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Abstract
The boundary element method (BEM) has proven to be an efficient approach for crack
analysis in fracture mechanics, while its versatility in application to crack problems of
complex structures with irregular boundaries deserves further attention. In this study,
to improve the applicability to complex crack analysis, a cracked superelement is
first established with BEM to model the near-crack region, and the crack problem is
then solved within the frame of finite element method (FEM). The stiffness matrix of
the cracked superelement is formulated using the spline fictitious boundary element
method (SFBEM) based on the Erdogan fundamental solutions for an infinite plane
with a single crack. The proposed superelement is further incorporated into a finite
element mesh to simulate the behaviour of the crack zone, and the governing equation
of the crack problem is finally established and solved using the typical procedure of
FEM. After obtaining the nodal displacements of the superelement, the stress intensity
factors (SIFs) of crack tips can be obtained by a backward analysis with SFBEM. The
accuracy and efficiency of the proposed SFBEM–FEM coupling method are demon-
strated by two numerical examples involving a rectangular plate with a central crack
and a square plate with 100 horizontal cracks. The present approach is further applied
to the analysis of the SIFs of multiple cracks exposed in a steel anchorage box for a
hanger of a suspension bridge, which indicates the merging of the cracked superele-
ments to the commercial FEM software is computationally efficient for the analysis
of complex structures with multiple cracks.

B Cheng Su
cvchsu@scut.edu.cn

1 School of Civil Engineering and Transportation, South China University of Technology,
Guangzhou 510640, China

2 State Key Laboratory of Subtropical Building Science, South China University of Technology,
Guangzhou 510640, China

3 Guangdong Artificial Intelligence and Digital Economy Laboratory, Guangzhou 510335, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-022-10247-2&domain=pdf


3 Page 2 of 26 C. Su et al.

Keywords Crack problem · Coupling method · Erdogan fundamental solutions ·
Finite element method · Stress intensity factor · Spline fictitious boundary element
method

1 Introduction

The analysis of stress intensity factors (SIFs) is of great importance to the assessment
of damage tolerance and the prediction of crack propagation for engineering structures.
As analytical methods are generally limited to solving simple crack problems [1], var-
ious numerical methods, e.g. the finite element method (FEM) [2], the extended finite
element method (XFEM) [3] and the boundary element method (BEM) [4], have been
developed for analysis of SIFs in engineering practice. Due to its high flexibility in
modelling complex structures and imposing complex boundary conditions, the FEM
is the most commonly used numerical method for solving crack problems of engi-
neering structures. However, because of the crack-tip singularity, mesh refinement is
required at crack tips so as to capture the singular behaviour of stresses, leading to
extra burden of mesh generation and large computational cost of FEM for crack prob-
lems. The XFEM alleviates the shortcomings of the traditional FEM associated with
mesh refinement of crack regions, in which local enrichment functions consisting of a
discontinuous function and the near-tip asymptotic fields are incorporated into finite
element formulation to describe the jump in displacement across the crack surface
and the singularity at the crack tip, resulting in extra degrees-of-freedom (DOFs) in
XFEM for crack problems [5, 6].

As an alternative to FEM, the BEM has proven to be a powerful numerical method
to solve crack problems, in which only boundary rather than domain discretization is
required for analysis of SIFs. The existing BEMs applied to crack problems can be
roughly classified into two categories depending on the fundamental solutions used.
For the first category, the Kelvin fundamental solutions [7] for noncrack problems
are adopted in the formulation of BEM, in which the stress boundary conditions
along crack surfaces need to be satisfied and special boundary elements are required
at crack tips to reflect the singular behaviour [8, 9]. For the second category, the
Erdogan fundamental solutions [10] for crack problems are employed in the BEM
formulation [11–13], in which the stress boundary conditions on the crack surfaces
are automatically satisfied and the singular behaviour at crack tips can be naturally
reflected. Therefore, there is no need to set boundary elements on the crack surfaces,
and furthermore, the SIFs of the crack tips can be calculated directly using the specific
fundamental solutions of SIFs.

However, for crack problems of complex structures with complex boundary con-
ditions, it is not convenient to model the structures and apply the boundary conditions
with BEM, and for multi-crack problems, multi-domain coupling techniques are
further required in BEM formulation when the single-crack Erdogan fundamental
solutions are used. Therefore, in order to make full use of the unique advantage of
BEM in dealing with the singular behaviour at crack tips and the superior flexibility of
FEM in modelling complex structures and boundary conditions, several researchers
proposed the BEM–FEMcouplingmethods to solve complex crack problems [14–18].
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Actually, the coupling method based on boundary discretization methods and FEM
stems from the pioneering work of Zienkiewicz et al. [19] and Brebbia and Geor-
giou [20], and now have appeared in the areas of flexoelectricity [21], vibroacoustic
response [22–24], fluid–structure interaction [25] and soil–structure interaction [26],
among others. Note that, for crack problems thus far, the BEM formulation for the
BEM subdomain containing cracks has been established using the noncrack Kelvin
fundamental solutions, and therefore, one also needs to consider the stress boundary
conditions on crack surfaces and employ special crack-tip boundary elements to reflect
the singular behaviour, which makes it inconvenient to calculate the SIFs at crack tips,
even if the coupled BEM–FEM procedure has been adopted.

