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Abstract

This paper proposes an efficient hybrid numerical method to obtain approximate solu-
tions of nonlinear advection—diffusion-reaction (ADR) equations arising in real-world
phenomena. The proposed method is based on finite differences for the approximation
of time derivatives while a combination of cubic B-splines and a fourth-order compact
finite difference scheme is used for spatial discretization with the help of the Crank—
Nicolson method. Since desired accuracy and order of convergence cannot be reached
using the traditional cubic B-spline method, to overcome this, the second-order deriva-
tives are approximated using the unknowns and their first derivative approximations
with the compact support. Thus, instead of expressing the second-order derivative
in second-order accuracy, it is represented by the convergence of order four in the
present method. The computed results revealed that this combined approach improves
the accuracy of solutions of nonlinear ADR equations in comparison to up-to-date
literature even using relatively larger step sizes. Besides, this method is seen to be
capable of capturing the behavior of the models with very small viscosity values. The
stability of the proposed method has been discussed by considering the matrix stability
approach and it has been shown that the method is stable. In addition to the fact that
the proposed method obtains sufficiently accurate solutions, another main superiority
is its simplicity and applicability, which requires minimum computational effort.
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1 Introduction

Nonlinear advection—diffusion—reaction (ADR) equations play an important role in
representing various physical or biological phenomena arising in engineering and
science. Therefore, researchers focus their attention on capturing the behaviors of
these problems which is a challenging issue. Since obtaining an analytical solution for
such problems is not easy due to the complexity of the transport process, researchers
have attempted to investigate the behaviors of these problems by developing various
numerical techniques. In this paper, a new hybrid numerical method has been proposed
for the following ADR equation:

ur +oautu, —vuy, =F), a<x<b, t>0, (1)
subject to the initial condition
ux,0)=gkx), a<x<b, 2)
and the boundary conditions

u(a, 1) = gi(), 3)
ub, 1) =g(r), 0=<r=T, “

where v, «, and F (u) are the eddy viscosity, the velocity component of the fluid, and
source/sink in terms of u, respectively. The terms g(x), g1(¢), and g>(¢) are known
functions and the subscripts x and ¢ represent differentiations with respect to space and
time, respectively. The advection term u, depicts the transportation of the quantity u
by the velocity field. The diffusion term u ., describes the dissemination of the quantity
u.

In the literature, various numerical techniques based on finite difference methods [1,
2], Galerkin methods [3, 4], spectral collocation methods [5], and decomposition meth-
ods [6, 7] have been developed for numerical simulation of nonlinear ADR equations
up to now. In addition, the aim of accurately capturing the behavior of these prob-
lems encountered in various fields of science and engineering has always prompted
researchers to develop new various techniques such as a lattice Boltzmann method [8],
high-order splitting methods [9], a finite volume and Fourier pseudospectral method
[10], 2N order compact finite difference method [11], a meshless semi-analytical col-
location technique [12], and a new heuristic method [13].

In the last decades, B-spline functions have attracted the attention of many
researchers to find out effective numerical solutions to linear and nonlinear partial
differential equations. The cubic B-spline collocation methods which use B-splines
as basis functions are well-known efficient approximation methods. These methods
with some special properties such as smoothness, local support of spline curve, good
approximation rate, computationally fast, and numerical consistency are convenient
to apply to differential equations. These methods are also able to approximate ana-
lytical solutions up to a certain smoothness [14]. Therefore, spline methods provide
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the flexibility to get the approximation at any point in the domain with more accu-
rate results compared to some other standard methods. The earliest studies about the
theory of standard cubic B-spline methods, their properties, and some applications to
ordinary and partial differential equations can be found in the books of Prenter [15]
and Rubin [16]. More recently, various efficient methods based on various versions
of B-splines and combined with other numerical techniques have been developed to
capture the behavior of ADR equations accurately. For instance, hybrid B-spline col-
location methods based on possessing a free parameter were proposed for various
forms of ADR equations by Wasim et al. [14] and for a generalized nonlinear Klien—
Gordon equation by Mat Zin [17]. Although those remarkable methods represented
the behavior of the problems successfully, the lack of a technique for predicting an
optimal parameter can be a drawback for those methods. In the study of Mittal and
Jain [18], the cubic B-spline functions have needed to be modified into a set of basis
functions for handling their problems. In addition to those studies, various kinds of
B-spline collocation methods were also applied to deal with several nonlinear ADR
equations [19-26]. Despite many advantages of the cubic B-spline collocation meth-
ods, the desired accuracy and order of convergence cannot be achieved compared to
some competitors in solving differential equations. To overcome this, they are com-
bined with other robust techniques in the literature such as compact finite difference
methods which become one of the most popular techniques for solving partial differ-
ential equations arising in many applications. Compact finite difference methods have
higher accuracy even when using larger mesh sizes. Thus, the system of equations has
a small bandwidth coefficient matrix that can be solved efficiently. Besides, high-order
compact finite difference methods consider not only the value of the function but also
those of its first derivatives as unknowns at each discretization point [27]. Although
the solutions of the ADR equations can be obtained through some effective numerical
techniques, in terms of the aforementioned reasons, the need of obtaining flexible and
computationally efficient solutions of the problems where it is difficult to control pre-
cision and stability motivated us to propose a new hybrid method based on combining
with the standard cubic B-spline and a fourth-order compact finite difference method.

In this paper, a new numerical scheme by combining the standard cubic B-spline
and a fourth-order compact finite difference scheme is proposed to capture the behav-
ior of the Burgers, Burgers—Fisher, Burgers—Huxley, and Fisher’s equations. Firstly,
these equations have been discretized by the Crank—Nicolson and the forward finite
difference methods for spatial and temporal domains, respectively, and then, the com-
bined method has been applied for spatial derivatives. In this technique, spatial second
derivative approximations are approached by the fourth-order compact finite difference
scheme in which second derivative approximations of the unknowns are eliminated
with the unknowns themselves and their first derivative approximations while retain-
ing the fourth-order accuracy. Hence, the second-order derivative is represented by
the convergence of order four by this approach, while it has second-order accuracy
in the standard cubic B-spline method. Thus, with the aforementioned advantages of
the cubic B-spline and fourth-order compact finite difference methods, the combina-
tion of these methods aims to pull up the capacity of the algorithm to achieve higher
accuracy with minimal computational effort. The computed results for each equation
have been evaluated in terms of accuracy, flexibility, and computational efficiency
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depending on the dynamics of the problems with their different set of parameters by
comparing them with up-to-date techniques in the literature. The calculations for the
strong form of the Burgers equations revealed that the proposed method is in very
good agreement with the exact solution and that the proposed method is superior to
the cubic B-spline collocation method presented in the study of Dag et al. [28] and
other compared techniques in the literature even when using fewer spatial and tempo-
ral elements. Moreover, the current scheme can capture the behavior of the model with
very small viscosity efficiently and accurately. For the Burgers-Fisher and Burgers-
Huxley equations, considerable improvement has been reached even if sometimes it
is at a moderate level even using fewer spatial or temporal elements which reduces the
computational complexity, CPU time, and memory space. Finally, implementing the
proposed method to the Fisher’s equation has demonstrated that the current scheme
produces more accurate solutions than the standard cubic B-spline method [29] and the
wavelet-Galerkin approach [30]. Besides, the current scheme solutions for the Fisher’s
equation have been found to be in reasonable agreement with other compared methods
and is successful to represent the behavior of the problem having small viscosity. In
addition, the proposed method provides much flexibility to implement complicated
problems by importing second derivative terms with a high-order compact finite dif-
ference formula. The stability analysis of the method has been discussed by the matrix
stability analysis and concluded that the present method is stable. Furthermore, the
current scheme is quite easy to produce computer codes in any programming language
and has not been implemented in any other study including ADR equations so far.

