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Abstract
This paper deals with the thermoelasticity problem in an orthotropic hollow sphere.
A unified governing equation is derived which includes the classical, Lord–Shulman
andGreen–Lindsay coupled theories of thermoelasticity. Time-dependent thermal and
mechanical boundary conditions are applied to the inner and outer surfaces of the
hollow sphere and the problem is solved analytically using the finite Hankel transform.
The inner surface of the sphere is subjected to a thermal shock in the form of a
prescribed heat flux. Subsequently, the thermal response, radial displacement, as well
as radial, tangential, and circumferential stresses of the sphere are determined. The
influence of different orthotropic material properties and relaxation time values is
investigated and presented graphically. The obtained results demonstrate excellent
agreement with the existing literature.

Keywords Generalized thermoelasticity · Green–Lindsay theory · Hankel
transform · Lord–Shulman theory · Orthotropic sphere · Thermal shock

1 Introduction

Spherical vessels are extensively utilized across diverse engineering sectors like
marine, aerospace, petrochemical, and mechanical. In addition to the mechanical
loads that these structures experience, the coupling phenomenon between thermal and
mechanical behaviors of materials holds significant relevance in diverse fields such as
acoustics, geology, geophysics, and engineering. The thermal loads associated with
these phenomena can sometimes reach magnitudes that lead to structural failure. To
address this issue, generalized theories of thermoelasticity have been developed in

B Mehdi Soroush
mehdi.soroush@gmail.com

1 Department of Mechanical Engineering, K. N. Toosi University of Technology,
Tehran 19919-43344, Iran

2 Department of Physics, Montana State University, Bozeman, MT 59717-3840, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-023-10321-3&domain=pdf


9 Page 2 of 34 M. Soroush, M. Soroush

recent decades. These theories introduce modifications to the energy equation, trans-
forming it into a hyperbolic partial differential equation that admits finite speed for the
propagation of thermal waves. Unlike classical theories, generalized thermoelasticity
theories offer a more realistic approach to addressing engineering problems involving
high heat fluxes, short time intervals, and low temperatures. In this regard, Lord and
Shulman’s theory is one of the most well-known generalized thermoelasticity theo-
ries, which incorporates a relaxation time to modify Fourier’s law of heat conduction.
Another thermoelasticity theory that admits the second sound effect is Green–Lind-
say theory. Green and Lindsay introduced alterations to the stress–strain relationship
and the energy equation by incorporating two relaxation times, which establish con-
nections between stress, entropy, and the rate of temperature change. However, the
governing equations of thermoelasticity are inherently complex due to the intricate
coupling between elastic and thermal fields. This coupling leads to the introduction of
additional constants and relaxation times in generalized thermoelasticity theories, fur-
ther complicating the governing equations. As a result, analytical solutions, especially
in the context of generalized theories, have not been extensively developed. Further-
more, the growing demand for materials with enhanced strength-to-weight ratios has
prompted advances in the design of novel materials such as fiber-reinforced compos-
ites and manufacturing processes. The utilization of composite materials or diverse
manufacturing techniques for spheres may lead to anisotropic mechanical properties.
Consequently, it becomes imperative to analyze the response of structures composed
of such materials to accurately predict their behavior and performance.

Tanigawa and Takeuti [1] studied a hollow sphere’s transient thermal stress prob-
lem. They obtained the distribution of the transient thermoelastic stresses using the
Laplace transform. In their approach, stress and temperature distribution were deter-
mined simultaneously. Hata [2] investigated the thermal shock in a hollow sphere
caused by rapid uniform heating. They employed Ray’s theory to extract closed-form
relations for dynamic stresses. However, in their approach, no generality is consid-
ered for the thermal load. Misra et al. [3] discussed the generation of thermal stresses
in an aeolotropic homogeneous continuum solid with a spherical cavity. They used
Laplace transform to obtain temperature, stress, and displacement distributions. Wang
et al. [4] using the separation of variables, presented numerical results to show the
uniformly heated hollow spheres’ dynamic stress responses. They solved the prob-
lem by resolving the radial displacement into two functions. One of these functions
satisfies homogeneous mechanical boundary conditions while the other fulfills inho-
mogeneous boundary conditions. A method to obtain the temperature distribution is
not presented in their work. Kiani and Eslami [5] solved the thermally nonlinear ther-
moelasticity problemof an isotropic homogeneous thick sphere subjected to a heat flux.
They employed the Lord–Shulman theory of thermoelasticity and solved the problem
using the generalized differential quadrature method and Newmark time marching
scheme. Bagri and Eslami [6] studied the dynamic response of an isotropic annular
disk using Lord and Shulman’s theory of thermoelasticity. The problem is solved using
the Laplace transform and Finite Element Method. They also investigated the effects
of relaxation time and thermoelastic coupling coefficient. Javani et al. [7] proposed a
unified formulation that includes Lord–Shulman, Green–Lindsay, and Green–Naghdi
theories, to investigate the thermo-visco-elastic response of a hollow sphere under
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thermal shock. They solved the problem using Newmark time marching and Finite
Element methods. In the context of FGM and orthotropic materials, some new stud-
ies in thermoelasticity are recently published [8–13]. Alavi et al. [14] studied the
thermoelastic behavior of thick functionally graded hollow spheres under combined
thermal and mechanical loads. Mechanical and thermal properties of FGM sphere are
assumed to be functions of radial position. Lee [15] presented quasi-static thermoelas-
tic for multilayered spheres. The governing equation’s general solutions are obtained
in the transform domain using the Laplace transform. The solution is obtained using
the matrix similarity transformation and inverse Laplace transform. Stampouloglou
et al. [16] studied the axisymmetric thermoelastic problem for a radially nonhomoge-
neous equal thickness spherical shell. They solved the problemunder a radially varying
temperature field, with axisymmetric geometry and loading. Bagri and Eslami [17]
proposed a unified formulation to investigate both cylinders and spheres made of an
anisotropic heterogeneousmaterial. The proposed formulation covers generalized the-
ories of coupled thermoelasticity based on the Lord–Shulman, Green–Lindsay, and
Green–Naghdi models. They solved the problem in a sphere and cylinder subjected
to thermal shock using Laplace transform and numerically calculated the inversions.
Sharifi [18] proposed a unified formulation to investigate the thermal shock prob-
lem in an orthotropic cylinder. The formulation is based on the Green–Lindsay and
Lord–Shulman theories of thermoelasticity. They solved the problem using the finite
Hankel transform.