In this study, a coupled BEM–FEM procedure is developed for the analysis of
complex structures in the presence of cracks. The near-crack region is modelled as a
cracked superelement, and its stiffness matrix is formulated with the spline fictitious
boundary element method (SFBEM) [27–29], in which, to automatically satisfy the
stress boundary conditions on crack surfaces and naturally capture the crack-tip singu-
larity, the Erdogan fundamental solutions corresponding to an infinite cracked plane
are employed instead of the traditional noncrack Kelvin fundamental solutions. For
the other regions without cracks, the conventional finite elements are used to model
the structure. Then, the proposed stiffness formulation of the cracked superelement
can be assembled to the global finite element formulation, from which the nodal dis-
placements of the structure, including those of the superelement, can be obtained
following the typical FEM procedure. After obtaining the nodal displacements of the
superelement, the SIFs of the crack tips can be readily obtained by a backward analysis
with SFBEM focussing on the domain of the superelement. As the SIF fundamental
solutions are known in advance as a part of the Erdogan fundamental solutions, the
crack-tip SIFs can be calculated directly based on the superposition of the SIF funda-
mental solutions in the above backward analysis. The accuracy and efficiency of the
proposed SFBEM–FEM coupling method are demonstrated by numerical examples
involving a rectangular platewith a central crack and a square platewith 100 horizontal
cracks. The present approach is further applied to the analysis of a multi-crack steel
anchorage box for a hanger of a suspension bridge, indicating the wide applicability
of the SFBEM–FEM coupling method to complex crack problems.

2 Formulation of stiffness matrix for cracked superelement by SFBEM

As the Erdogan fundamental solutions [10] for crack problems are derived by the
method of complex variable function and expressed in amore complicatedmanner, it is
more advantageous to employ SFBEM, a nonsingular indirect BEM, for the analysis of
the cracked domain, in which singular integrals of the complex fundamental solutions
are completely avoided [11–13]. In this section, the Erdogan fundamental solutions are
first presented, and the stiffness matrix of the cracked superelement is then formulated
using SFBEM.
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Fig. 1 Concentrated loads in an
infinite plane with a crack

2.1 Erdogan fundamental solutions for plane crack problems

Consider an infinite cracked plane subjected to concentrated forces Q and P at an
arbitrary source point z0 = x0 + iy0, as shown in Fig. 1. The complex variable stress
functions are taken as follows:

φ(z) = − S
z−z0

+ φ0(z)

�(z) = κS
z−z̄0

+ S̄(z̄0−z0)
(z−z̄0)2

+ φ0(z)

φ0(z) = 1
2π

√
z2−a2

{
S

z−z0
[I (z) − I (z0)] − κS

z−z̄0
[I (z) − I (z̄0)]

−S̄(z̄0 − z0)
[
I (z)−I (z̄0)
(z−z̄0)2

− J (z̄0)
z−z̄0

]}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (1)

where

I (z) = π
(√

z2 − a2 − z
)

J (z) = π
(

z√
z2−a2

− 1
)

S = Q+iP
2π(1+κ)

κ =
{
3 − 4υ (Plane strain)
3−υ
1+υ

(Plane stress)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2)

In the above equations, z=x + iy denotes an arbitrary field point; a is the half crack
length; and υ is the Poisson’s ratio of the material.
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The stresses σ 0
x , σ 0

y and τ 0xy and the displacements u0x and u
0
y at any point z=x + iy

are derived from the stress functions and can be expressed as

σ 0
x + σ 0

y = 2[φ(z) + φ(z)]
σ 0
y − σ 0

x + 2iτ 0xy = 2[(z̄ − z)φ′(z) − φ(z) + �(z)]
}

, (3)

2μ(u0x+iu0y) = κ

∫ z

0
φ(z)dz −

∫ z̄

0
�(z̄)dz̄ + (z̄ − z)φ(z), (4)

where the superscript 0 denotes the responses are caused by Q and P applied at
z0 = x0 + iy0; the barred quantities are the complex conjugates; the primed quantities
represent the derivatives with respect to z; and μ is the shear modulus of the material.

It can be seen from Eqs. (1)–(3) that the stresses are singular at the point of con-
centrated forces, that is, the stresses become infinite as z approaches z0. The stresses
also become infinite as z approaches ±a, having the required square root singularity
at the crack tips.

