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Abstract
This paper proposes new analytical and finite element solutions for studying the effects
of elastic foundations on the uncontrolled and controlled static and vibration responses
of smart multi-layered laminated composite plates with integrated piezoelectric lay-
ers, acting as actuators and sensors. A non-polynomial higher-order plate theory with
zigzag kinematics involving a trigonometric function and a local segmented zigzag
function is adopted for the first time for modeling the deformation of a smart piezo-
electric laminated composite plate supported on an elastic foundation. This model has
only five independent primary variables like that of the first-order shear deformation
theory, yet it considers the realistic parabolic behavior of the transverse shear stresses
across the thickness of the laminated composites plates, and also maintains the conti-
nuity conditions of transverse shear stresses at the interfaces of the laminated plates. A
two-parameter foundation model, namely Pasternak’s foundation, is used to model the
deformation and shear interactions of the elastic foundation. The governing set of equa-
tions is derived by implementing Hamilton’s principle and variational calculus. Two
different solution methods, namely, a generalized closed-form analytical solution of
Navier-type, and a C0 isoparametric finite element (FE) formulation, are developed for
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solving the governing set of equations. The solutions in the time domain are obtained
with Newmark’s average acceleration method. Comprehensive parametric studies are
presented to investigate the influence of elastic foundation parameters, piezoelectric
layers, loading, and boundary conditions on the static and dynamic responses of the
smart composite plates with piezoelectric layers. The effects of the elastic foundations
on the vibration control of the smart composite plates are also presented by coupling
the piezoelectric actuator and sensor with a feedback controller. Several benchmark
results are presented to show the influence of the various material and geometrical
parameters on the controlled and uncontrolled responses of the smart plates, and also
the significant effect of the elastic foundations on the static and dynamic responses of
the smart structures. The results obtained are in very good agreement with the avail-
able literature, and it can be concluded that the proposed analytical solution and FE
formulation can be efficiently used to model the static and dynamic electro-elastic
behavior of smart laminated plates supported on elastic foundations.

Keywords Analytical solution · Navier’s method · Finite element method (FEM) ·
Zigzag theory · Smart composites · Laminated plates · Elastic foundation ·
Pasternak’s foundation model · Newmark’s time integration · Vibration control

Mathematics subject classification 34 Ordinary differential equations · 35 Partial
differential equations · 65 Numerical analysis · 74 Mechanics of deformable solids

1 Introduction

Smart materials like piezoelectric materials are widespread due to their capability of
transforming energy forms from mechanical to electrical and vice versa. To utilize
the coupled electromechanical properties of piezoelectric materials, they are inte-
grated with traditional composites for the alteration of system characteristics. The
idea of integrating piezoelectric materials with structural systems like advanced com-
posite beams, plates, and shells has been implemented in many disciplines, namely
mechanical, civil, and aerospace engineering. Such structural configurations are pri-
marily known as smart structures, and their development offers a substantial interest
in numerous engineering applications: vibration control, noise control, shape control,
structural health monitoring, and damage detection, to name a few.

In the earlier studies, the piezoelectric materials were used as distributed actua-
tors/sensors with the isotropic structural components for modification of the structural
characteristics such as stiffness and damping, as well as system responses of
stress/strains in a controlled manner [1–4]. With the advent of composite materi-
als, there has been an increasing interest in developing smart composite structures
that are lightweight and superior to their conventional counterparts [5]. Raja et al.
[6] carried out experiments to suppress the vibration of a laminated composite plate
with piezoelectric actuators and sensors subjected to time-dependent forces. Dong
et al. [7] presented both numerical and experimental studies for the vibration control
of a cantilevered aluminum plate with piezoelectric patches based on system iden-
tification. Han et al. [8] presented an analytical model based on the Ritz method,
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and also conducted experiments for the active vibration control of composite struc-
tures with piezoceramic actuators and piezo-film sensors. Ali et al. [9] studied the
dynamic behavior of woven carbon fabric laminates integrated with in-house piezo-
electric polyvinylidene fluoride nanofibers. Recently, Rahman et al. [10] carried out
experimental investigations for the dynamic analysis of smart laminated composite
plates and validated their results through finite element simulations in ANSYS. The
load-bearing components in structures during service are subjected to extreme load-
ing conditions and harsh environments due to temperature and moisture, leading to
damage. Structural health monitoring (SHM) makes use of piezoelectric sensors for
quantifying the damages and determines the locations of damage in composite struc-
tures to inspect the health. Ataei et al. [11] developed a damage detection approach
for detecting the damage due to delamination in composite structures with piezoce-
ramic transducers. Elahi [12] presented a study on the structural health monitoring of
aerospace structural systems with piezoelectric harvesters. Aabid et al. [13] discussed
on challenges and future opportunities of the piezoelectric material-based structural
health monitoring techniques. The authors concluded that the converse piezoelectric
effect, by which the local forces and moments induced in the piezoelectric materials
via the application of an electric field, makes it easier for the structure to avert the
occurrence of high stress/strain levels, thus lessening the criticality of the damage.

Accurate mathematical modeling of the smart composite plates with piezoelectric
materials is crucial for predicting their deformation behavior, whichwill further enable
the research community to utilize them in more industrial applications. In the initial
stage of the mathematical developments, the classical laminated plate theory (CLPT)
[14, 15] and first-order shear deformation theory (FSDT) [16–18] have been employed
to derive the deformation responses of advanced composite plates with piezoelectric
layers.Mallik and Ray [19] and Shingare andNaskar [20] developed new piezoelectric
materials based on piezoelectric fiber-reinforced composites (PFRCs) and graphene-
reinforced piezoelectric composites (GRPCs) in an attempt to improve some of the
piezoelectric properties useful for developing distributed piezoelectric actuators and
sensors. However, for the accurate prediction of the structural behavior of an adaptive
smart laminated composite plate, the CLPT and FSDT are not adequate [21]. The
higher-order shear deformation theories (HSDTs) that take into account the warping
of the cross section of the plates to get the realistic non-linear variations of the trans-
verse shear stresses/strains across the cross-sectional thickness have been developed.
Interested readers can refer to the work of Reddy [22], Kant and Manjunatha [23],
and Lo et al. [24], to name a few, who have utilized Taylor’s series expansion and
developed new HSDTs that take into account the transverse deformation [22], and
both transverse shear and normal deformation [23, 24]. Shimpi [25] proposed a two-
variable plate model for the bending analysis of composite plates. The plate model in
[25] is further upgraded to a four-variable model by Sobhy [26] by taking into account
the membrane deformations for the thermal buckling of functionally graded (FG)
piezoelectric sandwich plates with a lightweight core. Various shear strain functions
have been considered in [26] to get the realistic through-thickness variations of the
transverse shear strains, which are of polynomial [22] and non-polynomial [27, 28]
types for comparing the results. Shiyekar and Kant [29] adopted the HSDT in [23] for
studying the actuation in the electro-elastic responses of smart composite plates with
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PFRC actuators. Rouzegar and Abad [30] and Rouzegar and Abbasi [31] presented
analytical and finite element (FE) solutions for the static analysis of smart composite
plates with piezoelectric layers. Ray et al. [32] and Samanta et al. [33] derived a FE
model based on the platemodel in [24] for the static and dynamic analysis of laminated
composite plates with PVDF actuators and sensors. Chanda and Sahoo [34] adopted a
five-variable non-polynomial HSDT for deriving analytical solutions for the coupled
electromechanical problem of smart laminated composite plates with PFRC layers.
Joshan et al. [35] proposed a new non-polynomial HSDT consisting of five variables
for the bending responses of smart composite plates with piezoelectric layers. The
actuation in the structural responses of the smart composite plates due to the converse
piezoelectric effect is observed in the results presented in the references [29–35]. Also,
the non-polynomial HSDTs in [26, 34, 35] accommodate the warping of the trans-
verse cross section with five primary variables, therefore reducing the computational
costs. The smeared models adopted in the above references cannot accurately describe
the deformation behavior of the smart composite plates across the plate thickness as
the continuity requirements of the slopes of in-plane displacement components, and
the continuity of the inter-laminar tractions between two layers of different material
properties is not satisfied at the interfaces. The HSDTs applied in the framework of
Layer-wise (LW) and Zigzag (ZZ) approaches for modeling the deformation behavior
of multi-layered composite plates are observed to satisfy the aforementioned require-
ments. Robbins and Reddy [36], Saravanos et al. [37], Zabihollah et al. [38], andMoita
et al. [39], to name a few, have shown the applicability of LW models in capturing
the inter-laminar effects in electromechanical problems of smart composite plates.
Wu et al. [40] presented the static analysis of stiffened laminated composited plates
with piezoelectric layers by considering defects like deboning, cracks, and delami-
nation using an extended layer-wise model. Xiao et al. [41] presented an application
of the extended layer-wise model in [40] for studying the thermo-electro-mechanical
dynamic fracture behavior of multi-layered laminated composite plates integrated
with piezoelectric patches. Xu et al. [42] utilized the extended layer-wise model for
the static responses of laminated piezoelectric composite plates with multiple delami-
nation and transverse cracks. Recently, Li [43] presented a review on the applications
of the LWmodels for the structural analysis of laminated composite structures. While
the LW models yield satisfactory structural responses for the smart composite plate
structures, the computational involvement in modeling the entire problem of a multi-
layered structure is huge. On the other hand, HSDTs utilized in the framework of the
ZZ approach can efficiently model the problem of smart composites with much lesser
computational efforts compared to the LW approach. At the same time, this approach
satisfies the continuity conditions of inter-laminar stresses and the slope discontinuity
of displacement components at the interfaces between two adjacent layers of differ-
ent material properties. Significant contributions are made by Di Scuiva [44], Cho
and Parmerter [45], Chakrabarti and Sheikh [46], and Kapuria and Kulkarni [47] in
developing various ZZ-based HSDT models for the static and dynamic analysis of
laminated composites and sandwich plates. Topdar et al. [48] and Khandelwal et al.
[49] extended the model developed in [46] for the static and dynamic analysis of smart
composite plate structures. Kapuria and Achary [50] studied the dynamics of piezo-
electric cross-ply composite plates with a coupled zigzag model. Nath and Kapuria
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[51] studied the thermoelectric effects on the electromechanical responses of smart
cross-ply laminated composite shells with improved zigzag models. The ZZ models
employed in the above-mentioned references are based on polynomial shear strain
functions based on Taylor’s series expansions. Apart from the polynomial ZZ mod-
els, ZZ models are also recently developed, which utilize non-polynomial shear strain
functions for accommodating the non-linearity of the transverse shear strains/stresses
across the thickness of the plates [52]. Chanda and Sahoo [53] derived an analytical
model for the static electromechanical responses of smart laminated composite plates
with piezoelectric layers using a non-polynomial ZZ theory. The non-polynomial shear
strain functions enhance the efficiency of the mathematical models as they implicitly
accommodate the higher-order polynomial terms of Taylor’s series, which contributes
to the refinement of the bending behavior. Limited applications of the non-polynomial
ZZ models are observed in the literature for studying the electro-elastic responses of
smart composite plates. A unified approach is presented by Carrera [54–56], coined
as ‘Carrera Unified Formulation (CUF)’ for the two-dimensional modeling of layered
composite structures. A series of hierarchical plate models can be implemented in
a single formulation, thus creating a systematic assessment of various plate models
ranging from Equivalent-Single-Layer (ESL) to higher-order LW and ZZ models.

Applications of advanced composite structures supported on elastic foundations
also have enormous applications in various engineering structures like buttress foun-
dations, pile foundations, swimming pools, and railway applications, to name a few.
The elastic foundations supporting the loaded structure are responsible for reducing
the structural vibrations of the system [57]. Akavci et al. [58] used theCLPT and FSDT
to derive the structural responses of advanced composite plates supported by elastic
foundations. The authors have adopted a two-parameter foundation model referred to
as Pasternak’s model for simulating the deformation of the elastic foundations. Shen
[59] adopted the FSDT for determining the non-linear bending responses of advanced
composite plates subjected to in-plane and transverse mechanical loads. Lal et al. [60]
derived the stochastic free-vibration responses of laminated composite plates resting
on elastic foundations usingReddy’s HSDT [22]. Further, Akavci [61] adopted various
non-polynomial-based HSDTs for deriving the free-vibration and buckling responses
of advanced composite plates resting on elastic foundations. The responses reported
in [61] reveal that the buckling loads and the natural frequencies of the plates increase
due to the presence of the foundations. The effects of the elastic foundation on the
buckling responses of smart piezoelectric plates with porosities are investigated by
Barati et al. [62] with a higher-order four-variable plate model. Ebrahimi et al. [63]
studied the vibration responses of magneto-electro-elastic plates with porosities rest-
ing on elastic foundations. Zenkour and Alghanmi [64] derived the static responses
of smart functionally graded (FG) plates supported on elastic foundations. Zenkour
and Shahrany [65] derived the controlled vibration responses of smart laminated com-
posite plates integrated with magnetostrictive layers in the thickness direction. The
combined effects of elastic foundations and hygro-thermal loading conditions on the
controlled vibration responses of smart laminated composite plates supported on elas-
tic foundations are reported by Zenkour and Shahrany [66]. Bisheh and Civalek [67]
presented the vibration responses of smart carbon nanotube-reinforced cylindrical
panels supported on an elastic foundation under hygro-thermal loading conditions.
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Several studies are presented in [68–72] in which the structural responses of advanced
composite plates resting on elastic foundations are investigated.