Despite extensive investigations, to the best of the authors’ knowledge, the problem
of generalized coupled thermoelasticity in the orthotropic sphere remains unaddressed
in the existing literature. This research paper aims to fill this gap by providing an
analytical solution for the aforementioned problem. This study presents a unified for-
mulation for the thermoelasticity problem based on the classical, Lord–Shulman, and
Green–Lindsay’s theories of thermoelasticity for an orthotropic hollow sphere. The
thermal boundary conditions entail prescribing a heat flux on the inner surface and
a constant temperature on the outer surface of the sphere. Meanwhile, the mechani-
cal boundary conditions involve constant displacement for the inner boundary while
traction is prescribed on the outer boundary. The problem has been assumed to be
one-dimensional and the finite Hankel transform is utilized to obtain the solution for
the displacement and temperature fields. As a case study, we examine an orthotropic
sphere exposed to a constant heat flux on its inner surface while maintaining a zero
temperature on the outer surface. The numerical outcomes of this scenario are then
depicted in the form of graphical figures, illustrating the propagation and reflection of
temperature and stress waves. To validate the accuracy of the obtained solution, the
generalized coupled thermoelasticity problem is reduced to a special case, and a com-
parison is made with results obtained by other researchers, demonstrating excellent
agreement. Furthermore, the effects of orthotropic material and different relaxation
times on the temperature distribution, displacement, and stresses are investigated and
depicted through graphical representations.
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2 Formulation

To unify the classical dynamic, Lord–Shulman, and Green–Lindsay theories of ther-
moelasticity, it is possible to formulate the system of equations that expresses the
relations between stress–strain fields, the heat conduction equation, and the equation
of motion in the following manner [9, 19]:

Ci jkluk,l j + Fi − βi j
(
T,i + t1Ṫ,i

) � ρüi . (1a)

Ki j T,i j � ρc
(
Ṫ + t2T̈

)
+

(
1 + t3

∂

∂t

)(
T0βi j ε̇i j − ρQ

)
. (1b)

σi j � Ci jkluk,l − βi j
(
T + t1Ṫ

)
. (1c)

It can be seen that, when t1 � t2 � t3 � 0 these equations reduce to classical
dynamic theory, when t1 � 0 and t2 � t3, Lord–Shulman theory can be deduced; and
setting t3 � 0 leads to Green–Lindsay theory of thermoelasticity.

Now, consider a hollow orthotropic sphere with the inner radius of a and the outer
radius of b in undisturbed condition and at the reference temperature T0. We use a
spherical coordinate (r , θ, ϕ) with the sphere’s center as the origin. Since the sphere
is subjected to spherically symmetric boundary conditions, the displacement u �
[u(r , t), 0, 0] and temperature T are assumed to be functions of radius (r ) and time
(t) only. Consequently, the problem is simplified to a one-dimensional form [10, 20].
Thus, the relations between stress and strain components are [10, 21]:

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

σr

σθ

σϕ

τθϕ

τϕr

τrθ

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

�

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

εr − αr�T
εθ − αθ�T
εϕ − αϕ�T

γθϕ

γϕr

γrθ

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

. (2)

where Ci j are the elastic constants and αr , αθ , and αϕ are the thermal expansion
coefficients in r , θ, ϕ directions, respectively. Due to symmetry, by omitting all dis-
placement components and all derivatives in the θ and ϕ directions, the equation of
motion in spherical coordinates is obtained as [10, 20]:

∂σr

∂r
+
1

r

(
2σr − σθ − σϕ

)
+ ρbi � ρü. (3)

in which ρ is the density and bi is the body force. The strain components can be
expressed in terms of the non-vanishing displacement component as follows:

εr � ∂u

∂r
; εθ � εϕ � u

r
; γθϕ � γϕr � γrθ � 0. (4)
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Finally, in the absence of body forces and using Eqs. (1a), (1b), (1c), (2), (3), and
(4), the equation of motion in terms of displacement and temperature can be expressed
in the following form:

(5)

C11

(
∂2u

∂r2
+
2

r

∂u

∂r

)
− (C22 + 2C23 + C33 − C12 − C13)

u

r2

− β11

(
∂ψ

∂r
+ t1

∂ψ̇

∂r

)
+
1

r
(β33 + β22 − 2β11)

(
ψ + t1ψ̇

) � ρ
∂2u

∂t2
.

in which a dot over the quantity is the partial derivative of it with respect to time and:

β11 � C11αr + C12αθ + C13αϕ. (6a)

β22 � C12αr + C22αθ + C23αϕ. (6b)

β33 � C13αr + C23αθ + C33αϕ. (6c)

and

ψ � T (r , t) − T0. (7)

Also, in cases with spherically symmetric thermal boundary conditions and no
internal heat generation, K11 � K22 � K33 � K and the temperature distribution
becomes independent of θ and ϕ [22]; thus, using Eqs. (4) and Eq. (1b) the conduction
equation can be expressed in the following form:

(8)

K

(
∂2ψ

∂r2
+
2

r

∂ψ

∂r

)
− T0β11

(
∂ u̇

∂r
+ t3

∂ ü

∂r

)
− T0 (β22 + β33)

(
u̇

r
+ t3

ü

r

)

� ρc

(
∂ψ

∂t
+ t2

∂2ψ

∂t2

)
.