Accordingly, the SIFs for the crack tips can be further derived as

K 0 = K 0
I − iK 0

II = 2
√
2π lim

z→±a

[
(
√
z ∓ a)φ(z)

]

= ±1
2(1+κ)

√
πa

{
(Q + iP)

[(
z0±a√
z20−a2

− 1

)
− κ

(
z̄0±a√
z̄20−a2

− 1

)]
± a(Q−iP)(z̄0−z0)

(z̄0∓a)

√
z̄20−a2

}
,
(5)

where K 0
I and K 0

II are the SIFs of model-I and model-II, respectively.
Let P = 0, Q = 1 or P = 1, Q = 0 in Eqs. (1)–(5). Then, the above solutions

become the Erdogan fundamental solutions for plane crack problems, which can be
denoted as G(k)

σx (z; z0), G(k)
σy (z; z0), G(k)

τxy (z; z0), G(k)
ux (z; z0), G(k)

uy (z; z0), G(k)
KI

(z0) and

G(k)
KII

(z0)(k = 1, 2), with k = 1 when P = 0, Q = 1 and k = 2 when P = 1, Q = 0.

2.2 Stiffness matrix of cracked superelement

Consider an arbitrary cracked superelement �e with a contour L and with a total
number of N nodes, as shown in Fig. 2, in which the crack is on the x-axis and
its length is taken as 2a and a for an inner crack and an edge crack, respectively.
In order to establish the stiffness matrix of the cracked superelement, assume that
the nodal displacements Ux,n and Uy,n(n = 1, 2, . . . , N ) are known, and the nodal
forces Fx,n and Fy,n(n = 1, 2, . . . , N ) are required to be determined from the nodal
displacements, which is actually a displacement boundary value problem and can be
solved by SFBEM.

Embed the cracked superelement into an infinite plane, and apply unknownfictitious
loads X (k)(k = 1, 2) along a fictitious boundary S outside �e, whose shape is similar
to that of the real boundary L, as also shown in Fig. 2. Then, under the action of the
fictitious loads X (k)(k = 1, 2), the displacements and stresses at any point z=x + iy
in the infinite plane can be expressed as
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ux (z) =
2∑

k=1

∫
S G

(k)
ux (z; zS)X (k)(zS)ds

uy(z) =
2∑

k=1

∫
S G

(k)
uy (z; zS)X (k)(zS)ds

⎫⎪⎪⎬
⎪⎪⎭

, (6)

σx (z) =
2∑

k=1

∫
S G

(k)
σx (z; zS)X (k)(zS)ds

σy(z) =
2∑

k=1

∫
S G

(k)
σy (z; zS)X (k)(zS)ds

τxy(z) =
2∑

k=1

∫
S G

(k)
τxy (z; zS)X (k)(zS)ds

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (7)

where zS ∈ S; and G(k)
ux , G

(k)
uy , G

(k)
σx , G

(k)
σy and G(k)

τxy (k = 1, 2) are the Erdogan funda-
mental solutions of plane crack problems presented in Sect. 2.1.

Because of using the Erdogan fundamental solutions, the stresses shown in Eq. (7)
automatically satisfy both the governing differential equations within�e and the stress
boundary conditions on the crack surface. Therefore, only the displacement boundary
conditions along the contour L for the cracked superelement need to be considered.

Substituting Eq. (6) into the displacement boundary conditions along L, one has

2∑
k=1

∫
S G

(k)
ux (zL; zS)X (k)(zS)ds = ux (zL)

2∑
k=1

∫
S G

(k)
uy (zL; zS)X (k)(zS)ds = uy(zL)

⎫⎪⎪⎬
⎪⎪⎭

, (8)

where zL ∈ L; and ux (zL) and uy(zL) are the known displacement functions along L,
which can be expressed as

ux (zL) =
N∑

n=1
ηn(zL)Ux,n

uy(zL) =
N∑

n=1
ηn(zL)Uy,n

⎫⎪⎪⎬
⎪⎪⎭

, (9)

where Ux,n and Uy,n(n = 1, 2, . . . , N ) are the known nodal displacements; and
ηn(n = 1, 2, . . . , N ) are the displacement interpolation functions. In this study, the
boundary displacements are determined by linear interpolation from two adjacent
nodal displacements.

As the source point zS and the field point zL are located on the fictitious bound-
ary S and the real boundary L, respectively, the integral equations shown in Eq. (8)
are nonsingular fictitious boundary integral equations, which need to be solved on a
numerical basis. For this purpose, the unknown fictitious loads X (k)(k = 1, 2) are
expressed in terms of a set of B-spline functions as follows [11, 27]:

X (k)(zS) =
NS+1∑
i=−1

x (k)
i ϕi (zS) (k = 1, 2) , (10)
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where NS is the number of fictitious boundary elements; x (k)
i (i = −1, 0, . . . , NS +1)

are the unknown spline node parameters; and ϕi (zS)(i = −1, 0, . . . , NS + 1) are
B-spline functions of the third order.