2 The proposed method

In this section, a new combining method based on the cubic B-spline and fourth-order
compact finite difference methods will be constructed for the nonlinear ADR equa-
tions. Cubic B-splines are chosen as the basis function in the collocation methods
due to the higher smoothness and sparse nature of matrices corresponding to splines.
These methods which have some special properties such as smoothness, good approx-
imation rate, computationally fast, numerically consistent, and ability to produce the
shape of the data with the second order of continuity produce efficient algorithms
for obtaining solutions of partial differential equations. Another important advantage
of this method is that it is able to approximate the analytical curve up to a certain
smoothness, providing the flexibility to obtain an approximation at any point in the
domain [14]. In addition, the fourth-order compact finite difference method used in
the proposed scheme is preferred in terms of solving various differential equations
with providing low computational effort by using a small number of grid points.

Now, to construct the new combined method, let us introduce the cubic B-spline and
the fourth-order compact finite difference method and derive the second-order deriva-
tive approximation which includes the unknowns themselves and their first derivatives
only.

Firstly, a uniform partition of the domain [a, b] x [0, T'] is considered by the knots
xi,i=0,1,2...,Nandt",n =0,1,2,..., M suchthat x;, = a +ih and t" = ndt,
h = b% and dr = % The numerical solutions of the nonlinear ADR problem (1)—(4)
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are approximated by the cubic B-spline interpolation as follows:

N+1

(e, )~ Vy(x, 1) = Y 8(0)Bi(x), (5)

i=—1

where §; is time-dependent parameter and B; represents the well-known cubic B-spline
functions given the following relationship [15]:

(x —xi2)*, [xi—2. xi-1].
1 B3+ 3h% (x — xi—1) +3h (x —xi—1)* =3 (x —xi—), [xic1, x],
Bi(x) = sl B3 4 3h% (xi1 — x) + 3h (i1 — 02 =3 (g1 — 1), [xi, x4,
(xip2 — x)°, [Xit1, xig2]
0, otherwise,
where h = xj11 — x;j,i = —1,..., N 4+ 1. The variation of Vy(x,t) over typical

element [x;, x; 4] is expressed by

i+2
VN )= > 8;()B;j(x). (6)

j=i—1
By using the interpolating conditions, the values at the knots of V (x, ¢) and its two

derivatives V'(x, t) and V" (x, ) at the knots are stated in terms of time-dependent
parameters §; as follows:

Vi=V(x) =08i—1+46; + i1,
! 7 3
Vi=Vixi) = Gix1 —di-1), )

6
V= V) = 23 it = 28 + 8i41)

The space and time derivatives in Eq. (1) are discretized by using the Crank—
Nicolson and the finite difference schemes:

vty (yryytt vyt ver e ve s PN (V) + F(Y)
+ o > —v > = > .
dr

®)
The nonlinear terms in Eq. (8) can be linearized by using the following formula [16]
VIV = (Vi) vt g gvrhyry gt vy,
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Hence, Eq. (8) transforms to the following form:

vl —yn i (VAR VI  p(Vimn vyt — (VR TVE 4 (VEV)"
dr 2

vt Vi _ PO+ P
2 B 2 '

C))

Now, to construct the new proposed scheme, let us introduce the fourth-order com-
pact finite difference approximation for the first and second derivatives, respectively,
as follows:

1, o1, 17 3 3

ZVi—l'i_Vi +ZVH_1 =E 7 i_1+ZVi+l ) (10)
1 1 176 12 6

VL VIV = | Vi = Vit Vi |, A
10 it it T 2 | 5 5 50

where V/ and V/” are the first- and second-order derivative approximations of unknown
V at point x;, respectively. In Eq. (10), the second-order derivative terms can be
obtained by applying the first operator again:

1 1 1 3 3
Vi Vi Vi =4 |:_ZVi/—l + Z"/ﬂ] : (12)

T . " 4
Eliminating V;” ; and V" |

as the following form [27]:

from Eqs. (11) and (12), the second derivative is obtained

v/ = 2Vi+l —2Vi+ Vi . Vi/+l - Vi/—l
! h? 2h ’

13)

Thus, the second derivative that is constructed by unknowns themselves and their first
derivatives only has been represented by the convergence of the fourth order by this
formula in the proposed method. Thus, in the solution of Eq. (9) while Eq. (7) is used
for approximating unknown V and its first and second derivatives for boundary points,
Eq. (13) will be used instead of the second derivative given in Eq. (7) for interior points.

3 Implementation of the method

In this section, the proposed method will be implemented for the Burgers, Burgers—
Fisher, Burgers—Huxley, and Fisher’s equations.

