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Abstract
Effect of different boundaries on the gravity-modulated Rayleigh–Bénard convection
has been investigatedwith an emphasis on rigid–free boundaries. Small-amplitude and
large-amplitude modulations are studied using the linear stability analysis. The mod-
ified Venezian approach is used to study small-amplitude modulations using different
modes of perturbations and the superposition principle. The existence of subharmonic
motions for the case of large-amplitude modulations was explored using the Mathieu
equation arising from the linear stability analysis. Floquet theory was used together
with Hill’s infinite determinant method to compute the critical Rayleigh number for
the case of large-amplitude modulations. Weakly non-linear analysis is performed
leading to the cubic Stuart–Landau equation from the Lorenz system. Heat transport
was quantified using the Nusselt number and the mean Nusselt numbers for different
amplitudes and frequencies. It was found that gravity modulation has, in general, a
stabilizing effect on the convection process in all three boundary types, and the heat
transport was found to be an increasing function of amplitude. Another important out-
come of the study is that the critical Rayleigh number for the onset of convection for
rigid–free boundaries lies between those of the corresponding values of the free–free
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and rigid–rigid boundaries in the case of both harmonic and subharmonic motions
which could be exploited in controlling convection.

Keywords Gravity modulation · Heat transport · Rayleigh–Bénard convection ·
Rigid–free · Stuart–Laundau equation

1 Introduction

In recent decades, work on natural convective instability has garnered much attention
due to its vast application to geophysics, oceanography, meteorology, and engineer-
ing. An early concise review of the available studies on Rayleigh–Bénard convection
towards the end of the nineteenth century can be found in Getling [1]. Today, there are
many variations of the thermal convective problem accounting for different types of
working fluid, boundary conditions, modulations, column dimensions, and a number
of other factors that are significant in altering dynamics in a Rayleigh–Bénard setup.
There is also a greater demand from industries time-to-time for controlling the onset
of instabilities, especially in the area of crystal growth. Many modulation techniques
are used to control the onset of convection based on the industrial needs, such as

1. gravity modulation,
2. temperature modulation,
3. rotational modulation,
4. magnetic-field modulation,
5. heat-source modulation,

and others. The use of the modulation technique to control the onset of stability dates
back to the experimental works of Donnelly [2], where he has shown that rotational
modulation can be effectively used to inhibit the onset of the instability in a Taylor–
Couette flow between two cylinders. There are numerous studies concerning various
other modulation effects on the Rayleigh–Bénard convection following the pioneering
work of Venezian [3], who investigated the effects of boundary temperature modu-
lations on thermal convection. Theoretically. Biringen and Danabasoglu [4] made a
computational studyof convectiveflowwith gravitymodulation in rectangular cavities.
Wheeler [5] also concluded similar results in his investigation of the onset of solu-
tal convection during directional solidification subject to high-frequency modulation.
Saunders et al. [6] have studied the effect of gravity modulation on double-diffusive
convection and concluded that modulation may stabilize an unstable base solution or
destabilize a stable base solution based on the frequency of modulation. Siddhesh-
war and Pranesh [7] studied the effect of temperature and gravity modulations on
the onset of magnetoconvection in a weak electrically conducting medium consider-
ing the internal angular momentum of suspended particles. They observed that while
temperature modulation influences the stability of the system and causes sub-critical
movement for variation of different parameter values, under the stated conditions,
gravity modulation on the system causes a delay in convection. Li [8] studied stabil-
ity of modulated-gravity-induced thermal convection in magnetic fields and extended
the study to include multi-frequency modulations. Aniss et al. [9] studied the effect
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of modulations of imposed magnetic field on the onset of convection of a magnetic
liquid layer heated from above, bounded by isothermal, non-magnetic boundaries.
The Galerkin method of solution was used by them to explore the possible competi-
tion between the subharmonic and harmonic modes at the point of instability. Using
a cubic Ginzburg–Landau model, Bajaj [10, 11] investigated the effects of gravity
modulation (with one or two frequency modulation) on the convective instability of
a ferrofluid in the presence of a vertical magnetic field. Singh et al. [12] investigated
the time-periodic temperature-modulated state of the Rayleigh–Bénard convection in
a horizontal thin fluid layer. Siddheshwar et al. [13, 14] have investigated the effect
of imposed modulations of boundary temperature and gravity on the heat transport by
a magneto-convective Newtonian liquid layer. Kanchana et al. [15] have considered
the effect of three types of modulations, namely, gravity, boundary temperature, and
rotation, on the heat transport by a Rayleigh–Bénard system, delineated by the Nusselt
number. They found that in the case of gravity and rotational modulations specifically,
the frequency of modulation has a greater impact than amplitude in regulating con-
vection as compared to the case of boundary temperature modulation. Kanchana et
al. [16] too concluded that gravity modulation has a stabilizing effect (for all three
mediums considered) in their work on the effect of time-periodic gravity modulation
with trigonometric sine, triangular, and square waves-forms on Rayleigh–Bénard con-
vection in water–alumina nanoliquids and water–alumina–copper hybrid nanoliqiuds.
Pranesh et al. [17] analyzed linear and non-linear triple diffusive convection in the
presence of sinusoidal/non-sinusoidal gravity modulation. Recently, Meenakshi and
Siddheshwar [18] carried out a comparative study of controlling Rayleigh–Bénard
magnetoconvection in Newtonian nanoliquids using different modulations such as
rotational, gravitational, and temperature modulations.

Most of the studies mentioned above deal with controlling instabilities of flow in
various geometries by modulating one or many parameters using idealistic conditions
of no shear stress on the bounding surfaces which are commonly known as stress-
free boundary conditions. The rigid boundaries are the realistic ones and among the
modulations, gravity modulation has applications in melting/solidification processing
systems under extra-terrestrial conditions. Quite generally, however, when a system
whose temperature and density gradients are well established due to non-uniform
heating, the buoyancy forces within the medium and the external modulatory forces
give rise to an interesting relationship in time and space. In other words, gravity
modulation can significantly impact the convective stability of the system by disrupt-
ing its equilibrium. Apart from microgravity/g-jitter situations seen in space, gravity
modulation is encountered quite naturally due to mechanical vibrations (in pumps
and motors). It should be mentioned that microgravity/g-jitter is a non-uniform phe-
nomenon where randomness can be seen in time and with an alignment to the gravity.
However, researchers have adapted uniform periodic modulations which are repre-
sented by one or many harmonics of a Fourier series for the ease of mathematical
analysis. Similar considerations are noted in other types of modulations mentioned
above. Thermal convection under microgravity/g-jitter situations is greatly impacted
by the frequency and amplitudes of vibrations, and the direction of the gravity vector.

Here we mention works concerning gravity-modulation effects on thermal convec-
tion involving rigid boundaries. Gresho and Sani [19] studied the effects of gravity
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modulation on the stability of a heated fluid layer. Gershuni et al. [20] investigated
convective stability in the presence of periodically varying parameters such as mod-
ulation of the equilibrium temperature gradient and modulation of the external force
field.Murray et al. [21] investigated the effect of gravitymodulation on solutal convec-
tion during directional solidification. Clever et al. [22] investigated two-dimensional
oscillatory convection in a gravitaty-modulated fluid layer. Farooq and Homsy [23]
investigated linear and non-linear dynamics of a differentially heated slot with gravity
modulation. Chen and Chen [24] investigated the effect of gravity modulation on the
stability of convection in a vertical slot. Christov and Homsy [25] studied non-linear
dynamics of two-dimensional convection in a vertically stratified slot with andwithout
gravity-modulation effect.