The non-vanishing stress components, namely σr , σθ , and σϕ , are related to the
displacement components and the temperature as:

σr � C11
∂u

∂r
+ (C12 + C13)

u

r
− β11

(
ψ + t1ψ̇

)
. (9a)

σθ � C12
∂u

∂r
+ (C22 + C23)

u

r
− β22

(
ψ + t1ψ̇

)
. (9b)

σϕ � C13
∂u

∂r
+ (C23 + C33)

u

r
− β33

(
ψ + t1ψ̇

)
. (9c)
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In terms of mechanical boundary conditions, the inner surface of the sphere expe-
riences a constant displacement, while traction is prescribed on the outer surface:

u(a, t) � f1(t). (10a)

σr (b, t) � f2(t). (10b)

where f1(t) and f2(t) are defined time-dependent functions. By substituting Eq. (9a)
in Eq. (10b), we have

C11
∂u

∂r
|r�b + (C12 + C13)

u(b, t)

b
� f2(t) + β11

(
ψ(b, t) + t1ψ̇(b, t)

)
. (11)

As observed,we consider themechanical boundary conditions to be time-dependent
and expressed in a general form. Concerning the initial conditions of the radial dis-
placement field, we have

u(r , 0) � f3(r). (12a)

u̇(r , 0) � f4(r). (12b)

where f3(r) and f4(r) are defined functions of the radial position. For the energy
equation, temperature is prescribed on the outer surfaces of the sphere, and the inner
surface is subjected to a heat flux.Thus,we assumed the boundary and initial conditions
in the following form:

−k
∂ψ

∂r

∣∣
r�a � g1(t). (13a)

ψ(b, t) � g2(t). (13b)

ψ(r , 0) � g3(r). (13c)

ψ̇(r , 0) � g4(r). (13d)

where g1(t) and g2(t) are defined time-dependent functions and g3(r) and g4(r) are
defined functions of the radial position.
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3 Themethod of solution

For the sake of analysis, using the following dimensionless parameters, the proceeding
equations may be changed into the dimensionless form [17]:

r̂ � r

l
t̂ � tγ

l
q̂i � qi l

kT0
ψ̂ � ψ

T0

û � C11

lβ11T0
u σ̂r � σr

β11T0
σ̂θ � σθ

β11T0
σ̂ϕ � σϕ

β11T0

t̂1 � t1γ

l
t̂2 � t2γ

l
t̂3 � t3γ

l

. (14)

where

l � k

ρcγ
. (15)

γ �
√
C11

ρ
. (16)

Dropping the hat sign for convenience, and introducing:

u � r− 1
2 w. (17a)

ψ � r− 1
2 θ. (17b)

Equations (4) and (8) could be rewritten as:

∂2w

∂r2
+
1

r

∂w

∂r
− v2

w

r2
−
(

∂θ

∂r
+ t1

∂θ̇

∂r

)
+
1

r

(
D − 3

2

)(
θ + t1θ̇

) � ∂2w

∂t2
. (18)

∂2θ

∂r2
+
1

r

∂θ

∂r
− 1

4

θ

r2
−C

(
∂ẇ

∂r
+ t3

∂ẅ

∂r

)
−C

(
D − 1

2

)(
ẇ

r
+ t3

ẅ

r

)
� ∂θ

∂t
+ t2

∂2θ

∂t2
.

(19)

in which

v2 � C22 + 2C23 + C33 − C12 − C13

C11
+
1

4
. (20)

D � β33 + β22

β11
. (21)

C � T0β2
11

ρcC11
. (22)
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The coefficient D quantifies the impact of accounting for orthotropic material
behavior, while C represents the thermomechanical coupling coefficient. It’s worth
noting that when material properties are equal in different directions, D and v2 equal
2 and 2.25, respectively, causing the equations for the orthotropic sphere to simplify to
those of an isotropic material [17]. For themechanical boundary and initial conditions,
we have:

w(a, t) � C11
√
a

lβ11T0
f1(t) � f ∗

1 (t). (23a)

∂w

∂r
|r�b + h1w(b, t) �

√
b

β11T0
f2(t) +

√
bg2(t)

T0
� f ∗

2 (t). (23b)

w(r , 0) � C11
√
r

lβ11T0
f3(r) � f ∗

3 (r). (23c)

ẇ(r , 0) � C11l
√
r

γβ11T0
f4(r) � f ∗

4 (r). (23d)

where

h1 � 1

b

(
C12 + C13

C11
− 1

2

)
. (24)

Similarly, the thermal boundary and initial conditions take the following form:

∂θ

∂r
|r�a + h2θ(a, t) � − l

√
a

T0
g1(t) � g∗

1(t). (25a)

θ(b, t) �
√
b

T0
g2(t) � g∗

2(t). (25b)

θ(r , 0) �
√
r

T0
g3(r) � g∗

3(r). (25c)

θ̇ (r , 0) � l
√
r

γ T0
g4(r) � g∗

4(r). (25d)

where

h2 � − 1

2a
. (26)

To solve the coupled thermoelasticity equations (Eqs. (18) and (19)), w(r , t) and
θ(r , t) are resolved into two components [23]:

w(r , t) � w1(r , t) + w2(r , t). (27)
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θ(r , t) � θ1(r , t) + θ2(r , t). (28)

Then, the boundary value problem related to the displacement equation is resolved
into the following two boundary value problems. In which, boundary conditions
are assigned to the first homogeneous part of the differential equation (w1(r , t)
and θ1(r , t)) and initial conditions to the second inhomogeneous part (w2(r , t) and
θ2(r , t)):

∂2w1

∂r2
+
1

r

∂w1

∂r
− v2

w1

r2
� ẅ1. (29a)

w1(a, t) � f ∗
1 (t). (29b)

∂w1

∂r
|r�b + h1w1(b, t) � f ∗

2 (t). (29c)

w1(r , 0) � 0. (29d)

ẇ1(r , 0) � 0. (29e)

and

∂2w2

∂r2
+
1

r

∂w2

∂r
− v2

w2

r2
− ∂θ

∂r
+
1

r

(
D − 3

2

)(
θ + t1θ̇

) � ẅ2. (30a)

w2(a, t) � 0. (30b)

∂w2

∂r
|r�b + h1w2(b, t) � 0. (30c)

w2(r , 0) � f ∗
3 (r). (30d)

ẇ2(r , 0) � f ∗
4 (r). (30e)

The energy equation is treated similarly:

∂2θ1

∂r2
+
1

r

∂θ1

∂r
− 1

4

θ1

r2
� θ̇1 + t2θ̈1. (31a)

∂θ1

∂r
|r�a + h2θ1(a, t) � g∗

1(t). (31b)

θ1(b, t) � g∗
2(t). (31c)

θ1(r , 0) � 0. (31d)
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θ̇1(r , 0) � 0. (31e)

and

(32a)

{
∂2θ2

∂r2
+
1

r

∂θ2

∂r
− 1

4r2
θ2

}
− C

(
∂ẇ

∂r
+ t3

∂ẅ

∂r

)
− C

(
D − 1

2

)(
ẇ

r
+ t3

ẅ

r

)

� θ̇2 + t2θ̈2.