3.1 Algorithm for the Burgers equation

Equation (1) is called the well-known Burgers equation when F'(#) = O0ando = pu =
1. Considering Eq. (9) that is the discretization form of Eq. (1) for the Burgers equation
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and rearranging the terms and simplifying them, it is expressed as the following form:

dr

dr dr dr
1488 {1 + ?vg} + Ev"v;”1 - viv;;jl =V"+v

Substituting Eq. (7) into Eq. (14) for the boundary points, i = 0, N, it is obtained

o8 + 8! a3t = s+ asd! + aedl (15)
where
dt 3dr dt
o] = 1 + EV; — EV” —3Uﬁ,
dt dt 3dr dt
a2=4+2dtVf+6vﬁ, Ol3=1+? ;’—l—EV"—&)h—z,
dt dt dt
a4:1+3vﬁ, a5:4—6vﬁ, a6:1+3vh—2. (16)

Substituting the approximate value V and its first derivative V' in Eq. (7) and second-
order derivative V” in Eq. (13) into Eq. (14) for interior points,i = 1,..., N — 1, it
is obtained

Bio! ) + B8 + B8 + BasH + s = Bedl, + B8

+Bsd; + Bodi'y 1 + P08l 5. )
where
t dt 3dt dt 9 dr
ﬁ]:—vm, ,32=1+?Vx"—EV”—2Uﬁ, ,33=4+2dtV;'+§vﬁ,
8 1+dtV”+3dtV” 2dt 5 b, B 5. p 142 dr
= 5 SV TV = P, = —h1, = Vo5,
4 5 'x o 2 Ps 1 6 1 7 2
9 dr
,3824—51)}?7 Bo = Bz, Bio = —Pi. (18)

3.2 Algorithm for the Burgers-Fisher equation

Equation (1) is called the Burgers—Fisher equation when F(u) = Su(l — u**) and
v = 1. These terms are evaluated in Eq. (9) and rearranging the other terms by using
linearization and simplifications, it is obtained

dt dr dr dr dt
v {1 Fas (VI = B o (L ) (V")"} oo (VI = S
dr dr dr dt
. {1 B =BT 0 —w (V“)"} o (w—1) (VITyE 4 EVX"X. (19)
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Considering Eq. (7) into Eq. (19), Eq. (15) is obtained for the boundary points, i =
0, N, and its coefficients are given as follows:

de -1 dr dr “ 3dr , dt
011=1+0l?ML1 L2—,3—+,3—(1+M)L1 —aﬁLl _3ﬁ’
dr
@ =4+ 2adipll” 1L2—2,8dt+2,3dt(1+M)L“+6h2,
dt _ dt dt 3dt dt
_ pu—1 M Iz
053—1—1—0{?,11,L Lz—,B——i—,B—(l—i—,u)L +O[EL 3ﬁ,
dr 3d dr
4—1+ﬁ——ﬂ—(1—M)L“—a—( —1)L“+3h2,
dz
a5:4+2,Bdt—2,3dt(1—M)L‘f—6ﬁ,

dr dr “ 3ds i dr
Olﬁ:l-'-ﬂ?—ﬂ?(l —,LL)LI +(XE(/L—1)L1 +3—

- (20)

Evaluating Eq. (7) for approximate value V and its first derivative V' and Eq. (13)
for second derivative V" into Eq. (19), Eq. (17) is obtained for interior points, i =

I,..., N — 1, and its coefficients are given by
dr dr 1 dr 3dr 2dt
=——, fo=l+a—null 'L, —1 LY —a—L{—=—-,
Pr=—rs Pr=lteull " La—po + p (I + LY —a™ LY ="
_ 9 dt
By =4+ 2adipll 1L2—2ﬂdt+2ﬁdt(1+M)L”—§h—2,
dr . L 3dr o, _dt
,34—1+Ol?/,LL Lz—ﬂ +ﬁ—(1+M)L +(¥2h L _Zﬁ’
Bs =PB1, Bo=—Pi,
Br—d+28di—28dr(1l — Lt — 2%
7 = 2 2h2’
de P 3d u L dt
,38—1+f5——ﬂ—(1— w)Ly —Ol—(u—l)L +2h2,
3
ﬁ9=1+ﬁ7—ﬁ7(1—M)L’f+aE(u l)L”+2h2, Bio=—B1- (2D

3.3 Algorithm for the Burgers-Huxley equation

Equation (1) is called the Burgers—Huxley equation when F (1) = Bu(l — u*)(u"* —
y) and v = 1. Considering these terms into Eq. (9) and after the linearization and
simplifications, Eq. (9) transforms to the following form:

dr dt dr dr
vl {1 + a;u(v“”)" Vi= B (ut DV + B + ﬁ3(2u+1><v2“>"
dr
_V;lx+1

dt dt
—By 5 (n+ 1><V“)”} +oag (Vv — S

@ Springer



An efficient hybrid method based on cubic B-spline Page90of42 13

d d d
_— {1 + ﬁ{(l (VY - Vﬂé - ﬂ;’(l (v
d d d
+hy 51 - m(v“)”} + S = S A=Yy, 22)

Evaluating Eq. (7) for approximate value V and its first derivative V' and Eq. (13)
for second derivative V" into Eq. (22), Eq. (15) is obtained for the boundary points,
i =0, N, and its coefficients are obtained in the following form:

dt u—1 dt m dt dt 2u
a1=1+0l?[,LLl Lz—ﬂ?(ﬂ+l)L1 +,3)/E+,3?(2M+1)L1

—ﬁy%(u + DL} — a%L’f — 3%,
ar =4+ 20 dtp Lt Ly —28de(u+ LY +2yBdr +28dr(2u + 1L
—2By dt(u+ LY +6%,
de 1 dt P dt dt 2u
o3 = 1tas uli™ Ly = p=(u+ VLY + fy = + B Qu+ DL
de P 3dr , dt
—,BJ/E(M + 1L —kozEL1 — Sﬁ’

dr i dr e 2 dr "

=1+ (1 = wLY —yp— — (1= 2L + py (1 = WL

n 3dt(1 )L“+3dt

w2 a
o T

as =4+28di(1 —w) Ll —2ypdr —28de(1 — 2u) L3

dr
+2By di(1 — w LY —6—

h2’
dr dr dr dr
a=1+p(— LY = py— —p—(1 - 2u) L + By (= wLf
3dt(1 VLY + 3dt (23)
—o— (1 - —.
o R T

For the interior points, the coefficients of Eq. (17) for the Burgers—Huxley equation
are given by

g = dr
R
adt g dr i dr dr o
Bo=1+—nLy Lr—B-(n+ DLy +By— +B52u+1DL
2 ! 2 ! 2 2 !
dr M 3dr ,, ,dt
By =4+ 2adipl! "Ly —2Bde(u+ DL +2yBdt +2BdrQu+ DL
w o 9dt
—2yBdt(u+ DL +W,
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de 1 dr “ dr dr 2
ﬁ4=1+a7uL1 Lz—ﬂ—(M+1)L1 +ﬁy?+ﬁ3(2u+l)Ll
dt 3dt dr
—By — DLy +a——L} —2—
Bs = Bi1, /36 = —B1,
" dt 2 Iz
ﬂ7—1+ﬂ—(1—u)L —Vﬂ——ﬂ—(l—ZM)L +7//3—(1—M)L
3 ﬂ d