Studies concerning convection in porousmedia are also important froman engineer-
ing point of view and there have been numerous works concerning gravity-modulated
thermal convection in porous media. In their investigation of the impact of gravity
modulation on the onset of convection in a fluid porous layer, Malashetty and Padma-
vathi [26] highlighted that gravity modulation has a stabilizing effect on the system
for moderate Prandtl numbers. This was concluded based on the assumption that the
amplitude of modulation is small and that the non-linear effects be neglected. They
also concluded that gravity modulation stabilizes the medium for a densely packed
porous medium. Other important works on gravity-modulated thermal convection in
fluid-saturated porous media include, Bardan and Mojtabi [27], Govender [28, 29],
Saravanan and Purusothaman [30], Sivakumar and Saravanan [31], Saravanan and
Sivakumar [32], Malashetty and Swamy [33], Siddheshwar et al. [34], Bhadauria et
al. [35] Bhadauria and Kiran [36], Matta et al. [37] and Suthar et al. [38].

We observe from the literature survey mentioned so far that the gravity-modulation
effects on Rayleigh–Bénard convection with rigid–free (rigid lower surface and stress-
free upper surface) boundaries are sparsely studied. With the exception of Skarda [39]
considering gravity-modulation effects and Or and Kelly [40] considering boundary
temperature-modulation effects on the onset of thermal convection involving rigid–
free boundaries by taking surface tension effects into consideration. Singh et al. [41,
42] also investigated the effect of two-frequencymodulation of boundary temperatures
on the onset of natural convection in a layer of fluid. The thermal convection in layers
bounded by rigid–free boundaries is most prevalent in nature and in many practical
situations and surface tension effects can be a key factor in controlling the dynamics
in such situations. The surface tension effects are predominant in liquid metals like
Mercury and are usually small in most liquids, especially in organic liquids. It also
tends to decrease with temperature and hence we propose to study the effect of gravity
modulation on thermal convection in a region bounded by a lower rigid and upper free
surface by neglecting the surface tension effect. The study mainly aims to compare the
results of rigid–free boundarieswith those of free–free and rigid–rigid boundaries. This
study is of particular importance as it seeks to investigate how the onset of harmonic
and subharmonic motions of fluid under gravity modulated conditions vary with the
choice of bounding surfaces. Although highly theoretical, this study gives perspective
on the variety of boundary conditions that exist naturally and how gravity modulation
uniquely influences the state and onset of convection for each scenario.
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We have observed that quite a bit of work has been done on the area of gravity
modulation and its effect on convection which gives even further room for exploration
on how this external time-dependent body force may impact the onset of convection
in a number of fluid media. What is unexplored, however, is a comparative study of
time-dependent gravity-modulation effects on the onset of convection in a Rayleigh–
Bénard system with free–free, rigid–rigid, and rigid–free boundaries. The linear and
non-linear analysis done by Kanchana et al. [16] complements this study very well as
we seek to add insight to the aforementioned work by considering small-amplitude
vibrations. We propose to use the perturbation method highlighted by Venezian [3]
to deal with harmonic motions which are observed for small-amplitude modulations.
Floquet theory-based Mathieu equation (see, Jordan and Smith [43]) will be solved
using Hill’s infinite determinant method in exploring subharmonic regimes of the said
study. Finally, heat transport will be quantified by the Nusselt number arising from
the numerical solution of the Stuart–Landau equation that is based on slow time-scale
expansions.

2 Mathematical Formulation

A horizontal layer of a Newtonian fluid in a Rayleigh–Bénard situation is subjected
to time-periodic vertical oscillations and therefore the gravity term has an additional
time-dependent component, gm(�, t), with � being the frequency of modulation.

The horizontal layer is of height h, and the lower and upper boundaries z = −h

2

and z = h

2
which are, respectively, maintained at constant temperatures (isother-

mal) T0 + �T (�T > 0) and T0. Here �T represents the difference in temperature
between the twohorizontal boundaries. Three different boundaries conditions, namely;
free-isothermal-free-isothermal (FIFI), rigid-isothermal-rigid-isothermal (RIRI), and
free-isothermal-rigid-isothermal (FIRI) are considered for the horizontal bounding
surfaces.
The governing equations are as follows:

∇ · �q = 0, (1)

ρ0

[
∂ �q
∂t

+ (�q · ∇)�q
]

= −∇ p + μ∇2 �q + ρ �g, (2)

∂T

∂t
+ (�q · ∇)T = κ∇2T , (3)

where
ρ(T ) = ρ0 [1 − α(T − T0)] , (α > 0) (4)

and
�g = −g0 [1 + ε cos(�t)] k̂. (5)
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In the basic state, the fluid is assumed to be at rest and therefore the pressure and
temperature vary with z only. The basic state equations are given by

�qb = 0, Tb = Tb(z), ρb = ρb(z), pb = pb(z). (6)

In the basic state, equation (2) takes the form

dpb
dz

= −ρ0g0[1 − α(Tb − T0)], (7)

where use has been made of equation (4), and equation (3) takes the form

d2Tb
dz2

= 0. (8)

The solution of equation (8) subject to the condition Tb = T0 + �T at z = −h

2
and

Tb = T0 at z = h

2
is as follows:

Tb(z) = T0 + �T

(
1

2
− z

h

)
. (9)

We now subject the basic state to a perturbation as follows:

�q = �qb + �q ′(x, z, t), p = pb(z)+ p′(x, z, t), T = Tb(z)+T ′(x, z, t). (10)

Here, �q ′, p′, and T ′ are small perturbations whose evolution dictates the stability of
the considered Rayleigh–Bénard system. Using equation (10) in equations (1)-(5), and
using the basic state equations (7) and (8), we set up the following equations governing
the perturbations �q ′, p′, and T ′:

∇ · �q ′ = 0, (11)

ρ0

[
∂ �q ′

∂t
+ (�q ′ · ∇)�q ′

]
= −∇ p + μ∇2 �q ′

+ ρ0αg0 [1 + ε cos(�t)] T ′k̂ − ḡ(t, z)k̂ (12)
∂T ′

∂t
+ (�q ′ · ∇)T ′ + w′ dTb

dz
= κ∇2T ′, (13)

where the term

ḡ(t, z) = ρ0g0ε cos(�t)[1 − α(Tb − T0)],

on the right-hand side of (12) arises due to the fact that there is no modulation of the
basic state. In other words, we imply that gravity modulation is brought into play at
the time of onset. We restrict the analysis to two-dimensional longitudinal rolls for
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which all the physical quantities are independent of y. Eliminating the pressure from
equation (12) by rewriting equation (12) in component-form and cross-differentiation,
we get

ρ0

[
∂

∂t
+ u′ ∂

∂x
+ w′ ∂

∂z

](
∂u′

∂z
− ∂w′

∂x

)
= μ

(
∂2

∂x2
+ ∂2

∂z2

)(
∂u′

∂z
− ∂w′

∂x

)

