b) The set 7,"* only has the following subsets:

kK, _ skok f¢aQ VfE]“;*,
TQ T {T = (XmMXKXLXe) € Th | xyeC* xeeCs and xg ,xp €C

* | IfeFF o,
XKGC,XMEC*,XeECg and XfEC]:aQ

b0 = {T = (xpyxgxexe) € T*
where F7* is a set of all triangular faces in T'.
(c) BEach T = (xpyxgxrxe) € 73" can be partitioned into two sub-tetrahedrons
Tk := (xpyxgxexe) and Ty := (xpxpXx£Xxe), Wwhere £ = 0K N AL, its face point
X¢ 1s an intersecting point between a segment [xg, x7 ] and a face f.
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Remark 5 Because the subdual mesh D** is formed by decomposing each control
volume M in 7,%, it satisfies

M= J T, ©)
TeTﬁ;;

where x ) is the mesh pointof M, and 7. = {T € 7, | xu is a vertex T }. Moreover,
for any two different dual elements M, N € 7;,* with two mesh points x,7, xy, we
have

T NTS =0, @)

Remark 6 In [11], the staggered cell-centered finite element method (SC-FEM) pre-
sented the construction of dual and subdual meshes, where the vertices of its subdual
mesh include in vertices and mesh points of the primal mesh. By this geometry, the
SC-FEM scheme could not imposed the numerical flux continuity. Therefore, the mesh
construction of the EFC-3DFEM scheme are absolutely different from the ones of the
SC-FEM scheme.

Remark 7 From geometrical construction of the dual and subdual meshes, we observe
that each dual control volume M € 7;,* is indeed a macro-element-the union of some
fixed number of adjacent tetrahedrons of the subdual mesh 7,"* (see [8, pp. 497-498]).

3 The EFC-3DFEM scheme

In this section, we construct the approximate space for the solution . On this space,
we define the projection and the discrete gradient operators in two cases depending on
the characteristics of the tensor A. Using these spaces and operators, we may express
the discrete version of the problem (4) from which the corresponding linear algebraic
systems are derived.

3.1 Spaces and discrete functional characteristics

In order to estimate the solution u of (4), the piecewise linear basis functions on the
subdual mesh 7,"* and approximations up in R of u(xp) at nodes xp in V** are
used. The values {up},,cy+ are elements of a vector uy,. This vector belongs to the
following space:

Hp ={up := (up)xpeys, up €R}. ®)

Suppose h** := max {hT = diam(7T), VT € Th**} where hr is the circumscribed
sphere’s diameter of the tetrahedral T € 7,**, if h — 0 then A** — 0.

Since we impose the homogeneous Dirichlet boundary condition (2) (i.e., up =0
with xp € Vj&) on the approximate solution, we need to deal with inner nodes by
creating the following subset of 7,
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HY =f{w, e Hy = up =0, VxpeVig) )

This space has all basis vectors in {VhQ} e’ where each element of a basis vector

RIS 4!
Q._(Q) o o_ |l xp=xg,
v = (v is given by vy = .
h PJapevs ¢ yvp 0 xp # xp,

The discrete gradient V and the projection operator ® must be defined in the
following ways on the space H, in order to construct the discrete version of (4):

To fulfill the continuity of fluxes across interfaces across primal control volumes,
which are specified on each tetrahedron 7" in 7,**, must take into consideration the
tensor A (which may be discontinuous in the case where two different approximations
of AonT are Ak onTNK #@,and Ay onT NL # @, with L, K € Tj). As a
result, their definitions are divided into the following two situations depending on the
properties of A:

e Case 1. Homogeneous tensors (A = AI, where I is the 3D identity tensor, and A
is a positive constant)

Forany w;, = (up)y,cp= € Hy (i.e.up =0, Vxp € Vi%), we define

Duy(x) = Pru(x) = Y upLi p(x), (10)

xPGV;-;*

where L p is the Lagrange basis function of degree 1 at xp in V&*.

Given that ®uy(x) is a piecewise polynomial of degree 1, the related discrete
gradient Vauy, on each T in 7, is constant. The restriction of the discrete gradient
Vauy, on each T in 7,** may be written as

—(ug —up)N(xyxpxe) — UL — UMMy xpxe) — (e — UMM (3 xpxp)
3mT
UKD (xpyxpxe) T ULD(xpyxgxe) — UMD (xgxpxe) — UeD(xyxgxr)

= , 11
3my (11

(Vauwy)r

with my is the volume of the tetrahedron 7" = (xpyXgX7.Xe); Mixpxpxe)> Pxyxxxe)s
N(xxx;x0)> ANd Dy, e, ) are four outward normal vectors of T' at triangular faces
(xpmxrxe), (Xpxgxe), (XgxLXe), and (xprxgxr ), respectively. Their magnitudes are
equal to the area of these faces m (yy,x;x0)> Mxyxgxe)s Mxgxrxe)s A0 Mxyxpxs)s
respectively.

e Case 2: Heterogeneous and anisotropic tensors.

Due to Remark 4.(b), two operators ® and V, will be defined on each T € 7" and

T € T.5%.
02
Let us first consider on each tetrahedron 7' := (xyxgx;xe) € 73*. By Remark
4.(c), the tetrahedron T has two sub-tetrahedrons Ty = (xyxgxsxe) and Tp =

(xpmxpxsxe) with £ € 0K N oL and its face point x¢. Remark that Tx, Ty are
inside two elements K, L € 7, respectively, then the approximation values of A
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on Tx and T, are equal to Ax and Ap, respectively, where Agx = # f x A(x)dx

and A; = mLL f 1, A(x)dx. The piecewise linear function ®uy(x) on T must thus be
determined by values at each of vertices of Tx and 7. To do this, we must propose
an auxiliary unknown quVI at x¢, as follows:

upm, X =2XxM,
Uug, X =JXK,

Puy(x) = Jur, x=uxg, (12)
Ue, X = Xe,
M

ug, X =Xg.
and to define the restrictions of Vpuy, by

K M
UMD (xgxexe) T UKDy voxe) T Welxyxgxe) T HE Mlxpyxgoxe)

(Vaup)r, = 3y on Tk,
K
(13)
_ _ L _ M
UMD (xpxexs) = ULMG ) voxe) — Hel(xyxpxs) = Ue Mxprxpxe)
(Vaup)g, = 3y on Ty,
L
(14)
K L :
where LT and NG o) 1€ the outward vectors of Tk and T, at triangular face
(xmxexe).

In order to fulfill the local continuity of the numerical flux over the triangular face
(xpmxex¢) inside £, the auxiliary unknown ug” is selected by

Ag (Va7 -0l o+ AL(Vaw)7, onf, o =0. (15)

Substituting (13) and (14) in (15), it reads

Buum + Bruk + Brup + Pette + Prul =0, (16)
with
K K L L
(Akn(x;wxeXf)) Miepxexe) (ALn(XMxeXf)) Mpexe)
Bk = 3 . BL= ,
Mty SmTL
K L
(AKn(XKXeXf)) ’ n(_XM.Xe.Xf) (ALn(XLXeXf)) ’ n(XM.Xe.X,'f)
ﬂM = 3 + 9
mry 3my,
K L
B = (AKn(XMXKXf)) D xexs) " (ALn(xMxfo)) "D xexs)
¢ 3mTK 3mTL ’
K L
5 (AKn(XMXKxe)) TG xexs) n (ALn(XMXLXe)) "M yxexs)
£= .

3mry 3my,
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Fig.6 Two tetrahedrons

T = (xpxgxpxe) and
T= (xyxgx1xe) have the
common triangular face
(Xxgxpxe)

The above coefficients satisfy

Bk +BL + Bm + Be + B: =0. (17)

From (16), let us mention that all along the paper, we assume that 8¢ # 0. The linear

combination of u s, ug, uy, and ue is provided as the auxiliary unknown u/f” :

ud = Blun + Brug + Brup + Blue, (18)
with
T ,BK T ,BL ~T ,BM ~T ﬁe
=22 == =22 === 19
Bk 5 BL 5 Bu 5 Be 5 (19)

As a consequence of (17), these above coefficients satisfy

Bi+BE+ Bl +BL =1. (20)

Remark 8 Let us consider two tetrahedrons 7 := (xpyxgxpxe) and T =
(xnxgxpxe) in T,**, see Fig. 6.