∂θ2

∂r
|r�a + h2θ2(a, t) � 0. (32b)

θ2(b, t) � 0. (32c)

θ2(r , 0) � g∗
3(r). (32d)

θ̇2(r , 0) � g∗
4(r). (32e)

Equations (29) and (31) are Bessel-type equations and could be solved using the
finite Hankel transform [24]:

H[w1(r , t); ξm] � w1(ξm, t) � b∫
a
rw1(r , t)K1(r , ξm)dr . (33)

H[θ(r , t); λn] � θ1(λn, t) � b∫
a
rθ1(r , t)K2(r , λn)dr . (34)

where K1(r , ξm) and K2(r , λn) are the kernels of the transformation. The selection
of the appropriate kernel depends on both the general form of the equation and the
specified boundary conditions. For the current problem, the transformation kernels are
defined as follows [25]:

K1(r , ξm) � Jv(ξmr)Yv(ξma) − Jv(ξma)Yv(ξmr). (35)

K2(r , λn) � J0.5(λnr)Y0.5(λnb) − J0.5(λnb)Y0.5(λnr). (36)

where ξm and λn are the positive roots of the following characteristic equations:

Yv(ξma)
[
ξm J ′

v(ξmb) + h1 Jv(ξmb)
]− Jv(ξma)

[
ξmY

′
v(ξmb) + h1Yv(ξmb)

] � 0. (37)

(38)

Y0.5 (λnb)
[
λn J

′
0.5 (λna) + h2 J0.5 (λna)

]

− J0.5 (λnb)
[
λnY

′
0.5 (λna) + h2Y0.5 (λna)

] � 0.
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The inverse transformations are defined as [25]:

H−1[w1(ξm, t); r ] � w1(r , t) �
∞∑

m�1

amw1(ξm, t)K1(r , ξm). (39)

H−1[θ1(λn, t); r
] � θ1(r , t) �

∞∑

n�1

bnθ1(λn, t)K2(r , λn). (40)

where

am � 1

∫ba r{K1(r , ξm)}2dr � π2

2

ξ2me
2
1

J 2v (ξma)

(
h21 + ξ2m

[
1 −

(
v

ξmb

)2])− e21

. (41)

bn � 1

∫ba r{K2(r , λn)}2dr
� π2

2

λ2ne
2
2

e22 − J 20.5(λnb)

(
h22 + λ2n

[
1 −

(
0.5
λna

)2]) . (42)

in which

e1 � ξm J ′
v(ξmb) + h1 Jv(ξmb). (43)

e2 � λn J
′
0.5(λna) + h2 J0.5(λna). (44)

Applying the finite Hankel transform to Eqs. (29a) and (31a), yields:

∂2w1(ξm, t)

∂t2
+ ξ2mw1(ξm, t) � 2

π

[
Jv(ξma)

e1
f ∗
2 (t) − f ∗

1 (t)

]
� G(t). (45)

t2
∂2θ1(λn, t)

∂t2
+

∂θ1(λn, t)

∂t
+ λ2nθ1(λn, t) � 2

π

[
g∗
2(t) − J0.5(λnb)

e2
g∗
1(t)

]
� V (t).

(46)

Equations (45) and (46) are a nonhomogeneous ordinary differential equation,
which can be solved in the following manner:

w1(ξm, t) � 1

ξm

t∫
0
G(τ ) sin(ξm(t − τ))dτ . (47)

θ1(λn, t) � 2

�

{
t∫
0
V (τ )e

− 1
2t2

(t−τ)sin

(
�

2t2
(t − τ)

)
dτ

}
. (48)

where � � √
4t2λ2n − 1. Using the inversion relations (Eqs. (39) and (40)), we have:

w1(r , t) �
∞∑

m�1

1

ξm
amK1(r , ξm)

t∫
0
G(τ ) sin(ξm(t − τ))dτ . (49)
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θ1(r , t) �
∞∑

n�1

bnK2(r , λn)
2

�

{
t∫
0
V (τ )e

− 1
2t2

(t−τ)sin

(
�

2t2
(t − τ)

)
dτ

}
. (50)

Up to now, we have successfully solved the first set of equations. To address the
second set of equations, we adopt the following forms for w2(r , t) and θ2(r , t) [23]:

w2(r , t) �
∞∑

m�1

A(t) · K1(r , ξm). (51)

θ2(r , t) �
∞∑

n�1

B(t) · K2(r , λn). (52)

in which A(t) and B(t) are time-dependent functions that remain undetermined and
need to be derived. It’s important to emphasize that the chosen form for w2(r , t) and
θ2(r , t) satisfies the related boundary conditions (Eqs. (30b), (30c) and Eqs. (32b),
(32c)). Substituting Eqs. (49), (50), (51), and (52) into Eqs. (30a) and (32a) yields:

(53)

[
Ä + ξ2m A

]
K1 (r , ξm)

�
[
B + bnθ1 + t1

(
Ḃ + bn θ̇1

)] [
−∂K2 (r , λn)

∂r
+

(
D − 3

2

) K2 (r , λn)

r

]
.

[
t2 B̈ + Ḃ + λ2n B

]
K2 (r , λn)

� −C
[
Ȧ + amẇ1 + t3

(
Ä + amẅ1

)]
[
∂K1 (r , ξm)

∂r
+

(
D − 1

2

) K1 (r , ξm)

r

]
.

(54)

By leveraging the orthogonal property of the Bessel functions, we arrive at the
following equation [24]:

b∫
a
rK1(r , ξm)K1

(
r , ξp

)
dr � Smδmp. (55)

b∫
a
rK2(r , λn)K2

(
r , λp

)
dr � Qnδnp. (56)

where δ is the Kronecker delta and

Sm � π2

2

ξ2me
2
1

J 2v (ξma)

(
h21 + ξ2m

[
1 −

(
v

ξmb

)2])− e21

. (57)
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Qn � π2

2

λ2ne
2
2

e22 − J 20.5(λnb)

(
h22 + λ2n

[
1 −

(
0.5
λna

)2]) . (58)

Multiplying Eq. (53) by rK1(r , ξm), and Eq. (54) by rK2(r , λn), integrating over
the interval from a to b, and subsequently applying the orthogonality relation, we
obtain:

