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Abstract In this paper, the dynamic fracture problem of multiple moving cracks at the interface of two dissimilar
functionally graded magnetoelectroelastic (FGMEE) layers subjected to anti-plane mechanical and in-plane magne-
toelectrical loads is considered. The magnetoelectromechanical properties are assumed to vary exponentially with
the coordinate perpendicular to the cracks. The integral transform technique is employed to solve the moving crack
problem at the interface of dissimilar FGMEE layers. Numerical values for the field intensity factors are graphically
presented and the effects of the crack velocity, nonhomogeneity parameter, and material volume fraction on the
field intensity factor are examined.

Keywords Distributed dislocation technique · Field intensity factors · Functionally graded material · Magneto-
electroelastic layer · Moving cracks

1 Introduction

In practical applications, the composite materials that consist of piezoelectric and piezomagnetic phases seem to
have certain reliability problems arising largely from high stresses, poor interfacial bonding strength, and low
toughness. To improve their application and reliability, FGMs can be extended to piezoelectric/piezomagnetic and
magnetoelectroelastic materials.

Functionally graded materials (FGMs) are essentially inhomogeneous composites, which have characteristics of
spatially varying material properties to enhance the bonding strength. In designing components involving FGMs,
it is important to consider imperfections, such as cracks, which are often pre-existed as those generated by external
loads during service. Fracture mechanics of FGMs plays an important role in the analysis and design of many
complex smart structures and devices.

This study was directed at the dynamic fracture mechanics of such materials when there are multiple moving
cracks at the interface and sought to find parameters that govern the crack growth such as the crack stress intensity
factors and energy release rate.

Numerous publications have addressed the moving crack problem in a piezoelectric solid (see, for example,
the works of [1]–[4]). Gao et al. [5] solved a generalized 2D problem of an electrically permeable interface crack
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between two dissimilar MEE solids under general loading. Gao and Noda [6] studied the problem of an interface
crack between two dissimilar magnetoelectroelastic materials under uniform heat flow. The problem of a Griffith
moving crack in an MEE material with a permeable condition was analyzed by Hu and Li [7]. The problem of
moving crack at the interface of two dissimilar MEE materials under shear and in-plane electric and magnetic loads
was analyzed by Hu et al. [8]. They obtained the closed-form expressions for field intensity factors.

Several studies have been performed for the dynamic anti-plane behavior of two dissimilar magnetoelectroelastic
materials involving an anti-plane shear interfacial moving crack; see, e.g., the works of [9–13,15,20,21].

The propagation of an interface Griffith crack between two dissimilar FGPM layers under anti-plane shear was
analyzed by Shin and Lee [14]. In this study, The Fourier transformation is employed to solve the Volterra dislocation
in a functionally graded MEE half-plane. Fu et al. [16] solved the problem of a moving crack in a functionally
graded MEE strip under anti-plane mechanical and in-plane electric and magnetic loadings. Hu and Chen [17] have
addressed the problem of moving crack in an MEE material under in-plane mechanical, electric, and magnetic
loading. In another paper, Hu and Chen [18] investigated the interface crack moving between MEE and functionally
elastic layers. Yue and Wan [19] discussed the problem of periodic mode-III Yoffe-type cracks propagating sub-
sonically along with the interfaces in a multilayered piezomagnetic/piezoelectric composite under in-plane magnetic
or electric field. The problem of several moving cracks in a functionally graded magnetoelectroelastic strip subjected
to anti-plane mechanical and in-plane electric and magnetic loading is solved by Bagheri et al. [4]. Ma et al. [23]
studied the plane-strain problem of a moving crack at the interface of two dissimilar MEE materials. Ayatollahi
et al. [24] investigated the dynamic fracture behavior of a functionally graded magnetoelectroelastic half-plane
containing multiple moving cracks under different electric and magnetic boundary conditions. Bagheri and Noroozi
[25] employed the distributed dislocation technique to analyze a piezoelectric half-plane containing several moving
cracks under in-plane electro-elastic loading.

The technique developed in this study is useful for the dynamic fracture mechanics studies of two bonded MEE
layers with any number of cracks at the interface. The problem is solved for various values of the nonhomogeneity
parameter and different values of loading parameters. This paper is organized as follows. The mathematical for-
mulation of the problem is given in Sect. 2. Section 3 deals with the constructions of the integral equations for two
bonded FGMEE layers weakened by several moving interface cracks. The numerical results are then presented and
discussed in Sect. 4. Finally, concluding remarks are given in Sect. 5.