By =4+ 2/3 dt(l - M)L’f —2yBdr —2Bde(1 — 2p) L3

P2y - i - 25

Bo = 1+ﬁ—(1 — Lk - yﬂ—t —ﬁ—(l — oL +Vﬂ—(1 LY
—ag(l— )L“+22

Bio = —pBi. (24)

3.4 Algorithm for the Fisher’s equation

Equation (1) is called the Fisher’s equation when o« = 0 and F(u) = u (8 — yu).
Evaluating Eq. (9) with these terms, it is obtained

dr dr dr dr
vt {1 -B3 ydtV"} —v—yrl =y {1 +ﬂ3} + vgv;;. (25)

2
Substituting Eq. (7) for approximate value V and its first derivative V' and Eq. (13)

for second derivative V" into Eq. (25), Eq. (15) is obtained for the boundary points,
i =0, N, and its coefficients are as follows:

dt dt dr
alzl—ﬂ5+ydtL1—3vﬁ, a2=4—2/3dl+4ydtL1+6vh—2,
1Y — Y 1+f5 Y
az=1—B— —3v—, = vV—,
3 5 14 1 % oy = h2
dr
(x5=4+2/3dt—6vﬁ, 046—1+/3 +3’vh2
For interior points, i = 1,..., N — 1, Eq. (17) is obtained and its coefficients are
given by
_ P R A 4—2Bdt+4ydiLy + 0o
pr=-vres. A=l-fotydili—2v5s. f= B ydiLy+v—s.

det
Bs=p1,  Be=—Pi, ﬂ7—1+ﬂ +2vh2
dr

h?’

dr
ﬁs
/39—1+/3 +2U

dt
ﬁ4=1—,33+7/dtL1—2v

Bs =4+2pdt —v Biro = —pBi1.

odr
2h2’
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Here, Ly = 8], + 48" + 6,1, Lo = 5 (8%, — o1,).

i+1°
Note that Eqgs. (15) and (17) generate a system of (N + 1) equations in (N +
3) unknowns d" = {8",,83.87.,...,8%.8%_,} for the Burgers, Burgers—Fisher,

Burgers—Huxley, and Fisher’s equations as follows:

a8 £ st o a3di = oy + sl + e, i =0,
B8 + Basi ! + B8 + Basih! + pssit]
= Be6d;_o + B187_1 + B} + Pod; | + P08, i=1,...,N —1,

o185+ o8t + azdit = audh | +ossly +aedy,. i=N. (26)

System (26) can be converted into the following matrix form:

Ad"t! = Bd", 27
where _ _
o] Ay o3
B1 B2 B3 Ba Bs
B1 B2 B3 Ba Bs
A=A = e :
B1 B2 B3 Ba Bs
L oy ay o3 |
(s a5 a6 T
Be B7 Bs By Bio
Be B71 Bs Bo Bio
B = Bij = S o and

Bs B1 Bs By Bio

a4 o5 o |

d" = (5_1,80,81,....8n, 8n+1)T .

To obtain a consistent system, the 6" | and 8}, | are eliminated using the boundary
conditions:

Uxo) = 8" 4+ dspt 4817 = g1 (") = 8711 = g1 (") — asp - 51t
Uxy) =83 + 48yt + ol = g™ = St = go ("t —4spt! — syt
(28)

Substituting equalities (28) into the combined system (26), it is obtained (N + 1) x
(N + 1) matrix system as follows:

Ad"t! = Bd" + b, (29)
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where _ _
K1 K2
K3 K4 K5 K¢
—ni n2 N3 n4 =N
- ~ =Nt N2 N3 n4 —Nni
A=A = N M N3 N4 —n )
-1 N1 ®] @2
L @3 w4 |
- _
& & &4 &5
n ¥ Y2 Y om
- n ¥ Y2 om
B =58 = n v Y2 vnom )
m ¥ & &
L &1
and

b:bj=(b1,b2,0,...,0,b3,b4).

Here, the entries of A;j, B;j, and b; are determined according to the type of the
equation. The obtained system can be solved by using the Thomas algorithm. To
evaluate variables 8;”'1 for a particular time level, the initial vector dY is obtained
from the initial condition (2).

4 Stability of the proposed method

Stability plays a very important role in the theory of numerical methods. Up to now,
various techniques have been proposed to analyze the stability of numerical methods
to be confident of the calculated predictions. Among them, von Neumann stability
analysis which is based on the Fourier series analysis is the most common technique
used to determine stability. Although this technique can be employed directly on linear
problems with constant coefficients, it is not valid to estimate the stability of linear
problems with variable coefficients and nonlinear problems. However, researchers
have developed many ways to apply the von Neumann technique to these challenging
problems with some constraints that change according to the specific nature of the
problem to be confident in their predictions. While some authors linearize the nonlinear
terms of the problem [14, 17, 24, 31-37] or freeze the coefficient [21, 26, 38-40] by
applying the von Neumann techniques, some other authors adopted matrix stability
[20, 22, 41-45] and other techniques [46, 47] by keeping the originality of their
problems with some defects.
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Though nonlinear advection—diffusion—reaction equations that are considered in
this study are quite common, the von Neumann stability analysis does not directly
apply to such nonlinear equations in the standard sense since the stability conditions
are complicated and varying. Therefore, in this study, the matrix stability analysis
which preserves the nonlinearity of the problem has been performed to analyze the
stability of the proposed scheme.

Now, the stability of the present scheme for the numerical integration performed
by the Crank—Nicolson method will be discussed using the matrix stability technique
by computing the eigenvalues of the coefficient matrix. The proposed scheme for Eq.
(1) can be rewritten in compact form as in Eq. (29):

Ad"t! = Bd" + b, (30)

where A and B are the real matrices and b is the column vector. Now, let us introduce
the numerical error vector € as

n__ n _ . n
€ = Uexqcr uapp’ (31)

where Uexqer and u,p, are exact and approximate solutions, respectively. Hence, Eq.
(30) is rewritten as [48]