On the tetrahedrons 7 and f, the tensor A is heterogeneous and anisotropic, then
there exist two auxiliary unknowns given by

ul = By + BLuk + Bl ur + BLue, 1)
ul = Bluy + BLuk + Brup + Bluc. (22)

~ ~
Note that ﬁ]{,u N # ,3]{,[14 M, thus u%” may be different from ulfv . Consequently, ®uy (x)
is discontinuous at x¢.
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Substituting (18) into (13) and (14), the discrete gradient (Vpuy)7 depends on four
nodal values u s, ug, uy, and ue expressed by

~XM ~XK ~Xr ~X,
—upmNp. —ugDp — Uy — Mean(

(Vaup) g, = 3y , (23)
K
~XM ~XK ~XJ ~X,
—umNy' —uglp —upnp — uenTi
Vawp)g, = 3 , (24)
mry,
where
SXy o 2T SXK XK 2T
Ny = Mixgxexs) + BuMoyxgxe)s Npe =M xvexe) + Bk Mxpxke)s
~Xe __ 2T ~xp _ 2T
Ny = Ny agxe) T Be Mayxgre)s Ny = BNy xgxe)s
~xXyo_ 5T ~Xpo XL T
Ny =0 xoxe) + ByMooyrxe)s gy =0, o+ BNy xe)
=~Xe __ 2T ~xg _ 2T
Ny = Dxyxpxe) + Be Mxyxpxe)s Ny = BrM(xyxpxe)s

and these vectors satisfy
~XM ~XK ~Xe ~Xpo_ ~XM ~XJ ~Xe ~SXK
ny. +ng +n; +n, = 0, n;' +ny +ng +n;, = 0, (25)

due to (20).

In summary, for any u, € Hj, the piecewise polynomial ®uy(x) of degree one
and the piecewise constant function V (uy)(x) are determined on each T € Té‘* as
follows:

um, X =xu,
ug, X =Xk,

Drup(x) = qug, X =xL, (26)
”e, X era

ELMM + E,?MK + EEML + ,geTue X = Xs,
(Vaup)7, Vx €Tk,

(27)
(Vawp)y, Vx €Ty,

(Vaup)r(x) =

where (Vaup) 7, , (Vaug) g, are presented in (23), (24).

For each T := (xyxgxexe) € T3, due to Remark 4.(b), T is inside K € 7,
as there is only an approximation A g of the tensor A on 7. Since there is only one
approximation tensor Ak for A on T, the functions ®7uy(x) and (Vpauy)7 (x) can
be determined by

Or(w)(x) = Y upLip(x), (Vaw)r @)= Y upVLip(x), VxeT,
xpeVir xpeVrt

(28)
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where V7" is a set of all vertices of T'.
Using the definitions (10), (11), (26), (27), and (28), we formulate the issue (4) in
the following discrete form:

Findinguy, := (up)y,ep* € H?l, such that

Z /(AVAuh)~VAvhdx= Z F)®(vy)dx, Vv, € HY.  (29)
T Tel™ T

Te'Z;,**

And we introduce the following definition:

Definition 1 An approximate gradient discretization for the EFC-3DFEM scheme is
defined by (Hp, h, ®, V), where

e The set of discrete unknowns Hj, is a finite-dimensional vector space presented in
(8).

e The space step £ is the maximum positive real circumscribed sphere’s diameter
for all elements of 7j,.

e The mapping ® : H;, — L?*(Q) has the definition of its restriction on each
T e 7, presented by (10) for homogeneous tensor A case, and by (26) for
anisotropic, heterogeneous tensor A case.

e The mapping V, : H;, — L?>(R)° has the definition of its restriction on each
T e 7, presented by (11) for homogeneous tensor A case, and by (27) for
anisotropic, heterogeneous tensor A case.

3.2 The algebraic system of the EFC-3DFEM scheme

To construct the system of linear equations from the discrete problem (29), we continue
by selecting its test vectors vy, as basis vectors VhQ of H2 with x¢ in V&* in two steps:

Step 1. For each xy; € C, C V&', we take v, = V;]:/[ in (29). Due to Remark 5, two
sets supp{® (v;l”)}, supp{VAvg’I} belong to M. Thus, (29) can be rewritten as

> /(AvAuh)-vAv,’?dx= > /f(x)q>(v,§‘4)dx. (30)
T

TeTH T TeTr:

By (5), all unknowns in (30) consist only of uy, {ug, xg € Cy} and
{ue, e € Ey}.

Therefore, the computational process can be expressed by the following sys-
tem in matrix form:

MU+ U =F", (31)

where U* = (Um)xyecy € RIC!, the notation |C§"2| represents the car-
dinality of set C, and U = (up),, e(CuCe,) € R<. The diagonal matrix

M € RICIXIC] has each diagonal element equal t0 Y 7o+ [ (AVAVY) -
XM T
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Vav¥ dx, with xy € C&. The matrix J* € RICaI*d has each
component determined by Y yc7w [ (AVAVFY) - VaAvM dx, with d =
XM T

(IC1+1€al), xm € C&, and xp € Cy U Cg,,. The vector F* is equal to
(ZTGT** Jr fFOD(vI dx) . The system (31) leads to
M XMGC;E
U' ="'\ F* — 7' ", (32)
which means that, for each xy; € Cg, the unknown u; can be expressed as a
combination of {u g}, ec,,» {Ue}ecsy, and the source term f.

Step 2. For each xx € C C V& and xe € Cg C V&, by taking v, = v and
Vi = Vi, (29) can be rewritten as

> /(AvAuh)-vAvf dx= Y /f(x)cb(v,’f)dx, (33)
T

TeTR T TeTr:
> /(AVAuh)-vAv;j dx= Y /f(x)op(v,f) dx, (34)
TeTr reT T

where

X

W= {T € 7, | T has a vertex xg } ,

T = {T e, T hasavertexxe}.

Xe

Similar as Step 1, the computational process is also presented by the following
matrix form as

MU+ XU =F, (35)

where d = (IC| + |£ql), the vector &F € RY, and two matrices A4* €
Rdx|C§|’g%/ c Rdxd.
Substituting (32) into (35), it implies

A-U=F, (36)

with A = X — M*M~'H* ¢ R F = F — MM F* € R,
U = (up)y,eicuc o) € RY. Note that the system (36) only depends on
the unknowns of {ux}y,cc and {uc}ece,, therefore the proposed scheme is
called the edge-cell finite element scheme.

Remark 9 1f the homogeneous Dirichlet boundary condition (2) is replaced by a Neu-
mann or Robin boundary condition, the EFC-3DFEM scheme must have the additional

unknOWnS {“e}eegm, {uf}fej'—ag’ and {uQ}XQEC;Q'
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It is now necessary to demonstrate the existence and originality of the solution for (36)
where the stiffness matrix A is a symmetric positive definite matrix. The exact claim
reads as follows:

Proposition 1 The stiffness matrix A in (36) is symmetric and positive definite.

Proof When the tensor A is isotropic, (10) and (11) show that the EFC-3DFEM is
equivalent to the standard finite element on the tetrahedral subdual mesh 7;,** Thus,
the stiffness matrix A is always symmetric and positive definite.

For the heterogeneous and anisotropic tensor A case, due to the Schur com-
plement property (see [15, Theorem 1.12, p. 34]), it helps to notice that if the
matrix S = ('ﬂ 2

ME K
H — MM € RT* s also symmetric and positive definite.

Obviously, we verify that S is symmetric, since we have the symmetric tensor A

and the following result for any up, = (up)y,cvy> Vi = (VP)xpevy € Hg

) is symmetric and positive definite, then the matrix A :=

U’'sv = Z / AVauy, - Vaov), dx = Z AVAV), - Vau, dx = VISU,
(37)

=~ U* =~ v
where U = (U ) V = (V ) U* = (um)yyecs> xv* = (mdxyecy, U =

UP)spe(cuce,) Ad Xy = (VP); e (cuce, ) Note that Vi = (C& UCUCs,) due to
Remark 4 (a).
To verify the positive definite property of S, we need to prove that

U’sU = > / AVauy - Vauw, dx > 0, (38)
TG'Z;I** T

for any uy, € ’Hg such that u;, # 0.
From the property (3), the right-hand side of (38) can be estimated by

)

AVaw, - Vaupdx =% Y / Vauy - Vauy dx, (39)
Tel™ r r

TEI]Z**

in which fT Vauy - Vau, dx > 0 for all T € 7,**. Moreover, since u;, # 0 and
u, € Hg (i.e., up =0, Vxp € Vj3), we always have at least one tetrahedron T
satisfying one of the following two cases:

Case 1. With Ty := (xyxgxexe) € Ty5, we use (11) and values ue = ug = 0 at
Xe, X € 0S2 to compute

A/ Vauy - Vauy dx
To
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2 .
(“Mn(xKxexf) + uKn(XMxeXf)) >0, ifuy,ug #0,
(upM(egrre) > 0, ifupy # 0, (40)