−ρ0g0α[1 + ε cos(�t)]∂T
′

∂x
. (14)

We now introduce the stream function, ψ , in the form

u′ = −∂ψ

∂z
and w′ = ∂ψ

∂x
, (15)

which satisfy the continuity equation (11). Now, equations (14) and (13) may be
written as follows:

ρ0

[
∂

∂t

(
∇2ψ

)
+ ∂

(
ψ,∇2ψ

)
∂ (x, z)

]
= μ∇4ψ + ρ0g0α[1 + ε cos(�t)]∂T

′

∂x
. (16)

∂T ′

∂t
+ ∂

(
ψ, T ′)

∂ (x, z)
− ∂ψ

∂x

�T

h
= κ∇2T ′. (17)

We now non-dimensionalize equations (16) and (17) using the following scaling:

(
x∗, z∗

) =
( x
h

,
z

h

)
, t∗ = tκ

h2
, ψ∗ = ψ

κ
, T ∗ = T ′

�T
. (18)

Using the scaling (18) in equations (16) and (17) and on dropping the asterisks for
simplicity we get

1

Pr

[
∂

∂t

(
∇2ψ

)
+ ∂

(
ψ,∇2ψ

)
∂ (x, z)

]
= ∇4ψ + Ra [1 + ε cos(ωt)]

∂T

∂x
, (19)

∂T

∂t
+ ∂ (ψ, T )

∂ (x, z)
= ∇2T + ∂ψ

∂x
, (20)

in which Pr = μ

κρ0
is the Prandtl number, Ra = ρ0αg0h3�T

μκ
is the Rayleigh

number, and ω = �h2

κ
is the scaled frequency.

To solve equations (19) and (20)wemakeuse of three different boundary conditions,
namely, free–free, rigid–rigid, and rigid–free boundaries. The stress-free boundaries
are characterized by vanishing shear stress and the fluid is free to move any direction,
whereas in the case of rigid boundaries are characterized by adhesive forces between
the molecules of the bounding surface and those of fluids. The velocity of the fluid in
the latter case will be same as that of the solid surface and this condition is commonly
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known as ‘no-slip’ condition. Rigid boundaries are practically realizable, whereas free
boundaries are hypothetical and are interesting from the point of theoretical interest
alone. Combination of these two boundaries are important as they exist quite naturally
in many practical situations (encountered more than rigid boundaries). In fact, the
experimental studies of Bénard considers a layer of fluid with rigid–free boundaries.
With this view point, gravity-modulated thermal convection in a Newtonian fluid
bounded by rigid–free boundaries forms a focal point of the present study and a
comparison of the results of the same is done with those of the other combinations.

2.1 Boundary Condition

The three boundary conditions to be separately considered in the paper are given
below:
Free-Isothermal-Free-Isothermal (FIFI)

∂ψ

∂x
= ∂2

∂z2

(
∂ψ

∂x

)
= T = 0 at z = ±1

2
. (21)

Rigid-Isothermal-Rigid-Isothermal (RIRI)

∂ψ

∂x
= ∂

∂z

(
∂ψ

∂x

)
= T = 0 at z = ±1

2
. (22)

Rigid-Isothermal-Free-Isothermal (RIFI)

∂ψ

∂x
= ∂

∂z

(
∂ψ

∂x

)
= T = 0 at z = −1

2
, (23)

∂ψ

∂x
= ∂2

∂z2

(
∂ψ

∂x

)
= T = 0 at z = 1

2
. (24)

2.2 Derivation of the non-autonomous Lorenz Systemwith quadratic
non-linearities

For small-scale convective motion, equations (19) and (20) take the form

1

Pr

∂

∂t

(
∇2ψ

)
= ∇4ψ + Ra [1 + ε cos(ωt)]

∂T

∂x
, (25)

∂T

∂t
= ∇2T + ∂ψ

∂x

(
1 − ∂T

∂z

)
+ ∂ψ

∂z

∂T

∂x
. (26)

The solution to equations (25) and (26) may be assumed in the form

ψ(t, x, z) = A(t) sin (kx) F(z),
T (t, x, z) = B(t) cos (kx)G(z) + C(t)H(z),

}
(27)

123



Gravity-modulated Rayleigh–Bénard convection... Page 9 of 32 5

Table 1 The z-dependent part of the eigenfunction of different boundary conditions

Boundary Fn(z) Gn(z) k Ra0 Remark
conditions

FIFI sin
[
nπ
(
z + 1

2

)]
sin
[
nπ
(
z + 1

2

)]
2.22144 657.51136 −

RIRI cosh(μn z)
cosh

(μn
2
) − cos(μn z)

cos
(μn

2
) cos [(2n + 1) π z] 3.09755 1728.38446 Even modes (least

eigenvalue)

RIFI sinh(λn z)

sinh
(

λn
2

) − sin(λn z)

sin
(

λn
2

) sin [2nπ z] 2.65776 1132.15004 Odd modes (large
eigenvalue)

where the forms of F(z) andG(z) depend on the three boundary conditions considered.
One may consider different modes of disturbances characterized by the number n as
shown in Table 1. Further, Table 1 also gives the critical Rayleigh number and wave
number corresponding to the least mode of n = 1. The characteristic values μn and
λn corresponding to even and odd modes, respectively, are tabulated in Table 2 and
compared, respectively, with the members of the sequences

{(
2n + 1

2

)
π
}∞
n=0 and{(

2n − 1
2

)
π
}∞
n=0.

For the weakly non-linear stability analysis, we take H(z) = sin(2π z) which
characterizes the non-linear interaction between the velocity and the temperature fields
in an isothermal situation. It is evident the eigenfunctions EF (x, z) = F(z) sin (kx),
EG(x, z) = G(z)cos(kx), and EH (z) = H(z) satisfy the orthogonality conditions.
Multiplying (25) by F(z) sin (kx) and (26) byG(z)cos (kx), respectively, substituting
the solution (27) into resulting equations and integrating over a pair of counter-rotating
Bénard cells gives us the following Lorenz system:

1

Pr

d A

dt
= −p1A + Ra [1 + ε cos(ωt)] p2B, (28)

dB

dt
= p3A − p4B + p5AC, (29)

dC

dt
= −p6C + p7

2
AB, (30)

in which

p1 = −
〈
F, F

′′′′ − 2k2F
′′ + k4F

〉
〈
F, F ′′ − k2F

〉 , p2 = − k 〈F,G〉〈
F, F ′′ − k2F

〉 ,

p3 = k
〈G, F〉
〈G,G〉 , p4 = −

〈
G,G ′′ − k2G

〉
〈G,G〉 , p5 = −k

〈
G, FH ′〉
〈G,G〉 ,

p6 = −
〈
H , H

′′〉
〈H , H〉 , p7 =

〈
H , FG ′ + F ′G

〉
〈H , H〉 .