Substituting Eq. (10) into Eq. (8), one obtains the residual functions along boundary
L as follows:

Rux (zL) =
2∑

k=1

NS+1∑
i=−1

x (k)
i

∫
S G

(k)
ux (zL; zS)ϕi (zS)ds − ux (zL)

Ruy (zL) =
2∑

k=1

NS+1∑
i=−1

x (k)
i

∫
S G

(k)
uy (zL; zS)ϕi (zS)ds − uy(zL)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (11)

To eliminate boundary residues Rux (zL) and Ruy(zL), divide boundary L into NL
segments, and let the integrals of the residues along each segment equal zero, namely,

∫
�L j

Rux (zL)dl = 0∫
�L j

Ruy (zL)dl = 0

}
( j = 1, 2, . . . , NL), (12)

where �L j is the j th segment on boundary L.
Substitution of Eqs. (9) and (11) into Eq. (12) yields

AU X = HUe, (13)

where X is the unknown vector consisting of the spline node parameters x(k)
i (i =

−1, 0, . . . , NS + 1) of the fictitious loads along S; AU is the influence matrix of X
depending on the nonsingular integrals of the Erdogan fundamental solution multi-
plied by the B-spline function; Ue = [Ux,1Uy,1Ux,2Uy,2 · · ·Ux,NUy,N ]T is the nodal
displacement vector of the cracked superelement; and H is the matrix depending on
the integrals of the displacement interpolation functions.

Generally, overdeterminate collocation is employed to achieve a better solutionwith
more boundary segments while keeping the number of fictitious boundary elements
at a lower level. Therefore, Eq. (13) needs to be solved on a least-squares basis as
follows [27]:

X = A+
U HUe, (14)

where

A+
U = (AT

U AU )−1AT
U . (15)

Once the unknown spline nodeparameters x (k)
i (i = −1, 0, . . . , NS+1) are obtained

from Eq. (14), the responses of the cracked superelement can be readily calculated
from the fictitious loads X (k)(k = 1, 2) shown in Eq. (10). In particular, to obtain the
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nodal forces Fx,n and Fy,n(n = 1, 2, . . . , N ) shown in Fig. 2, the surface loads fx
and fy along L need to be determined from Eq. (7), which can be expressed as

fx (zL) = nxσx (zL) + nyτxy(zL) =
2∑

k=1

∫
S

[
nxG

(k)
σx (zL;zS) + nyG

(k)
τxy (zL;zS)

]
X (k)(zS)ds

fy(zL) = nxτxy(zL) + nyσy(zL) =
2∑

k=1

∫
S

[
nxG

(k)
τxy (zL;zS) + nyG

(k)
σy (zL;zS)

]
X (k)(zS)ds

⎫⎪⎪⎬
⎪⎪⎭

,

(16)

where nx and ny are the cosine functions of normal vector for boundary L.
Then, the nodal forces Fx,n and Fy,n(n = 1, 2, . . . , N ) can be obtained from the

surface loads fx and fy using the static equivalent principle, which can be expressed
as

Fx,n = ∫
L ηn(zL) fx (zL)dl

Fy,n = ∫
L ηn(zL) fy(zL)dl

}
(n = 1, 2, . . . , N ) , (17)

where ηn(n = 1, 2, . . . , N ) are the displacement interpolation functions adopted in
Eq. (9).

Substituting Eqs. (10) and (16) into Eq. (17) yields

Fe = AFX, (18)

where Fe = [Fx,1Fy,1Fx,2Fy,2 · · · Fx,N Fy,N ]T is the nodal force vector of the cracked
superelement; and AF is the influence matrix of X depending on the nonsingular
integrals of the Erdogan fundamental solution multiplied by the B-spline function and
the displacement interpolation function.

Substituting Eqs. (14) and (15) into Eq. (18), one obtains a relationship between
the nodal force vector and the nodal displacement vector for the cracked superelement
shown in Fig. 2, which can be written as

Fe = K eUe, (19)

where K e is the stiffness matrix of the cracked superelement, which can be expressed
as

K e = AF (AT
U AU )−1AT

U H . (20)

It is worth noting that, due to the possible numerical errors induced by SFBEM,
the stiffness matrix obtained in Eq. (20) may be slightly asymmetric. The matrix
can be made symmetric by minimizing the square of the errors in the nonsymmetric
off-diagonal terms [20], which yields

K̃ e = 1

2
(K e + KT

e ). (21)
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Fig. 3 Illustration of finite element mesh of plane domain with a cracked superelement

To reflect the degree of asymmetry of matrix K e, define the asymmetry index as
follows:

ε =
∥∥∥K̃ e − K e

∥∥∥
2

‖K e‖2 × 100%, (22)

where ‖·‖2 denotes the L2 norm of matrix. In general, when the asymmetry index ε is
smaller than 5%, the stiffness matrix K e of the cracked superelement will sufficiently
approach to a symmetric matrix, indicating the accuracy of SFBEM in the formulation
of the superelement.