Ä + ξ2m A � L1

[
B + bnθ1 + t1

(
Ḃ + bn θ̇1

)]
. (59)

t2 B̈ + Ḃ + λ2n B � CL2
[
Ȧ + amẇ1 + t3

(
Ä + amẅ1

)]
. (60)

in which

L1 � 1

Sm

b∫
a

[
−∂K2(r , λn)

∂r
+

(
D − 3

2

)K2(r , λn)

r

]
rK1(r , ξm)dr . (61)

L2 � −1

Qn

b∫
a

[
∂K1(r , ξm)

∂r
+

(
D − 1

2

)K1(r , ξm)

r

]
rK2(r , λn)dr . (62)

The appropriate form for the initial conditions can be derived by substituting Eqs.
(30d) and (30e) into (51):

w2(r , 0) � A(0) · K1(r , ξm) � f ∗
3 (r). (63)

ẇ2(r , 0) � Ȧ(0) · K1(r , ξm) � f ∗
4 (r). (64)

Using the orthogonality relation, Eqs. (63) and (64) lead to:

A(0) � 1

Sm

b∫
a
r f ∗

3 (r)K1(r , ξm)dr . (65)

Ȧ(0) � 1

Sm

b∫
a
r f ∗

4 (r)K1(r , ξm)dr . (66)

The initial conditions for the energy equation can be obtained similarly:

B(0) � 1

Qn

b∫
a
rg∗

3(r)K2(r , λn)dr . (67)

Ḃ(0) � 1

Qn

b∫
a
rg∗

4(r)K2(r , λn)dr . (68)

It’s evident that Eqs. (59) and (60) are coupled and can be uncoupled through some
mathematical manipulations [13]. Differentiating Eqs. (59) and (60) with respect to
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time results in:

...
A + ξ2m Ȧ � L1

[
bn θ̇1 + Ḃ + t1

(
B̈ + bn θ̈1

)]
. (69)

(70)

(71)

(72)

Now substituting B̈ from Eq. (60) in Eq. (71) leads to:

A(4) + ξ2m Ä � L1

[
bn θ̈1 +

CL2

t2

(
Ȧ + amẇ1 + t3

(
Ä + amẅ1

))− 1

t2
Ḃ − 1

t2
λ2n B

]
.

(73)

Now by substituting B from Eq. (59) and Ḃ from Eq. (69) into Eq. (73) we have:

(74)

It can be observed that Eq. (74) is independent of B. Now similarly, substituting
A(4) from Eq. (71) into Eq. (72) yields:

(75)

Then substituting
...
A from Eq. (69) into Eq. (75) yields:

(76)
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And now by substituting Ȧ + t3 Ä from Eq. (60) into Eq. (76), we have:

(77)

Equations (74) and (77) represent the decoupled ordinary differential equation
forms of equations (59) and (60). By substituting Eqs. (45) and (46) into these equa-
tions, we simplify them as follows:

(78)

(79)

Solving Eqs. (78) and (79) gives A(t) and B(t) and as a resultw2(r , t) and θ2(r , t).
The solutions of these equations are dependent on the initial conditions; therefore,
A(t) and B(t) are presented in the case study section. Now, both parts of w(r , t) and
θ(r , t) are obtained and using Eq. (17a), (17b), closed-form relations for u(r , t) and
ψ(r , t) are as follows:

u(r , t) � 1√
r

( ∞∑

m�1

amw1(ξm, t)K1(r , ξm) +
∞∑

m�1

∞∑

n�1

A(t) · K1(r , ξm)

)

. (80)

ψ(r , t) � 1√
r

( ∞∑

n�1

bnθ1(λn, t)K2(r , λn) +
∞∑

m�1

∞∑

n�1

B(t) · K2(r , λn)

)

. (81)

The methodology employed in this study holds potential for resolving problems
featuring various kinds of thermal–mechanical boundary conditions by selecting the
suitable kernel of the transformation.
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4 Case study

For numerical computations of the thermoelasticity problem of an orthotropic sphere
under external loads, the following material properties have been considered for the
calculations:

a � 1m b � 2m T0 � 200.15K

c � 262J
/
Kg k � 0.918w

/
mK ρ � 7.96e3Kg

/
m3

α11 � 15e − 61
/
K α22 � 23e − 61

/
K α33 � 15e − 61

/
K

C11 � 17.44e9N
/
m2 C22 � 17.27e9N

/
m2 C33 � 19.16e9N

/
m2

C12 � 6.17e9N
/
m2 C13 � 5.97e9N

/
m2 C23 � 4.96e9N

/
m2

. (82)

For thermal boundary conditions, a thermal shock in the form of heat flux is pre-
scribed on the inner surface of the sphere and the mechanical boundary conditions
include a constrained inner surface, and the outer surface is considered to be traction-
free:

u(a, t) � 0. (83a)

σr (b, t) + τr (b, t) � 0. (83b)

−∂ψ

∂r
|r�a � qin . (84a)

ψ(b, t) � 0. (84b)

The mechanical and thermal initial conditions are:

u(r , 0) � 0. (85a)

u̇(r , 0) � 0. (85b)

ψ(r , 0) � 0. (86a)

ψ̇(r , 0) � 0. (86b)

Therefore, we have:

A(0) � 0. (87a)

Ȧ(0) � 0. (87b)
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B(0) � 0. (88a)

Ḃ(0) � 0. (88b)

using Eqs. (25a), (25b), (25c), (25d) and (46) leads to:

g∗
1(t) � qin . (89a)

g∗
2(t) � 0. (89b)

V (t) � 2
√
a

π

J0.5(λnb)

J0.5(λna)
qin . (89c)

Therefore:

θ1(λn, t) � 4

�

√
a J0.5(λnb)

π J0.5(λna)

t∫
0
qin(τ )e

− 1
2t2

(t−τ)sin

(
�

2t2
(t − τ)

)
dτ . (90)

Also, Considering Eqs. (23a), (23b), (23c), (23d) and (45) leads to:

f ∗
1 (t) � 0. (91a)

f ∗
2 (t) � 0. (91b)

G(t) � 0. (91c)

And, as a result:

w1(ξm, t) � 0. (92)

Then, substituting Eqs. (90) and (92) into Eqs. (49) and (50) gives:

w1(r , t) � 0. (93)

θ1(r , t) �
∞∑

n�1

bn
4

�

√
aJ0.5(λnb)qin
π J0.5(λna)

2

�
(
�2 + 1

)