2 Mathematical Formulation of the Problem

The usefulness of distributed dislocation technique in generating solutions to multiple crack problems has been
well demonstrated in the literature for the static case. In this section, we describe the layered intelligent structures
composed of two bonded dissimilar FGMEE layers weakened by moving dislocation. Both materials are nonhomo-
geneous with an exponential property variation in the y-direction. In this case, if there is no body force and electric
charge density and magnetocharge density, the constitutive equations for the FGMEE material can be written as
⎛
⎜⎝

σ
(k)
ZY (X,Y, t)

D(k)
Y (X,Y, t)

B(k)
Y (X,Y, t)

⎞
⎟⎠ =

⎛
⎜⎝
c(k)

44 (Y ) e(k)
15 (Y ) h(k)

15 (Y )

e(k)
15 (Y ) −d(k)

11 (Y ) −β
(k)
11 (Y )

h(k)
15 (Y ) −β

(k)
11 (Y ) −γ

(k)
11 (Y )

⎞
⎟⎠

⎛
⎝

∂W (k)
/
∂Y

∂ϕ(k)
/
∂Y

∂ψ(k)
/
∂Y

⎞
⎠ ,

⎛
⎜⎝

σ
(k)
Z X (X,Y, t)

D(k)
X (X,Y, t)

B(k)
X (X,Y, t)

⎞
⎟⎠ =

⎛
⎜⎝
c(k)

44 (Y ) e(k)
15 (Y ) h(k)

15 (Y )

e(k)
15 (Y ) −d(k)

11 (Y ) −β
(k)
11 (Y )

h(k)
15 (Y ) −β

(k)
11 (Y ) −γ

(k)
11 (Y )

⎞
⎟⎠

⎛
⎝

∂W (k)
/
∂X

∂ϕ(k)
/
∂X

∂ψ(k)
/
∂X

⎞
⎠ , k = 1, 2, (1)

where σZY , σZ X , DX , DY and BX , BY are the component of stress, electric displacement, and magnetic induc-
tion, respectively; c(k)

44 , e(k)
15 , h(k)

15 and β
(k)
11 , denote the elastic, piezoelectric, piezomagnetic, and electromagnetic

constants; d(k)
11 , and γ

(k)
11 , are dielectric permeability and magnetopermeability. Note that the layer number will be

designed by a superscript k = 1, 2. The nontrivial ones of the equations of motion and Maxwell’s equations for
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magnetoelectroelastic materials take the following forms:

∂σ
(k)
Z X (X,Y, t)

∂X
+ ∂σ

(k)
ZY (X,Y, t)

∂Y
= ρ(k) ∂

2W (k)(X,Y, t)

∂t2 ,

∂D(k)
X (X,Y, t)

∂X
+ ∂D(k)

Y (X,Y, t)

∂Y
= 0,

∂B(k)
X (X,Y, t)

∂X
+ ∂B(k)

Y (X,Y, t)

∂Y
= 0, k = 1, 2. (2)

To make the analysis tractable, the material possesses the following inhomogeneous properties:

c(1)
44 = c440 exp(2βY ), e(1)

15 = e150 exp(2βY ), h(1)
15 = h150 exp(2βY ), ρ(1) = ρ0 exp(2βY ),

β
(1)
11 = β110 exp(2βY ), d(1)

11 = d110 exp(2βY ), γ
(1)
11 = γ110 exp(2βY ) 0 < Y < h1,

c(2)
44 = c440 exp(2λY ), e(2)

15 = e150 exp(2λY ), h(2)
15 = h150 exp(2λY ), ρ(2) = ρ0 exp(2λY ),

β
(2)
11 = β110 exp(2λY ), d(2)

11 = d110 exp(2λY ), γ
(2)
11 = γ110 exp(2λY ), −h2 < Y < 0,

(3)

where β and λ are the gradient of material properties and are positive or negative constants. This model includes the
effects of varying material constants and mass density but ignores the effect of the spatial variation of wave speed.
Substituting from (3) and (1) into the governing equation (2), we obtain

c440∇2W (1) + e150∇2ϕ(1) + h150∇2ψ(1) + 2βc440
∂W (1)

∂Y
+ 2βe150

∂ϕ(1)

∂Y
+ 2βh150

∂ψ(1)

∂Y
= ρ0

∂2W (1)

∂t2 ,

e150∇2W (1) − d110∇2ϕ(1) − β110∇2ψ(1) + 2βe150
∂W (1)

∂Y
− 2βd110

∂ϕ(1)