2 .
(uKn(xMxexf)) >0, ifug #0,

A

- Omr

where (uMn(xKxexf) + uKn(xMXexf)) #0ifup, ug #0.
Case 2. With Ty = (xyxgxpxe) € 75" having two sub-tetrahedrons Tp x =
(xmxgxexs) and To 1, = (xpyXrXxeXs), wWe use (27) to compute

__2 )2 A @)?
A Vauy - Vau, dx = —— (I, + — ITO ,
Ty Imr, 0 Imr,

where
@1 _ =Xy =xg X[, ~Xe
IT() = (MMnTK + MKnTK + uLnTK + uenTK> s
2 ~ ~ ~ ~
I(TO) — (uMn’}’L” + uKn);’z + uLn’}i + uen)}‘z) .
Obviously, the two vectors 1 (TIO) and (Ti) are different from 0, since we have the

property (25), and the set {uy, ug, uy, ue} satisfies at most three non-zero
elements and at least one element equal to 0. Therefore, we get

A/ Vauy, - Vauy, dx > 0. 41)
To
Owning to (39)—(41), we obtain

U'sU=2 Y. / Vau, - Vauy, dx > A/ Vaw, - Vau, dx > 0. (42)
TG'Z;Z** T TO

This ends the proof of Proposition 1. O

4 Convergence analysis

When applied to the isotropic tensor situation, the EFC-3DFEM method is similar
to the traditional Finite Element Method (FEM) based on first-order Lagrange basis
functions on 7,"*, and convergence is always ensured.

We study here the convergence of the EFC-3DFEM method for the anisotropic
and heterogeneous tensor situation (possibly discontinuous). This work begins by
introducing the following two operators: S, : C2°(2) — Rand Wj, : (Cf"(Q))3 — R
defined by

172
$1@) = [19@1) = 9 122q, + IVa0s = Volag |
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with ¢ € C2°(Q), @4 i= (P(xp)),peys € HY,

1
/Q [Vavh - + ®(vp) div(g)] dx.

and Wi(p) = max - ————
EHNO) VAR (1203

with ¢ € (C2(Q))’.

As consequence of [16, Lemma 2.2 and Corollary 2.3], if the EFC-3DFEM scheme
satisfies the strong consistency

lim S () =0, Vo e CZ(Q), (43)
h—0
the dual consistency
lim Wi (p) =0, Vg e (CX(Q)’, (44)
h—0

and the coercive property, i.e., there exists a positive constant C independent of 7,
such that

19Vl 20y = CIVAVAl g2y YV € Hi (45)
then its convergence is verified, and

IVu — VAlth(Lz(Q))S — 0, ash — 0, (46)

& — duyll 2 — 0, ash — 0. 47)

Next, rather than proving the strong, dual consistencies (43), (44) and the coercive
property directly, this work simplifies the process by checking these properties for a
variant form of the EFC-3DFEM scheme, referred to as the EFC-3DFEMD scheme.
The description of this scheme is as follows:

Findingu), € 'Hgsuch that

> f (AVaup) - Vavydx = ) / F@) PV dx, V= p)spev € Hy,
T T

TE'];,** Tefz;l**
(48)

where the polynomial P;vy represents a first-order Lagrange basis function on the
subdual mesh 7,**, with a value Pvj(xp) = vp assigned at each point xp € V**.

In the purpose of presenting the proof for the convergence of the EFC-3DFEMb
scheme, we need to introduce the following definitions and notations:

Definition 2 An approximate gradient discretization for the EFC-3DFEMDb scheme is
defined by (Hj, h, P1, V), where

e The set of discrete unknowns Hy, is a finite-dimensional vector space presented in

(8).
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e The space step 4 is the maximum positive real circumscribed sphere’s diameter
for all elements of 7j,.

e the mapping P; : H, — L%*(Q) is a first-order Lagrange basis functions on
subdual mesh 7,**, with v, = (vp)y,ey= € Hj, and a value Piv,(xp) = vp
assigned at each point xp € V**.

e The mapping Vu : Hp : Hp — L*(2)3 has the definition of its restriction on
each T e 7, presented by (11) for homogeneous tensor A case, and by (27) for
anisotropic, heterogeneous tensor A case.

The dual and strong consistencies for the EFC-3DFEMb scheme are evidenced
by their properties measured through the following operators S, and W}, as outlined
below:

R 1/2
Ship) = [anoh —¢l32q) + IVa@n — V¢||§L2(Q))3] Vo e CX(Q), (49)

with @), := (@(xp))y, ey € HY, and for all ¢ € (Cé"’(Q))3

1

max —— [ [Vavy -9+ Prv,div(p)]dx. (50)
weHNO VAV (2g)) Jo

Wi(p) =

By utilizing the results presented in (70) and (71) from Proposition 2, along with
Corollary 1, it can be demonstrated that the EFC-3DFEM scheme also satisfies the
strong and dual consistency properties for the anisotropic and heterogeneous tensor
situation (potentially discontinuous).

Let us now prove that the EFC-3DFEMb scheme satisfies the strong, dual con-
sistency, and coercive properties. For given operators @ and V, specified on each
tetrahedron 7 in 7;:‘* as described in Sect. 3, we need to define the following subsets
of 7,"* in relation to the tensor A:

o =1{T € T, | A(x) is constanton T} ,

T =T € T, | A(x) is discontinuous on T'} .

For any tetrahedron T := (xyxgxpxe) € T,"*\T 5r, it has two sub-tetrahedrons

Tk = (xpyxgxexs) and Ty, := (xpyrxpxexs), see Fig. 7.
In addition, we need to introduce the following geometrical notations used in lem-
mas and theorems:

(i) The sets V(l), V(Tz), and V<T3) contain pairs and triples of vertices that can be
defined as
1
ViV = (o x, xp xed
2
V(T) = {(xm, xk), (xp, x1), (xm, Xe), (Xk, XL), (XK, Xe), (XL, Xe)},

3
V(T) = {(xm, xk, xL), (Xm, XL, Xe), (XM, XK, Xe), (XK, XL, Xe)}
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Fig.7 A tetrahedron

T = (xpxgxpxe) with four
vertices x); € C*, xg, xp €C,
and an edge point xe with

ec 59

(ii) For each pair (xy, xg) € V(z), the notation [xyx¢] represents an edge, with its
midpoint denoted as Ciyyx,] and its length as myy 1.

(iii) For each triple (xy, xg, xg) € V(3), the notation (xyxgxg) is a triangular face,
with its centroid denoted as Cxyxyxg), and its area as mxyxpxg)-

(iv) For a point xy € V;l) and a triple (xg, Xg, x5) € V?), dé?’QXRxs) is the distance
from x to the face (xpxgxs).

(v) The point x7 is the centroid of the tetrahedron 7.

(vi) The following notations

Epenxel = (07, Cleyrrels Coonprnr)s Conmprra)) »
Elcrel = (37 Clagrels Capxxrers Clxgrrra)) »
Expre = (07, Clpxels Cooprrrers Clagxrre))
Flepxx] = (xT’ Crxyxxls Clamxgxe)s C(XMXKXL)) ,
Epee) = (37 Chopxn)s Comrre)s Conmprxn)) »

flagxrl = (xT’ Clxgxrls C(XMXKXL)’ C(xkaxe)) ’

are six quadrangular faces constructed by connecting the centroid x7 to centroids
on boundary triangular faces and edges of T'.

(vii) Using the above faces, the vertices x ), Xk , X1, and x¢ involved in { fremxels Elxpxels
Epxprel b { Bl Elrerels Enxexet ] { v ls Erxprels Epegexg1 }oand { £y,
flxpxe]s Elegre] | are connected in order to form the polygons Py, Py, Px,,
and P_, respectively. These polygons lie in the tetrahedron 7" and satisfy

T=P,,UP,, UP, UP,_.
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(viii) For each pair (xy, xp) € V}z), the polygon Py, has the outward normal vector
Nyyxo At Eixyxgl = Eixgayl- The vector Nyyxo has a magnitude |anXQ| equal
to the area MEvol and also satisfies nyyx, = —Nyyry-

(ix) For each pair (xy, xg) € V(z), dxyx, is the distance from xy € V;l) to the face
flxyxols and it satisfies deXQ = dexN-

(x) Besides, we introduce an operator 1'[2 defined on Hj,, specifically as follows: for
any u; € Hyp,oneach T = (xyxgxpxe), Hg (up) is a characteristic function
such that

uy ifx e Py,
ug ifx € Py,

0
I, (up (x)) = . (51)
uy ifx e Py,
ue ifx € Py,
(xi) To estimate the convergence, H;, is endowed with the norm
My, xp | Iy, x|
ﬁ(w —um)® + AL (g —um)?
2 _ [Ny, xe | 2 |nx,(xL| 2
oz = > +W(uxe )+ G G ) | (52)
€ h** xKxe 2 X7 Xe _ 2
T:=(xpmxgXpxe) + dygxe (e —ug)” + X[ Xe (e —u)