A"l = Bem. (32)
Equation (32) can be written, by assuming that A is nonsingular, as follows:
8n+1 — A~_1é8n — Ei‘l+1 — an’ (33)
where C = A~!B. Here, the stability of the scheme depends on estimate of the
coefficient matrix C. For a stable method, matrix C should satisfy the Lax—Richtmyer
criterion [49]
el = 1. (34)
In addition, the following inequality
p(C) = IC]| (35
is always satisfied for any matrix. Here, p(C) is the largest eigenvalue of matrix
C. Thus, the condition for the stability of system (30) is obtained by considering
inequalities (34) and (35) as follows:
p(C) < 1. (36)
As can be realized from the previous section and Eq. (29), the entries of matrix C

vary depending on some factors such as «, 8, u, v, spatial and temporal steps sizes,
h and dt, and time-dependent parameter 8;'. As far as is known, there is no certain
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technique to establish a relationship between these factors in the solution of these
problems. However, during the calculations, it is observed that the entries of matrix
C do not vary rapidly and do not change much with varying these factors. Thus, since
the properties of the matrix do not change with different spatial and temporal points,
to prove the stability of the proposed scheme, the entries of matrix C can be fixed
at certain spatial and temporal points, generally, in maximum values, as a technique
commonly used. Thus, for the stability of the proposed scheme given in Eq. (29),
|p(C)| < 1 should be fulfilled for all i as ¢t — oo [48]. The computed eigenvalues
have been presented in Fig. 1 for all examples in Sect. 5. Since Fig. 1 indicates that
max|p(C)| < 1forall examples, the proposed scheme satisfies the criteria of stability.

5 Numerical results and analysis

In this section, the proposed method is applied to the Burgers, Burgers—Fisher,
Burgers—Huxley, and Fisher’s equations, respectively. The accuracy of the method
for these equations is measured by using the absolute error given in the following
formula:

Absolute error = | Vexact (xi, ") — Vapp(xi, 1), (37)

where Vexact and Vapp are the exact and approximate solutions, respectively. The numer-
ical order of convergence (OC) is obtained by using the following formula:

_ Log(Loo(N)/Loc2N))
- Log(2N/N)

ocC ; (38)

where Loo = max;|Vexact(Xi, t") — Vapp(xi, )| and N is number of partition of
problem domain. The theoretical convergence analysis of nonlinear ADR equations,
which are solved by B-spline methods, can be found in the works [31-35] and therein
references.

Numerical results obtained by the proposed method have been compared with the
exact solution and available literature solutions. The numerical computations have
been performed using the software MATLAB 2021. CPU times are measured by the
tic-toc” Matlab function.

Example 1[28]

Consider the nonlinear Burgers equation by taking « = = 1 and F(x) = 0 in Eq.
(1) over the domain [0, 1] with the initial condition

u(x,0) =sin(mx), 0<x <1, (39)
and Dirichlet boundary conditions

u(,t) =u(l,t) =0, t>0. (40)
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Fig. 1 Eigenvalues of matrix C for Examples 1-5
The exact solution is
[ee] 2.2 .
> . apexp(—n-mwvt)nsin(nmwx)
u(x,t) =2mv 41

with the following Fourier coefficients:

ap + > _ney anexp(—n>mw2vt)cos(nmwx)

1
ao:/ exp{—(va)_l[l—cos(nx)]}dx,
0
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Table 1 Comparison of the proposed method solutions with the exact and cubic B-spline solutions [28] for
various mesh sizes and v = 1 at r = 0.1 in Example 1

X Exact Dagetal. [28]  Present Present Present Present

N =160 N =40 N =280 N =40 N =80

dr = 0.00001 dr =0.00001 dr =0.00001 dr =0.0001 dr=0.0001
0.1  0.10953815  0.10953 0.10953815 0.10953815 0.10953814 0.10953814
0.2 0.20979215  0.20977 0.20979215 0.20979215 0.20979213 0.20979213
0.3 0.29189635  0.29186 0.29189635 0.29189635 0.29189632 0.29189632
0.4 0.34792391  0.34788 0.34792390 0.34792391 0.34792387 0.34792388
0.5 0.37157748  0.37153 0.37157745 0.37157747 0.37157742 0.37157744
0.6  0.35904558  0.35900 0.35904554 0.35904558 0.35904551 0.35904555
0.7 0.30990500  0.30986 0.30990495 0.30990500 0.30990493 0.30990497
0.8 0.22781741  0.22778 0.22781736 0.22781740 0.22781734 0.22781739
0.9  0.12068669  0.12067 0.12068666 0.12068669 0.12068665 0.12068668

1
a, = 2/ exp {— (27tv)*1 [1-— cos(nx)]} cos(nrx)dx, n=1,2,3,...
0

In order to compute the exact solutions given by Eq. (41), the infinite series solutions
have been truncated after 500 terms for all calculations. The numerical solutions of
Example 1 obtained by the proposed method have been compared with the exact
solution, cubic B-spline collocation method [28], and other up-to-date techniques [41,
50-52] in Tables 1-4. Tables 1, 2, and 3 reveal that the proposed scheme converges
to the exact solution very fast and is more accurate than the standard cubic B-spline
method presented in the work of Dag et al. [28] even when using larger spatial and
temporal step sizes, and in this way, it reduces the computational time and complexity.
In Table 2, the comparisons of the proposed method solutions with the exact solution
and some recently developed techniques [41, 50] are given at different time levels
and spatial points for v = 0.1. It is observed from the table that the computed results
by the current scheme are in reasonable agreement with the solutions in the work
of Singh and Gupta [41] for N = 40 and dr = 0.004. Besides, when using smaller
time increments df = 0.001 in the proposed scheme, both methods produce the same
accurate solutions. In addition, the results of the current scheme are more accurate than
those obtained from the solutions presented in the work of Jiwari et al. [50]. Similarly,
Table 3 presents the comparisons of the current scheme with the exact solution and
the literature solutions [50, 51] at different time levels and spatial points for v = 0.01.
As seen from the table that the current scheme is far more accurate than the literature
[28, 51], and for five decimal places, it is compatible with Jiwari [50].

The exact and numerical behaviors of Example 1 for v = 0.1 and v = 0.01 are
illustrated in Fig. 2. It is seen from the figure, the solutions become smaller as time
increases due to the effect of the nonlinear term. The numerical behaviors of the
problem exhibited in Fig. 2 are very close to the exact solution and similar to those in
the compared studies [28, 41, 50].
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Table 2 Comparison of the proposed method solutions with the exact and available literature solutions at
different temporal and spatial points for v = 0.1 in Example 1