Based on the literature survey, it is observed that there is no study in the open
literature utilizing the kinematics of zigzag-based non-polynomialHSDTs for studying
the effects of elastic foundations on the static and dynamic electro-elastic responses
of smart composite plate structures. The non-polynomial HSDTs are computationally
less expensive as a single non-polynomial function can be utilized to accommodate the
higher-order bending behavior of the plate structures. Furthermore, the conjunction of
the zigzag functions to theHSDTs can satisfy the piecewise continuity requirements of
the displacement components, and inter-laminar transverse shear stresses that are not
possible when the HSDTs alone are used to model the multi-layered smart composite
plates. Thus, the present work is an addition to the existing literature, which examines
the electro-elastic actuation and sensing behavior of piezoelectric materials integrated
with multi-layered laminated composite plates supported on elastic foundations. The
elastic foundations are represented by vertical springs and a shear layer which takes
into account the transverse shear deformation. This model is popularly referred to
as Pasternak’s foundation model in the literature. The governing equations of the
problem are derived using Hamilton’s principle and variational calculus. Analytical
and Finite Element (FE) solution techniques are proposed. A closed-form analytical
solution for the spatial approximation of the primary variables is assumed following
Navier’s solution technique for diaphragm-supported plates. For the FE solutions, an
isoparametric formulation is presented using the eight-noded serendipity elements.
In both the analytical and FE solution techniques, the solution forms in the spatial
domain generate a system of coupled ordinary differential equations (ODEs) in time.
The solutions from the coupled ODEs are further determined using Newmark’s time
integration scheme. Computer programs are developed inMATLAB software for both
the analytical and FE formulation. Several numerical examples pertaining to static and
forced-vibration analysis, including vibration suppression, are solved, and the results
obtained are compared with standard solutions reported in the literature to verify the
efficiency and the range of applicability of the present models. The effects of the
elastic foundations on the structural responses of smart composite plate structures are
thoroughly investigated.

2 Theoretical developments

2.1 Introduction

Consider a rectangular laminated composite plate of length, ‘l’ and width ‘b’ with
piezoelectric actuator and sensor bonded at the top and bottom surface of the plate
resting on Pasternak’s foundation. The rectangular Cartesian coordinate system (x, y,
z) is used for the derivation of the equations, with z � 0 coincident with the mid-plane
of the smart laminated plate. The laminated composite plate consists of orthotropic
layers stacked in the thickness direction (z), with a total thickness of h. The thickness
of the piezoelectric layers is denoted as tp. The schematic diagram of the structure is
shown in Fig. 1.
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2.2 Kinematic model

Recently developed non-polynomial HSDTwith inter-laminar continuity of transverse
shear stress [52] is considered to reduce the 3D displacements, ‘U, V, and W ’ to 2-D
deformation modes defined at the mid-plane (z � 0). The model is a refinement of the
CLPT by implicitly accommodating the odd-powered higher-order terms of Taylor’s
series with a single non-polynomial mathematical function. Auxiliary variables ‘αi

xu ,

α
j
xl , α

i
yu , and α

j
yl ’ (i � 1,2… nu-1, j � 1, 2,.. nl-1) are assumed at the interfaces of the

plate alongwith segmented functions of thickness coordinate (z). nu and nl are denoted
as the number of layers in the positive and negative z-direction. Figure 2 illustrates
the kinematics of the present model. The model is explicitly described as follows:

⎧
⎪⎨

⎪⎩

U (x, y, z, t)

V (x, y, z, t)

W (x, y, z, t)

⎫
⎪⎬

⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

u0 (x, y, t)

v0 (x, y, t)

w0 (x, y, t)

⎫
⎪⎬

⎪⎭
+

⎡

⎢
⎣

−z 0 0

0 −z 0

0 0 0

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

∂w0(x,y,t)
∂x

∂w0(x,y,t)
∂y

0

⎫
⎪⎬

⎪⎭
+

⎡

⎢
⎣

( f (z) + z�x ) 0 0

0
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⎤

⎥
⎦

⎧
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βy (x, y, t)

0

⎫
⎪⎬

⎪⎭

+
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i�1

⎡

⎢
⎣

(
z − zui

)
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(
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)
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0
(
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)
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0

⎫
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⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(1)

where, u0, v0, w0, βx , and βy are denoted as the primary variables defined at the
mid-plane. The mathematical function, f (z) is adopted as ‘z sec

( r z
h

)
,’ where ‘r’ is

denoted as the transverse shear stress parameter [73] and is ascertained in the post-
processing step using an inverse method by comparison of the present results with 3D
solutions [73]. Based on the published article [74], the value of r is considered to be
0.1. The inter-laminar continuity equations of the transverse shear stresses generate
additional equations by which the auxiliary variables can be written in terms of the
primary variables of the mid-plane. The modified displacement field, after imposing
the continuity conditions of the transverse shear stresses, is given by

⎧
⎨

⎩

U
V
W

⎫
⎬

⎭
�

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎧
⎨

⎩

u0
v0

w0

⎫
⎬

⎭
+

⎡
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−z 0 0
0 −z 0
0 0 0

⎤

⎦

⎧
⎪⎨

⎪⎩

∂w0
∂x
∂w0
∂y

0

⎫
⎪⎬

⎪⎭

+

⎡

⎣
(p1 + z�x ) 0 0

0
(
p2 + z�y

)
0

0 0 0

⎤

⎦

⎧
⎨

⎩

βx

βy

0

⎫
⎬

⎭

, (2a)
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Fig. 2 Kinematics of the present model
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where p1 � z sec (r z/h) +
∑nu−1

i�1

(
z − ziu

)
H

(
z − ziu

)
αi
xu +

∑nl−1
j�1

(
z − z jl

)

H
(−z + z jl

)
α
j
xl

p2 �zsec(r z/h) +
nu−1∑

i�1

(
z − ziu

)
H

(
z − ziu

)
αi
yu

+
nl−1∑

j�1

(
z − z jl

)
H

(
−z + ziu

)
α
j
yl

. (2b)

2.3 Foundationmodel

The interaction between the supporting elastic medium and the plate is modeled using
Pasternak’s foundationmodel [58]. It is a two-parametermodel inwhich the foundation
reaction ‘RF ’ is expressed in terms of the transverse displacement (W ) of the plate

and its second-order derivatives
(

∂2w0
∂x2

, ∂2w0
∂y2

)
with the Winkler’s stiffness (Kw) and

Pasternak’s stiffness (Ks) given by the following equations:

RF � R(1)
F + R(2)

F , (3a)

where RF
(1) and RF

(2) are given by

RF
(1) � KwW (x, y, z, t)andRF

(2) � Ks

(
∂2W (x, y, z, t)

∂x2
+

∂2W (x, y, z, t)

∂y2

)

.

(3b)

Pasternak’s model can be reduced to Winkler’s model by simply neglecting the
shear foundation, Ks , i.e., Ks � 0.

2.4 Strain–displacement equations

Linear strain–displacement relations are written for describing the kinematics of the
smart laminated composite plates shown in Fig. 1. The equations for the non-zero
strains are given by
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⎧
⎨
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⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4a)
{

γyz

γxz

}

�
[
1 0
0 1

]{
�yβy

�xβx

}

+

[
q1 0
0 q2

]{
βy

βx

}

, (4b)

where q1 � ∂p2
∂z and q2 � ∂p1

∂z

2.5 Stress–Strain Constitutive Relations

The linear stress–strain constitutive relations for the laminated composite plate with
orthotropic layers are given below:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ11

σ22

τ12

τ23

τ13

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(k)

�

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Q11 Q12 0
Q12 Q22 0
0
0
0

0
0
0

Q66

0
0

0 0
0 0
0

Q44

0

0
0

Q55

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(k)⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε11

ε22

ε12

γ23

γ13

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (5)

where the stress vector consists of stresses, ‘σ11,σ22, ...τ13’ defined at a local coordinate
system, i.e., along the direction of the fiber (1) and perpendicular to the direction of
the fiber (2 and 3). ε11, ε22…γ13 are the strains defined along the fiber direction and
perpendicular to the fiber direction. The matrix relating the stress and strain vector is
the reduced stiffness matrix derived from the plane stress condition. (k) denotes the kth

layer along the thickness coordinate (z).
Linear constitutive relations that couple the elastic and electric fields of any point

in the piezoelectric layer are given by the following converse and direct piezoelectric
relations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ11

σ22

τ12

τ23

τ13

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(P)

�

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Q11 Q12 0
Q12 Q22 0
0
0
0

0
0
0

Q66

0
0

0 0
0 0
0

Q44

0

0
0

Q55

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(P)⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε11

ε22

ε12

γ23

γ13

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 e31
0 0 e32
0
0
e15

0
e24
0

0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(P)
⎧
⎪⎨

⎪⎩

∂

∂x
∂

∂y
∂

∂z

⎫
⎪⎬

⎪⎭
,

(6a)
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⎧
⎨

⎩

D11

D22

D33

⎫
⎬

⎭

(P)

�
⎡

⎣
0 0 0
0 0 0
e31 e32 0

0 e15
e24 0
0 0

⎤

⎦

(P)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε11

ε22

ε12

γ23

γ13

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

−
⎡

⎣
∈11 0 0
0 ∈22 0
0 0 ∈33

⎤

⎦

(P)
⎧
⎪⎨

⎪⎩

∂

∂x
∂

∂y
∂

∂z

⎫
⎪⎬

⎪⎭
.

(6b)

Equation (6a) and (6b) are also known as the actuator and the sensor law, respec-
tively. ‘e31, e32, e15’ are denoted as the piezoelectric coefficients, and ‘∈11, ∈22, and
∈33’ are known as the dielectric coefficients. ‘D11, D22, and D33’ are known as the
electric displacement vectors, and ‘
’ is the electric potential function of the pth piezo-
electric layer. It is assumed that the interface between the piezoelectric layer and the
laminated composite plate is suitably grounded. Practically, the thickness of the piezo-
electric layer is very low, and a linear variation of the electric potential is assumed
across the thickness [18, 30].


 � 1

tp

(

z − h

2

)

V (x, y, t), (7)

where V is the applied voltage at the top surface of the piezoelectric actuator. The
applied voltage is further expressed in terms of mathematical functions of space ‘V
(x, y)’ and time ‘Vmn(t).’ Equation (7) is further written as


 � 1

tp

(

z − h

2

)

V (x, y)Vmn(t). (8)

The details of V (x, y) and Vmn(t) are further presented in the subsequent sections.

2.6 Derivation of the governing equations of motion

Hamilton’s principle is used to derive the set of governing equations of motion along
with the essential and natural boundary conditions of the problem. The variation in
the total kinetic energy ‘K’ and the potential energy ‘�’ between a time interval t0 to
t1 is written as

δ

(∫ t1

t0
(� − K)dt

)

� 0. (9)

� can be further expressed as the sum of the strain energy of the orthotropic layers
of the laminated composite plate, piezoelectric layers, elastic foundation, and the work
potential of the applied loads.