(
�t2 − t2exp

(−t

2t2

)[
sin

(
�t

2t2

)
+ �cos

(
�t

2t2

)])
K2(r , λn). (94)
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This way Eqs. (78) and (79) yield:

(95)

t2
d4A

dt4
+ [1 − CL1L2t1t3]

d3A

dt3
+
[
t2ξ

2
m + λ2n − CL1L2(t1 + t3)

] d2A
dt2

+
[
ξ2m − CL1L2

] dA
dt

+ ξ2mλ2n A � L1

[
bn

2
√
a

π

J0.5 (λna)

J0.5 (λnb)
qin

]
.

t2
d4B

dt4
+ [1 − CL1L2t1t3]

d3B

dt3
+
[
t2ξ

2
m + λ2n − CL1L2(t1 + t3)

]d2B
dt2

+
[
ξ2m − CL1L2

]dB
dt

+ ξ2mλ2n B

� CL2

[
bnL1

((
t1

¨̄θ1 + ˙̄θ1
)
+ t3

(
t1

...

θ̄1 + ¨̄θ1
))]

. (96)

Now, we can calculate θ̇1, θ̈1 and by differentiating Eq. (94), and solving Eq. (95)
results in:

A(t) � 2L1bn
√
aqin J0.5(λnb)

πλ2nξ
2
m J0.5(λna)

+
4∑

i�1

ci e
αi t . (97)

And using Eqs. (59), (60), (69), and (70), the relation between A(t) and B(t) can
be deduced in the following form:

B(t) � Q1
d3A

dt3
+ Q2

d2A

dt2
+ Q3

dA

dt
+ Q4A − (t2 − t1)(

t21λ2n + t2 − t1
)bnθ1. (98)

where

Q1 � − t1t2
L1
(
t21λ2n + t2 − t1

) . (99a)

Q2 � − t1 − t2 − t21 t3CL1L2

L1
(
t21λ2n + t2 − t1

) . (99b)

Q3 � − t1t2ξ2m − t21CL1L2

L1
(
t21λ2n + t2 − t1

) . (99c)

Q4 � − −(t2 − t1)ξ2m
L1
(
t21λ2n + t2 − t1

) . (99d)
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Substituting Eq. (97) into (98) leads to:

(100)

B (t) � 2bn
√
aqin J0.5 (λnb)

πλ2n J0.5 (λna)
− (t2 − t1)(

t21λ2n + t2 − t1
)bnθ1

+
4∑

i�1

(
Q1α

3
i + Q2α

2
i + Q3αi + Q4

)
cie

αi t .

in which, αi ’s are the roots of the following equation:

(101)

t2x
4 + (1 − CL1L2t1t3) x

3 +
(
t2ξ

2
m + λ2n − CL1L2(t1 + t3

)
)x2

+
(
ξ2m − CL1L2

)
x + ξ2mλ2n � 0.

and ci ’s can be obtained using Eqs. (87a), (87b) and (88a), (88b);

⎛

⎜⎜
⎝

c1
c2
c3
c4

⎞

⎟⎟
⎠ �

⎛

⎜⎜
⎝

1 1 1 1
α1 α2 α3 α4

S1 S2 S3 S4
α1S1 α2S2 α3S3 α4S4

⎞

⎟⎟
⎠

−1⎛

⎜⎜
⎝

R1

0
R2

0

⎞

⎟⎟
⎠. (102)

where

S1 � Q1α
3
1 + Q2α

2
1 + Q3α1 + Q4. (103a)

S2 � Q1α
3
2 + Q2α

2
2 + Q3α2 + Q4. (103b)

S3 � Q1α
3
3 + Q2α

2
3 + Q3α3 + Q4. (103c)

S4 � Q1α
3
4 + Q2α

2
4 + Q3α4 + Q4. (103d)

and

R1 � −2L1bn
√
aqin J0.5(λnb)

πλ2nξ
2
m J0.5(λna)

. (104a)

R2 � − (t2 − t1)(
t21λ2n + t2 − t1

)
2bn

√
aqin J0.5(λnb)

πλ2n J0.5(λna)
. (104b)

To validate the obtained solution for the thermoelasticity problem in an orthotropic
sphere, we examine the thermoelasticity problem of an isotropic sphere experiencing
a sudden and uniform temperature increase θ0 across the entire sphere. While an
orthotropic sphere exhibits varying mechanical and thermal properties along three
orthogonal axes, when these properties are equivalent in all directions, the orthotropic
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Fig. 1 Comparison of radial stress with Hata [2] in the case of b/a � 5

Fig. 2 Comparison of tangential stress with Hata [2] in the case of b/a � 5

sphere effectively simplifies into an isotropic sphere. In essence, the isotropic sphere
serves as a particular case of the more general orthotropic sphere, characterized by
uniform material properties in all directions. Figures 1 and 2 exhibit the history of
radial and tangential stresses, respectively. It is observed that when the orthotropic
sphere possesses identical properties in different directions and the relaxation times
are disregarded, the obtained results align with those presented by Hata [2] for the
isotropic sphere. In Hata’s work, nondimensional time and nondimensional stress
components are defined as follows:

t̂ � Vet

a
. (105)

σ̂r � (1 − 2v)σr

EαT0
. (106)

σ̂θ � (1 − 2v)σθ

EαT0
. (107)
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Fig. 3 History of nondimensional temperature at mid-radius for different theories

To explore the thermoelastic responses of the orthotropic sphere to a thermal shock,
we’ve conducted a comparative analysis involving three theories: classical theory,
Lord–Shulman, and Green–Lindsay. Figure 3 illustrates the history of nondimen-
sional temperature at the mid-radius of the orthotropic sphere for all aforementioned
theories. It’s evident that in the Lord–Shulman and Green–Lindsay theories, an abrupt
change occurs in temperature at the initial moments due to their incorporation of a
finite speed for the thermalwave.Moreover, the coefficient of the second derivate of the
variable with respect to the time in the wave equation indicates the speed of the propa-
gated wave. Hence, because both Lord–Shulman and Green–Lindsay models assume
the same value for relaxation times, the histories of nondimensional temperature are
coincident for both theories.