X t Exact Dag et al. [28] Jiwari etal. [SO] Singh and Gupta [41] Present Present
N =180 N =40 N =40 N =40
dr = 0.0001 dt = 0.001 dr = 0.004 dr = 0.004 dr = 0.001
0.25 04 0.30889423 0.30890 0.30888 0.308894 0.30889260 0.30889410
0.6 0.24073902 0.24075 0.24073 0.240739 0.24073813 0.24073893
0.8 0.19567557 0.19569 0.19567 0.195676 0.19567512 0.19567555
1.0 0.16256486 0.16258 0.16256 0.162565 0.16256470 0.16256488
3.0  0.02720231 0.02720 0.02719 0.027202 0.02720228 0.02720235
0.5 0.4 0.56963245 0.56965 0.56964 0.569632 0.56963156 0.56963243
0.6 0.44720552 0.44723 0.44721 0.447206 0.44720508 0.44720565
0.8 0.35923606 0.35925 0.35924 0.359236 0.35923605 0.35923633
1.0 0.29191596 0.29192 0.29192 0.291916 0.29191612 0.29191629
3.0 0.04020492 0.04019 0.04018 0.040205 0.04020485 0.04020497
0.75 0.4 0.62543790 0.62538 0.62554 0.625438 0.62544293 0.62543974
0.6  0.48721497 0.48715 0.48731 0.487216 0.48721716 0.48721652
0.8 0.37392175 0.37385 0.37399 0.373923 0.37392276 0.37392275
1.0 0.28747441 0.28741 0.28751 0.287475 0.28747461 0.28747500
3.0 0.02977213 0.02976 0.02975 0.029772 0.02977205 0.02977216
CPU-time(s) 0.044165 0.0948552

Table 4 lists comparisons of the solutions obtained by the proposed method and
some up-to-date good techniques [50-52] in the literature for smaller viscosity values
v = 0.003 and v = 0.004. Although many numerical methods in the literature fail for
these viscosity values, the presented method solutions are in good agreement with the
exact solution. Also, the present scheme revealed that one can find similar or sometimes
better results than the compared methods even using larger spatial or temporal step
sizes. The findings presented in all tables have clearly revealed that less computational
time and memory space could be accomplished when using larger spatial or temporal
sizes by the proposed method. Also, in addition to the commendable contribution of
the aforementioned references in the tables for improving the accuracy of the solutions
of Eq. (1), the proposed method provides flexibility in implementation by avoiding
some of the additional efforts of the compared methods such as reducing ordinary
differential equations, requiring to be modified into a set of basis functions [41] and
selecting an optimal parameter [50].

Due to the slow rate of convergence of series solutions, the analytical solutions of
the Burgers equations considered in this study which include small viscosity values
diverge. Therefore, computationally intensive numerical techniques are required to
obtain the solution of such problems. In the work of Jiwari [53], it is indicated that
many numerical schemes in the literature fail to capture the physical behavior of the
Burgers equation for very small viscosity values. Recently, Jiwari [53], Seydaoglu
[51], and Verma et al. [54] presented numerical techniques which produce accurate
solutions for small viscosity values. In this work, it has been seen that the proposed
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Table 3 Comparison of the proposed method solutions with the exact and available literature solutions at
different temporal and spatial points for v = 0.01 in Example 1

X t Exact Dagetal. [28] Seydaoglu [51]  Jiwari et al. [S0]  Present
N =80 N =80 N =40
dr = 0.0001 dr =0.01 dr = 0.001 dr = 0.001
0.25 0.4 0.34191493  0.34192 0.34187 0.34190 0.34191493
0.6 0.26896485 0.26897 0.26894 0.26896 0.26896484
0.8 0.22148191 0.22148 - 0.22148 0.22148191
1.0 0.18819396 0.18819 0.18818 0.18819 0.18819396
3.0 0.07511408 0.07511 0.07511 0.07510 0.07511408
0.5 04 0.66071097 0.66071 0.66065 0.66071 0.66071107
0.6 0.52941826 0.52942 0.52937 0.52942 0.52941830
0.8 0.43913825 0.43914 - 0.43914 0.43913826
1.0 0.37442003 0.37442 0.37439 0.37442 0.37442004
3.0 0.15017900 0.15018 0.15017 0.15014 0.15017899
0.75 04 091026454 0.91027 0.91032 0.91041 0.91026376
0.6 0.76724328 0.76725 0.76721 0.76729 0.76724302
0.8 0.64739523  0.64740 - 0.64741 0.64739529
1.0 0.55605070  0.55605 0.55601 0.55605 0.55605071
3.0 0.22481125 0.22483 0.22485 0.22481 0.22480818
CPU-time(s) 0.087824
1 o N 1
0.9 | —<— Exactsolution ‘Tf.:»f ™, 0.9 | —<— Exactsaluton
9] el 4 08l somon
0.7 w’f" |=0.2‘ 0.7 4
0.6 ,"; 4 t=0.4 06 J §
Zos s, Zos

0.2

0.4 0.6

X

0.8 1

0.6
X

0.8 1

Fig.2 Simulation of behaviors of the Burgers equation in Example 1 for different time points when v = 0.1
(left) and v = 0.01 (right)

method is successful to capture the behavior of the Burgers equation for v = 0.001
and even a very small value v 0.0005. Figures 3 and 4 illustrate the behavior
of the numerical solutions of Example 1 for small viscosity values v = 0.001 and
v = 0.0005 at different time points and these graphs are similar to studies [51, 53,
54]. As clearly seen from the figures, the approximate solutions have a steep descent
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Table 5 Order of convergence when ¢ = 3 for different values of N in Example 1
N v=0.1,dt =0.01 v =0.01, dr = 0.001

Loo ocC Loo Ratio

10 1.478459e—05 - 3.490820e—02 -
20 8.788543e—07 4.072326 2.007779e—03 4.119893
40 4.698686e—08 4.225295 9.485849e—05 4.403680
80 5.347528e—09 3.135313 6.150983e—06 3.946888

0.7 t=1.0

t=0

t=0.2
t=0.4
—t=06
t=0.8
t=1.0

0 0.2 0.4 0.6 0.8
%

0.2 0.4

X

0.6

0.8

Fig. 3 Simulation of behaviors of the Burgers equation in Example 1 for dz = 0.01, N = 400 (left) and
dr = 0.01, N = 800 (right) at different time # when v = 0.001 and v = 0.0005, respectively

0.2

t 0 0 .