The variation of the potential energy and the kinetic energy is expressed as follows:
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δ� �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Variation in the Strain Energy of the laminated plate)
∫ l
0

∫ b
0

∫ h
2

− h
2

(
σxx

(k)δεxx + σyy
(k)δεyy + τxy

(k)δγxy + τyz
(k)δγyz + τxz

(k)δγxz
)
dxdydz

(Variation in the Strain Energy of the bottompiezoelectric layer)

+
∫ l
0

∫ b
0

∫ − h
2

− h
2 −tp

(
σxx

(P)δεxx + σyy
(P)δεyy + τxy

(P)δγxy + τyz
(P)δγyz + τxz

(P)δγxz
)
dxdydz

(Variation in the Strain Energy of the top piezoelectric layer)

+
∫ l
0

∫ b
0

∫ h
2 +tp
h
2

(
σxx

(P)δεxx + σyy
(P)δεyy + τxy

(P)δγxy + τyz
(P)δγyz + τxz

(P)δγxz
)
dxdydz

(Variation in the Strain Energy of the elastic foundation)

+
∫ l
0

∫ b
0

(
KwWδW + Ks

{
∂W
∂x

∂δW
∂x + ∂W

∂y
∂δW
∂y

})
dxdy

(Variation in thework potential of the applied loads)

−∫ l
0

∫ b
0

(

qzδW(
z� h

2

)

)

dxdy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(10)

where qz is the appliedmechanical load at the top surface of the plate in the z-direction.
The 3D stresses in Eq. (10) are further integrated over the thickness, and the integrated
quantities are denoted as the stress resultants defined over unit length. The stress
resultants of the problem are defined as

〈N (ES)
xx Nyy

(ES) Nxy
(ES)|Nxx

(Pz) Nyy
(Pz) Nxy

(Pz)〉

�
NL∑

k�1

∫ zk+1

zk
(〈σxx (k) σyy

(k) τxy
(k)|σxx (P) σyy

(P) τxy
(P)〉dz), (11a)

〈 Mxx
(ES) Myy

(ES) Mxy
(ES) | Mxx

(Pz) Myy
(Pz) Mxy

(Pz) 〉

�
NL∑

k�1

∫ zk+1

zk
z
(〈σxx

(k) σyy
(k) τxy

(k) |σxx (P) σyy
(P) τxy

(P) 〉dz), (11b)

〈 N∗
xx

(ES) N∗
xy

(ES) | N∗
xx

(Pz) N∗
xy

(Pz) 〉 �
NL∑

k�1

∫ zk+1

zk
p1

(〈σxx
(k) τxy

(k) |σxx (P) τxy
(P) 〉dz),

(11c)

〈 M∗
yy

(ES) M∗
xy

(ES) | M∗
yy

(Pz) M∗
xy

(Pz) 〉 �
NL∑

k�1

∫ zk+1

zk
p2

(〈σyy
(k) τxy

(k) |σyy
(P) τxy

(P) 〉dz),

(11d)

〈 Qxx
(ES) Qyy

(ES) | Qxx
(Pz) Qyy

(Pz) 〉 �
NL∑

k�1

∫ zk+1

zk

(〈 τxz
(k) τyz

(k) | τxz (P) τyz
(P) 〉dz),

(11e)

〈 T ∗
xx

(ES) | T ∗
xx

(Pz) 〉 �
NL∑

k�1

∫ zk+1

zk
q2

(〈 τxz
(k) | τxz (P) 〉dz

)
, (11f)
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〈 Tyy (ES) | Tyy (Pz) 〉 �
NL∑

k�1

∫ zk+1

zk
q1

(〈 τyz
(k) | τyz (P) 〉dz

)
. (11g)

Superscripts ‘ES’ and ‘Pz’ are used to indicate the stress resultants of the laminated
composite plate and the piezoelectric layers, respectively. The total stress resultant is
the sum of the stress resultants of the laminated plate and the piezoelectric layer.

[
Nxx Nyy Nxy

] � [
Nxx

(ES) Nyy
(ES) Nxy

(ES)
]
+
[
Nxx

(Pz) Nyy
(Pz) Nxy

(Pz)
]
,

(12a)
[
Mxx Myy Mxy

] � [
Mxx

(ES) Myy
(ES) Mxy

(ES)
]
+
[
Mxx

(Pz) Myy
(Pz) Mxy

(Pz)
]
,

(12b)
[
N∗
xx N∗

xy

]
�

[
N∗
xx

(ES) N∗
xy

(ES)
]
+
[
N∗
xx

(Pz) N∗
xy

(Pz)
]
, (12c)

[
M∗

yy M∗
xy

]
�

[
M∗

yy
(ES) M∗

xy
(ES)

]
+
[
M∗

yy
(Pz) M∗

xy
(Pz)

]
, (12d)

[
Qxx Qyy

] � [
Qxx

(ES) Qyy
(ES)

]
+
[
Qxx

(Pz) Qyy
(Pz)

]
, (12e)

[
T ∗
xx

] � [
T ∗
xx

(ES) ] +
[
T ∗
xx

(Pz) ], (12f)

[
Tyy

] � [
Tyy (ES)

]
+
[
Tyy (Pz)

]
. (12g)

The variation in the kinetic energy (K) is defined as

δK �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Variation in theKinetic Energy of the laminated plate)
∫ l
0

∫ b
0

∫ h
2

− h
2
ρ(k)

(
U̇δU̇ + V̇ δV̇ + ẆδẆ

)
dxdydz

(Variation in theKinetic Energy of the bottom piezoelectric layer)

+
∫ l
0

∫ b
0

∫ − h
2

− h
2−tp

ρ(P)
(
U̇δU̇ + V̇ δV̇ + ẆδẆ

)
dxdydz

(Variation in theKinetic Energy of the top piezoelectric layer)

+
∫ l
0

∫ b
0

∫ h
2 +tp
h
2

ρ(P)
(
U̇δU̇ + V̇ δV̇ + ẆδẆ

)
dxdydz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(13)

The density, ρ(k), and ρ(P) are integrated just like the stresses along the thickness
and the integrated quantities are further denoted as the Inertia components. The inertia
components are defined as follows:

⎡

⎣
I 0 I 1 I 2
I 3 I 4 I 5
I 6 I 7 I 8

⎤

⎦

(ES)

�
⎛

⎜
⎝

NL∑

k�1

∫ zk+1

zk

⎧
⎪⎨

⎪⎩
ρ(k)

⎡

⎢
⎣

1 z z2

(p1 + z�x ) z(p1 + z�x ) (p1 + z�x )
2

(
p2 + z�y

)
z
(
p2 + z�y

) (
p2 + z�y

)2

⎤

⎥
⎦dz

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠,

(14a)
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⎡

⎣
I 0 I 1 I 2
I 3 I 4 I 5
I 6 I 7 I 8

⎤

⎦

(Pz)

�
⎛

⎜
⎝

NL∑

k�1

∫ zk+1

zk

⎧
⎪⎨

⎪⎩
ρ(P)

⎡

⎢
⎣

1 z z2

(p1 + z�x ) z(p1 + z�x ) (p1 + z�x )
2

(
p2 + z�y

)
z
(
p2 + z�y

) (
p2 + z�y

)2

⎤

⎥
⎦dz

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠.

(14b)

The inertia terms for the entire system are the sum of the inertia components of the
laminated plate in Eq. (14a) and the piezoelectric layers in Eq. (14b).

⎡

⎣
I 0 I 1 I 2
I 3 I 4 I 5
I 6 I 7 I 8

⎤

⎦ �
⎡

⎣
I 0 I 1 I 2
I 3 I 4 I 5
I 6 I 7 I 8

⎤

⎦

(ES)

+

⎡

⎣
I 0 I 1 I 2
I 3 I 4 I 5
I 6 I 7 I 8

⎤

⎦

(Pz)

. (15)

Substituting Eqs. (10) and (13) in Eq. (9), and integrating the resulting equation
by parts in both space (x, y) and time (t) and noting that the variations of the primary
variables obtained in space (x, y) at the initial (t0) and final time (t1) yield the governing
equations of the problem. Governing equations for the static and dynamic analysis,
along with the essential and natural boundary conditions of the smart composite plate
supported on elastic foundation, are written as

2.6.1 Equilibrium Equations

[R]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxx

Nyy

Nxy

Mxx

Myy

Mxy

N∗
xx

N∗
xy

M∗
yy

M∗
xy

Qx

Qy

T ∗
x
Ty

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ {�} � [R]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ü0
v̈0

ẅ0

β̈x

β̈y

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (16a)

The details of the matrices ‘[R], {�} and [R]’ are provided in Appendix A.

2.6.2 Boundary Conditions

2.6.3 Boundaries parallel to y-axis, i.e., x� 0 or l

Either
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxx

Nxy

Mxx(
∂Mxx
∂x + 2 ∂Mxy

∂y + ks
∂w0
∂x − I 1ü0 + I 2

∂ẅ0
∂x − I 4β̈x

)

(
�x Mxx + N∗

xx

)

(
�yMxy + M∗

xy

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δu0
δv0
∂δw0
∂x

δw0

δβx

δβ y

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(16b)

2.6.4 Boundaries parallel to x-axis, i.e., y � 0 or b

Either

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxy

Nyy

Myy(
∂Myy
∂y + 2 ∂Mxy

∂x + ks
∂w0
∂y − I 1v̈0 + I 2

∂ẅ0
∂y − I 7β̈y

)

(
�x Mxy + N∗

xy

)

(
�yMyy + M∗

yy

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δu0
δv0
∂δw0
∂y

δw0

δβx

δβ y

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

and

(16c)

2.6.5 At the corners

Either

Mxy � 0orδw0 � 0. (16d)

It is important to note that the inertia components and the external transverse load
‘qz’ will be dropped from Eq. (16a) for the static and free-vibration analysis. For
the forced-vibration analysis, such terms shall remain in the formulation. The stress
results are further expressed in terms of the mid-plane variables and their derivatives
with the following plate-constitutive relations.

⎧
⎪⎪⎨

⎪⎪⎩

{N}
{M}
{
N∗}

{
M∗}

⎫
⎪⎪⎬

⎪⎪⎭

(ES)

�

⎡

⎢
⎢
⎣

[A] [B] [C]
[B] [G] [H]
[C]
[D]

[H]
[I]

[L]
[M]

[D]
[I]
[M]
[P]

⎤

⎥
⎥
⎦

(ES)⎧
⎪⎪⎨

⎪⎪⎩

{ε1}
{ε2}
{ε3}
{ε4}

⎫
⎪⎪⎬

⎪⎪⎭

, (17a)

⎧
⎨

⎩

{Q}
{T }
{
T∗}

⎫
⎬

⎭

(ES)

�
⎡

⎣
[AA] [EE] [FF]
[EE] [SS] [TT ]
[FF] [TT ] [UU]

⎤

⎦

(ES)⎧
⎨

⎩

{
γ 1

}

{
γ 2

}

{
γ 3

}

⎫
⎬

⎭
, (17b)
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⎧
⎪⎪⎨

⎪⎪⎩

{N}
{M}
{
N∗}

{
M∗}

⎫
⎪⎪⎬

⎪⎪⎭

(Pz)

�

⎡

⎢
⎢
⎣

[A] [B] [C]
[B] [G] [H]
[C]
[D]

[H]
[I]

[L]
[M]

[D]
[I]
[M]
[P]

⎤

⎥
⎥
⎦

(Pz)⎧
⎪⎪⎨

⎪⎪⎩

{ε1}
{ε2}
{ε3}
{ε4}

⎫
⎪⎪⎬

⎪⎪⎭

+

⎧
⎪⎪⎨

⎪⎪⎩

{A}PzE

{C}PzE

{E}PzE

{G}PzE

⎫
⎪⎪⎬

⎪⎪⎭

V (x, y, t),

(17c)

⎧
⎨

⎩

{Q}
{T }
{
T∗}

⎫
⎬

⎭

(Pz)

�
⎡

⎣
[AA] [EE] [FF]
[EE] [SS] [TT ]
[FF] [TT ] [UU]

⎤

⎦

(Pz)⎧
⎨

⎩

{
γ 1

}

{
γ 2

}

{
γ 3

}

⎫
⎬

⎭
+

⎧
⎨

⎩

{L}PzE

{N}PzE

{P}PzE

⎫
⎬

⎭
V (x, y, t).