3 Analysis of crack problems by SFBEM–FEM couplingmethod

Now that the stiffness matrix of the cracked superelement has been formulated with
SFBEM, it can be further assembled to the global FEM formulation for analysis
of the entire structure. After global finite element analysis, the SIFs of the cracked
superelement can be finally obtained by a backward analysis using SFBEM.

3.1 FEM formulation with cracked superelement

Consider a plane domain with an inner crack or an edge crack, as shown in Fig. 3,
in which the near-crack region �a is modelled with the cracked superelement �e pro-
posed in Sect. 2.2, and the rest region�b is modelled using traditional finite elements.
As the stiffness matrix of the cracked superelement is established under the local coor-
dinate system x−y, it should be transformed to the form under the global coordinate
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system x̄−ȳ shown in Fig. 3, which can be expressed as

K̄ e = TT K̃ eT , (23)

where K̃ e is the stiffnessmatrix of the cracked superelement under the local coordinate
system x−y, which has been obtained in Eqs. (20) and (21) by SFBEM; K̄ e is the
stiffness matrix of the cracked superelement under the global coordinate system x̄−ȳ;
and T is the coordinate transformation matrix, which can be written as

T =

⎡
⎢⎢⎢⎢⎣

T1 0 · · · 0

0 T2
...

...
. . . 0

0 · · · 0 T N

⎤
⎥⎥⎥⎥⎦

, (24)

where

Tn =
[

cosβ sin β

− sin β cosβ

]
(n = 1, 2, . . . , N ), (25)

where N is the number of the nodes of the cracked superelement; and β is the angle
between the x-axis and the x̄-axis, as shown in Fig. 3.

Suppose that, under the global coordinate system x̄−ȳ, the displacement vector of
the nodes of the cracked superelement is Ua, while the displacement vector of the
rest nodes of the finite element mesh is Ub. The external force vectors are assumed to
be Fa and Fb corresponding to Ua and Ub, respectively. Then, following the typical
procedure of finite element analysis, the global stiffness equation can be obtained as

KU = F, (26)

where U = [UT
aU

T
b ]T, F = [FT

a F
T
b ]T; and K is the global stiffness matrix, which is

expressed as

K =
[
K aa + K̄ e K ab

K ba K bb

]
, (27)

where K̄ e is the stiffness matrix of the cracked superelement shown in Eq. (23); and
K aa, K ab, K ba and K bb are the block stiffness matrices contributed by the traditional
finite elements.

Note that, for a multi-crack problem, multiple cracked superelements need to be
employed to model different near-crack regions, and the global stiffness equation can
be formulated as above by merging different superelements to the traditional finite
elements.

123



3 Page 12 of 26 C. Su et al.

3.2 SIF analysis of cracked superelement

After solving for the global displacement vector U = [UT
aU

T
b ]T from Eq. (26), a

backward analysiswithSFBEMis required for theSIF analysis of the cracked superele-
ment. For this purpose, the nodal displacement vector Ue of the cracked superelement
under local coordinate system x−y is first obtained from Ua by coordinate transfor-
mation as follows:

Ue = TUa, (28)

where T is the coordinate transformation matrix shown in Eq. (24).
Substituting Eq. (28) into Eq. (14) and considering Eq. (15), the vector of spline

node parameters of the fictitious loads can then be obtained as

X = (AT
U AU )−1AT

U HTUa. (29)

On the other hand, under the action of the fictitious loads X (k)(k = 1, 2), themode-I
and mode-II SIF at the crack tips of the cracked superelement shown in Fig. 2 can be
directly obtained as

KI =
2∑

k=1

∫
S G

(k)
KI

(zS)X (k)(zS)ds

KII =
2∑

k=1

∫
S G

(k)
KII

(zS)X (k)(zS)ds

⎫⎪⎪⎬
⎪⎪⎭

, (30)

where G(k)
KI

and G(k)
KII

(k = 1, 2) are the Erdogan SIF fundamental solutions presented
in Sect. 2.1.

Using Eq. (10), the discretization form of Eq. (30) can be derived as

KSIF = AK X, (31)

where KSIF = [KIKII]T is the SIF vector of the cracked superelement; X is the vector
of spline node parameters of the fictitious loads; and AK is the influence matrix of X
depending on the integrals of the Erdogan SIF fundamental solution multiplied by the
B-spline function.

Substitution of Eq. (29) into Eq. (31) yields

KSIF = BUa, (32)

where

B = AK (AT
U AU )−1AT

U HT . (33)

Note that, as the fundamental solutions of SIFs are available in the formulation, the
SIFs of the crack tips can be directly obtained viaEq. (32) from the nodal displacements
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Fig. 4 A rectangular plate with a
central inclined crack

of the cracked superelement, with no need of transformation from the displacement
field around the crack tip, which is generally required in SIF analysis with the other
numericalmethods. This further leads to the high efficiency and accuracy of the present
approach.