Figure 4 depicts the history of nondimensional displacement at mid-radius of the
orthotropic sphere for all of the theories. Remarkably, the Green–Lindsay theory fore-
sees higher peak values in the displacement field compared to the other theories.
It’s important to highlight that, despite the thermal responses of Lord–Shulman and

Fig. 4 History of nondimensional displacement at mid-radius for different theories
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Green–Lindsay theories being coincident, their displacement responses differ. This
discrepancy arises from the fact that Green–Lindsay theory introduces an additional
relaxation time into the equation of motion, whereas Lord–Shulman’s equation of
motion lacks any relaxation time.

Figures 5, 6 and 7 display the history of nondimensional radial, tangential, and cir-
cumferential stresses at the mid-radius of the sphere for various theories, respectively.
It can be seen, in classical theory, stress starts to decrease right from the outset due to the
assumption of an infinite velocity for the temperature wave. Conversely, in generalized
theories, the temperature wave takes longer to propagate to radial positions, causing a
delayed reduction in stress. Additionally, an abrupt jump occurs in the initial moments
in theGreen-Lindsay theorywhen thewavefront reaches a radial position. This is a con-
sequence of the presence of a temperature gradient in the stress components (Eq. 9a),
(9b), (9c). While these jumps completely disappear after t � 4, because the temper-
ature gradient diminishes across the sphere with the rise in medium’s temperature. It
can be inferred from the results shown in Figs. 6 and 7, while some differences are

Fig. 5 History of nondimensional radial stress at mid-radius for different theories

Fig. 6 History of nondimensional tangential stress at mid-radius for different theories
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Fig. 7 History of nondimensional circumferential stress at mid-radius for different theories

detected, there are only minor differences for the tangential and circumferential stress
histories.

Figure 8 exhibits the impact of relaxation time on the history of nondimensional
temperature at mid-radius of the sphere according to Green–Lindsay theory. The
results demonstrate that with an increase in relaxation time, the peak temperature
value escalates; however, it happens at later points in times. The velocity of propa-
gated temperature wave can be determined utilizing the following equation:

Vt �
√

1

t2
�
√

1

0.85
� 1.085. (108)

The analysis demonstrates that an increase in relaxation time leads to a lower
velocity for the temperature wave and a decrease in the gradient of temperature with

Fig. 8 History of nondimensional temperature at mid-radius for Green–Lindsay theory and different values
of relaxation time
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respect to time. This results in the temperature wave taking more time to reach its peak
position.

Figures 9, 10 and 11 show the effect of the different values of relaxation time on
the nondimensional displacement, radial stress, and tangential stress components at
mid-radius of the sphere based on Green–Lindsay theory. As depicted in Fig. 9, with
higher relaxation times, the peak value of nondimensional displacement increases and
occurs at a later point in time. This phenomenon arises from the heightened energy
absorption associatedwith an increase in relaxation time, leading to larger temperature
and displacement peaks.

Figures 10 and 11 clearly illustrate that because the thermal load is applied to the
inner boundary of the sphere, the initial stress peak is compressive and the first peak
of stress is negative, resulting from the temperature rise. As observed in Fig. 10, as
the relaxation time increases from 0.85 to 1.73 (resulting in a decrease in the velocity
of the thermal wave from 1.085 to 0.76), the amplitude of the abrupt jump escalates.

Fig. 9 History of nondimensional radial displacement at mid-radius of the sphere for Green–Lindsay theory
for different values of relaxation time

Fig. 10 History of nondimensional radial stress at mid-radius of the sphere for Green–Lindsay theory for
different values of relaxation time
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Fig. 11 History of nondimensional tangential stress at mid-radius of the sphere for Green–Lindsay theory
for different values of relaxation time

Conversely, for the t2 � 3.94, the abrupt jump completely vanishes. It’s important
to note that with t2 � 3.94, the velocity of the thermal wave is 0.504. At this point,
when the thermal wave reaches r � 1.5, the elastic wave has already reached the outer
surface, colliding and initiating reflection with a reversed sign. Also, as is mentioned
earlier, an increase in relaxation time leads to a decrease in the gradient of temperature
with respect to time and it can result in a reduction or complete elimination of the abrupt
jump at the initial moments.

As depicted in Fig. 11, similar to the history of nondimensional radial stress, initially
the thermoelastic wave is in compressive mode as it starts to propagate from the
displacement-type inner boundary. However, it transitions into a tensile mode when
it returns from the traction-free outer boundary. Subsequent stress peaks are similarly
either added negatively or positively, due to the reflections from the boundaries.

Figures 12, 13 and 14 depict the history of nondimensional radial displacement,
radial stress, and tangential stress at different radial positions of the sphere for

Fig. 12 History of nondimensional radial displacement at different radial positions forGreen–Lindsay theory
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Fig. 13 History of nondimensional radial stress at different radial positions for Green–Lindsay theory

Fig. 14 History of nondimensional tangential stress at different radial positions for Green–Lindsay theory

Green–Lindsay theory for t1 � t2 � 0.85. In the prescribed thermal boundary condi-
tions, the spherical dilatation wave propagates outward from the inner boundary. The
influence of the mechanical boundary conditions on the propagation and the reflection
of the stress wave can be seen in Figs. 13 and 14. The thermoelastic wave begins in a
compressive mode as it initiates propagation from the inner boundary. However, upon
returning from the outer boundary, it shifts into a tensile mode. This behavior arises
from the application of traction-free boundary conditions on the outer surface of the
orthotropic sphere, whereas the displacement-type inner boundary reflects the wave
in the same mode it encounters. Additionally, these figures clearly demonstrate the
abrupt jump in the stress component histories at the initial moments of the applied
thermal shock.

Figure 15 shows the distribution of temperature across the thickness of the
orthotropic sphere for Green–Lindsay theory. It is evident that each point’s temper-
ature gradually rises over time until reaches the steady-state condition. Unlike the

123



Thermal stresses in an orthotropic hollow sphere under thermal shock: … Page 27 of 34 9

Fig. 15 Through-thickness variation of nondimensional temperature for Green–Lindsay theory at different
times

parabolic form observed in classical theory, generalized theories adopt a hyperbolic
energy equation, which causes the formation of the temperature wave.

The wavefront of the temperature wave is depicted in Fig. 15 for Time � 0.25,
Time � 0.5, and Time � 0.75. Specifically, the temperature wave corresponding
to r � 1 and Time � 0.25 originates at about 0.2 and diminishes to zero at about
r � 1.28. Additionally, it is evident that at Time � 1, the temperature wave approx-
imately reaches the outer boundary, aligning with the temperature wave propagation
dimensionless velocity of 1.085 derived from Eq. (108).