(17d)

Different terms in the above equation are defined as

{N}(ES) � {
Nxx

(ES) Nyy
(ES) Nxy

(ES)
}T

, {N}(Pz) �
{
Nxx

(Pz) Nyy
(Pz) Nxy

(Pz)
}T

{M}(ES) � {
Mxx

(ES) Myy
(ES) Mxy

(ES)
}T {M}Pz �

{
Mxx

(Pz) Myy
(Pz) Mxy

(pz)
}T

{
N∗}(ES) �

{
N∗
xx

(ES) 0 N∗
xy

(ES)
}T

,
{
N∗}(Pz) �

{
N∗
xx

(Pz) 0 N∗
xy

(Pz)
}T

{
M∗}(ES) �

{
0 M∗

yy
(ES) M∗

xy
(ES)

}T
,
{
M∗}(Pz) �

{
0 M∗

yy
(Pz) M∗

xy
(Pz)

}T

{Q} � {
Qxx

(ES) Qyy
(ES)

}T
, {Q} � {

Qxx
(Pz) Qyy

(Pz)
}T

{T } � {
Tyy (ES) 0

}T
, {T } � {

Tyy (Pz) 0
}T

{
T∗} � {

0 T ∗
xx

(ES) }T ,
{
T∗} � {

0 T ∗
xx

(Pz) }T , (17e)

{ε1} �
{

∂u0
∂x

∂v0
∂y

(
∂u0
∂y + ∂v0

∂x

)}T
, {ε3} �

{
∂βx
∂x 0 ∂βx

∂y

}T
, {ε4} �

{
0 ∂βy

∂y
∂βy
∂x

}T
,

{ε2} �
{(

− ∂2w0
∂x2

+ �x
∂βx
∂x

) (
− ∂2w0

∂y2
+ �y

∂β y
∂y

) (
−2 ∂2w0

∂x∂y + �x
∂βx
∂y + �y

∂β y
∂x

)}T
,

{γ1} � {
�yβy �xβx

}T
,

{
γ 2

} � {
βy 0

}T
,
{
γ 2

} � {
0 βx

}T
, (17f)

{A}PzE �
{(∫ z(P+1)

z(P)

(
e31

∂

∂z

)
dz

) (∫ z(P+1)

z(P)

(
e32

∂

∂z

)
dz

)
0
}

{C}PzE �
{(∫ z(P+1)

z(P) z
(
e31

∂

∂z

)
dz

) (∫ z(P+1)

z(P) z
(
e32

∂

∂z

)
dz

)
0
}
,

{E}PzE �
{(∫ z(P+1)

z(P) p1
(
e31

∂

∂z

)
dz

)
0 0

}
; {G}PzE �

{
0

(∫ z(P+1)

z(P) p2
(
e32

∂

∂z

)
dz

)
0
}
;

{L}PzE �
{(∫ z(P+1)

z(P)
(
e15

∂

∂x

)
dz

) (∫ z(P+1)

z(P)

(
e24

∂

∂y

)
dz

)}
,
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{N}PzE �
{(∫ z(P+1)

z(P) q1
(
e24

∂

∂y

)
dz

)
0
}

{P}PzE �
{
0

(∫ z(P+1)

z(P) q2
(
e15

∂

∂x

)
dz

)}
. (17g)

2.6.6 Navier’s solution

For deriving the analytical solution using Navier’s method, we assume that the smart
laminated composite plate is supported on all four edges by diaphragm-type supports
[75, 85]. The general boundary conditions for the present model are presented in
Eqs. 16(b-d), and the boundary conditions for the diaphragm supports are defined with
these conditions. The 2-D nature of the deformation modes defined at the mid-plane is
exploited by applying the separation of variables approach to define the displacement
parameters in the form of double trigonometric series.

{
u0 βx

} �
∞∑

m�1

∞∑

n�1

{
Umn(t) βxmn (t)

}
cos

(mπx

l

)
sin

(nπy

b

)
,

{
v0 βy

} �
∞∑

m�1

∞∑

n�1

{
Vmn(t) βymn (t)

}
sin

(mπx

l

)
cos

(nπy

b

)
,

w0 �
∞∑

m�1

∞∑

n�1

Wmn(t)sin
(mπx

l

)
sin

(nπy

b

)
. (18)

Similarly, the mechanical and electrical loading terms are also represented in a
similar fashion, just like the displacements.

qz �
∞∑

m�1

∞∑

n�1

Qmn(t) sin
(mπx

l

)
sin

(nπy

b

)
. (19)

From Eq. (8), we can write the equation below:

v � V (x, y)Vmn(t) �
∞∑

m�1

∞∑

n�1

Vmn(t) sin
(mπx

l

)
sin

(nπy

b

)
, (20)

where, Qmn(t) � 4
lb

∫ l
0

∫ b
0qz(x, y, t) sin

(mπx
l

)
sin

( nπy
b

)
dxdy and

Vmn(t) � 4

lb

∫ l

0

∫ b

0
V (x, y, t)sin

(mπx

l

)
sin

(nπy

b

)
dxdy.

The stress resultants are expressed in terms of the field variables and substituted in
the equations of motion. The resulting equations are the partial differential equations
(PDEs) in terms of the assumed filed variables. Further substitution of the assumed
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solutions of the field variables and the loading terms gives a systemof five second-order
ordinary differential equations (ODEs) in time.

[
M

]{
Ü

}
+
[
K

]{U } � {
F
}

M +
{
F
}

E . (21)

The ODEs in Eq. (21) are finally solved using an analytical or a numerical tech-
nique. In this research, Newmark’s constant average acceleration method is utilized
for solving the equations in time.

[
M

]
,
[
K

]
,
{
F
}

M , and
{
F
}

E are the mass matrix,
stiffness matrix, mechanical force vector, and electrical force vector of the system,
respectively.

{
Ü

}
is the acceleration vector and {U } is the displacement vector.

2.7 Finite element (FE) formulation

2.7.1 Element selection

The physical domain (x, y) is discretized with an eight-noded serendipity element.
The interpolation functions for any node ‘i’ of the element are given below:

Ni �
⎧
⎨

⎩

1
4 (1 + ξξi )(1 + ηηi )(ξξi + ηηi − 1)

1
2

(
1 − ξ2

)
(ηηi + 1)

1
2

(
1 − η2

)(
ξξ i + 1

)

(i � 1, 3, 5, 7)
(i � 2, 6)
(i � 4, 8)

. (22)

2.7.2 Continuity requirements and discretization of kinematic field

The first-order derivatives of the transverse displacement ‘W ’ with respect to x and
y in Eq. (1) generate second-order derivatives of W in the strain components (ref:
Eq. (4a)). Therefore, it requires deriving a C1-continuous FE model. C1-continuous
models are computationally difficult in most cases; therefore, the terms ‘ ∂w0

∂x and ∂w0
∂y ’

are assumed to be ‘θx and θy ,’ respectively, to reduce the continuity requirements. As
the derivatives are denoted as two new degrees of freedom, therefore, the number of
field variables has increased from five to seven. Also, additional constraint equations
have now appeared in the formulation, which is written as

(23)

(
∂w0

∂x
− θx

)

� 0and

(
∂w0

∂y
− θy

)

� 0.

The constraint equations are satisfied with the penalty method [76], being in line
with [77]. The penalty function of an element is given by

Pe � γ

2

∫ le

0

∫ be

0

{(
∂w0

∂x
− θx

)T(
∂w0

∂x
− θx

)

+

(
∂w0

∂y
− θy

)T(
∂w0

∂y
− θy

)}

dxedye.

(24)
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Superscript ‘e’ denotes the eth element from the physical domain (x, y). The variation
of the penalty function is written as

δPe � γ

2

∫ le

0

∫ be

0

⎧
⎪⎨

⎪⎩

(
∂δw0
∂x − δθ x

)T (
∂w0
∂x − θx

)
+
(

∂w0
∂x − θx

)T (
∂δw0
∂x − δθ x

)

+
(

∂δw0
∂y − δθ y

)T (
∂w0
∂y − θy

)
+
(

∂w0
∂y − θy

)T (
∂δw0
∂y − δθ y

)

⎫
⎪⎬

⎪⎭
dxedye.

(25)

The finite element approximations allow the field variables to be expressed in terms
of the nodal coordinates of an element ‘e’ with the interpolation functions defined in
Eq. (22).

u0 �
NN∑

n�1

Niu0i
(e), v0 �

NN∑

n�1

Niv0i
(e), w0 �

NN∑

n�1

Niw0i
(e), βx �

NN∑

n�1

Niβxi
(e),

βy �
NN∑

n�1

Niβyi
(e), θx �

NN∑

n�1

Niθxi
(e), θy �

NN∑

n�1

Niθyi
(e). (26)

Using Eq. (26), the constraint equations can be discretized to the following set of
equations in terms of the nodal coordinates. A generalized displacement vector ‘{de}’
is considered which contains all the nodal coordinates of an element ‘e’.

(
∂w0

∂x
− θx

)

� {kx }
{
de

}
and

(
∂w0

∂y
− θy

)

� {
ky

}{
de

}
. (27)

From Eq. (27), we can rewrite Eq. (25) in the following manner.

δPe � γ

∫ le

0

∫ be

0

{{
δde

}t {kx }t {kx }
{
de

}
+
{
δde

}t{
ky

}t{
ky

}{
de

}}
dxedye, (28)

where γ is denoted as the penalty number, and its value is considered to be 106 [73].
The constraint equations are not satisfied when γ is equal to 0, and when the value
of γ is sufficiently large, the displacement vector changes in such a way such that
the constraint equations are more nearly satisfied. The modified displacement field
(Eq. (2a)) with seven degrees of freedom is written as

(29)

⎧
⎨

⎩

U
V
W

⎫
⎬

⎭
�

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎧
⎨

⎩

u0
v0

w0

⎫
⎬

⎭
+

⎡

⎣
−z 0 0
0 −z 0
0 0 0

⎤

⎦

⎧
⎨

⎩

θx

θy

0

⎫
⎬

⎭

+

⎡

⎣
(p1 + z�x ) 0 0

0
(
p2 + z�y

)
0

0 0 0

⎤

⎦

⎧
⎨

⎩

βx

βy

0

⎫
⎬

⎭
.
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2.7.3 Discretized Strain–displacement relations

The strains are first expressed in terms of a generalized strain vector, ‘{ε},’ and the
generalized strain vector is further written in terms of the displacement vector. The
discrete relations are presented below:

{ε} � [H ]{ε}, (30a)

{ε} � [B]
{
de

}
. (30b)

Combining Eqs. 30a and b, we get the final discretized equations for the strains.

{ε} � [H ][B]
{
de

}
, (30c)

where {ε} �
{

εxx εyy γxy γyz γxz

}T
;

[H ] �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0
0
0

0
0
0

1
0
0

z 0 0
0 z 0
0
0
0

0
0
0

z
0
0

p1 0 0
0 p2 0
0
0
0

0
0
0

p1
0
0

0
0
p2
0
0

0 0 0
0 0 0
0
1
0

0
0
1

0
q1
0

0
0
0
0
q2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

{ε} �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u0
∂x , ∂v0

∂y ,
(

∂u0
∂y + ∂v0

∂x

)
,−

(
∂θx
∂x + �x

∂βx
∂x

)
,

−
(

∂θy
∂y + �y

∂βy
∂y

)
,−

((
∂θx
∂y + ∂θy

∂x

)
+ �x

∂βx
∂y + �y

∂βy
∂x

)
. . .

∂βx
∂x ,

∂βy
∂y ,

∂βx
∂y ,

∂βy
∂x ,

(
−θy +

∂w0
∂y + �yβy

)
,
(
−θx +

∂w0
∂x + �xβx

)
, βy, βx

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

T

and[B] �
[ [

B1
] [

B2
]
. . . . . .

[
B8

] ]

.

The components of the various submatrices in [B] are given in Appendix B.

2.7.4 Discretized Stress–Strain relations

The discretized relationship of the stresses and strains for a laminated composite plate
is written as follows:

{σ }(k) � [
Q
](k)

[H ][B]
{
de

}
. (31)

The electric potential voltage ‘V ’ is also approximated over an element ‘e’ in a
similar manner like the mechanical displacements as shown in Eq. (26).

V �
NN∑

n�1

NiVi
(e), (32)

123



12 Page 22 of 54 A. G. Chanda et al.

where Vi (e) is the voltage applied at the ith node of the eth element. Substituting Eq. (32)
in the relationship of the electric potential function ‘
’ in Eq. (7), we get the following
discretized relation.

(33)


 � 1

tp

(

z − h

2

)
{
N1 N2 . . . . . . N8

} {
V1e V2e . . . . . . V8e

}T

� 1

tp

(

z − h

2

)
{
N1 N2 . . . . . . N8

} {
V (e)

}
.