In the above expressions for the Lorenz coefficients, the angular brackets denote
integration with respect to z over

[− 1
2 ,

1
2

]
.We now perform the linear andweakly non-
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Table 2 Eigenvalues for the
respective even and odd
functions

n μn

(
2n + 1

2

)
π λn

(
2n − 1

2

)
π

1 7.8532046 7.8539816 4.7300407 4.7123890

2 14.1371655 14.1371669 10.9956079 10.9955743

3 20.4203522 20.4203522 17.2787597 17.2787596

4 26.7035376 26.7035376 23.5619449 23.5619449

5 32.9867229 32.9867229 29.841302 29.841302

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

linear stability analyses based on the Lorenz system (28)–(30). We choose appropriate
eigenfunctions F(z) and G(z) to perform the linear stability analysis for small-scale
and large-scale modulations.

3 Linear Stability Analysis

3.1 Small-amplitudemodulation (� << 1)

We assume the gravity modulation to be of order ε where ε is a very small quantity
and the eigenfunctions F(z) andG(z)will be functions of mode of perturbation n, i.e.,
F(z) = Fn(z) andG(z) = Gn(z). As a result the Lorenz coefficients pi , i = 1, 2, 3, 4
in the linear terms will be functions of n. We now assume the following expansion for
the amplitudes A and B, and the Rayleigh number Ra:

⎡
⎣ A

B
Ra

⎤
⎦ =

⎡
⎣ A0

B0
Ra0

⎤
⎦+ ε

⎡
⎣ A1

B1
Ra1

⎤
⎦+ ε2

⎡
⎣ A2

B2
Ra2

⎤
⎦ . (31)

Substituting expansion (31) into the linearized Lorenz system (27)–(28) (noting that
the equation (30) for the amplitude C will be decoupled in the linearized Lorenz
system) and equating the coefficients of various powers of ε on either side of the
resulting equations gives us the following:

O(ε0) : L
[
A0
B0

]
=
[
0
0

]
, (32)

O(ε1) : L
[
A1
B1

]
=
[−p2Pr B0 {Ra1 + Ra0 cos(ωt)}

0

]
, (33)

O(ε2) : L
⎡
⎣ A2

B2

⎤
⎦ =

⎡
⎢⎢⎣

−p2Pr [B0 {Ra2 + Ra1 cos(ωt)}
+B1 {Ra1 + Ra0 cos(ωt)}]

0

⎤
⎥⎥⎦ ,

... (34)
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where the differential operator L is defined as follows:

L =
⎡
⎢⎣− d

dt
− p1Pr p2Pr Ra0

p3 − d

dt
− p4

⎤
⎥⎦ .

For marginal stationary stability, from equation (32), we get

[−p1Pr p2Pr Ra0
p3 −p4

] [
A0
B0

]
=
[
0
0

]
. (35)

Using the condition for a non-trivial solution to equation (35) we require

Ra0 = p1 p4
p2 p3

. (36)

At O
(
ε1
)
, using solvability condition which states that the non-homogeneous time-

independent part should be orthogonal to the solution of the homogeneous part,[
A1H
B1H

]
, we get [

A1H
B1H

]
·
[−p2Pr B0Ra1

0

]
= 0. (37)

From equation (37), we obtain the following:

Ra1 = 0.

As the Rayleigh number is always positive, it should be independent of the sign of ε

and this will result in

Ra3 = Ra5 = · · · = 0.

The solution of equation (33) with Ra1 = 0 can be assumed in the form

[
A1
B1

]
=
[
A10 (ω∗) eiω∗t

B10 (ω∗) eiω∗t

]
,

where ω∗ is the natural frequency of the system. Now, equation (33) at the first order
can be written as

[−iω∗ − p1Pr p2Pr Ra0
p3 −iω∗ − p4

] [
A10 (ω∗) eiω∗t

B10 (ω∗) eiω∗t

]
=
[−p2Pr Ra0B0 cos(ωt)

0

]
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which gives

⎡
⎣ A1

B1

⎤
⎦ = −Pr Ra0 cos(ωt)B0{

Pr Ra0 − (iω∗ + p1Pr) (iω∗ + p4)

p2 p3

}
⎡
⎢⎢⎣
iω∗ + p4

p3

1

⎤
⎥⎥⎦ . (38)

Again, using the solvability condition at O
(
ε2
)
we get

Ra2 = 	

⎡
⎢⎢⎣

∞∑
n=1

⎛
⎜⎜⎝ −Pr Ra20

2

{
Pr Ra0 − (iω + p1Pr) (iω + p4)

p2 p3

}
⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (39)

For the existence of solutionwe have considered the natural frequency of the system
to be equal to the applied frequency, i.e., ω∗ = ω.

The Rayleigh number can be calculated as

Ra = Ra0 + ε2Ra2.

Here it is to be noted that the Rayleigh number, Ra, depends on the wave number k
which is present in the integrals pi , i = 1, . . . , 4. By expanding the wavenumber as

k = k0 + εk1 + ε2k2 + . . .

and following Venezian [3] it can be shown that k1 is negligibly small and so are k2, k3,
... and hence the wave number for the evaluation of the correction Rayleigh number,
Ra2, must be k0 which is the same used in the evaluation of Ra0. Further, higher-order
corrections like k2 become important when we seek corrections Ra4 or beyond. The
analysis performed here is valid for small-amplitude modulations where the dynamics
is usually of the harmonic type. For not-so-small-amplitude modulations there is a
possibility of subharmonics motions and the perturbation analysis cannot highlight
the same. To explore the subharmonic type instability we use the Floquet theory and
derive the Mathieu equation. The following subsection highlights the same including
the solution procedure for the Mathieu equation.

3.2 Large-amplitudemodulation (� >> 1)

We note that the analysis presented in the previous subsection which is valid for small-
scale modulations details only on the synchronous motions and does not depict the
existence of subharmonic motions. In this subsection, we explore the possibility of
subharmonic motions with the help of Mathieu equations. To this end, we consider the
linearized version of equations (28)–(30). Making amplitude A the subject of equation
(29), and eliminating A from equation (28) gives the damped Mathieu equation in the
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form
d2B

dt2
+ c1

dB

dt
+ c2 (Ra0 − Ra [1 + ε cos(ωt)]) B = 0, (40)

inwhich the time t is scaled by
1√
Pr

and the frequencyω is scaled by
√
Pr . Here, c1 =(

p4√
Pr

+ p1
√
Pr

)
and c2 = p3 p2 are the coefficients of the Mathieu equation, and

Ra0 = p1 p4
p2 p3

is the Rayleigh number of the non-modulated system. One can recover

the Mathieu equation reported by Saravanan [32] for clear fluid (for λ = 0 in their
paper) in the domain z ∈ [0, 1] by choosing appropriate eigenfunctions F(z) andG(z)
in equation (40). By taking F(z) = G(z) = sin (π z) we obtain the Mathieu equation
reported by Saravanan [32] corresponding to the free boundaries with coefficients

c1 = k2 + π2

√
Pr

+ √
Pr
(
k2 + π2

)
,

c2 = k2

k2 + π2 ,

Ra0 = (k2 + π2)3

k2
,

and by taking F(z) = z2 (1 − z)2 and G(z) = z (1 − z)
(
1 + z − z2

)
we obtain the

Mathieu equation reported by Saravanan [32] corresponding to the rigid boundaries
with coefficients

c1 = 1

P

(
k2 + 306

31

)
+ P

(
k4 + 24k2 + 504

k2 + 12

)
,

c2 = 121k2

124
(
k2 + 12

) ,

Ra0 = 4
(
k4 + 24k2 + 504

) (
31k2 + 306

)
121k2

.