The next step is to examine the characteristics of the discrete gradient V5 as follows:

Lemma1 For (Hp, h, P1, V) being a family of discretizations in the sense of Def-
inition 2, which satisfies the below assumptions: for any T = (xpyxgxXpXxe) €

T,\(T 55 U To6k), there exists a positive constant § independent of h, such that

XL XM Xe
min id(xMxexf)’ d(XMxeXf)’ d(XKXLxe>’ d(XMxKxL)

Assumption A1

>4,

max {d

XL
(xmxexs)’ d(XMxeXf) ]
and

. min{ |n , In , . . In . In In
Assumption A2 g ve |, My e |+ ey xe . Mgy |2 My | 10y 1} > 5.
max: M (xpxgxe)s Mxpyxpxe)s Mxgxexe)s M(xpxexe)s }

M (xpxexs)> Mxpxgxe)s M(xyxpxs)

Then, for any T € 7, \ 7%, the discrete gradient Vuy, is written as

mr (VAuh)T = (MK - MM)(anXK +€)CMXK) + (ML - uM)(anxL +€XMXL)
+ (ue — “M)(anxe +6xMxe) + (ug, — MK)(nxKxL +€xKxL)
+ (ue — uK)(nxKxe + exKxe) + (ue — uL)(nxLxe + exLxe)9 (53)

where the vectors {nyxy, €xyxo }(xN en® satisfy

|6XM)C](| T |€XMXL| 1 |€xMxe| T |6XI(XL|

h=0 My x| h=0 My, | A0 Myyn | A—0 [Ny |
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— jim el _ ppy nel g (54)

h—0 My x| h—0 [Ny x|

Proof In the subdual mesh, each tetrahedron T := (xyxxxpxe) € T,*\7* can
be separated into two tetrahedrons, each including sub-tetrahedrons Tx and 77. The
tensor A is approximated by Ag and Ay, respectively. Thus, the discrete gradient
(Vauy) 7, which depends on Ak and Ay, is presented in the following cases:

Case 1. If Ax = Ay, the discrete gradient (Vauy)r takes a form similar to (11). It
is then computed as

mr (Vaup)r = — (ue — MK)Z [n(xMxKxL) — M(xpxp xe)

— (ue — ”L)Z [n(XMxKXL) — D(xyxgxe)

4

—(up —ug)— [n(xMxKxe) — M (xpxpxe)

4

- (MK - MM)— [n(xMxLxe) — D(xgxpxe)

]
]

1
— (e —upm)— [n(XMXKXL) - n(XKXLXe)]
]
! ]
]

—(up —upm)~ [n(xMxKxe) —D(xgxpxe) ] - (55)

4

Additionally, the geometrical properties of T (refer to Fig. 7) are as follows:

1 1

Nigoxe 2 [n(XMXKxL) - n(XMxLxe)] s Myyxe = 2 [n(XMXKXL) - n()cxxme)] )
1 1

Ny xe = _Z [n(xMXKXL) - n(XMXKXe)] s Mgy, = _Z [n(XMXKXe) - n(XMXLXe)] ’
1 1

Myyxg = _Z [n(XMXLxe) - n(xKxLxe)] s Myyxy = _Z [ (*mxgxe) — n(XKXLxe)] .

(56)
Substituting (56) into (55), we have

mr (Vawp)r =(ue — uK)nxKxe + (ue — uL)nxLxe + (e — MM)anxe
+(ML - MK)nxKxL + (MK - MM)anxK + (ML - uM)anxL-
(57)
It is noted that the formula (57) is equivalent to (53), where all vectors € x_,
€x1x0s €xprxes €Exgxps €Expyxg»> and €y, are set to 0.
Case 2. If Ax # A [ such that ’}m}) IAx — Ar|l = 0, equation (27) for the dis-
—

crete gradient (Vauy)7 is given as follows:
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e Case2a.OnTk = (xpyxgXxeXs),the discrete gradient (Vauy) 7, is established
as

mre (Vaup) gy, = (g — up) My +es )+ (ur—up) (M +€5 )
(e — up) (e, + €8 )+ (up — ug)Mygr, +€5 )
+ (e — ug)(Mygr, + €5, ) + (e —up) (o +€5 ),

(58)

Considering the assumptions A Al and A A2, as h — 0, the values in (17)
obtain the following limits:

XL
IBK d(XMXe)Cf) ,BM 0
_ﬁ__’dxz( T4 ) - L
£ (rpxexs) T Glxyxers) £
XK
B Dxprxexs) _Be o

X[ ’
(XmXexs)

X
P d(xlijeXf) +d

The vectors in (58) satisfy the following convergences:

K
l€ i x| _ (_m[xmcL]& . mr mr @)‘M 50
Iy | Mxgxe] BE mrg  mrg Be ) Miyx Crgp
K
l€xpxel _ (_M& +1 ﬂﬁ)' Mexixe)
Iny; x| Mixgxe] BE M1y Be )| Mxpxg Crep xe))
K
€y xe | _ | MxkxL] (_& + ﬂﬂ)‘ 3m (xpxgxe) =0
|anxe| Mixgxe] ﬂf ﬂf m(xKxLC[xMxe])
K
l€ x| _ (_1 _mr }37L 14 mr mr ﬂl)‘ 3 (xpxkx0) =0,
|nxKXL| mry ,Bf mry mry le m(XMxeC[xKxL])
K
|exMXK| _ <1_ mr  mr 'Bl Mxpxr] ﬂﬂ)‘ 3WI(xMxKxe) -0
ey x| My Mty Bt Mixgxe] Bt m(XLXeC[xMxK])
K
l€ Xy, | _ (—l _mmr @ Mixgxr] ﬁﬂ)’ 3m (g xe) =0, (59)
My | mrg B Mixgxe] BE /| MxgxeClopyey )
ash — 0.

e Case2b. On Tp = (xpyxpxeX£), the results can be computed as in Case 2a,
specifically as follows:

mr, (Vaup)g, = (g — up) My + €5 )+ p — up) gy, +€5 )
+ (e — up) My, + €5 )4 (ur —ug)(yr, +€5 )

+ (e —ug)(Mggr, +€5 )+ (e —up) My, +€5 ).
(60)
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whose vectors satisfy

| xNxQ|

—~ 0, Y(y.xg) € VP, h— 0. 61)

|anXQ|

From (58)—(61), we obtain the formula (VAuh)T as given in (53), where the

vectors €, x,, are determined by ek v and et vxo 0N Tk and T, respectively,

forall (xy, xgp) € V;z).

If T := (xmxkxexe) € Tk, the tensor A has only one approximation Ag on 7,

then (Vauy)r is expressed as in (57):

M
m7 (Vaup)r = (e — MK)nxKxe + (e — Ug )nxLxe + (e — MM)anxe

+ @Y —u)g, + Uk — w0y + @Y — wp)ng,,
(62)

O

Lemma2 Let (Hp, h, P, V) be afamily of discretizations in the sense of Definition
2 and let § be a positive constant independent of h such that

Assumption A3

(AkM(yrgxe) - D

(ALD(eyxpx0) - O

(rmxexs) (rarxexe)
mry mry
K K

(AK “(xMxexf>) M xprxexe) N (AL"(xMxexf)) “Mixprxexe)
> § max My mr ’
— K K 9

(AKn(xMXKXf)) "D xexs) _ (ALn(XMXLXf)) "I xexe)

My mr,

forany T := (xpxgxpxe) € T

(63)

On each sub-tetrahedron Tx and T, of T, the discrete gradient Vuy, is rewritten as

Tk |(Vaup)Te =

+ g —ug)T K+ e —ug)TK 4 (e —up)TiX,

[T |(Vaup)T, =

+(up —ug)Tit +

respectively, and

|TxNxQ| |TxNxQ

| < C |anxQ [,

(ug — MM)TXMXK + (U — MM)TXMXL + (e — MM)TXMX

(64)

(ug — MM)TXMXK + (ur — UM)TXMXL + (ue — MM)TxMxe

(e —ug)Til, + e —up)ril . (65)

(xn, xg) € V2, (66)
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where the positive constant C; depends on 4.