Fig.4 Simulation of the approximate solution in Example 1 for d = 0.01,N = 400 (left) and dr = 0.01,
N = 800 (right) when v = 0.001 and v = 0.0005, respectively

and as time increases, approximate solutions decrease. The order of convergence is

presented in Table 5 for different values of N and it is seen that the convergence rate
reaches 4 in ||.||cc-
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Example 2 [37]
The next Burgers equation over the domain [0, 1] with the initial condition
ux,0)=4x(1—x), 0<x<1l1 42)
and Dirichlet boundary conditions
u©,t) =u(l,t) =0, r>0. 43)

The exact solution for this example is given by Eq. (41) with the Fourier coefficients

1
ap = / exp {—x2(3v)_1 G- 2x)} dx,
0
1
ap = 2/ exp {—x2(3v)—1 3 — 2x)} cos(nmx)dx.
0

After the numerical experiments have been tried for various mesh sizes, all calcu-
lations have been performed for values of N = 20, 40 and M = 100, 1000. Table 6
exhibits the comparisons of proposed method solutions with the exact and some good
techniques in the literature for various mesh sizes and v = 0.1 at different spatial and
temporal points. As clearly seen from the table, the numerical solutions approximate
the exact solution up to seven decimal places when the mesh size is N = 40 and
dr = 0.01 and are more accurate than the compared methods. Besides, even using
fewer temporal and spatial elements in the proposed method, while obtained solutions
are the same or sometimes better than those in Erdogan et al. [55], they are more
accurate as compared to the literature [37, 50, 56]. Also, the current scheme produces
the same accurate solutions as the work of Singh and Gupta [41] for the mesh size
values N = 20 and d¢ = 0.001. Thus, the computed results revealed that the proposed
method approximates the exact solution very well than the other recently developed
techniques even using larger spatial and temporal step sizes. Similarly, a comparison
of the proposed method with the exact solution and up-to-date good techniques [37,
41, 50, 55, 56] in the literature is presented in Table 7 for v = 0.01. The currently
obtained solutions for N = 40 and dr = 0.01 are seen to be more accurate than the
literature [37, 50, 55, 56] even using smaller spatial or temporal elements compared
to the works [37, 50, 56]. Compared to the reference [55], it is seen from the table that
the proposed method produces better results even using a far less number of elements.
The current scheme is in very good agreement with the exact solution and reference
[41] for the mesh size values N = 40 and dr = 0.001.

The behaviors of the problem obtained by the proposed method are depicted in Fig.
5 forv = 0.1 and v = 0.01. As seen in Fig. 5, the numerical solutions and exact
solutions are very close to each other. When analyzing figures, it is seen that the peaks
of the solution decrease as time increases.

In Table 8, the proposed method has been compared with a hybrid method [53],
LRBF-DQM [50], and TGFEM [52] for smaller viscosity values v = 0.003 and
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Fig.5 Simulation of behaviors of the Burgers equation in Example 2 for different time points when v = 0.1
(left) and v = 0.01 (right)

v = 0.004. As indicated before, for these values of viscosity, the numerical methods
in the literature fail or do not reach the desired accuracy. As seen from the table, the
presented method solutions are in good agreement with the exact solution and produce
the same or more accurate solutions than compared with other solutions in the table
even using larger spatial step sizes. Figures 6 and 7 show the physical behavior of
numerical solutions obtained by the proposed method for very small viscosity values
v = 0.001 and v = 0.0005 at different time levels. It is seen from the figures that the
proposed scheme produces accurate and reliable results for small viscosity values.

Example 3[11]

Consider the Burgers—Fisher equation by taking v = 1 and F(u) = Bu(l — u*) in
Eq. (1) subject to initial condition

0= (L L (=Y NV o< < »
. )_(2+2a" <<2<1+m)x)> COsErsho @
and boundary conditions
1
_(1_1 —ap « B+ i
“(O’”_(z 2“““1((2<1+m>(1+u+ « )’)) @)

1
_ (1.1 —opn (@ B+ ) z
o= (b (5525) (- (1252057 o

The exact solution is given

1
(11 —ap (o« B+ "
M(X,t)— <§+§tanh<m (x (H,—i—l + o )t))) s IZO

(47)
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Fig. 6 Simulation of behaviors of the Burgers equation in Example 2 for dz = 0.01, N = 400 (left) and
dr = 0.01, N = 800 (right) at different time # when v = 0.001 and v = 0.0005, respectively

Fig.7 Simulation of the approximate solution in Example 2 for dr = 0.01,N = 400 (left) and d = 0.01,
N = 800 (right) when v = 0.001 and v = 0.0005, respectively

In this example, in order to test the accuracy and efficiency of the proposed method,
a comparison of the absolute errors of the proposed scheme and up-to-date techniques
in the literature is given in Tables 9, 10, and 11.

The absolute errors of the proposed method and contemporary methods [11, 47,
57, 58] in the literature are presented for« = B = 1 and u = 2,4 when h = 0.1
and dr = 0.0001 at different time levels with step sizes in Table 9. The superiority of
the proposed scheme is shown by comparing it with the literature solutions [47, 57]
in Table 9. Besides, as clearly seen in the table, although the solutions obtained by the
proposed method are less accurate than the compared methods [11, 58] at the starting
points, it should be noted that the solutions are highly accurate at the middle points
and endpoints with the effect of the fourth-order formula and the error decreases with
a decrease in time. The evaluation of computed solutions with spatial and temporal
variables for the values in Table 9 is illustrated in Fig. 8.

The pointwise absolute errors of the proposed method and up-to-date developed
methods in the literature are listed for « = 8 = 0.001, u = 2,8, and h = 0.1
in Table 10. It can be noticed from the table that the current method provides more
accurate solutions than those obtained in the literature [57, 58] even using larger
temporal step sizes. Besides, as compared to the other references [11, 26], although the
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Fig. 8 Simulations of the exact (left) and proposed method (right) solutions for the generalized Burgers—
Fisher equation withe = 8 =1, u =2, h = 0.1, and dt = 0.001

Fig. 9 Simulations of the exact (left) and proposed scheme (right) for the generalized Burgers—Fisher
equation withae =1, 8 =0, u =3, h = 0.1, and dr = 0.001

proposed method produces less accurate solutions at the starting points of the domain,
itis more accurate in the middle points and endpoints. In other words, solutions are less
accurate than the other compared methods at the starting points, but they are highly
accurate at the middle points and endpoints. It can be concluded from these results
observed in Tables 9 and 10, using the fourth-order compact formula in interior points
has increased the accuracy of the solution of these points. Contrary to this, due to the
domination of the relatively low-order cubic B-spline in the starting points, in these
points, it is obtained a less accurate solution by comparison with the interior points.
Also, as the time increases, the error decreases as seen in the table.