The electric fields ‘Ex , Ey , and Ez’ can now be expressed in terms of the voltage
coordinates in the following manner:

{E} � [
Z
][
N
]{
V (e)

}
. (34a)

where {E} � {
Ex Ey Ez

}T
,
[
Z
] �

⎡

⎢
⎣

− 1
tp

(
z − h

2

)
0 0

0 − 1
tp

(
z − h

2

)
0

0 0 − 1
tp

⎤

⎥
⎦ and

[
N
] �

⎡

⎢
⎣

∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N1
∂y

∂N2
∂y

∂N3
∂y

N1 N2 N3

∂N4
∂x

∂N5
∂x

∂N6
∂x

∂N4
∂y

∂N5
∂y

∂N6
∂y

N4 N5 N6

∂N7
∂x

∂N8
∂x

∂N7
∂y

∂N8
∂y

N7 N8

⎤

⎥
⎦. (34b)

Finally, the discretized stress–strain relationships for the piezoelectric materials are
written as follows:

{σ }(P) � [
Q
](P)

[H ][B]
{
de

} − [e](P)
[
Z
][
N
]{
V (e)

}
. (35)

2.7.5 Calculation of various energies and governing equation

The total potential energy ‘�(e)’of an element is the sum of the strain energy of the
laminated composite plate ‘UES

(e),’ strain energy of the piezoelectric layers ‘UPz
(e),’

strain energy due to the artificial constraints ‘UC
(e),’ strain energy due to the elastic

foundation ‘UEF
(e),’ and the work potential ‘We’ of the applied loads. The variation

of �(e) is given by

δ�(e) � δUES
(e) + δUPz

(e) + δUC
(e) + δUEF

(e) − δW(e). (36)
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The discretized expressions for the variations of the energies are derived as follows:

(37)

δUES
(e) �

∫ le

0

∫ be

0

(∫ h
2

− h
2

{δε}T {σ }(k)
)

dzdxedye

� {
δde

}T
∫ le

0

∫ be

0

(
[B]T [D] [B]

{
de

})
dxedye,

(38)

δUPz
(e) �

∫ le

0

∫ be

0

(∫ − h
2

− h
2−tp

{δε}T {σ }(P)
)

dzdxedye

+
∫ le

0

∫ be

0

(∫ h
2 +tp

h
2

{δε}T {σ }(P)
)

dzdxedye

� {
δde

}T
∫ le

0

∫ be

0

(
[B]T

[
D(P)

]
[B]

{
de

})
dxedye

− {
δde

}T
∫ le

0

∫ be

0

(
[B]T

[
Z (P)

] [
N
] {

V e}
)
dxedye,

δUC
(e) � δPe � γ

∫ le

0

∫ be

0

{{
δde

}T {kx }T {kx }
{
de

}
+
{
δde

}T {
ky

}T {
ky

}{
de

}}
dxedye.

(39)

The integrations over the thickness in the above integrals are defined as follows:

[D] �
∫ h

2

− h
2

(
[H ]T [Q](k) [H ]

)
dz,

[
D(P)

]

�
∫ − h

2

− h
2 −tp

(
[H ]T [Q](P) [H ]

)
dz +

∫ h
2 +tp

h
2

(
[H ]T [Q](P) [H ]

)
dz,

[
Z (P)

]
�

∫ h
2 +tp

h
2

(
[H ]T [e](P)

[
Z
])

dz. (40)

The variation of the strain energy due the Pasternak’s foundation is given by

δUEF
(e) �

∫ le

0

∫ be

0

⎛

⎜
⎝

{
δw0

∂δw0
∂x

∂δw0
∂y

}
⎡

⎣
Kw 0 0
0 Ks 0
0 0 Ks

⎤

⎦

⎧
⎪⎨

⎪⎩

w0
∂w0
∂x
∂w0
∂y

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠dxedye. (41)

The vector containing the transverse displacement and its derivatives can be further
expressed in terms of the displacement vector in the following manner:

{dd} � [BEF ]
{
de

}
, (42a)
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where {dd} �
{

w0
∂w0
∂x

∂w0
∂y

}T
, [BEF ] � [ {BEF 1} {BEF 2} . . . . . . . . . {BEF 8}

]

{BEF i } �
⎡

⎢
⎣

0 0 Ni

0 0 ∂Ni
∂x

0 0 ∂Ni
∂y

0 0 0
0 0 0
0 0 0

0
0
0

⎤

⎥
⎦(i � 1,2, . . . 8). (42b)

The matrix containing the foundation stiffness in Eq. (41) is denoted as
[
K EF

]
.

Finally, the discretized expression of the variation of the strain energy due to Paster-
nak’s foundation is written as

δUEF
(e) � {

δde
}T

∫ le

0

∫ be

0

(
[BEF ]

T
[
K EF

]
[BEF ]

{
de

})
dxedye (43)

The variation in the work potential ‘δW(e)’ is given by

δW(e) � {
δde

}T
∫ le

0

∫ be

0

([
N
]T { fm}

)
dxedye. (44)

where { fm} �
{
0 0 qz 0 0 0 0

}T
.

The variation in the kinetic energy ‘δK(e)’ is expressed as

δK(e) �

⎛

⎜
⎜
⎝

le∫

0

be∫

0

h
2∫

− h
2

( {

δ
.

Ū

}T

ρ(k)
{ .

Ū

})

dxedyedz +

le∫

0

be∫

0

− h
2∫

− h
2 −tp

( {

δ
.

Ū

}T

ρ(P)

{ .

Ū

})

× dxedyedz +

le∫

0

be∫

0

h
2 +tp∫

h
2

( {

δ
.

Ū

}T

ρ(P)

{ .

Ū

})

dxedyedz

⎞

⎟
⎟
⎠

�
{
δḋ

e
}T

∫ le

0

∫ be

0

([
N
]T

[I ]
[
N
]{
ḋe

})
dxedye. (45)

where [I ]� ∫ h
2

− h
2

(
[Z ]tρ(k)[Z ]

)
dz +

∫ h
2

− h
2−tp

(
[Z ]tρ(P)[Z ]

)
dz +

∫ h
2 +tp
h
2

(
[Z ]tρ(P)[Z ]

)
dz.

The variations of the various energies are substituted in Hamilton’s principle to
get the discretized governing equations of motion. The integrations in space (x, y) are
carried out numerically using the Gauss-quadrature method. A selective integration
rule is adopted for thin plate systems so as to avoid any possible numerical disturbances
like the shear locking, which might appear with the full integration rule [76]. The
discretized governing equations of motion for an element are given by

[M]
{
d̈e

}
+ ([K ] + [KP ] + [KF ] + [Kc])

{
de

} � {Fmech} + [Kda]
{
V e}. (46)
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where [K ] � ∫ le
0

∫ be
0

(
[B]T [D][B]

)
dxedye,

[KP ] �
∫ le

0

∫ be

0

(
[B]T

[
D(P)

]
[B]

)
dxedye,

[Kda] �
∫ le

0

∫ be

0

(
[B]T

[
Z (P)

] [
N
])

dxedye, [KF ]

�
∫ le

0

∫ be

0

(
[BEF ]

T
[
K EF

]
[BEF ]

)
dxedye,

[Kc] �
∫ le

0

∫ be

0

(
γ
{
{kx }T {kx } +

{
ky

}T {
ky

}})
dxedye,

{Fmech} �
∫ le

0

∫ be

0

([
N
]T { fm}

)
dxedye,

[M] �
∫ le

0

∫ be

0

([
N
]t
[I ]

[
N
])
dxedye. (47)

[M] is the mass matrix of the smart composite plate, [K ], [KP ], [KF ], and [Kc] are
the stiffness matrices of the laminated composite plate, piezoelectric layers, Paster-
nak’s foundation, and the artificial constraints, respectively. [Kda] is the stiffness
matrix generated due to the coupling of the mechanical and electric field. {Fmech} is
the mechanical force vector due to the external loads. Equation (46) is the governing
dynamic equation for an element ‘e’ and the matrices need to be assembled to get the
governing equation for the entire system. The final governing equation after assem-
bling the elemental equations presented in Eqs. (46, 47) by following the standard
finite element assembling procedure is given by

[M]
{
d̈
}
+ ([K] + [KP] + [KF] + [Kc]){d} � {Fmech} + [Kda]{V}. (48)

2.7.6 Active Vibration Control of smart structures on Pasternak’s foundation

The electric potential distribution of the piezoelectric sensor in space (x, y) is obtained
in terms of the mechanical displacement vector as a result of the coupling between the
elastic and electric fields in the constitutive relations. The electrodes in the piezoelectric
layers are at the extreme surfaces, i.e., z � -h/2 and—h/2-tp), and the charges get
accumulated at the electrodes. Since the poling is in the z-direction, the charges are
calculated by the spatial integration of the electric displacement ‘Dz’ over the surface
area of the electrodes, assuming that the converse piezoelectric effect is negligible.
Also, no electric field is applied in the piezoelectric sensor, therefore, Exx � Eyy �
Ezz � 0. The output charge of an element ‘e’ in the piezoelectric sensor is calculated

123



12 Page 26 of 54 A. G. Chanda et al.

as

Q(e) � 1

2

∫ le

0

∫ be

0
Dzz

(

x, y,−h

2

)

dxedye +
1

2

∫ le

0

∫ be

0
Dzz

(

x, y,−h

2
− tp

)

dxedye.

(49)

From the direct piezoelectric law, the equation of the electric displacement ‘Dzz’
is written as

Dzz

(

x, y,−h

2

)

� e31
(P)εxx

(

x, y,−h

2

)

+ e32
(P)εyy

(

x, y,−h

2

)

(50a)

and

Dzz

(

x, y,−h

2
− tp

)

� e31
(P)εxx

(

x, y,−h

2
− tp

)

+ e32
(P)εxy

(

x, y,−h

2
− tp

)

.

(50b)

Substituting for Dzz
(
x, y,− h

2

)
and Dzz

(
x, y,− h

2 − tp
)
from the above equations

in the equation of the output charge, we get the following discretized relationship

Q(e) � {ks}
{
de

}
. (51)

where {ks} �
(

1
2

∫ le
0

∫ be
0 ({e}(P)[H( − h

2 )
]
[B])dxedye + 1

2

∫ le
0

∫ be
0 ({e}(P)[H( − h

2 −

tp)
]
[B])dxedye

)

.

The total output charge ‘Q’ of the piezoelectric sensor can be calculated by the
summation of the output charges ‘Q(e)’ for all the elements. In the present problem,
the electrodes are present on the entire surface of the piezoelectric layers. Thus,

Q �
NE∑

e�1

Q(e). (52)

The total charge is obtained by the FE assembling of the matrix ‘{ks}’ in Eq. (51).
The discretized expression of the output charge after assembling is written as

Q � {Ks}{d}. (53)

In this research, we use a negative feedback control system which is based on
the velocity measurements of the system. The output voltage of the sensor ‘Vs’ is
proportional to the rate of change of the output charge obtained in Eq. (53). Thus,

Vs � Gc
dQ

dt
� Gc{Ks}

{
ḋ
}
. (54)
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Gc is denoted as the constant gain of the amplifier. The sensor voltage is now
fed back through an amplifier to the top surface of the actuator with a change in the
polarity. Thus, the voltage on the actuator ‘Va’ is given by

Va � −GGc{Ks}
{
ḋ
}
. (55)

G is the gain of the amplifier. The actuator layer is electroplated; thus, all the nodes
on the top surface of the actuator will be equipotential. Therefore, all the entries in the
global voltage vector ‘{V}’ obtained in Eq. (55) will be equal to Va. Thus,

V(i) � GGc{Ks}
{
ḋ
}
, (56)

whereV(i) is the ith element of {V}. Using Eqs. (48), (55), and (56), the final governing
equation for the active vibration control analysis is given by

[M]
{
d̈
}
+ [Ccontrol ]

{
ḋ
}
+ ([K] + [KP] + [KF] + [Kc]){d} � {Fmech}, (57)

where [Ccont rol ] is the active damping matrix identified from Eqs. (55) and (56). It
is now perceived from Eq. (57) that the controller has generated a damping matrix
which is responsible for the vibration suppression. Apart from the damping generated
by the controller, we also introduce the structural damping ‘[Cstr ]’ as every structural
member is characterized by light damping. For the structural damping, we use the
Rayleigh damping, given by

[Cstr ] � α1[M] + α2
([
K∗]), (58)

where α1 and α2 are Rayleigh’s coefficient of proportionality, and
[
K∗] �

([K] + [KP] + [KF] + [Kc]). Therefore, the governing equation for the active control
analysis after including the structural damping is written as

[M]
{
d̈
}
+ [[Ccontrol ] + [Cstr ]]

{
ḋ
}
+ ([K] + [KP] + [KF] + [Kc]){d} � {Fmech}.