4 Numerical examples

To validate the accuracy and efficiency of the proposed SFBEM–FEM coupling
method, the cracked superelements formulated with SFBEM are incorporated into
the commercial FEM software Abaqus with the help of the user-defined elements
[30]. Two numerical examples for SIF analysis of a rectangular plate with a central
inclined crack and a square plate with 100 horizontal cracks are considered in this
section. The finite element meshes for these two examples are generated with the
meshing techniques provided by Abaqus.

4.1 A rectangular plate with a central inclined crack

Consider a rectangular plate with one side fixed and the opposite side subjected to a
uniform tensile load σ = 1MPa, as shown in Fig. 4. The modulus of elasticity and
Poison’s ratio of the plate are taken as E = 1000MPa and υ = 0.2, respectively, and
thewidth and height of the plate are assumed to be 2W = 200mm and 2H = 250mm,
respectively. An inclined crack AB is located at the centre of the plate, whose length
and inclined angle are 2a and β, respectively, as also shown in Fig. 4.
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Fig. 5 Finite element mesh consisting of a superelement and 192 Q4 elements (β = 45
◦
)

The crack problem shown in Fig. 4 is solved with the proposed SFBEM–FEM cou-
pling method, in which the near-crack region is modelled using a 100mm × 100mm
superelement with the crack located at the centre, and the other region is discretized
with traditional Q4 plate elements. In particular, when β = 45◦, the mesh consists of a
superelement and 192Q4 elements, which is shown in Fig. 5. For the cracked superele-
ment, a total of 40 nodes have been adopted, and 40 fictitious boundary elements and
80 boundary segments are employed in calculating the stiffness matrix of the 40-node
superelement with the distance between the real boundary and the fictitious bound-
ary being taken as the length of the boundary segment, i.e. d = 5mm. It has been
observed that the asymmetry index ε defined in Eq. (22) is just around 4.62% using the
above parameters, and thus the accuracy of the proposed method can be guaranteed
regarding the formulation of the superelement. For comparison, the crack problem is
also analysed using the traditional FEMwith Abaqus, in which, to obtain the reference
solution, the near-crack region is discretized into a sufficiently fine mesh leading to
a total number of 1748 Q4 elements for the entire problem (a/W = 0.3), as shown
in Fig. 6. Comparing the finite element meshes shown in Figs. 5 and 6, it can be seen
that the number of DOFs involved in the coupling method is much smaller than that
of the traditional FEM due to the use of the cracked superelement. Furthermore, for
a given value of β, the coupling mesh shown in Fig. 5 remains the same for different
crack lengths, while for the domain shown in Fig. 6, it needs to be remeshed when the
crack length changes.

123



A SFBEM–FEM coupling method Page 15 of 26 3

Fig. 6 Finite element mesh consisting of 1748 Q4 elements (β = 45◦, a/W = 0.3)

Table 1 The results of KI and KII of crack tip A with β = 0◦ and β = 45◦

β (◦) a/W KI (MPa · mm1/2) Deviation
(%)

KII (MPa · mm1/2) Deviation
(%)Coupling method Traditional FEM Coupling method Traditional FEM

0 0.1 5.7075 5.7083 −0.0140 – – –

0.2 8.2300 8.2414 −0.1383 – – –

0.3 10.4163 10.4522 −0.3435 – – –

45 0.1 2.8781 2.8638 0.4993 2.8449 2.8397 0.1831

0.2 4.2187 4.1659 1.2674 4.0815 4.0866 −0.1248

0.3 5.4160 5.3376 1.4688 5.0854 5.0617 0.4682

Whenβ = 0◦ andβ = 45◦, the SIFs KI and KII of crack tipsA andB corresponding
to different crack lengths are presented in Tables 1 and 2, respectively, from which
it can be seen that the results of the SFBEM–FEM coupling method agree well with
those of the traditional FEM with relative deviations being less than 1.5%, indicating
the high accuracy of the present method. To investigate the variation of KI and KII
with the inclined angle β under different ratios of the crack length to plate width, a/W ,
the results are depicted in Figs. 7 and 8 for crack tips A and B, respectively. It can
be observed from the above figures that KI decreases with the increase of β for both
crack tips. While for KII, it will first increase with the increase of β until β = 45◦,
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Table 2 The results of KI and KII of crack tip B with β = 0◦ and β = 45◦

β (◦) a/W KI (MPa · mm1/2) Deviation
(%)

KII (MPa · mm1/2) Deviation
(%)Coupling method Traditional FEM Coupling method Traditional FEM

0 0.1 5.7067 5.7080 −0.0234 – – –

0.2 8.2288 8.2405 −0.1414 – – –

0.3 10.4116 10.4494 −0.3621 – – –

45 0.1 2.8675 2.8533 0.4989 2.8481 2.8433 0.1696

0.2 4.1961 4.1500 1.1108 4.0927 4.0729 s 0.4861

0.3 5.4019 5.3283 1.3813 5.1099 5.0943 0.3062

Fig. 7 The SIFs of crack tip A
with different values of β and
a/W

and then it will drop with further increase of β. It can be further observed from Figs. 7
and 8 that both KI and KII increase with the increase of a/W under a specific value
of β.