We now highlight the evaluation of the Rayleigh number using the Mathieu equation
(40).

3.2.1 Hill’s infinite determinant method

Firstly, we rewrite equation (40) using 2ζ = c1. We next introduce the solution of the
form B(t) = e−ζ t F(t) and let 2τ = ωt . We now arrive at the canonical form of the
Mathieu equation in the form

F ′′ + [D1 − 2D2 cos (2τ)] F = 0, (41)
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where prime indicates differentiation with respect to τ and the coefficients are given
by

D1 = 4

ω2

(
c2 (Ra0 − Ra) − ζ 2

)
,

D2 = −
(

4

ω2

)
c2εRa

2
.

Following the Floquet theory, we assume the general solution of the equation (41) in
the form F(τ ) = eξτF(τ ) where ξ is the Floquet exponent and F(τ ) is a periodic
function with period π. As such, the solution of equation (41) can be written as

B(t) = e−ζ t F(t) = e

(
ξω
2 −ζ

)
tF(t). (42)

For stability, it is required that
ξω

2
≤ ζ . Therefore, the correspondingmarginal stability

condition is
ξω

2
= ζ . The solution of equation (41) may be written in the form of a

Fourier series as follows:

F = eξτ
+∞∑

n=−∞
ane

i(2n+p)τ . (43)

If p = 0, then we would have a solution of synchronous type (S) with period π and
a solution of subharmonic type (SH) if p = 1 with period 2π . Substituting equation
(43) corresponding to S mode in equation (41) gives the linear system:

γnan−1 + an + γnan+1 = 0, n = ...,−2,−1, 0, 1, 2, ... (44)

where γn(ξ) = D2[
(2n − iξ)2 − D1

] . For the existence of non-trivial solution, the

characteristic determinant of the coefficient matrix of the linear system (41) must
vanish. In general this determinant is a function of ξ , D1 and D2 but it can be shown
to depend only on ξ and D1. Therefore, we get

�(D1, ξ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

. . . . . . . . .

. γ−2 1 γ−2 0 0 0 0 .

. 0 γ−1 1 γ−1 0 0 0 .

. 0 0 γ0 1 γ0 0 0 .

. 0 0 0 γ1 1 γ1 0 .

. 0 0 0 0 γ2 1 γ2 .

. . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

= 0, (45)

Here the determinant�(D1, ξ) is known as the Hill’s infinite determinant. According
to Morse and Feshback [44], this infinite determinant may be written in terms of a
succinct equation as
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cosh(ξπ) = 1 − 2�(D1, 0) sin
2
(

π
√
D1

2

)
,

= 1 + 2�(D1, 0) sinh
2
(

π
√−D1

2

)
, (46)

from which the value of Ra can be evaluated. However, one must first consider the
computation of �(D1, 0) (Hill’s infinite determinant evaluated at ξ = 0). Conve-
niently, �(D1, 0) can be computed using the following recurrence relations between
the determinants of orders differing by two at each step, beginning with the mid-
determinant [43]:

�0 = 1,
�1 = 1 − 2γ0γ1,
�2 = (1 − γ1γ2)

2 − 2γ0γ1 (1 − γ1γ2) ,
...

�n+2 = (1 − γn+1γn+2)�n+1 − γn+1γn+2 (1 − γn+1γn+2)�n

+ γ 2
n γ 3

n+1γn+2�n−1.
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(47)

The sequence {�n}∞n=0 converges to the value �(D1, 0). In the same way, one may
obtain the corresponding characteristic equation for the SH mode as follows:

cosh(ξπ) = −1 + 2�(D1, 0) sin
2
(

π
√
D1

2

)

= −1 − 2�(D1, 0) sinh
2
(

π
√−D1

2

)
. (48)

The characteristic equations (46) and (48) are solved numerically for Ra by first cal-
culating the Floquet exponent ξ by using marginal stability conditions and then fixing
values of ω, k, and other parameters. The recurrence relation converges quite rapidly,
leading to Ra values which are exact to two or three decimal places. It converges even
more quickly for large ω values. The discussion of computational results will follow
in the succeeding sections. Having explored instability aspects for cases of small- and
large-amplitude modulations we now move on to discuss the heat transport.

4 Weakly non-linear stability analysis

4.1 Derivation of the non-autonomous Stuart–Landau Equation with cubic
non-linearity

We use a small time-scale τ = δ2t , where δ << 1 in view of marginal stability onset
and assume that the gravity modulation is of order δ2, that is, ε ≈ ε1δ

2. The small
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time-scale version of the Lorenz system (28)–(30) is now given by

δ2

Pr

dA

dτ
= −p1A + Ra

[
1 + ε1δ

2 cos(ω1τ)
]
p2B, (49)

δ2
dB

dτ
= p3A − p4B + p5AC, (50)

δ2
dC

dτ
= −p6C + p7

2
AB, (51)

where ω1 = ω

δ2
is the rescaled frequency. Now we expand the amplitudes A, B,C ,

and Ra in powers of δ as follows:

A = δA1 + δ2A2 + δ3A3 + ...,

B = δB1 + δ2B2 + δ3B3 + ...,

C = δC1 + δ2C2 + δ3C3 + ...,

Ra = Ra0 + δ2Ra2 + δ4Ra4 + ...

⎫⎪⎪⎬
⎪⎪⎭

. (52)

For the sake of convenience, we define the operators L2 and Vi as follows:

L2 =
⎡
⎣−p1 Ra0 p2 0

p3 −p4 0
0 0 −p6

⎤
⎦ and Vi =

⎡
⎣ Ai

Bi
Ci

⎤
⎦ , i = 1, 2, 3 (53)

Substituting equation (52) in equation (49) - (51) and comparing the various powers
of δ gives

O(δ1) : L2V1 = 0, (54)

O(δ2) : L2V2 = [ R21 R22 R23
]Tr

, (55)

O(δ3) : L2V3 = [ R31 R32 R33
]Tr

, (56)

where

R21 = 0,

R22 = p5A1C1,

R23 = − p7
2
A1B1

R31 = 1

Pr

d A1

dτ
− p2B1 [Ra2 − ε1Ra0 cos(ω1τ)] ,

R32 = dB1

dτ
+ p5 (A1C2 + A2C1) ,

R33 = dC1

dτ
− p7

2
(A1B2 + A2B1) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (57)
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The non-trivial solution of the problem at O(δ1) is given by

V1 =
[
A1

p3
p4

A1 0

]Tr
. (58)

The solution of the problem at O(δ2) is given by

V2 =
[
0 0

p7 p3
2p4P6

A2
1

]Tr
. (59)

For solvability the non-homogeneous part of the problem at O(δ3)must be orthogonal

to the solution

[
A1

p3A1

A4
0

]Tr
,

i.e., A1R31 + B1R32 + C1R33 = 0.

Substituted for B1 and C2, into the above equation, we get

dA1

dτ
= Q1 [Ra2 − Ra0ε1 cos (ω1τ)] A1 − Q2A

3
1, (60)

where, Q1 = Prp2 p3 p4
Prp23 + p24

, and Q2 = Prp23 p5 p7
2p6

(
Prp23 + p24

) . The non-linear amplitude

equation (60) is the non-autonomous Stuart–Landau equation. For more discussion
on the Stuart–Landau equation, please refer to the work by Siddheshwar [45], which
outlines an unabridgedmethod of solution of the same and its application to continuum
mechanics. We find the numerical solution using the Runge–Kutta–Fehlberg (RKF45)
method to seek temporal variation of heat transfer at the boundary. The bifurcation
analysis is beyond the scope of the present study.