(59)

Equation (59) is solved using Newmark’s constant average acceleration method.
The equation is subjected to the initial conditions of the problem, i.e., the values of the
displacement vector ‘{d}’ and velocity vector ‘{ḋ}’ at time t � 0. InNavier’s analytical
solution method presented in Sect. 2.5.1, the mathematical functions assumed for the
field variables satisfy the diaphragm-supported boundary conditions as a preliminary.
In the FEmethod, it is essential to enforce the boundary conditions after the formation
of the global stiffness matrix, mass matrix, and force vectors. The boundary conditions
associated with the field variables for the various types of boundary conditions are as
follows:

Diaphragm support (SSSS)
uo � wo=βx=θx � 0 at y � 0, b and vo � wo=βy=θy � 0 at x � 0, l
Clamped support (CCCC)
uo � wo=βx=θx=vo � βy=θy � 0 at x � 0, l and y � 0, b
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Clamped Diaphragm support (CCSS)
uo � wo=βx=θx=vo � βy=θy � 0 at x � 0 and y � 0.
uo� wo=βx=θx � 0 at y � b and vo � wo=βy=θy � 0 at x � l.

3 Results and discussions

In this section, the numerical results obtained using the analytical and FE formulation
derived in the previous section are presented and discussed. The present solutions are
validated by the available solutions in the literature. Further, new results for the smart
laminated composite plates on elastic foundation are also presented. The material
models (MM) and the non-dimensional parameters (ND) used to obtain the results are
listed below:

Material Properties

MM1 [79, 80]
E1/E2 � 25, G12 � G13 � 0.5 E2, G23 � 0.2 E2, ϑ12 � 0.25.

MM2 [73]
E1 � 181 GPa, E2 � 10.3 GPa, G12 � G13 � 7.17 GPa, G23 � 2.87 GPa, ϑ12 �

0.28, ρ � 1578 kg/m3

MM3 [61]
E1/E2 � 40, G12 � G13 � 0.6 E2, G23 � 0.5 E2, ϑ12 � 0.25.

MM4 [31]

Material properties of the substrate
E1 � 172.37 GPa, E2 � 6.89 GPa, G12 � G13 � 3.45 GPa, G23 � 1.38 GPa, ϑ12

� 0.25.

Material properties of the piezoelectric layer
E � 2 GPa, ϑ � 0.29, e31 � e32 � 0.046 C/m2

MM5 [29]

Material properties of the substrate
E1 � 172.9 GPa, E2 �E1/25, G12 � G13 � 0.5 E2, G23 � 0.2 E2, ϑ12 � 0.25,

ρ� 1600 kg/m3

Material properties of the piezoelectric layer [84]
C11=32.6 GPa; C12=4.3 GPa; C22=7.2 GPa; C66=1.29 GPa;C44=1.05 GPa;C55 �

1.29 GPa.
e31 � -6.76 C/m2; ε11 � 0.037 × 10–9 F/m;ε22 � ε33� 10.46 × 10–9 F/m; ρ�

3640 kg/m3

MM6 [33, 86]

Material properties of the substrate layers
E22� 210 GPa;E11=25 E22; G12� G13� 0.5 E22; G23 � 0.2 E22; ϑ12 � 0.25; ρ�

800 N s2/m4
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Material properties of the piezoelectric layer
E � 2 GPa; e31=e32� 0.046 C/m2; ε11 � ε22 � ε33 � 0.1062 × 10–9 F/m; ϑ �

0.29;ρ � 100 N s2/m.4

MM7 [87]

Material properties of the substrate layers
E1 � 172.5 GPa, E2 � 6.9 GPa, G12 � 3.45 GPa, ϑ12 � 0.25, ρ� 1600 kg/m3

Material properties of the piezoelectric layer
E1 � E2 �2 GPa, G12 � 0.775 GPa, ϑ12 � 0.29, ρ� 1600 kg/m3, e31=e32� 0.046

C/m2

ε33� 1.062 × 10–10 F/m.

Non-dimensional Parameters

ND1

W � 100E2h3W
( l
2 ,

b
2 , 0

)

ql4
σ̃xx � h2σxx

( l
2 ,

b
2 ,

h
2

)

ql2
σ̃yy

� h2σyy
( l
2 ,

b
2 ,

h
6

)

ql2
τ xy � h2τxy

(
0,0, h

2

)

ql2
τ xz � hτxz

(
0, b

2 , 0
)

ql
.

kw � K1L4

E2h3
, ks �K2L2

E2h3

ND2

ω � ω
l2

h

√(
ρ

E2

)

kw � K1L4

E2h3
ks � K2L2

E2h3

ND3

W � E2

Ve31
kw � K1L4

E2h3
ks � K2L2

E2h3

3.1 Validation of the static responses of four-layered (00/900) laminated
composite plates under sinusoidal mechanical load

Asimply supported four-layered laminated composite platewith span-thickness ratios,
S � 10 and 100, is considered in this example. The transverse mechanical load acting
on the top surface of the plate is assumed to be sinusoidal in both the x- and y-
direction. Material properties and the non-dimensional equations in MM1 and ND1,
respectively, are used to represent the results of this problem. The static responses of
the plate in the form of deflection and stresses are presented in Table 1 and compared
with the 3D solutions [78], solutions of Rodrigues et al. [79], Natarajan et al. [80],
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Table 1 Convergence and validation of the non-dimensional deflection and stresses of a four-layered
(00/900/900/00) simply supported laminated composite plate subjected to sinusoidal mechanical load in
the spatial domain

W σ̃xx σ̃yy τ xy τ xz

l/h � 10

Present FEMa (4 × 4) 0.7352 0.6129 0.4481 0.0298 0.343

Present FEMa (8 × 8) 0.7363 0.5717 0.419 0.028 0.3183

Present FEMa (12 × 12) 0.7363 0.5638 0.4133 0.0276 0.3138

Present FEMa (16 × 16) 0.7364 0.5611 0.4112 0.0275 0.3122

Present FEMa (20 × 20) 0.7364 0.5598 0.4103 0.0274 0.3115

Present FEMa (22 × 22) 0.7364 0.5594 0.41 0.0274 0.3113

Present CFSb 0.736 0.561 0.4082 0.0274 0.3138

Pagano [78]c 0.743 0.559 0.403 0.0276 0.301

Rodrigues et al. [79]d 0.7227 0.546 0.4194 0.0269 0.2978

Natarajan et al. [80]e 0.7193 0.5594 0.3904 – 0.2952

Ferreira et al. [81]f 0.7191 0.5612 0.3915 0.0273 0.2843

Reddy [22]g 0.7147 0.5456 0.3888 0.0268 0.264

l/h � 100

Present FEMa (4 × 4) 0.4341 0.5915 0.2971 0.0234 0.3945

Present FEMa (8 × 8) 0.4346 0.5526 0.278 0.0219 0.3585

Present FEMa (12 × 12) 0.4346 0.545 0.2742 0.0216 0.3538

Present FEMa (16 × 16) 0.4346 0.5423 0.2711 0.0215 0.3521

Present FEMa (20 × 20) 0.4346 0.5411 0.2722 0.0214 0.3513

Present FEMa (22 × 22) 0.4346 0.5407 0.272 0.0214 0.351

Present CFSb 0.4346 0.5389 0.2711 0.0214 0.352

Pagano [78]c 0.4347 0.539 0.271 0.0214 0.339

Rodrigues et al. [79]d 0.4294 0.5364 0.2699 0.0211 0.3345

Natarajan et al. [80]e 0.4302 0.5365 – – 0.3285

Ferreira et al. [81]f 0.4350 0.5396 0.2713 0.0214 0.3155

Reddy [22]g 0.4343 0.5387 0.2708 0.0213 0.2897

a Finite Element Method
b Closed-form Navier solution
c Elasticity solutions;
d Radial basis functions and Carrera Unified Formulation (CUF);
e Cell-based smoothed FE combined Carrera Unified Formulation (CUF);
f Generalized differential quadrature combined with CUF;
g Third-Order shear deformation theory.

and Ferreira et al. [81] combined with CUF, and analytical solutions of Reddy [22]
using HSDT. It is observed in the table that very precise results of both deflection
and stresses are obtained using the present analytical and FE formulation, and a very
good agreement can be observed with the elasticity solutions [78], and with the results
obtained using radial basis functions [79], cell-based smoothed FE [80], generalized
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differential quadrature [81], and HSDT [22]. The present results are observed to be
more accurate than the other References in the table.

3.2 Validation of the free-vibration responses of four-layered (00/900) laminated
composite plates

In this example, we consider another four-layered laminated composite plate with a
span–thickness ratio, S� 10, having two types of boundary conditions, namely, simply
supported (SSSS) and clamped (CCCC) at all the edges. The material properties and
the non-dimensional equations used in this example correspond to MM2 and ND2,
respectively. The fundamental natural frequencies of the plate are presented in Table
2. The present solutions are compared with the ZZ, third-order theory (TOT), and 3D
solutions obtained in Kulkarni and Kapuria [82] and the HSDT results of Grover et al.
[73]. The FE solutions in the table have an excellent convergence, and we also observe
a very close agreement of the present solutions with the solutions of the references [73,
82]. The natural frequencies of the plate are observed to be higher in magnitude in the
case of the clamped boundary condition due to the greater stiffness as a result of the
restraint of all the degrees of freedom at the boundaries. Next, we present the validation
of the free-vibration responses of a three-layered (0/90/0) laminated composite resting
on aWinkler foundation. The material properties and the non-dimensional parameters
in this problem correspond to MM3 and ND2, respectively. The normalized natural
frequencies of the plate are presented in Table 3 for various span–thickness ratios,
modulus ratios, and boundary conditions. The solutions reported by Akavci [61] and
Hui-Shen [83] are also collected in the table for comparison. The present responses
are observed to be in a close agreement with the solutions in [61, 83]. The magnitudes
of the natural frequencies are observed to increase with the increase in the magnitude
of the modulus ratio as there is an increment in the stiffness of the plate.

3.3 Static analysis of smart laminated composite plates integrated
with piezoelectric layers supported on elastic foundation

After validation of the present analytical and FE formulations for the cases of static
and free-vibration analysis, we now present the static responses of smart composite
plateswith piezoelectric actuators and sensors. These results can be used as benchmark
results for the comparison and assessment of new shear deformation models in the
literature. At first, we consider a five-layered simply supported smart composite plate
(PVDF/00/900/00/PVDF) with a PVDF actuator and PVDF sensor placed at the top
and bottom surface of a 00/900/00 laminated composite plate. The material properties
and the non-dimensional equations correspond to MM4 and ND1, respectively. The
thickness of each orthotropic layer is considered to be 3 mm, and the thickness of the
PVDF layer is 40 μm. A bi-sinusoidal electromechanical load (q � 10 N/m2, V �
0, 100, − 100 V) is assumed to act on the top surface of the smart plate structure.
Analytical and FE results of normalized transverse displacement

(
W

)
are presented in

Table 4 for various span–thickness ratios. The magnitude of the transverse displace-
ment in the table is observed to decrease due to elastic foundations. The decrease in

123



12 Page 32 of 54 A. G. Chanda et al.

Ta
bl
e
2
C
on
ve
rg
en
ce

an
d
va
lid

at
io
n
of

th
e
no

n-
di
m
en
si
on

al
fu
nd

am
en
ta
lf
re
qu

en
ci
es

of
si
m
pl
y
su
pp

or
te
d
an
d
cl
am

pe
d-
su
pp

or
te
d
fo
ur
-l
ay
er
ed

(0
0
/9
00
)l
am

in
at
ed

co
m
po
si
te

pl
at
es

w
ith

sp
an
–t
hi
ck
ne
ss

ra
tio

,S
�

10

ω Pr
es
en
tF

E
M

(M
es
h
si
ze
)

SS
SS

Pr
es
en
t-
C
FS

3D [8
2]

Z
Z

[8
2]

T
O
T
[8
2]

H
SD

T
[7
3]