Proof Substituting (20) into the first equation in (27) yields

T, T T,
(ne — MK)T)%gxe + (e — ”L)txll;re + (e —upy) Tx;f;;@"‘
(up —ug) Txfo + (ug —up) Txll\(,[xk + (up — MM)txAIfle

Vau = — s
(Vaup)ry 3,
(67)
with
_ 2T Tk
xMxK - (ﬁMn(xMxex]g) ﬁKn(XKXeXf)) ’ thxL < ﬁL n(XMXe.Xf)>
T, 2T T 2T
rx;\ljlxe = (_n(xKXeXf) + IBMn(XMXKXf)> ’ Tx;f/xL = (_IBL n(xKxexf)> ’
T, 2T 2T K T, 2T
Tx,'gxe = (ﬁKn(XMxKXf) — B n(_xMXeXf)> ’ Txfxe = (IBL n(XMXKxf)) . (68)

Regarding assumptions A A2 and A A3, the inequalities between the magnitudes of
the aforementioned vectors and {|nx vxgl } (e rg)eV? are as follows:

el | = max {IBL 1L BRI} 0K )+ I ) = o I,
TQ’}XL < (§|an“|,

o2, | = max {1, BT} Oncecrara | o) = 205 ing
rlx !

XKXL S 8_2|nXKxL|a

~
=
A

2
b (InGarsern | + 0y col) < 25 |

2T
Be

=T
| = ma {[BE].

1
= 8_2|nxLxe|,

where the coefficients E{,,, EIE, E{, and EZ are given in (19) and satisfy the following
upper bounds:

~ ~ ~ ~ 3
1P| = 1+ BRI+ 1B+ BT < 14 5,

K
(AKn(XMXeXf)) M eyxexe)

- 3
K 3mr, Br =5
K K
ET = (AKD(XMxKxf)) Myxexs) _ (ALn(XMxLXf)) "Deyxoxs) < l
¢ 3mTKIBf 3mTLﬁf -8

@ Springer



An enhanced flux continuity three-dimensional... Page27of43 16

L L
(ALn(XMxeXf)) "M eyxexe)

3mr, Bt

| = <5

In this expression, the coefficient C1 = 2(1'2"3) satisfies (66). O

Proposition 2 Under the assumptions A AI-A A3, let (Hp, h, P1, V) be a family of
discretizations in the sense of Definition 2. A positive constant § independent of h
satisfies the following conditions:

. d dy dyyyx d, d dy,
Assumptlon A4 XK Xe , Xy Xe ; X\ Xe , XKX], , XK XM , X1,XM Z 8,
Mixgxel ™ Mixpxel  Mixpxel ™ Mixgxpl™ Mixgxyl” Mixpxy]

meQ , M Tp ,m TQ ,
min CMxK Clap xe]) CMxLClx g xe]) kXL Clxpyxe])

oelk.Ly | m 7 m T

£9 » g @

(XKXGC[XMXL]) (XLXEC[XMXK])

Assumption A5 >4,

max m(xMXK C[xLxe]) ’ m(xMxL C[xKxe]) ’ m(xKxLC[xMxe]) ’

m(xKxeC[xMxL])’ m(xLxeC[xMxK])
To To To To
where the planar parts f(xMXKC[xLer)’ f(XMXLC[xKer)’ f(xl(xLC[xMer)’ f(xKxeC[xMxLJ)
To .
and £ (e e Cleypeg ) of the respective faces (xpr Xk Clx; xe1)s (CM XL Clxgxe1)» (XK XL Clayxe])s

(xkXeClxpyx,1)s and (xpxeClyy xg1) are within the tetrahedron Ty for each Q €
{K,L}.

i Prg  PTL
Assumption A6 TR > 6,

Then, the EFC-3DFEMbD scheme is coercive, meaning that there exists a positive
constant C» independent of & such that

1PVl 2@) = C2lIVaVall 2(gyy2s YVh € Ha (69)

The EFC-3DFEMb scheme also satisfies the following limits:

Jim Si(@) =0, Vg e CX(Q), (70)
lim Wi() =0, Vg € (CX@)°, (71)

where the operators :S'\h and Wh are defined by (49) and (50), respectively.

Proof We verify the existence of a positive constant C3 depending on €2 and § such
that

IV 7o < CHIVAVAIE g2 ¥V € Pl (72)

as follows: For any tetrahedron 7' := (xyxgxpxe) € 7,**, the formula for Vv, in
classifying 7' can be obtained by
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Case 1: If T € T, (VaVy)T is then calculated as given in (57). This equation
satisfies

Ve — Uk = (VAVR)T - (Xe — XK),
Ve — Uy = (VAVR)T - (Xe — X41),

vg — vy = (Vavi)r - (xg — xpm),

Ve —vL = (VAVR)T - (Xe — X)),
vy — vk = (Vavp)r - (XL — XK),

v — vy = (Vavi)r - (XL — xm),

Therefore,
2 2
2 _ lve — vk 2 _ lve —vp]
IOVavrl? = oK (Va2 e
[xgxxel My xe]
2 2
s _ |ve — Ml s _ v — vkl
I(Vavi)rll” =2 ———  I(Vav)rll” =2 ——,
m[xMxe] m[XKXL]
2 2
5 _ lom — vkl , _ lve —vuml
I(Vavrl? = “2 =K (Vavrl? = M (73)
[xxxml m[xLxM]
S 82 \ 1
Additionally, m[2 —zy dikie frommy = m g xe £ = 3xgre i |
and dyg x. < M[xgx.]. In the same manner, it has
mrt ﬁ |nxLxe| mr ﬁ |anxe| mr < f |nxKxL|
2 p— : 2 p— 9 2 pu— 9
My xe) 3 dipx. Mxprxel 3 doyxe Miykxr 3 digx
mr 2 |n)C[(xM| mr 2 |nxLxM| mrt f |nx;(xe|
2 = 2 = 2 = :
Mxgxn] 3 dygny Mxpx] 3 dyuy Migexeg O e
(74)
From Eqgs. (73) and (74), it follows that
o I:Jne;vxlz + |szvu2 + |Ue7UM|2+
m VAV > _m [xg xel [x7 xel [xprxel
rl(Vavr ™ = 6 T wp—vgl? |UM vk |? + |UL vy ?
[xgxr] Mixgxpy] ["L"M]
) ‘nxkvxel 2 |nxLxe 2 |anxe‘ 2
) de—xe(ve_vK) +H(Ue_vL) +dXM—Xe(Ue—UM) +
— 79 n, n n,
18 %(UL —vk)? + W_X,A(UK — )+ ‘dw—XLl(UL —vy)?
XKXL X K X )CL
(75)

Case 2: If T € 7, \ Tin» Vauy, is defined by (27). Considering Vv, on Tk, it
has

Ve — Uk = (VAVI)Ty - (Xe —XK), Ve — V¥ = (VAVI) Ty - (Xe — X£),

Ve —vm = (VaVi) Ty - (ke —xp), v — vk = (Vavi) Ty - (x5 — xK),
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vk — vy = (Vavi)re - (kk — xam), v — vy = (Vavi)rg - (5 — Xm1),

Therefore,
lve — vk |? — Vg
I(Vavi) T I? > —5—, I(Vavi)Te 1> = | |
2 2
[xk xel Mxexe
2
Jve — vul oY g
IOVav T 1P = —5——,  I(Vavp)rgl* = Q, (76)
2 2
[xprxe] Mxgxe]
2
lum — vk |? vl — oy
IOVavid e I? = —5———.  I(Vavi)rg|I* = |2—| (77)
[xkxm] Mxprxel
Then, the inequality is established as
'”[”K'Z n Jve—v¥|* 4 |ve—vM| 4
mr Il (Vavi)re I Mhrel - el Ml | (g)
K K

mT
K |v? MZ_UK| + |UM vg |2 + |vf2_”M|

6

Mix g [XK xpl M pyxel

In the same manner, the inequality on the tetrahedron 77 can be obtained as

—vr |2 ve—vM _
X |v% vL\J i };[ fJI i |ue[ um] n
X7 X XeX X X
mr [(Vavi) 7 1P = —my, | | e et Mre . (79)
6 |v? 2_”L| + IvM v | + v _”M|
m[xfo] [xLxM] [XMXf]

Besides, by the assumptions A A4-A A6, it holds that

2
mr - Argxe Mygr | - 8_ Mg x|
2 — — 9
[xg xe] 3m[x1(x} 3 digxe
dxMx,(mer
;nTK > (XLXSC[XMXK]) > 63 |n[XMXK]| ,
Mxpyxg] 3m [xpmxk] dixyxk]
dy,xom _1p
mTL > l (XMXKC[XL)‘e]) 83 |n[xLxe]|
2 — 2
m[xLxe] 3 m[xLxe] d[xLxe]
dxMmeer
mr, l (g ¥eClppry ) > 83 [y,
2 — 2 ’
Mixyxr] 3 My, xel dixyx]

min {mr,, mr, } - (SdXKXme[xKxLJ S 3 M x, 1

9

2 = 2
Mixkxr] Mixgxp] d[xKxL]
mr 1 dxMXemf[xMxe] >§ |n[xMxe]|
2 = 2 - '
Mixpxe] Mxuel Drexe
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mry mry mr, mr,
>
) =2 ) = ’
[xkxel [xxxr] [xpxe] [xkxrl
because Ofm[xKxL] = Mixgxels Mxpxe]- (80)

Substituting (80) into the inequalities (78) and (79) yields:

6mr|l (Vava)r |I?