4.1.1 Estimation of the heat transport in terms of Nusselt number

The thermal Nusselt number, Nu (τ ), is defined as follows:

Nu (τ ) = 1 + Heat transport by convection

Heat transport by conduction

= 1 +

⎡
⎢⎢⎢⎣

∫ 2π
k

0

(
∂T

∂z

)
dx

∫ 2π
k

0

(
dTb
dz

)
dx

⎤
⎥⎥⎥⎦
z=− 1

2

(61)

According to equation (9), Tb = 1

2
− z, in which Tb and z are in their non-dimensional

form. Substituting the second equation of (27) into (61) and making use of equations
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(58) and (59) gives

Nu (τ ) = 1 + H ′
(

−1

2

)
δ2

p7 p3
2p4 p6

A2
1

= 1 − 2πδ2
p7 p3
2p4 p6

A2
1. (62)

We now present the results concerning the effect of frequency and amplitude on the
gravity-modulated thermal convection obtained using linear and weakly non-linear
stability analyses.

5 Results and discussion

The effect of gravity modulation on the onset of convection in a horizontal Newto-
nian fluid layer was studied. Three types of isothermal boundaries, namely, free–free,
rigid–rigid, and rigid–free are considered and effects are comparatively analyzed, with
emphasis on rigid–free boundaries. Linear stability analysis was donewith small-scale
modulation as reported by Kanchana, et.al. [16], and with large-scale modulation, as
reported by Saravanan and Sivakumar [32]. Results on the heat transport are obtained
under the influence of gravity modulation, and are explained in the subsections to
come. We begin the discussion with the accuracy of results of the linear theory.

5.1 Accuracy of results

The value of Ra obtained from the perturbation analysis (ε << 1) and the Floquet
theory (ε >> 1) quantifies the onset of convection within the medium, and the pro-
cedure to find Ra makes use of F(z) and G(z) as the corresponding eigenfunctions.
The choice of eigenfunctions F(z) and G(z) decides the accuracy of results in both
the cases. We have made appropriate choices for the two cases that are considerably
accurate (to be discussed a little later) and assist the mathematical analysis.
From the perturbation analysis valid for small-amplitude modulations the Rayleigh
number is obtained as

Ra = Ra0 + ε2Ra2,

where Ra0 and Ra2 are evaluated at the critical wave number corresponding to critical
value of Ra0. It should be noted that the correction Rayleigh number Ra2 is a function
of frequency of modulation alone, as seen in equation (39). The procedure gives the
exact value of Ra for the free–free boundaries, whereas for rigid–rigid and rigid–
free boundaries it is a highly accurate single-term Galerkin method. We have used
even and odd functions of Chandrashekar as tabulated in Tables 1 and 2 in unison
with the superposition principle for the computation of Ra0 and Ra2 in the case of
rigid-rigid and rigid–free boundaries. Of course, one has to scale the Rayleigh number
obtained for rigid–rigid boundaries using the odd Chandrashekar function by 16 to
get the Rayleigh number for rigid–free boundaries. Similarly, the wave number has
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Table 3 Comparison of Rac values calculated using Chandrashekar functions and polynomial eigenfunc-
tions

ε ω Rac (Rigid–Rigid Boundaries) Absolute
Relative
Error

Rac (Rigid–Free Boundaries) Absolute
Relative
Error

Polynomial
eigenfunction

Even
Chandrasekhar
function

Polynomial
eigenfunction

Odd
Chandrasekhar
function

1 20 1944.99 [H] 1956.79 [H] 0.61 1267.02 [H] 1345.28 [H] 6.18

(3.041) (3.031) (2.618) (2.629)

2000 1718.14 [H] 1728.55 [H] 0.61 1124.68 [H] 1133.08 [H] 0.75

(3.108) (3.101) (2.665) (2.658)

10 20 882.602 [H] 882.928 [H] 0.04 598.667 [H] 668.406 [H] 11.65

(3.073) (3.084) (3.246) (3.569)

2000 1734.31 [H] 1744.56 [H] 0.59 1130.49 [H] 1240 [H] 9.69

(3.101) (3.093) (2.659) (2.551)

100 20 112.335 [SH] 113.213 [SH] 0.78 92.733 [SH] 97.366 [SH] 5.0

(3.702) (3.709) (3.903) (3.920)

2000 21087.1 [SH] 21192.3 [SH] 0.50 21399.6 [SH] 30750.25 [SH] 43.70

(12.78) (12.85) (12.701) (12.261)

Note:The values in the parenthesis denote the corresponding critical wavenumber values, kc , and ‘H’ stands
for harmonic and ‘SH’ stands for subharmonic. The percentage absolute errors are calculated between
respective Rac values from Chandrasekhar functions and polynomial eigenfunctions

to be scaled by 2. We observe an absolute relative error of 1.2 % and 2.9 % in the
computation of Ra0 in the cases of rigid–rigid and rigid–free boundaries, respectively.

To extract Ra from the Mathieu equation valid for all amplitudes we have used
eigenfunctions

F(z) = (z − 1)

(
z − 1

2

)(
z + 1

2

)2

,

G(z) =
(
z2 − 1

4

)(
5

4
− z2

)2

.
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The reason being these eigenfunctions produce the unmodulated Rayleigh number
with an absolute relative error of 2.2% which is much less compared to the odd
Chandrashekar functions for rigid–rigid boundaries and subsequent scaling. These
errors would therefore be propagated throughout the numerical calculations of Rac,
and so we avoided the odd Chandrashekar functions of the rigid–rigid boundaries
as in this case the error in the computation of Ra would amplify with the scaling
used for rigid–free boundaries. Table 3 highlights the actual differences in Rac values
calculated. It is observed that the Rac values calculated using the odd Chandrashekar
function deviate drastically from those computed using polynomial eigenfunctions for
the cases of (i) small frequencies corresponding to small-amplitude modulations and
(ii) large frequencies corresponding to large-amplitude modulations. Here, it is shown
that the odd Chandrashekar functions produce inconsistent errors in the case of rigid–
free boundaries, in comparison to the even Chandrashekar functions for rigid–rigid
boundaries. It is worth noting here that the values obtained using the polynomial trial
functions are more consistent with that obtained by Saravanan [32].

To arrive at the most accurate values, we would need to pursue analytical solutions
to the Mathieu equation, which is beyond the scope of this study. With the decision on
the choice of appropriate eigenfunctions for the computation of Ra we now present
the results concerning the effect of frequency and amplitude of modulations in the said
two cases.