In Table 11, the absolute errors of the proposed and up-to-date literature [11, 47]
solutions are listed forae = 1,8 = 0, u = 3, 8,and 2 = 0.1. Itis noticed from the table
that the proposed method produces the same or sometimes more accurate solutions,
especially at the middle and endpoints of the domain even using larger temporal step
sizes. Figure 9 shows the behavior of Example 3 for values in Table 11.
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Example 4[11]

Now, let us consider the generalized Burgers—Huxley equation by taking v = 1 and
F(u) = Bu (1 —u™) (u* — y) in Eq. (1) subject to the initial condition

1
— Vo +4831 "
u(x,0) = Z—i-ztanh apt pye” +4p( +M)yx , O0<x <1,
2 2 41+ )
(48)
and boundary conditions
— Syv/a? +48(1
u(0, 1) = Y _Yianh apntovar +apl+w
2 2 4(1 4+ w)
oy (Fu=y) (—a+ /2 +480+ )
_ t ,
I+ pun 2(1 + )
(49)
— Vo +4831
u(l,t) = Z—i—ztanh an+ pye” +4p0 + 1)
2 2 41+ w)

1
wy  Otn—p) (—a+ /T4 + ) AN
14+ 2(1+w)

(50

The exact solution is
— VaZ+4p(1
u(x,t) = Z+Ztanh autpyoel + 4P+ 1)
2 2 414+ w)
1
oy (Hn=y)(-a+ T4+ ) ‘
- - t
14+ 2(1+pw)
(5D

Tables 12, 13, and 14 illustrate the comparison of the absolute errors of the proposed
method and up-to-date techniques in the literature solutions for different values of «,
B, v, and p at different temporal and spatial points.

For comparison purposes, the absolute errors of the proposed method and up-to-
date good techniques [11, 14, 25, 59] have been presented foree = g = 1, y = 0.001,
and u = 1,2 at different time levels and spatial points in Table 12. The obtained
results are more accurate than Inan and Bahadir [59] and are in reasonable agreement
with other compared methods [11, 14, 25] for both values u = 1 and & = 2 even with
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001 001

Fig. 10 Simulations of the exact (left) and proposed method (right) solutions for the generalized Burgers—
Huxley equation withe = g =1,y =0.001, x =1, h = 0.1 and d = 0.0001 at = 0.01

using a larger temporal mesh size. Also, it can be noticed from the table that the order
of errors is the same for all compared methods. Furthermore, it can be observed that
the larger temporal size does not affect the accuracy of the current method and it still
approximates as adequately as literature solutions. Figure 10 illustrates the behavior
of the exact and numerical solution results, and as clearly seen in the figure, there is a
close agreement between the two solutions.

Table 13 represents the absolute errors of the proposed method and available lit-
erature solutions at different time levels with spatial steps for « = 0, 8 = 1, and
y = 0.001. It is concluded from the table that the current scheme is very well com-
patible with the literature solutions. In addition, as seen from the table, when it is used
larger temporal size the accuracy of the suggested scheme is not disturbed so much.

Finally, the absolute errors of the proposed method and hybrid B-spline collocation
method [14] are listed at different space points and time levels for = 5, 8 = 10,
and various y values in Table 14. The comparisons demonstrated that the proposed
method produces the same accurate solution with the reference [14] by using larger
temporal mesh sizes. Therefore, it is concluded that the proposed method is more
efficient and economical than the compared method. Although, in addition to this,
the work of Wasim [14] captures the behavior of the problem accurately, a lack of a
technique for predicting the optimal parameter used in the method can be a defect in
the flexibility of their method.

Example 5 [29]

Let us consider the Fisher’s equation by taking « = 0 and F' (1) = Bu(l — yu) with
the following initial condition

and boundary conditions

lim u(x,r)=0.5 and lim u(x,7) = 0. (53)
X—>—00 X—> 00
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Fig.12 Simulations of the proposed method (left) and exact (right) solutions for the Fisher’s equation with
the viscosity value v = 1

The exact solution is

1 5 5
u(x,t):—zé sech? | + %x—kl—gt — 2tanh | — £x+1—§z —21.
y v v

(54)
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The behavior of the Fisher’s equation depends on infection rate Bu(1 — yu). The
infection rate is measured by Bu, while the nonlinear term —Byu? represents the
diffusion rate. Wazwaz [60] proposed an analytical solution for this problem and the
solution 1nd1cates a shock-like traveling wave. The amplitude of the wave is propor-
tional to £. The numerical solutions of the equation have been presented in Tables
15 and lgfor the parameters y = v = 1, 8 = 1/2 in [—30, 30], when t = 2 and
t =4 with h = 1 and dr = 0.1. It is seen from the tables that while the proposed
method produces more accurate solutions than the wavelet-Galerkin approach [30]
and the standard cubic B-spline method [29], it is in reasonable agreement with other
compared literature [18, 61, 62].

Figure 11 illustrates the behaviors of the exact and present method solutions and
pointwise error graphs forv = 1 attimes s = 1, 2, 3, 4, 5 (Fig. 11a,b) and forv = 0.1
attimest = 0.1, 0.2, 0.3, 0.4, 0.5 (Fig. 11c, d). Asindicated in the figure, the currently
obtained solutions and exact solution profiles are very close. In addition, Figs. 12 and
13 show the surface behaviors of the exact and numerical solutions for v = 1 and
v = 0.1, respectively and it can be observed that numerical and exact behaviors look
similar.

6 Conclusion

In this study, a new hybrid method based on the combination of the cubic B-spline
method and fourth-order compact finite difference scheme has been introduced for
the spatial discretization of the ADR equations. Since the desired accuracy can-
not be reached using the cubic B-spline method, the second-order derivatives have
been obtained by the fourth-order compact finite difference scheme in which second
derivatives are approximated with the unknowns and their first derivatives. Thus, the
second-order derivatives are represented by the fourth-order convergence in the pro-
posed method. The combined method has been applied to the Burgers, Burgers—Fisher,
Burgers—Huxley, and Fisher’s equations after the equations have been discretized
with help of the Crank—Nicolson scheme. The numerical results are in very good
agreement with the exact solutions and quite satisfactory and competent with contem-
porary literature solutions. Furthermore, the solutions of some equations have superior
performance even when relatively large temporal and spatial step sizes are used in com-
putations and, thus, this reduces the computational complexity, computational time,
and memory space. In addition, the proposed method can capture the physical behav-
ior of the Burgers equation in the presence of very small viscosity values accurately
and efficiently. The stability of the proposed method has been discussed by the matrix
stability analysis and it is concluded that the method is stable. The convergence of
the solution has been measured by an error norm and it is confirmed that the present
method is convergent. Furthermore, the proposed method is easy to implement and
provides much flexibility with the minimal computational effort to deal with chal-
lenging problems by altering the second-order approach with the high-order compact
finite difference. Therefore, it is concluded that the new hybrid method that has com-
putationally efficient and economical properties is a good alternative for investigating
the nonlinear partial differential equations.
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Fig. 13 Simulations of the proposed method (left) and exact (right) solutions for Fisher’s equation with the
viscosity value v = 0.1
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