4
×

4
6

×
6

8
×

8
12

×
12

11
.2
97

1
11

.2
94

7
11

.2
94

98
11

.2
95

51
11

.2
97

1
11

.2
98

1
11

.2
85

7
11

.4
12

1
11

.3
46

2

21
.5
61

9
21

.4
41

24
21

.4
22

05
21

.4
15

51
21

.4
16

21
.2
52

9
21

.3
77

2
21

.3
60

2
21

.2
81

6

28
.4
96

96
28

.3
56

71
28

.3
33

1
28

.3
24

54
28

.3
50

9
28

.3
36

2
28

.3
23

9
28

.9
82

8
28

.6
48

3

34
.6
13

14
34

.3
24

3
34

.2
96

32
34

.2
88

14
34

.3
09

5
34

.2
44

4
34

.1
78

8
34

.7
29

9
34

.4
96

2

C
C
C
C

17
.8
75

31
17

.8
41

75
17

.8
37

78
17

.8
36

53
–

17
.7
50

2
18

.1
11

8
18

.2
74

4
17

.8
96

8

29
.0
83

45
28

.7
43

28
.6
89

97
28

.6
70

74
–

28
.2
03

2
29

.0
72

9
28

.9
04

7
28

.3
24

2

32
.8
84

15
32

.6
08

92
32

.5
69

06
32

.5
55

35
–

32
.4
50

5
33

.5
62

9
33

.8
18

4
32

.8
58

4

40
.7
04

40
.0
91

5
40

.0
20

97
39

.9
99

41
–

39
.6
69

7
41

.0
15

1
41

.0
76

9
40

.0
15

2

Z
Z
:Z

ig
za
g
th
eo
ry
;T

O
T
:T

hi
rd
-O

rd
er

th
eo
ry
;H

SD
T
:H

ig
he
r-
or
de
r
sh
ea
r
de
fo
rm

at
io
n
th
eo
ry

123



Development of analytical and FEM solutions for static and dynamic … Page 33 of 54 12

Table 3 Convergence and validation of the non-dimensional fundamental frequencies of simply supported
and clamped-supported three-layered (00/900/00) laminated composite plates supported on an elastic foun-
dation with various span–thickness ratios and modulus ratios

Foundation
stiffness

Span–thickness
ratio (S)

ω

Modulus Ratio (E1/E2) � 40

Simply supported (SSSS)
boundary condition

Clamped (CCCC)
boundary condition

10 20 50 10 20 50

Winkler
Stiffness
(K1) � 100

Present FEM (6
× 6)

17.7543 20.133 21.1543 23.5725 32.8535 40.6278

Present FEM (8
× 8)

17.7535 20.1317 21.1526 23.5699 32.8438 40.584

Present FEM
(10 × 10)

17.7533 20.1313 21.1521 23.5694 32.8416 40.576

Present-CFS 17.7569 20.1318 21.1519 – – –

Hui-Shen [61] 17.753 20.132 21.152 – – –

Akavci [83] 17.751 20.131 21.152 – – –

Modulus Ratio (E1/E2) � 100

Present FEM (6
× 6)

20.7501 26.4297 29.8535 25.8875 39.6729 57.5584

Present FEM (8
× 8)

20.7495 26.4282 29.8509 25.8854 39.6663 57.5225

Present FEM
(10 × 10)

20.7493 26.4277 29.8503 25.8849 39.6649 57.5152

Present CFS 20.7711 26.4313 29.8503 – – –

K1: Winkler’s stiffness

the magnitude of W is calculated to be 43.46% under the action of electromechanical
loads (q � 10 N/m2, V � 100 V) and consideration of Winkler stiffness (K1) for a
thick smart composite plate (S � 10). The magnitude further decreases by 69.57%
when bothWinkler and shear stiffness (K1 and K2) of the foundations are considered.
The deflections in the table are the resultant/net deflection due to the combined action
of the mechanical and electrical loads. Therefore, the reversal of the deflection in thick
plate systems (S � 10, 50) concludes that the piezoelectric actuators are more effective
as the value of S decreases.

Next, we consider a piezoelectric fiber-reinforced composite (PFRC) actuator
placed on a 00/900/00 composite plate. In the PFRC layer, piezoelectric fibers (PZT5H)
are bonded with an epoxy matrix. The PFRC layers have higher electromechanical
coupling coefficients, which makes them efficient actuators and sensors for smart
structures. The results of the normalized transverse deflection are tabulated in Table
5 for various magnitudes of static electromechanical loads. The thickness of each
orthotropic layer is 1 mm, while the thickness of the PFRC layer is 250 μm. The

123



12 Page 34 of 54 A. G. Chanda et al.

Ta
bl
e
4
N
or
m
al
iz
ed

T
ra
ns
ve
rs
e
de
fle
ct
io
n
of

th
e
sm

ar
tc
om

po
si
te
pl
at
e
(P
V
D
F
(a
ct
ua
to
r)
/0
0
/9
00
/0
0
/P
V
D
F
(s
en
so
r)
)
re
st
in
g
on

el
as
tic

fo
un
da
tio

n
su
bj
ec
te
d
to

an
el
ec
tr
om

e-
ch
an
ic
al
lo
ad

of
si
nu
so
id
al
va
ri
at
io
n

l/
h

R
ef
er
en
ce
s

E
la
st
ic
Fo

un
da
tio

n
St
if
fn
es
s

K
1

�
0;
K
2�

0
K
1

�
10

0;
K
2=

0
K
1

�
10

0;
K
2=

10

E
le
ct
ri
c
vo
lta
ge

E
le
ct
ri
c
vo
lta
ge

E
le
ct
ri
c
vo
lta
ge

V
�

0
V

�
10

0
V

�
−

10
0

V
�

0
V

�
10

0
V

�
−

10
0

V
�

0
V

�
10

0
V

�
−

10
0

10
Pr
es
en
ta
na
ly
tic

al
0.
76

91
−

2.
22

52
3.
76

34
0.
43

48
−

1.
25

78
2.
12

73
0.
23

4
−

0.
67

69
1.
14

48

Pr
es
en
tF

E
M

0.
76

98
−

2.
21

26
3.
75

21
0.
43

50
−

1.
25

02
2.
12

01
0.
23

4
−

0.
67

27
1.
14

07

50
Pr
es
en
ta
na
ly
tic

al
0.
45

69
0.
36

73
0.
54

65
0.
31

36
0.
25

21
0.
37

51
0.
19

37
0.
15

57
0.
23

17

Pr
es
en
tF

E
M

0.
45

69
0.
36

73
0.
54

65
0.
31

36
0.
25

21
0.
37

51
0.
19

37
0.
15

57
0.
23

17

10
0

Pr
es
en
tA

na
ly
tic

al
0.
44

64
0.
42

42
0.
46

85
0.
30

86
0.
29

33
0.
32

39
0.
19

18
0.
18

23
0.
20

13

Pr
es
en
tF

E
M

0.
44

64
0.
42

42
0.
46

85
0.
30

86
0.
29

33
0.
32

39
0.
19

18
0.
18

23
0.
20

13

123



Development of analytical and FEM solutions for static and dynamic … Page 35 of 54 12

Ta
bl
e
5
N
or
m
al
iz
ed

T
ra
ns
ve
rs
e
de
fle
ct
io
n
of

th
e
sm

ar
tc
om

po
si
te
pl
at
e
(P
FR

C
(a
ct
ua
to
r)
/0
0
/9
00
/0
0
)
re
st
in
g
on

el
as
tic

fo
un
da
tio

n
su
bj
ec
te
d
to

an
el
ec
tr
om

ec
ha
ni
ca
ll
oa
d
of

si
nu
so
id
al
va
ri
at
io
n

l/
h

R
ef
er
en
ce
s

E
la
st
ic
Fo

un
da
tio

n
St
if
fn
es
s

K
1

�
0;
K
2=

0
K
1

�
10

0;
K
2=

0
K
1

�
10

0;
K
2=

10

E
le
ct
ri
c
vo
lta
ge

E
le
ct
ri
c
vo
lta
ge

E
le
ct
ri
c
vo
lta
ge

V
�

0
V

�
10

0
V

�
−

10
0

V
�

0
V

�
10

0
V

�
−

10
0

V
�

0
V

�
10

0
V

�
−

10
0

10
Pr
es
en
ta
na
ly
tic
al

−
0.
70

24
13

2.
94

69
−

13
4.
35

17
−

0.
41

26
78

.0
94

5
−

78
.9
19

7
−

0.
22

74
43

.0
41

1
−

43
.4
95

9

Pr
es
en
tF

E
M

−
0.
70

43
13

0.
92

29
−

13
2.
33

16
−

0.
41

33
76

.8
17

1
−

77
.6
43

6
−

0.
22

76
42

.3
05

9
−

42
.7
61

1

50
Pr
es
en
ta
na
ly
tic
al

−
0.
41

32
4.
30

93
−

5.
13

58
−

0.
29

24
3.
04

93
−

3.
63

41
−

0.
18

54
1.
93

34
−

2.
30

42

Pr
es
en
tF

E
M

−
0.
41

33
4.
30

72
−

5.
13

38
−

0.
29

24
3.
04

77
−

3.
63

26
−

0.
18

54
1.
93

24
−

2.
30

32

10
0

Pr
es
en
ta
na
ly
tic
al

−
0.
40

34
0.
77

22
−

1.
57

89
−

0.
28

74
0.
55

02
−

1.
12

51
−

0.
18

34
0.
35

10
−

0.
71

78

Pr
es
en
tF

E
M

−
0.
40

34
0.
77

20
−

1.
57

88
−

0.
28

74
0.
55

01
−

1.
12

50
−

0.
18

34
0.
35

10
−

0.
71

77

123



12 Page 36 of 54 A. G. Chanda et al.

Fig. 3 a Variation of in-plane
displacement

(
U(x, y, h/2)

)
of

a smart composite plate
(PFRC/00/900/00) subjected to
sinusoidal electromechanical
load (V � − 100 V) without
foundation stiffness (S � 10);
b Variation of the same by
considering only Winkler
stiffness and electromechanical
load (V � − 100 V); c Variation
of the same by including both
Winkler and shear stiffness of
the foundation and
electromechanical load (V � −
100 V)

material properties correspond to MM5 for this example. We observe that the magni-
tude ofW has decreased by 41.25%when theWinkler stiffness (K1) of the foundation
is considered and 67.62% when both Winker and shear stiffness (K1, K2) of the foun-
dations are considered. The variation of the non-dimensional responses of in-plane
displacement U (x, y, h

2 ) over the spatial domain of the plate is plotted in Figs. 3a–c
for a sinusoidal electrical load of magnitude, V � -− 100 V, and different foundation
stiffness values. It is visible in the figures that the magnitude ofU is highly influenced
by the stiffness of the foundation as the magnitude tends to decrease due to the Win-
kler and shear stiffness of the foundations. The Winkler foundation stiffness produces
in-plane displacement nearly 1.22 times less when K1 � 100 and K2 � 0, and 1.43
times less when K1 � 100 and K2 � 10. Next, the effect of the foundation stiffness
on the normalized response of the transverse displacement (W ) is shown in Fig. 4
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Fig. 4 a Variation of transverse
displacement of a smart
composite plate
(PFRC/00/900/00) with the
Winkler and shear foundation
stiffness subjected to sinusoidal
electromechanical load (V �
100 V); b Variation of transverse
displacement with the Winkler
and shear foundation stiffness
subjected to a sinusoidal
electromechanical load of
opposite polarity (V � − 100 V)

for various combinations of Winkler (K1) and shear foundation stiffness (K2), and
electrical loads of magnitude V � 100 V and –100 V. As expected, the plate experi-
ences maximum deflection when K1 � K2 � 0, and the deflection decreases with the
increase in the values of the foundation stiffness, with a minimum value attained at K1
� 100 and K2� 10. It is also observed that the effectiveness of the foundation is much
more when the shear stiffness of the foundation is considered. InWinkler’s model, the
transverse deflection at any point on the elastic medium is directly proportional to the
mechanical pressure applied at that point and is independent of the pressure applied on
any other points on the elastic medium. Thus, there is a discontinuity of the adjacent
transverse displacements in the mutually independent springs. When the shear layer is
also taken into consideration, then the continuity of the adjacent displacements can be
established, resulting in more accurate and realistic responses. The same smart plate is
now subjected to the electromechanical load of uniform variation of intensity 40 N/m2

and various electrical loads of magnitude V � 0,100 and − 100 V. The variations of
the transverse displacement over the spatial domain of the plate are plotted in Fig. 5 by
neglecting the effects of the foundation (Fig. 5a, b, c) and by considering bothWinkler
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and shear foundation stiffness (Fig. 5d, e, f). The magnitude of the transverse displace-
ment under the action of uniform variation of the electromechanical load is larger in
comparison to the sinusoidal variation. The inclusion of the foundation stiffness results
in an increase in the overall stiffness of the plate, resulting in a significant drop in the
magnitudes of the displacement, as noticed in Fig. 5d, e, and f. The effect of the bound-
ary conditions on the coupled response of the transverse displacement is examined
by considering a fully clamped–clamped (CCCC) condition and a clamped-simply
supported (CCSS) condition, and the responses are shown in Figs. 6a, b, c and 7a, b,
c for various combinations of foundation stiffness and sinusoidal electromechanical
loads. As expected, the plate with CCSS boundary is experiencing more deflection
than the plate with CCCC boundary condition. In CCCC boundary conditions, all the
degrees of freedom at the boundaries are restrained, resulting in larger stiffness of the
plate and producing more resistance against the deformations. The variations of the
in-plane shear stress, τ xy

(
x, y,− h

2

)
over the spatial domain of the plate are shown in

Figs. 8 (a, b, and c). The maximum values of the stress are attained at the corners of the
plate boundaries. A significant reduction of the stress is observed when the combined
Winkler and shear stiffness of the foundations are considered.