To investigate the influence on the results of the proposed SFBEM–FEM coupling
method, different values of the distance d between the real boundary and the fictitious
boundary are taken in calculating the stiffness matrix of the cracked superelement for
the case of β = 45◦ and a/W = 0.2. The results are presented in Tables 3 and 4,
from which it can be observed that the distance between the fictitious boundary and
the real boundary can be changed in a reasonable range with little influence on the
results, indicating the numerical stability of the present method. As a general rule, the
distance between the fictitious boundary and the real boundary in SFBEM should be
taken as the same order of magnitude of the length of the real boundary segments. This
conclusion has also been drawn in the previous study reported in [11, 27]. Detailed
investigation on the optimal location of the fictitious boundary can be found in [31].
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Fig. 8 The SIFs of crack tip B
with different values of β and
a/W

Table 3 The results of KI and KII of crack tip A with different values of distance d (β = 45◦ and
a/W = 0.2)

SIF (MPa · mm1/2) Traditional FEM Coupling method

d =3mm d =4mm d =5mm d =6mm d =7mm

KI 4.1659 4.2253 4.2227 4.2187 4.2225 4.2246

KII 4.0866 4.0846 4.0824 4.0815 4.0823 4.0825

Table 4 The results of KI and KII of crack tip B with different values of distance d (β = 45◦ and
a/W = 0.2)

SIF (MPa · mm1/2) Traditional FEM Coupling method

d =3mm d =4mm d =5mm d =6mm d =7mm

KI 4.1500 4.2015 4.1998 4.1961 4.1995 4.2017

KII 4.0729 4.0943 4.0941 4.0927 4.0940 4.0942

4.2 A square plate with 100 horizontal cracks

Consider a square plate containing 10 × 10 = 100 equally spaced horizontal cracks,
as shown in Fig. 9. The length of each crack is taken to be 2a = 40mm. The plate is
fixed at the bottom side and is subjected to a uniform tensile load σ = 1MPa at the
top side. The modulus of elasticity and Poison’s ratio of the plate are assumed to be
E = 200GPa and υ = 0.25, respectively, and the width and height of the plate are
assumed to be 2W = 3000mm and 2H = 3000mm, respectively.

The crack problem is solved with the proposed SFBEM–FEM coupling method, in
which the plate domain is discretized with 10 × 10 = 100 cracked superelements, as
shown in Fig. 9. The width and height of each superelement are 2w = 300mm and
2h = 300mm, respectively, and the crack is located at the centre of the superelement.
To obtain the SIF results with sufficient accuracy, a total of 40 nodes are adopted for
each superelement, and 40 fictitious boundary elements and 80 boundary segments
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Fig. 9 A square plate with 10 × 10 = 100 equally spaced horizontal cracks and the finite element mesh
consisting of 10 × 10 = 100 cracked superelements

are employed in calculating the stiffness matrix of the superelement with the distance
between the real boundary and the fictitious boundary being taken as the length of the
boundary segment, i.e. d = 15mm. The asymmetry index ε defined in Eq. (22) has
been found to be just 3.73% with the above parameters, indicating the accuracy of the
proposed method regarding the formulation of the superelement. Note that, for this
particular problem, as the 10 × 10 = 100 cracked superelements have covered the
whole domain of the plate, no traditional finite elements are required in the present
approach. For comparison, the crack problem is also analysed using the traditional
FEM with Abaqus, in which a total number of 140539 Q4 elements need to be used
for obtaining the reference solution of the problem, as shown in Fig. 10. Obviously,
the number of DOFs involved in the coupling method with the mesh shown in Fig. 9
is greatly reduced compared with that of the traditional FEM using the mesh shown in
Fig. 10, and it is much easier to prepare for the mesh shown in Fig. 9 than that shown
in Fig. 10.

To investigate the variation of the SIFs of the cracks located at the same horizontal
section of the plate, sections A–A and B–B are taken into consideration with the cracks
being numbered from 1 to 10, as shown in Fig. 9. Consider the left tips of the above
cracks, and the values of KI for different cracks at sections A–A and B–B are shown in
Figs. 11 and 12, respectively, from which it can be seen that the results obtained with
the SFBEM–FEM coupling method and the traditional FEM are in good agreement
with the relative deviations being less than 0.5%, indicating the high accuracy of the
proposed method. It can be also observed from the above figures that, at section A–A,
the values of KI range from 7.7905 to 8.0734MPa · mm1/2 with those of the cracks
on both sides of the plate being a bit smaller, while at section B–B, the values of KI
range from 7.6157 to 8.9169MPa ·mm1/2 with those of the cracks on both sides of the
plate being significantly larger. Note that, for this particular example, the computing
CPU time required by the coupling method is only 9.1% of that required by the FEM
alone for solving the final system of equations.
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Fig. 10 Finite element mesh consisting of 140539 Q4 elements