Fig. 1 Ra2 as a function of ω for different Prandtl numbers Pr when gravity is modulated
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5.2 Effect of frequency of modulation on the onset of convection

5.2.1 Results from Linear Theory

Figures 1 and 2 project the effect of modulating frequency on the correction Rayleigh
number Ra2 and theRayleighnumber Ra, respectively. It is shown inFig. 1 (a) that Ra2
tends to 0 as the frequency of oscillation increases infinitely. For free boundaries, it is
shown that small-frequency modulations marginally stabilize the medium as it delays
the onset of convection when Pr = 1 and Pr = 10 since Ra2 tends to 0 from above.
However, for larger values of Pr , one notes that for small-frequency modulations
Ra2 tends to 0 from below which means that convection is advanced, marginally
destabilizing the medium. In the cases of rigid–rigid and rigid–free boundaries, Figs. 1
(b) and (c) show that small-frequency gravity modulation destabilizes the medium and
expedites the onset of convection, for all the values of Pr considered, since Ra2 tends
to 0 from below as frequency increases. It can also be seen that in the case of small-
frequency gravity modulation, the effect of large Prandtl number on the system is to
destabilize the system in all cases as seen in Fig. 1 (a), (b), and (c), for which the
correction Rayleigh number Ra2 assumes negative values. However, the effect of the
Prandtl number on the system is insignificant for large frequencies. Similar trends are
observed in the case of Ra versus ω from Fig. 2. The Rayleigh number values level
off to those corresponding to the respective unmodulated case for large frequencies in
the three types of boundaries considered. These results are consistent with the ones
already reported in the literature.

We now delineate the effect of the frequency of modulation on the onset of
Rayleigh–Bénard convection subjected to large-amplitude modulations computed
using the Floquet solution of the Mathieu equation (40). The effect of frequency
of modulation was studied and shown using marginal stability curves. The marginal
and critical stability curves are considered in the case of rigid–free boundaries alone
as qualitatively similar curves are exhibited for free–free and rigid–rigid boundaries
by Saravanan and Sivakumar [32].

Figure3 depicts the marginal curves constructed as a function of modulation fre-
quency and amplitude. The value of the Prandtl number was kept constant at Pr = 1.
These plots are done using the solution obtained from the Hill infinite determinant
solution of the Mathieu equation, which differ from the traditional stability curves.
The curves exhibit an array of alternate subharmonic (SH) and harmonic (H) loop-
shaped branches in which the lower of the two loops decides the mode of onset of
convection within the medium at the specified conditions. Each loop has a critical
Rayleigh number which quantifies where the stable region transitions to convective
instability, and the smaller of the array indicates the type of convective motion. For
small frequency, the loops are thinner, and also have the critical Rayleigh number Rac
with harmonic mode. However, this is not permanent and the variations of ε and ω

give scenarios in which Rac is transferred between modes, H or SH. It is also evident
that the difference between the local minimum, that is, the critical Rayleigh number, of
each loop increases with increasing frequency ofmodulation, where the loops for large
frequency are pushed further up and are wider with bigger wave number k. Therefore,
we note that, in general, increasing the frequency of modulation delays convection,
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Fig. 2 Ra as a function of ω for different Prandtl numbers Pr when gravity is modulated

therefore, stabilizing the medium. However, with a microscopic view, we can see that
the coupled effect of amplitude and frequency introduces inconsistencies in such a
trend, and one observes a transition between harmonic and subharmonic modes.

Figures4 (a) and (b) depict the critical Rayleigh number, Rac, and the critical wave
number, kc, respectively, versus frequency, ω, for different values of the amplitude
ε for Pr = 1. As stated before, the effect of frequency is to generally stabilize the
medium, but we see in Fig. 4 (a) that for frequencies of the order less than 100 there are
regions, where Rac oscillates with alternating bands of SH and H modes as frequency
increases. This is the general trend for modulation with amplitude ε > 1. Therefore,
in the situations of engineering interests, one would need to consider specific ratios
of frequency and amplitude to attain desired results. Figure4 (b) shows that kc is an
increasing function of ω for both modes of SH and H. We observe a drastic drop in
the values of kc whenever the mode switches from SH to H or vice versa. We note
three such transitions at lower frequencies similar to the case of rigid–rigid boundaries
which are actually one more than those observed in the free–free boundaries case as
reported by Saravanan and Sivakumar [32].

Table 4 shows how Rac and kc vary with changes for all three boundary conditions
considered. Generally, for each specified value of ω, it is observed that Rac is smallest
for free boundaries, and largest for rigid–rigid boundaries, with rigid–free boundaries
sitting in between. However, for high frequency, Rac is less for rigid–rigid boundaries
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Fig. 3 Marginal curves for rigid–free boundarieswith harmonic and subharmonicmodes for different values
of ε and ω with Pr = 1

than that of rigid–free. It is also noted that kc at which the onset occurs for both these
cases is significantly higher than that of lower frequency.

5.2.2 Results from Non-linear Theory

A weakly non-linear stability analysis is performed to investigate the effect of gravity
modulation on the heat transport for the three types of boundaries considered. The
expression representing the Nusselt number Nu was obtained using the solution of
the Stuart–Landau equation for and is given by equation (62). Figure6 shows the effect
of ω on heat transport. It is observed that increasing ω reduced the Nusselt number,
therefore causing a reduction in the heat transport. The mean Nusselt number, Nu,
documented in Table 5 also shows this result in which ω reduces the heat transport.
Table 5 also shows that the effect of increasing the frequency on heat transport is more
significant for rigid–rigid boundaries than it is for free–free and rigid–free boundaries
since the differences between each Nu at different frequencies are greater. It must also
be noted that due to modulatory effects, Nu oscillates about the respective values of
the unmodulated case, that is, when ε1 = 0.
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Fig. 4 a Rac and b kc against ω for rigid–free boundaries with harmonic and subharmonic modes for
different values of ε with Pr = 1

5.3 Effect of amplitude of modulation on onset of convection

5.3.1 Results from Linear Theory

We now turn our attention to the effects of the amplitude of modulation on convection.
Though someaspects (especially having to dowith the coupling effectswith frequency)
were previously stated, the significant observations must now be mentioned.

As mentioned earlier, the linear stability analyses were carried out considering both
small- and large-amplitude modulations within which the amplitudes were further
varied. It should be noted that for small-amplitude ε << 1, the correction Rayleigh
number Ra2 is independent of ε and therefore Ra is unaffected by the amplitude of
modulations. In the cases of large-amplitude ε >> 1, there are significant effects to be
noted. From the marginal curves in Fig. 3, one notes that varying amplitude does not
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cause Rac to be transferred between the modes of onset of convection, whether H or
SH, at a constant frequency. For example, for ω held constant at 10, all the amplitudes
considered support Rac by harmonic mode and subharmonic mode for ω = 200.
However, for large frequency and large amplitude, there begins inconsistencies in the
aforementioned trend. Therefore, the mode of onset of convection is determined by
the frequency at which the external gravity force is modulated.

Generally, increasing the amplitude of modulation destabilizes the system for rel-
atively small frequency (up to ω of order 1000, as depicted in Fig. 4). For larger
frequencies of modulation, the effect of amplitude diminishes as Rac approaches that
of the unmodulated case. For ε = 1, the unstable region is predominantly H mode as
no SH mode is observed. However, there are alternate regions of H and SH modes of
onset of convection at each of the other amplitudes ε considered. That is, for ε = 100,
the onset of convection is by the SH mode at very low frequencies until ω gets to 16
where it transitions to H until ω = 25.7. Again, the mode transitions to SH where
Rac increases significantly, from a region of decrease, with an increase in frequency.
Here, we also see that SH mode spreads over the widest range of ω, before making
the next transition. Finally, as ω passes through 2060, the mode transitions to H where
Rac decreases asymptomatically to the unmodulated case. This is observed for all the
cases of ε = 10, 50, 100.