- mT 2 mr 2 2
— (Ve —vg)" + L= (Ve — V)" + (vg —vm)”+
[xgxel ) [x7,xel ) [xprxg]
(Ve —vm)” + (vp —vm)” +
. Mixprxel ) [xprxg] 5
= mr M mr, M
= (v —vk)" + e (v - )
[):K,\'fj ) [xL)(fJ )
m M m M
T (vg' —vm)” + T (v —ve)
L " lepgxel [xexg] _
. 83 s(14 1
min { —, —
- 2 26
|n[XKxe]| 2 |nxLxe 2 | [xMxK 2
|d[“KXe]| (Ve —VK)” + thx - |(v v + [lMXK] |(v — vy +
n n n
[;CMXeJ (ve _ UM)Z + d[XMXLJ (UL —v )2 [‘CKXLJ (UL UK)2
MXe [xprxp, [
(81)
From (75) and (81), we choose C3 = 1

} to satisfy the inequality

min{ %‘
(72), which is the sum of (81) for all T € 7,*.
Next, on each T € 7,**, Pyvy is written as

s
6(”25) 3%

N9vi(x) + VPvl7 - (x —xy), ifx € Py,
v, (x) + VPivul7 - (x — xg), ifx € Py,
Pivy(x) =1 h ’ : - (82)
M, vip(x) + VPvplr - (x —xp), ifx € Py,
M)V (x) + VPivalr - (x = xe), ifx € Py,
where the restriction V Pyvy |7 of VPyv, on T is given as
mr VPyvylr =(ve — vK)nxKxe + (ve — vL)nxLxe + (ve — vM)anxe
+(UL - UK)nxKxL + (UK - UM)anxK + (UL - vM)anXLs (83)
and the operator 1'[2 is defined as given in (51).
The following result is obtained by applying the triangle inequality to (82)
0
IP1vallr2) < I, VAl 2 +h||VP1Vh||(L2(Q))2- (84)

@ Springer



An enhanced flux continuity three-dimensional... Page310f43 16

By employing the Cauchy—Schwarz inequality in (83), we can continue estimating the
terms ||V Pyvy || (L2() and || Hgvh l22(q) as follows:

> mr|VP|

TEIZ;**

=)
- _ 2 nxKxL| . 2 |anxK‘ _ 2 ‘anxL|
el +r —vk) g -+ Wk —vm) ™70 4 (v — vw) "

n n n
(e — vi)2 el —yp 2 el o, )2 Boasre]
dy g xe dypxe d

X\ Xe

Z Z |nXNXQ|d)CNXQ

Te’Th** (xN,)CQ)EV;Z)
T=(xmxgxLxe)

Taking note that mr = % > My xp |deXQ and using the definition in (52),

©)
(xn va)EVT
the above inequality can be rewritten as

3
2 2 2
IV Pl 2 g2 < 5m IV 7o (85)

where mg, represents the volume of €2.

According to [17, Lemma 5.3], there exists a positive constant C4 independent of
h such that

ITRvall2@) < CallVallf 7o YVi € Mo (86)
By combining (72) with (84)—(86), one can deduce

(L2 @)
(87)

3 3
IP1vall 2y < (64 + Ehmg> 1Vl 7 < Cs <C4 + 5hmg> IVaval?

For a sufficiently small value of h, there exists a positive constant C; >
C3 (C4 + %hmg) that is independent of & and satisfies the coercive property (69)
for the EFC-3DFEMb scheme.

Next, we will prove that the EFC-3DFEMb scheme has the strong consistency
property (70).

For any ¢ € C2°(2), there exists a vector @, such that the values of its elements
are taken from (¢(xp)),,ep= € Hg. According to [17, Lemma 4.3], there exists a
positive constant Cs that is independent of %, and satisfies

19201 = Vol (120 < Csh. (88)
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Combining the result of [18, Lemma 3.1] with this, one can write

1Pren = @liz@) < hIVOl (20 (89)

After establishing the strong consistency of the EFC-3DFEMb scheme, it is necessary

to prove the dual consistency property (71) as follows:
For any ¢ € (CSO(Q))3, the operators I and {/;};_y5 are defined by

1(¢>=fQ[VAvh @+ Prvpdive] dx = ;@) + b(@) + (@),

Li(p) = Z mrVavy - QT
TE’Z?:;;St
+ Z [mre (VaVI) 1, - @1¢ + M1, (VAVD)T, - 9T, |
TeT \{ T VT }
T:=(xpmXxgXLXe)

+ Z [mTK (VAVh)TK “PTk +mTL (VAV)TL '¢TL] s

TeT}*
Jp. (v (x)) dive dx + [, (TI)vh(x)) dive dx
hie) = 7**2 [/PXM (M9, (x)) div e dx + foK(ngvh (x)) div e dx ] ’
;Ze:(thxKxLxe) "’ ’
(90)

prM (VPvplr - (x —xp)) dive dx
+ [p, (VPIValp - (x = xg)) dive dx

I3(¢):TET*»Z foL (VPivulr - (x —x1))dive dx
; +fR,Ce (VPvylr - (x —xe))dive dx

T:=(xpxKgXLXe)
with v, € My, 11<¢>=vaAv~<pdx, L) + (@)

= Z / [Prvydive] dx.
T

T:=(xyxgxpxe)

’

Using the above operators, we can rewrite Wh (p) as

I(g).

~ 1
Wi(p) = max / [VAVh - @ + Prvy div(g)]dx = max
vieHn [Vavrll Jo vieHn VAVl
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In addition, based on Lemma 1, 7;(¢) can be rewritten as

(UK - UM)(anxK +EXMXK) + (UL - UM)(anxL +€xMxL)+
Li(p) = Z (ve — UM)(anxe +€xMxe) + (v — UK)(nxKxL +€x1<xL)+ QT
TeT*\T* (ve — UK)(nxKxe + €xgx) + (Ve — UL)(n)cL)ce + €x;x0)

T, T T
(vk — vM)rxgl\f/xK + (v — UM).[X}[E[XL + (ve — UM)tX/IE/xei| QT+
K

T T T
+ Z +(vp — UK)Txllng + (ve — UK)Txllgxe + (ve — UL)Txfxe
T T T ’
TeT (vg — UM)txk,xK + (v — UM)txlf,IxL + (v, — UM)txlf,;xe"" o7
T T T : L
(UL - UK)txfng + (Ue - UK)txéxe + (Ue - UL)rxll:xe

oD

with @7 = # [redx, oy = ﬁ fTK ¢ dx and o7, = # fTL @ dx.

By the Green expression, the operator />(¢) can be rewritten as

(UM - UK)¢)CMXK My + (UM - UL)¢XMXL : anxL+
(vm — ve) Pxyxe " Dxpyxe T (vg — UL)‘PxKxL cMyp g, +

hp) = >

TeT ™ (vk — ve) Prgxe  Magxe T (UL - vCe) Pxpxe " Mxpxe
T:=(xpmxgXLXe)
. 1 1
with @y, vy = —— edy, edy,
|nXMXK| f[)‘MXKJ |n)CMXL| f[XMXLJ
1 1
Pryxe = edy, pdy,
|n)CMXe| f[xMer |nXKXL| f[XKXLJ
1 1
Pxgxe = edy, Pxpxe = ody. (92)
|nx1<xe| fl»"K*"eJ |nXL)Ce| f[)‘LxSJ

To estimate 1 (@) and I>(¢), we introduce the operators R; on the space (C SO(Q))S,
where i ranges from 1 to 3, as follows:

2
Rl(‘p) = Z Z (|anXQ| + |€xNXQ|) deXQ ((oT - ‘prXQ) s
TeTNT (o xgrev?
T:=(xpxgXxpXe)

93)

l€xyapl
R@= > e ) <In”Q|dWQ, (94)
TeT\T (eyxg)eV® NN
T:=(xpxgXxLpXe)

Rip)= Y. >

TeT;*
T:=(xpxgxLXe)

2
(stxQ)EV;")

Tx " 2
thXQ “PT + thXQ QT — anXQ : ‘pXNXQ) (95)

Ianxgl

|nXNXQ |deXQ (
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for any ¢ € (CSO(Q))3.
Using the above operators R; for i ranging from 1 to 3, and applying the Cauchy—
Schwarz inequality, one obtains