Fig. 11 The values of KI for
different cracks at section A–A

Fig. 12 The values of KI for
different cracks at section B–B
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5 Engineering application

Crack propagation of the steel anchorage box for a hanger of a suspension bridge often
occurs under the action of vehicle loads. The SIFs of cracks are important parameters
for fatigue analysis of the steel anchorage box, and thus it is necessary to conduct the
SIF analysis of the structure. A steel anchorage box is shown in Fig. 13. The back plate
of the structure is assumed to be fixed at the upper and lower edge with two side edges
being free. The bearing plate of the structure is subjected to a uniform pressure with
an amplitude of σ = 1.4057MPa, which is transformed from the tension amplitude of
a hanger rod under the action of vehicle loads. The modulus of elasticity and Poison’s
ratio of the steel anchorage box are assumed to be E = 210GPa and υ = 0.3,
respectively. Suppose that, after field inspection, three cracks are detected at the back
plate, including an inner crack and two edge cracks, as also shown in Fig 13. The
lengths of the inner crack and the two edge cracks are assumed to be 2a1 = 100mm
and a2 = 100mm, respectively. In this section, the cracked superelements formulated
with SFBEM are incorporated into the commercial FEM software Abaqus with the
user-defined elements, and the finite element mesh is generated with the meshing
techniques provided by Abaqus.

The crack problem shown in Fig. 13 is first solved with the traditional FEM using
Abaqus. To obtain the reference solution, a total of 6404 S4 shell elements are adopted
for the analysis, and the finite element mesh is shown in Fig. 14. To validate the appli-
cability of the present approach to engineering practice, the problem is also analysed
with the SFBEM–FEM coupling method. The near-crack regions are modelled using
one 400mm × 400mm centre-cracked superelement and two 300mm × 300mm
edge-cracked superelements. To keep the superior flexibility of FEM in modelling the
complex structure, the other region is discretized with 2601 traditional S4 elements.
The coupling mesh is shown in Fig. 15. For the centre-cracked superelement, a total
of 40 nodes have been adopted, and 40 fictitious boundary elements and 80 boundary
segments are employed in calculating the stiffness matrix with the distance between
the real boundary and the fictitious boundary being taken as d = 20mm. For the
edge-cracked superelement, a total of 41 nodes have been employed, and 60 fictitious
boundary elements and 120 boundary segments are adopted in the formulation of the
stiffness matrix, in which the distance between the real boundary and the fictitious
boundary is taken as d = 6mm. It can be found that, using the above parameters,
the values of the asymmetry index ε defined in Eq. (22) are only 3.88% and 4.57%
for the centre-cracked and the edge-cracked superelement, respectively, indicating the
accuracy of SFBEM in calculating the stiffness matrices of the superelements.

The results of KI and KII for the crack tips A, B, C and D obtained by the coupling
method and the traditional FEM are presented in Table 5. It can be seen from Table 5
that the results of the coupling method agree well with those of the traditional FEM.
The relative deviations of the coupling method are less than 1.3%, indicating the high
accuracy of the present approach. Note that, for this example, the elapsed CPU time
of the coupling method is only 37.5% of that required by the FEM alone for solving
the final system of equations.
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Table 5 The results of KI and KII of crack tips with 2a1 = 100mm and a2 = 100mm

Crack tip SIF SIF value (MPa · mm1/2) Deviation (%)

Coupling method Traditional FEM

A KI 33.0146 32.6479 1.1232

KII 32.1911 31.8732 0.9974

B KI 31.5570 31.1602 1.2734

KII 31.3420 31.0215 1.0332

C KI 19.1515 19.0432 0.5687

KII − 3.7738 −3.7307 1.1553

D KI 19.4107 19.3338 0.3977

KII 3.8416 3.8100 0.8294

6 Conclusions

To make full use of the unique advantage of SFBEM in dealing with the singular
behaviour at crack tips while keeping the wide applicability of FEM in modelling
complex structures and boundary conditions, this paper presents a SFBEM–FEM
coupling method for the SIF analysis of complex crack problems. The stiffness matrix
of the cracked superelement is first formulated by SFBEM based on the Erdogan fun-
damental solutions, in which the stress boundary conditions on the crack surfaces are
automatically satisfied and the singular behaviour at crack tips can be naturally cap-
tured. Then, the proposed cracked superelements are incorporated into a finite element
mesh to simulate the behaviour of different crack zones, and the global finite element
equations are established and solved following the typical FEMprocedure. Finally, the
SIFs of the crack tips can be directly obtained by a backward analysis with SFBEM
by superposition of the analytical SIF fundamental solutions, which are included as
a part of the Erdogan fundamental solutions. Two numerical examples as well as an
engineering application are presented to show the efficacy of the present approach by
merging of the cracked superelements to the commercial FEM software. However, it
should be pointed out that the present study is only limited to two-dimensional crack
analysis. The coupling method for three-dimensional crack problems will be further
considered in future study.
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