Table 4 also shows how the critical Rayleigh number Rac and corresponding wave
number kc vary with changes in amplitude of modulation for all three boundary con-
ditions. The table supports the fact that generally, the amplitude of modulation may
have stabilizing/destabilizing effect based on the frequency of modulation. At lower
frequencies, for example, ω = 20 it has destabilizing effect as Rac decreases with ε.
At moderate frequencies, for example, ω = 200 it has stabilizing effect until the mode
switches from H to SH at large amplitudes. Such inconsistencies are observed in all
three types of boundary conditions considered.

5.3.2 Results from Non-linear Theory

Much can be said also about how the amplitude of induced modulations impacts heat
transport. It was assumed that the amplitude of modulation was small and was of order
δ2. This assumption aided in deriving the Stuart–Landau equation using perturbation
analysis and slow time-scale approximations. The amplitudes ofmodulation ε1 consid-
ered were ε1 = 0, 0.05, 0.08, 0.1 since they were considered small. Figure5 displays
the effect of amplitude on heat transport, for fixed ω1 = 2. It is shown that as ampli-
tude increases, so does the displacement of the Nusselt number from the unmodulated
case. In other words, increasing the amplitude of gravity modulation increases heat
transport within the system. This is observation is true for all three types of bound-
aries considered. The mean Nusselt numbers Nu reflected in Table 6 for each of the
cases considered are consistent with the previous observation, in which increasing
amplitude amplifies heat transport. This result becomes particularly important when
the heat transport capabilities of the considered cell are applied to other engineering
phenomena. One such example is as reported by Yikun et al. [46] in which entropy is
generated by the transport of heat from the convective processes of Rayleigh–Bénard
convection. The oscillatory nature of the mean Nusselt number may act to control the
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Fig. 5 Variation of Nusselt number Nu with time τ for different frequencies ω1 with ε1 = 0.05

Table 5 Values of mean Nusselt
number Nu for amplitude
ε1 = 0.05 and Pr = 1 for
different boundaries at different
frequencies ω1

Type of Boundary Nu

ω1 = 1 ω1 = 2 ω1 = 5

Free–Free 1.08524 1.05829 1.00697

Rigid–Free 1.63426 1.34397 1.00152

Rigid–Rigid 4.50764 3.20168 1.00815

output of heat in such a scenario, wherein the roles of amplitude and frequency of
modulation would be pivotal.

5.4 Comparison of results

It is well known for the unmodulated case that the critical Rayleigh number and the
corresponding critical wave number of the rigid–free boundaries lie in between those
corresponding to the free–free boundaries and rigid–rigid boundaries, i.e.,

123



5 Page 28 of 32 R. Francis et al.

Fig. 6 Variation of Nusselt number Nu with time τ for different amplitudes ε1 with ω1 = 2

Table 6 Values of mean Nusselt number Nu for frequency ω1 = 2 and Pr = 1 for different boundaries at
different amplitudes ε1

Type of Boundary Nu

ε1 = 0 ε1 = 0.05 ε1 = 0.08 ε1 = 0.1

Free–Free 1.05505 1.05829 1.06048 1.06204

Rigid–Free 1.32288 1.34397 1.35948 1.37114

Rigid–Rigid 3.11016 3.20168 3.27579 3.33519

Ra0
free–free
c < Ra0

rigid–free
c < Ra0

rigid–rigid
c ,

k0
free–free
c < k0

rigid–free
c < k0

rigid–rigid
c .

When the convective mode is of the harmonic type (small-amplitude case) similar
results are true as depicted by small-amplitude analysis
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RaH
free–free
c < RaH

rigid–free
c < RaH

rigid–rigid
c ,

kH
free–free
c < kH

rigid–free
c < kH

rigid–rigid
c ,

where H stands for harmonic motions. This can be attributed to the fact that in the
case of rigid–rigid boundaries the fluid adheres to two surfaces and consumes more
energy for the buoyancy force to overcome the adhesive forces so that the convection
sets in. In the case of rigid–free boundaries, there is only one rigid boundary as a
result the system consumes less energy in comparison with rigid–rigid boundaries
for the onset of convection. It can go without saying that the system with free–free
boundaries consumes the least energy as for obvious reasons. Formoderate amplitudes
and frequencies when the subharmonic mode is prevalent in all three cases following
results hold:

RaSH
free–free
c < RaSH

rigid–free
c < RaSH

rigid–rigid
c ,

kSH
free–free
c < kSH

rigid–free
c < kSH

rigid–rigid
c ,

where SH stands for subharmonic motions. For large amplitudes and frequencies,
we observe a deviation from the above inequalities as we observe the delayed onset
of convection in rigid–free boundaries as compared to rigid–rigid boundaries. Even
though the large-amplitude modulations are physically unrealistic one would be curi-
ous to know the unexpected behavior of the rigid–free system. Further investigation is
warranted in this direction. It can also be observed for all the three types of considered
boundary combinations that

Rawith-modulation
c > Rawithout-modulation

c ,

kwith-modulation
c < kwithout-modulation

c ,

Nu
with-modulation

> Nu
without-modulation

,

and

Nu
free–free

< Nu
rigid–free

< Nu
rigid–rigid

.

The above inequality essentially means that gravity modulation can effectively be
used to alter the onset of convection. Attention is drawn to the work of Krishna et
al. [47] who developed a device that uses Rayleigh–Bénard convection to carry out
polymerase chain reaction (PCR) amplification of DNA. Instead of controlling the
temperature of the thermocyclers externally, Rayleigh–Bénard cells are constructed
throughwhich fluid is cycled and the ideal reaction conditions are regulated by varying
Ra. Under such situations, one can use gravity modulation to regulate the temperature
of the thermocyclers by exercising optimum frequency and amplitude of modulation.
It goes without saying that under the conditions of gravity modulation, key attention
would need to be taken to understand the ideal frequency and amplitude of modulation
to be used to achieve desired results.
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6 Conclusion

A comparative study on the effect of gravity modulation on the Rayleigh–Bénard con-
vection bounded by three different surfaceswas carried out. Effects of small-amplitude
modulations were studied using the modified perturbation approach of Venezian [3]
and those of large-amplitude modulations using the Floquet solution of the Mathieu
equation. An appropriate choice of eigenfunctions for the computation of Ra was
made for both the cases of small- and large-amplitude modulations. The following are
the important outcomes of the present study:

1. Modulation has a stabilizing effect on the system in all three boundary types. The
Rayleigh number corresponding to the onset of convection for rigid–free bound-
aries lies between free–free and rigid–rigid counterparts for both harmonic and
subharmonic modes observed at lower and moderate amplitudes of modulations.
This implies that gravity-modulated Rayleigh–Bénard convection can be adapted
in practical situations to control convection.

2. The amplitude of modulation dictates the transitions between harmonic and sub-
harmonic types of motions.

3. Large-amplitude large-frequency modulations which are physically not realistic
deviated from the expected behavior.
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