1@ + L@ < VI 7 [Ri@) + Ra@) + Rs@)], Vg € (C2(®)°. (96)

In (93) for R|(¢), using the regularity of ¢ € (Cf"(Q))3 yields the existence of
Cy > 0, which depends on ¢, such that

2
T

Q07 — @xyxpl” < Cph?,  foreach (xy,xg) € V (97)

Combining the above result with the property (54) in Lemma 1, there exists a positive
constant C¢ > 0 that is independent of & such that

|R1(@)| < Cemah®(1 +€(h)), with fim e(h) =0, (98)
where mg, represents the volume of the domain .
Hence,
|IR1(p)| > 0, ash — 0. 99)
For Ry (g), with property (54), one can obtain
|[R2(@)] — 0, ash — 0. (100)

For R3(¢), using the Cauchy—Schwarz inequality, one can find that a positive constant
C7 depends on ¢, such that

Tk Ty, 2
<TXNXQ “PTx + TXNXQ Q1 — an)CQ . ¢XNXQ )

|nXNXQ |
1k c 2
TN (o thig
|anXQ| (‘pTK (pXNXQ) + ‘anXQ‘ (‘PTL ¢XNXQ)
= T T
4 ‘lelst tx]I(,XQ n)‘NXQ
|anxQ| ln)‘N*"Ql lanXQl ‘pXNXQ
- -
|Tx1]§XQ|

2
) (‘pTK _‘prXQ)Z

T,
ITayrg!

[

|an,)JQ |

o
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|n.\‘NXQ|

T
ITang!

|anxQ|

2
) (‘pTL - ‘prXQ)z

T
T2y g

|anXQ|

+ 1) |‘PxNxQ |2

<C7, Y(xn,xQ) € V;Z)-

(101)
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By applying (101) and utilizing mr = % Z(XN) dxyxpMyyxo| in the formula

@)
)CQ)EVT
(95), one can find that there exists a positive constant Cg > 0, dependent only on ¢,
such that

IR3@)| < Cg Y mr. (102)
TeT ™

According to [19, Theorem 3.8], it is established that

Z mr — 0, ash — 0, (103)
Te’]'[f*

One can observe that the dimension of the zones where the tensor A (x) is piecewise
Lipschitz continuous is one or two.
From Egs. (102) and (103), it follows that

|IR3(p)| — 0, ash — 0. (104)

Applying Holder’s inequality and utilizing (85) leads to
. 3 .
|1I3(@)] <R IVPI(V)l (L2@)’ div@)ll 2 < h >me Vil 2 1div(@) ] L2(q) »
(105)

and therefore

[I3(@)] — 0, ash — 0. (106)

Combining the inequalities (72), (96), (105) and for each ¢ € (Cé>O (Q))3, one can
obtain

C
Lﬂnvh .7+ (R1 @) + R3(9) + R2(9)

1(@)] <
”VAVh”(LZ(Q))3 Vil z;
VC3 .
mh% Vil 7 Idiv@)ll 2@ - Yvh € Ho
1, h**

(107)

Regarding the convergences of (99), (100), and (104) with the above inequalities, it
can be concluded for each ¢ € (C o0 (Q))3 that

——|I(@)| > 0, ash— 0, VvyeH,\{0}
||VAVh||(L2(Q))3

As aresult, the strong consistency property (71) has been proven. O
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Corollary 1 Let (Hp,, h, ®, V) be a family of discretizations in the sense of Definition
1. If the EFC-3DFEMb scheme satisfies the coercive, dual, and strong consistency
properties under the assumptions of Proposition 2, then the EFC-3DFEM scheme
also satisfies the coercive, dual, and strong consistency properties.

Proof For any v, € H,,, with the definitions of ®v, in (26) and P;vj, in (48), we get
the following inequality:

19V = Pivill oy = b (IV PVl gy + VARl 2gyy) - (108)
Substituting (72) and (85) into the above inequality, we get

19vh = Prvillze) < CohllVaval 2 (109)

)*

where Cy is a positive constant independent of #.
By (109) and the coercivity (69) of P, a positive constant Cyq is defined and
independent of & such that

1PVallL2@) = 19Vh = Privali2@) + 11Vl 2 @) = CrollVaval 12 (q))3- (110)
which means that the EFC-3DFEM scheme is coercive.
Let ¢ € C2°(R2), and consider a vector @; whose elements are taken from

(@(xp))ypey= € Hy. Utilizing the triangle inequality in (89) and (109), we estimate
the error between @ (¢,) and ¢ as follows:

1P@n — @llL2) < 1Pon — Pignll L2 + 1 Pron — ¢ll2q)
<h [C9||VA‘Ph||(L2(Q))3 + IIlel(Lz(Q))S]. (111

Hence,
Ppn — ¢llp2) —> 0, ash — 0. (112)
Combining the above with the convergence of (88), the EFC-3DFEM scheme satisfies

the strong consistency property (43). From Proposition 1 and (109), it also satisfies
the dual consistency (44). O

5 Numerical experiments

In this section, three benchmark tests [9] are carried out to verify the numerical results
for the convergence of EFC-3DFEM scheme with the following methods:

e FEM-T4 — The standard linear finite element method on a tetrahedral mesh [20];
e SUSHI - A scheme using stabilization and hybrid interfaces [21];
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e CeVeFE-DDFV — A discrete duality finite volume scheme with cell/vertex/face+edge
unknowns [22];

e VAG - The vertex approximate gradient scheme [23]; and

e MFD-GEN - The mimetic finite difference of generalized polyhedral meshes [24];

The above list includes the FEM-T4 method because the EFC-3DFEM method is
equivalent to this approach on the tetrahedral subdual mesh 7, in the isotropic tensor
situation. Except for the FEM-T4 method, the remaining methods satisfy the local
conservativity of the fluxes, which is particularly essential for handling heterogeneous,
anisotropic (possibly discontinuous) diffusion (e.g., Tests 2 and 3).

The relative errors on the subdual mesh 7,"* in L%, H! semi-norm, and energy norm
of proposed EFC-3DFEM scheme denoted by erl2, ergrad, and ener are computed as
follows:

> [y lup — ulPdx 12

= | 2 (113)
erl2 = ,
> [y uPdx
> [p |Vaup — Vul*dx 172
d= | 00 (114)
ergrad = ,
Y [, Vuldx
Y [ A (Vaup — Vi)l - (Vauy — Vuydx \
e (115)
ener = ,
net Y [, (AVu) - Vudx

Te'];l**

where u is the the exact solution and w, = (up),,cA+ is the numerical result uy,
at vertices of the subdual mesh Th** Besides, umin and umax are defined as the
minimum and maximum values of the approximate solutions. Additionally, their rates
of convergence are expressed for each number of mesh i > 2 as follows:

log (erl2(i) /erl2(i — 1))

ratiol2 = —3 - - , (116)
log (nu(@)/nu(@ — 1))
ratiograd — _3log (ergrad(z.)/ergr.ad(z — 1))’ (117)
log (nu(@)/nu@@ — 1))
ratioener — _310g (ener(i)/ener(i — 1))’ (118)

log (nu(i)/nu(i — 1))

with nu denotes the number of unknowns in the linear system.

Additionally, four different fundamental mesh types of primal meshes are studied:
the uniform tetrahedral mesh (Mesh 1), the checkerboard mesh (Mesh 2), the prism
mesh with general bases (Mesh 3), and the locally refined mesh (Mesh 4) (see Fig. 8).
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Mesh 1 ‘
Mesh 2 Mesh 3 Mesh 4

Fig.8 Four types of primal meshes: (a) Mesh 1: uniform tetrahedral mesh, (b) Mesh 2: checkerboard mesh,
(c) Mesh 3: prism mesh with general bases, and (d) Mesh 4: locally refined mesh

Table 1 Convergence of the EFC-3DFEM scheme for Test 1 on Mesh 1

nu erl ratioer]l ergrad ratiograd ener ratioener umin umax

860 1.133e-02 1.053e-01 1.005e-01 8.555e-03 1.991
6232 3.172e-03 1.929  5933e-02 0.828 5.667e-02 0.868 2.141e-03  1.998
47,408  8.425e-04 1960  3.147¢e-02 0914 3.007e-02  0.937 5.354e-04 1.999
369,760 2.175e-04 1.977 1.621e-02  0.957 1.548e-02  0.969 1.338e-04 1.999

Test 1 Mild anisotropy.

Considering a constant, anisotropic permeability tensor A and a regular solution u
determined on the unit cubic domain €2, a non-homogeneous Dirichlet condition on
the domain boundary 9€2 is as follows:

1 050
A,y,2)=105105], (119)
0 05 1

ui(x,y,z) =14 sin(wrx)sin (JT (y + %) sin (71 (z + %))) . (120)

The minimum and maximum values of the solution u#; on €2 are equal to 0 and 2,
respectively. The primal meshes are Mesh 1 and Mesh 2.