3.4 Forced vibration analysis of smart laminated composite plates on elastic
foundation

In this section, we present the forced-vibration responses of smart composite plates
resting on an elastic foundation and integrated with PVDF and PFRC piezoelectric
materials. A three-layered laminated composite plate (00/900/00) integrated with a
PVDF actuator and a sensor at the top and bottom surface of the plate is subjected to
sinusoidal electrical excitations only. The thickness of each orthotropic ply is consid-
ered to be 2 mm, and the thickness of the PVDF layer is 0.1 mm. The magnitude and
frequency of the electrical excitation are 100 V and 50 Hz, respectively. The mate-
rial properties and the non-dimensional parameters correspond to MM6 and ND3,
respectively. Analytical and FE results of maximum transient deflection of the smart
composite plate resting on an elastic foundation are presented in Table 6 for vari-
ous span–thickness ratios. An excellent correlation of the analytical and FE results
can be observed in the table for all the span–thickness ratios. The amplitude of the
transient displacement–time response decreases by 56.88% and 79.69% for a thick
smart composite plate (S � 6) due to the Winkler stiffness (K1) only and combined
Winkler and shear stiffness of the foundation (K1, K2), respectively. Figure 9 shows
the forced-vibration response of a four-layered (PFRC/00/900/00) smart composite
plate with simply supported boundary conditions at all the edges. The thickness of
each orthotropic ply is 1 mm, and the thickness of the PFRC layer is 0.25 mm. The
time-dependent electromechanical excitation is constant in the time domain and sinu-
soidal in the spatial domain. The magnitude of the electrical and mechanical pressure
is 100 V and 40 N/m2, respectively. It is observed in the figure that there is a signif-
icant decrease and increase in the amplitude and frequency of vibration of the smart
composite plate, respectively, under the applied electromechanical excitation. The
analytical and the FE responses are also observed to be in excellent correlation with
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Fig. 8 a Variation of in-plane
shear stress

(
τ x y(x, y, −h/2)

)

of a smart composite plate
(PFRC/00/900/00) subjected to
sinusoidal electromechanical
load (V � 100 V) without
foundation stiffness (S � 10);
b Variation of the same by
considering only Winkler
stiffness and electromechanical
load (V � 100 V); c Variation of
the same by including both
Winkler and shear stiffness of
the foundation and
electromechanical load (V �
100 V)

each other in the figure. Figure 10a–c show the 3D variation of the displacement–time
response of the smart composite plate for various magnitudes of electrical excitation
(− 100 V to 100 V) by neglecting the foundation stiffness (K1 � 0;K2 � 0), con-
sidering only Winkler stiffness (K1 � 100;K2 � 0) and considering the combined
Winkler and shear stiffness (K1 � 100;K2 � 10) of the foundation. It is observed
that the direction of the transverse displacement gets altered when the polarity of the
electrical excitations changes from negative to positive and vice versa.

3.5 Vibration suppression of smart composite plate supported on an elastic
foundation

A simply supported five-layered smart composite plate (PVDF/00/900/00/PVDF) with
a PVDF piezoelectric layer bonded on the upper and lower surface of the laminated
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Fig. 9 Displacement–time response of a smart composite plate (PFRC/00/900/00) on elastic foundation
subjected to pulse electromechanical excitation (S � 100) (material properties: MM5; non-dimensional
parameter: ND1)

plate is considered in this example. The material properties of the substrate layers
and the PVDF layers correspond to MM7. The in-plane dimensions of the plate are
0.18m, and the thickness of each orthotropic layer in the substrate and the PVDF layers
are 0.002 m and 0.0001 m, respectively. The external mechanical load is assumed to
be uniform in the spatial domain and in the time domain, it is assumed to be q sin
(2π f t), where the magnitude, q � 1000 N/m2, and frequency, f � 10 Hz. Figure 11a
illustrates the uncontrolled and controlled responses of the plate without considering
the effects of the foundation, and Fig. 11b shows the uncontrolled and controlled
response of the plate supported on an elastic foundation (K1 � 100, K2 � 10). The
uncontrolled responses in the plot are without the negative feedback controller, while
the controlled responses are obtained by activating the negative feedback controller
via amplifying the voltage generated from the sensors with suitable gain and then fed
back to the actuator. The amplitude of the vibration response is observed to decrease,
i.e., the vibration of the plate is controlled when the negative feedback controller
is activated. In Fig. 11b, it is observed that the reduction in the amplitude of the
vibration response is higher compared to the response in Fig. 11a due to the stiffness
of the foundation. Next, the smart laminated plate is subjected to a static mechanical
load of uniform variation and magnitude, q � 1000 N/m2. The plate is first subjected
to a static load and then removed by setting the plate into free vibration. The negative
feedback controller is then activated once the plate enters into vibration. The material
properties used in this problem are obtained from Wang et al. [88]. The effectiveness
of the control strategy can be properly visualized when the structural damping is also
included in the formulation. The structural damping matrix is introduced with the
Rayleigh damping matrix, in which the proportionality constants, α and β are adopted
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Fig. 10 a 3D graphical
representation of forced
vibration of a smart composite
plate (PFRC/00/900/00) without
considering foundation stiffness
for various magnitudes of pulse
electrical excitation (S � 100);
b 3D graphical representation of
forced vibration of a smart
composite plate
(PFRC/00/900/00) by
considering Winkler foundation
stiffness for various magnitudes
of pulse electrical excitation;
c 3D graphical representation of
forced vibration of a smart
composite plate
(PFRC/00/900/00) by
considering both Winkler and
shear foundation stiffness for
various magnitudes of pulse
electrical excitation

to be 0.965 × 103 rad s−1 and 10–6 s [88]. The value of the charge amplifier gain
is considered to be 1.6 × 105 � [88]. The uncontrolled and controlled responses of
the plate are plotted in Fig. 12a and b without considering the foundations, and by
including the Winkler and shear stiffness of the foundation, respectively. The output
voltage from the sensor is amplified with suitable gains, Gi � 50, 100, 150, and 200,
and then fed back to the actuator to obtain the equivalent negative velocity feedback.
In the previous example, we witnessed that there was no decay in the amplitude of
the uncontrolled vibration response with time; however, in this example, we observe
the amplitude of the uncontrolled vibration response to be decaying with time due to
the structural damping. Also, the overall damping of the system gets more effective
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Fig. 11 a Uncontrolled and
controlled vibration response of
smart composite plate subjected
to harmonic excitation without
considering the foundation
stiffness; b Uncontrolled and
controlled vibration response of
smart composite plate subjected
to harmonic excitation by
considering the foundation
stiffness (K1 � 100, K2 � 10)

when the negative feedback controller is activated as the amplitude of the controlled
vibration responses are observed to decay faster with the increase in the magnitude
of the feedback gains. In Fig. 12b, we observe that the amplitude of the vibration
responses is significantly reduced due to the stiffness of the foundation (K1 � 100,
K2 � 10). The frequency of the vibration response is observed to increase due to the
foundation stiffness. In this example, the plate vibrates at its natural frequency as the
load is removed after setting the plate into vibration. The natural frequency of the plate
gets altered due to the presence of the foundations, and as a result, a change in the
frequency of the vibration can also be observed in Fig. 12b. The same smart plate is
now subjected to constant-pulse load acting up to 0.0015 s, and then removed from the
plate. The displacement–time responses of the plate are plotted in Fig. 13a and b. It is
observed that the amplitude of the vibration responses is observed to decay faster with
the increase in the control gains. The foundation stiffness reduces the amplitude of the
displacement–time response while the frequency of the vibration gets increased.
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Fig. 12 a Uncontrolled and
controlled free-vibration
responses of a smart composite
plate with various gains and
neglecting the foundation
stiffness; b Uncontrolled and
controlled free-vibration
responses of a smart composite
plate with various gains and
considering the Winkler (K1)
and shear foundation stiffness
(K2)

4 Conclusions

This work studies the static and vibration responses of smart composite plates with
piezoelectric actuators and sensors resting on elastic foundation. An inter-laminar
transverse shear stress continuous plate model, which consists of an equivalent-single-
layer (ESL) field in conjunction with a linear zigzag field, is adopted to model the
deformation behavior of the plates. A non-polynomial higher-order plate theory with
zigzag kinematics involving a trigonometric function and a local segmented zigzag
function is adopted for the first time to model the deformation of a smart piezoelec-
tric laminated composite plate supported on elastic foundation. This model has only
five independent primary variables like that of the first-order shear deformation the-
ory, yet it considers the realistic parabolic behavior of the transverse shear stresses
across the thickness of the laminated composites plates, and also maintains the conti-
nuity conditions of transverse shear stresses at the interfaces of the laminated plates.
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Fig. 13 a Uncontrolled and
controlled vibration responses of
the smart composite plate
subjected to constant-pulse
mechanical load acting for
0.0015 s with various gains and
neglecting the foundation
stiffness; b Uncontrolled and
controlled vibration responses of
the smart composite plate
subjected to constant-pulse
mechanical load acting for
0.0015 s with various gains and
considering the Winkler and
shear foundation stiffness

For modeling the soil deformation, the two-parameter foundation model of Paster-
nak is considered to establish the continuity among the springs, which is neglected in
Winkler’s model. New analytical and FE models are derived to solve the governing
equations of the problem. A closed-form analytical solution is assumed in the frame-
work of Navier’s method for the diaphragm-supported boundary conditions, and a
generalized C0-continuous FE formulation is presented for the general boundary and
loading conditions of the problem. Several examples are solved by considering various
parameters like the span–thickness ratios, material properties, boundary conditions,
foundation stiffness, feedback gains, and various forms of time-dependent electrome-
chanical loads.

The present results are observed to be in very good agreement with the standard
solutions available in the literature. The magnitude of the in-plane and transverse dis-
placements and stresses decreases with the increase in the foundation stiffness (K1,
K2). The fundamental frequencies of the plate increasewith the increase in the stiffness
of the foundations (K1, K2). The amplitude and frequency of the vibration responses in
the transient analysis are observed to decrease and increase, respectively. Pasternak’s
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foundation model has more influence on the system responses than Winkler’s founda-
tion model. The negative feedback controller creates an energy dissipation mechanism
that is responsible for the control of the mechanical vibrations. Also, the vibration sup-
pression of the displacement–time responses of the system becomes quicker with the
increase in the control gain. The effectiveness of the controller increases with the
inclusion of the structural damping matrix. The foundation stiffness, together with the
feedback control system, results in a more controlled vibrational response of the smart
plate. The piezoelectric layer has a higher controlling capacity for the case of plates
with a lower span–thickness ratio. Also, significant actuation of the displacement and
stresses are observed at various points along the thickness (z) and planform (l, b) of
the plate due to the application of the electrical loadings.

Based on the presented results, it can be concluded that the proposed analytical
solution and FE formulation can be efficiently used to model the static and dynamic
electro-elastic behavior of smart laminated plates supported on elastic foundations.
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Appendix B

The components of matrix ‘[B]’ are written as
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The individual entries in the above matrix are written as
B1,1i � B3,2i � B7,4i � B10,5i � B12,3i � ∂Ni

∂x ; B2,2i � B3,1i � B8,5i �
B9,4i � B11,3i � ∂Ni

∂y ;

B4,6i � B6,7i � − ∂Ni
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∂y ; B4,4i � �x
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∂y ;
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∂y ;
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