Figures 16, 17 and 18 show the through-thickness variation of the nondimen-
sional radial displacement, radial stress, and tangential stress at different times for
Green–Lindsay theory for t1 � t2 � 0.85. As depicted in Fig. 16, the fixed inner
boundary condition causes the sphere to expand outward. The effect of the boundary
conditions on the propagation of elastic waves is also evident in Figs. 17 and 18. These
figures reveal that the radial and tangential stresses are compressive at intervals smaller

Fig. 16 Through-thickness variation of nondimensional radial displacement for Green–Lindsay theory at
different times
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Fig. 17 Through-thickness variation of nondimensional radial stress for Green–Lindsay theory at different
times

Fig. 18 Through-thickness variation of nondimensional tangential stress for Green–Lindsay theory at dif-
ferent times

than Time � 0.92 and become tensile after this point. Indeed, this change indicates
the onset of wave reflection, signifying that the elastic wave is now propagating back
into the medium but in the opposite direction. The abrupt jumps in the stress waves
can also be seen in these figures. As Fig. 8 demonstrates, during the initial moments of
the thermal shock application, the gradient of the temperature with respect to the time
is high. This leads to the higher amplitude in the abrupt jump in elastic waves, as is
seen in Figs. 17 and 18. As time progresses and the system approaches the steady state
in temperature distribution, the amplitude of the abrupt jump gradually decreases.

Figures 19, 20 and 21 illustrate the history of nondimensional radial displace-
ment, radial stress, and tangential stress at different radial positions of the sphere for
Lord–Shulman theory at t2 � t3 � 0.85. Similar to Green–Lindsay theory, the spher-
ical dilatation wave propagates outward from the inner boundary and traction-free
boundary conditions on the outer surface change the mode of the thermoelastic wave,
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Fig. 19 History of nondimensional radial displacement at different radial positions for Lord–Shulman theory

Fig. 20 History of nondimensional radial stress at different radial positions for Lord–Shulman theory

Fig. 21 History of nondimensional tangential stress at different radial positions for Lord–Shulman theory
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while the displacement-type inner boundary reflects the wave in the same mode that
it encounters.

Figures 22, 23 and 24 depict the through-thickness variation of the nondimen-
sional radial displacement, radial stress, and tangential stress at different times for
Lord–Shulman theory at t2 � t3 � 0.85. The onset of wave reflection can also be
seen in these figures. In Fig. 22, Time � 0.25, Time � 0.5, and Time � 0.75 show
the displacement wave propagation, while Time � 1, Time � 1.25, and Time � 1.5
indicate the wave reflection from the outer radius of the sphere.

Also, Figs. 23 and 24 illustrate the presence of stress wavefronts at various time
instances. Notably, at Time � 0.25, the stress wavefront is located at 1.2 and progres-
sively advances through the medium as time passes. During the initial stages of the
thermal shock application the gradient of the elastic wavefront with respect to time
is larger and gradually diminishes over time, while the magnitude of the wavefront
increases with the progression of time.

Fig. 22 Through-thickness variation of nondimensional radial displacement for Lord–Shulman theory at
different times

Fig. 23 Through-thickness variation of nondimensional radial stress for Lord–Shulman theory at different
times
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Fig. 24 Through-thickness variation of nondimensional tangential stress for Lord–Shulman theory at dif-
ferent times

Fig. 25 Effect of orthotropicity on the history of nondimensional radial displacement for Green–Lindsay
theory

Figures 25, 26 and 27 show how the nondimensional displacement, radial stress,
and tangential stress components are affected when orthotropic material is taken into
account based on theGreen–Lindsay theory. For thematerial that is used in this section
D � 2.14, and for isotropicmaterials, D � 2. The effect of the orthotropicity is shown
by plotting two extreme cases of D. It is observed that an increase in the orthotropic
coefficient leads to higher magnitudes of radial and tangential stresses. Incorporating
this parameter during the design stage can be advantageous in controlling stress levels
by selecting materials with specific mechanical properties.

5 Conclusion

This study deals with the generalized coupled thermoelasticity problem in an
orthotropic sphere. A unified formulation based on the classical, Lord–Shulman, and
Green–Lindsay theories of thermoelasticity is presented for the orthotropic sphere.
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Fig. 26 Effect of orthotropicity on the history of nondimensional radial stress for Green–Lindsay theory

Fig. 27 Effect of orthotropicity on the history of nondimensional tangential stress for Green–Lindsay theory

The problem is one-dimensional and solved analytically using finite Hankel trans-
form. The inner boundary is constrained, while the outer boundary is traction-free.
For the thermal boundary conditions, the inner boundary experiences a thermal shock
in the formof heat flux,while the outer boundary is subjected to a constant temperature.

Closed-form relations are presented for the displacement and temperature distri-
butions due to using an analytical method to solve the problem. Distributions of
temperature, displacement, radial, and hoop stresses at several times and along the
radius of the sphere are obtained and shown in the figures for both Lord–Shulman and
the Green–Lindsay theories. Also, a comparison between all the theories is conducted
and has been presented in graphically. From these graphs, it is possible to calculate
the speed of propagation of the elastic and thermal waves.

In addition, the effects of different relaxation times and material properties on the
stress waves and temperature are shown in the figures for the Green–Lindsay theory.
Observations from the figures indicate that as the relaxation time increases, the peak
values of the graphs for temperature, displacement, and stresses also increase, but these
peaks occur at later time points. This behavior is due to the fact that with a longer
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relaxation time, a thermal wave exhibits greater inertia, causing thermal disturbances
to propagate at lower speeds, which in turn results in greater energy absorption within
the structure. Furthermore, it is seen in the figures that increases in the orthotropic
coefficient lead to higher magnitude in the displacement, as well as radial and hoop
stresses.

To validate the obtained results of this solution, the generalized coupled thermoe-
lasticity problem is reduced to a special case, and the outcomes are compared with the
findings of Hata [2] which shows excellent agreement. The method employed in this
research applies to a wide range of problems in thermoelasticity. The results presented
in this study have practical applications for researchers in material science, as well
as designers of new materials in various domains, including mechanical engineering,
acoustics, geophysics, and optics.
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