It can be observed in Table 1 that when the mesh is refined, the EFC-3DFEM
delivers good convergence and the rate is of 1.9 in L?-norm, nearly 0.9 in H'-norm
and energy norm. Besides, the EFC-3DFEM scheme is higher accurate than FEM-T4
in the relative errors as indicated in Fig. 9. On a finer mesh of the subdual mesh 7,
the numerical results are really obtained.

From Table 2, the EFC-3DFEM delivers also good convergence and the rate
increases to 1.98 in L>—norm, 0.947 in H'—norm and 0.949 in the energy norm.
The EFC-3DFEM presents smaller errors in L?—norm than VAG, CeVeFE-DDFV,
and SUSHI schemes as shown Fig. 10 with the same primal mesh size.
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log,(The relative error in H * semi-norm)
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=x= FEM-T4

log,(The relative eror inenergy norm)

EFC-3DFEM|
—x= FEM-T4

25 35 4 45
log, (Number of unknowns)

(a)

25

35 4 45
Iog, (Number of unknowns)

(b)

25

3 a5 4 a5
og, (Number of unknowns)

()

Fig. 9 The relative errors in L2 norm (a), H ! semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM and FEM-T4 schemes for Test 1 on Mesh 1

Table 2 Convergence of the EFC-3DFEM scheme for Test 1 on Mesh 2

nu erl ratioer] ergrad ratiograd ener ratioener umin umax
252 3.348e-02 2.173e-01 2.163e-01 8.555¢-03 1.991
1824 1.037e-02 1.776  1.467e-01 0.595 1.448e-01 0.608 2.141e-03  1.997
13,824  2.754e-03 1.964  8.150e-02 0.871 8.03483e-02 0.873 5.354e-04 1.999
107,520 7.098e-04 1.983  4.264e-02 0.947 4.200e-02 0.949 1.338e-04 1.999
Table 3 Convergence results of the EFC-3DFEM scheme for Test 2 on Mesh 3

nu erl2 ratiol2  ergrad ratiograd ener ratioener umin umax
8410 2.923e-02 2.679e-01 2.781e-01 -8.842e-01 1.047
57,420  8.156e-03 1.994  1.074e-01 1.428 1.136e-01  1.398 -8.609e-01  1.049
183,030 3.771e-03 1.996  6.908e-02 1.141 7.405e-02 1.108 -8.641e-01  1.048
421,240 2.175e-03 1981  5.199e-02 1.023 5.584e-02 1.016 -8.616e-01  1.049

Test 2 Heterogeneity and anisotropy.

On the cubic domain 2 of Mesh 3, a second test is considered with smoothly variable

permeability tensor as

Aox(x,y,2) =

A regular solution u5 is given as

y2 +22+1 —Xy —XZ
—zy  xX*+22+1 —yz (121)
—Xz —yz 2 +yr+1
ur(x, v, z) = x°y*z + x sin(2rxz) sin(2rxy) sin(27z), (122)

which implies a non-homogeneous Dirichlet condition on the boundary 9€2. The min-
imum and maximum values are equal to —0.862 and 1.0487, respectively.
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log,,(The relative error
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Fig. 10 The relative errors in L2 norm (a), H'! semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM, VAG, CeVeFE-DDFV, MFD-GEN, and SUSHI schemes for Test 1 on Mesh 2

(b)

_ g T
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10g;(Nu Iog, o(Number of unknowns)

Fig. 11 The relative errors in L2 norm (a), H'! semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM, VAG, CeVeFE-DDFV, MFD-GEN, and SUSHI schemes for Test 2 on Mesh 3

Test 3 Strong discontinuous heterogeneous permeability.

Q; is given by

C»

The domain Q partitioned into the following sub-domains =
i=1

@ =[0, 1] x [0, 0.5] x [0, 0.5],

Qy =[0, 1] x (0.5, 1] x [0, 0.5],
Q3 = [0, 1] x (0.5, 1] x (0.5, 1],
Q4 =0, 1] x [0,0.5] x (0.5, 1].

The permeability tensor is defined as

@ 00
A3ty = 0l 0|, (123)
00 aé
and the exact solution is as follows:
u3(x,y, z) = o; sin(2wx) sin(2r y) sin(2w z), (124)

for (x,y,z) € i, where the coefficient «; is given in Table 4. The minimum and
maximum values of u3 on Q are —100 and 100, respectively.
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Table 4 The coefficients 1 ) 3 4
! a’y, a, a; for Test 3 on each
sub-domain €2; 0‘5: 1 1 1 1
o 10 0.1 0.01 100
al 0.01 100 10 0.1
o 0.1 10 100 0.01

3

—sk— EFC-3DFEM
-25( - @ =vac

== CoVeFE-DDFV]
-3} = % - MFD-GEN

SUSHI

10g,,(The relative error in H " semi-norm)

——ero-aorem

-8-vac

log,(The relative eror inenergy norm)

——ero-soren *

= ©®=VAG S

-x- Covere-00F

= % = MFD-GEN
sus

3 4 B
10g, (Number of unknowns)

(a)

(b)

3 4
og,(Number of unknowns)

3 4 5
0g, (Number of unknowns)

()

Fig. 12 The relative errors in L2 norm (a), H ! semi-norm (b), and energy norm (c) obtained by using the
EFC-3DFEM, VAG, CeVeFE-DDFV, MFD-GEN, and SUSHI schemes for Test 3 on Mesh 4

Table 5 Convergence results of the EFC-3DFEM scheme for Test 3 on Mesh 4

nu erl2 ratiol2  ergrad ratiograd  ener ratioener umin umax

152 8.505e-01 8.506e-01 8.505e-01 —185.055 185.055
940 1.734e-01 2.618  1.734e-01 1.875 2.723e-01 1.875 —113.946 113.946
6536 4.137e-02 2217  4.137e-02 1.151 1.291e-01 1.154 —102.948 102.948
48,592 1.020e-02 2.094 1.020e-02 1.060 6.367e-02 1.057 —100.675 100.675
374432 2.542e-03 2.041 2.542¢e-03 1.024 3.172e-02 1.024 —100.163  100.163

The permeability tensor A3 is discontinuous across the interfaces separating four
sub-domains. The exact solution u3 is designed to be continuous and ensures the
conservation of the normal flux across such interfaces. Note that, the homogeneous
Dirichlet boundary condition is imposed in this case.

According to Fig. 11 and Table 3 of Test 2 on Mesh 3, Fig. 12 and Table 5 of Test 3
on Mesh 4, the EFC-3DFEM converges and the rates in L%-norm is nearly 2; however,
the H'-norm and energy norm are nearly 1. Furthermore, with the same mesh size, the
EFC-3DFEM offers less L2—norm error than the VAG, CeVeFE-DDFV, and MFD-
GEN schemes on Test 2; and than the VAG, MFD-GEN schemes on Test 3 as shown
in Figs. 11 and 12.

Clearly, in the above numerical results, the convergence rate of EFC-3DFEM in
L2-norms, which is nearly 2, is greater than the rate estimated as 1 in (111).
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6 Conclusion

The EFC-3DFEM is represented in this research for three-dimensional heterogeneous
and anisotropic diffusion problems on generic meshes with discontinuities in the per-
meability tensor A. A primal mesh, a dual mesh, and a tetrahedral subdual mesh were
used in the design. Based on the results in this study, the following conclusions can
be drawn:

e The EFC-3DFEM possesses four important properties: (i) The stiffness matrix is
symmetric and positive definite, (ii) The discrete unknowns are linear combinations
at the center points and edge points of the primal mesh, (iii) It benefits from the
local continuity of numerical fluxes, and (iv) Leveraging the ability to construct
the dual mesh in complex geometric domains (see Remark 1), the subdual mesh
is also constructed to align with real-world geometry.

e Within a rigorous theoretical framework, we demonstrate the convergence of the
approximate solution for the full diffusion tensor (possibly discontinuous) and
general polyhedral meshes.

e The construction of the dual and subdual meshes (see Remark 7) constitutes the
core aspect of the macroelement technique [8]. This construction ensures stabil-
ity by employing this technique when extended to address the three-dimensional
Stokes, Oseen, Navier Stokes problems, including cases with variable viscosity,
as demonstrated in the two-dimensional case [25].

e The numerical results indicate that the convergence rates are nearly 2 in the L>-
norm. In the cases of the H!-norm and energy norm, the rates are close to 1, as
expected.

e Furthermore, the method is facilitated for direct implementation in the conven-
tional finite element codes based on tetrahedral meshes.

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology
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