∂Y
− 2ββ110

∂ψ(1)

∂Y
= 0,

h150∇2W (1) − β110∇2ϕ(1) − γ110∇2ψ(1) + 2βh150
∂W (1)

∂Y
− 2ββ110

∂ϕ(1)

∂Y
− 2βγ110

∂ψ(1)

∂Y
= 0, 0 < Y < h1,

c440∇2W (2) + e150∇2ϕ(2) + h150∇2ψ(2) + 2λc440
∂W (2)

∂Y
+ 2λe150

∂ϕ(2)

∂Y
+ 2λh150

∂ψ(2)

∂Y
= ρ0

∂2W (2)

∂t2 ,

e150∇2W (2) − d110∇2ϕ(2) − β110∇2ψ(2) + 2λe150
∂W (2)

∂Y
− 2λd110

∂ϕ(2)

∂Y
− 2λβ110

∂ψ(2)

∂Y
= 0,

h150∇2W (2) − β110∇2ϕ(2) − γ110∇2ψ(2) + 2λh150
∂W (2)

∂Y
− 2λβ110

∂ϕ(2)

∂Y
− 2λγ110

∂ψ(2)

∂Y
= 0, −h2 < Y < 0,

(4)

where ∇2 = ∂2
/
∂X2 + ∂2

/
∂Y 2 is the two-dimensional Laplacian operator. By introducing two new auxiliary

functions ϕ̄(k) and ψ̄(k) k = 1, 2 such that ([7]).

ϕ(k)(X,Y, t) = ϕ̄(k)(X,Y, t) − mW (k)(X,Y, t),
ψ(k)(X,Y, t) = ψ̄(k)(X,Y, t) − nW (k)(X,Y, t),

(5)

where m = (β110h150 − γ110 e150)
/
(d110γ110 − (β110)

2), n = (β110e150 − d110h150)
/
(d110γ110 − (β110)

2) are
the known constants. Substituting (5) into (4), we can obtain the governing equation as follows:

∇2W (k) + 2ξ
∂W (k)

∂Y
= ρ0

c̃44

∂2W (k)

∂t2 ,

∇2ϕ̄(k) + 2ξ
∂ϕ̄(k)

∂Y
= 0,

∇2ψ̄(k) + 2ξ
∂ψ̄(k)

∂Y
= 0, ξ ∈ {β, λ}, (6)

where c̃44 = c440 − e150m − h150n is the magnetoelectroelastic stiffened constant. For the analysis of moving
interfacial cracks, however, the solution to moving screw dislocation at the interface is required. To this end,
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Fig. 1 Schematic view of
moving dislocation at the
interface of dissimilar
magnetoelectroelastic layers

consider a screw dislocation moving with constant velocity V , along the X -direction, it is convenient to introduce a
new coordinate system oxyz that moves at the same speed as the moving dislocation (Fig. 1). The relation between
the initial coordinate system and moving coordinate system is defined by

x = X − V t, y = Y, z = Z . (7)

Equation (5) becomes independent of t and reduces to the following equation in the new coordinate system

K 2 ∂2w(k)

∂x2 + ∂2w(k)

∂y2 + 2ξ
∂w(k)

∂y
= 0,

∇2ϕ̄(k) + 2ξ
∂ϕ̄(k)

∂y
= 0,

∇2ψ̄(k) + 2ξ
∂ψ̄(k)

∂y
= 0, k = 1, 2, (8)

where K =
√

1 − (V
/
C)2 and C =

√
c̃44

/
ρ0. The basic equation (1) can be expressed as follows:

σ (k)
zy (x, y) =

(
c̃44

∂w(k)

∂y
+ e150

∂ϕ̄(k)

∂y
+ h150

∂ψ̄(k)

∂y

)
e2ξ y,

D(k)
y (x, y) = −

(
d110

∂ϕ̄(k)

∂y
+ β110

∂ψ̄(k)

∂y

)
e2ξ y,

B(k)
y (x, y) = −

(
β110

∂ϕ̄(k)

∂y
+ γ110

∂ψ̄(k)

∂y

)
e2ξ y, k = 1, 2. (9)

A single magnetoelectroelastic dislocation is located at the origin. The conditions representing the magnetoelec-
troelastic screw dislocation together with the jump in the electric and magnetic potentials may be expressed as

w(1)(x, 0+) − w(2)(x, 0−) = bzH(x),

ϕ(1)(x, 0+) − ϕ(2)(x, 0−) = bϕH(x),

ψ(1)(x, 0+) − ψ(2)(x, 0−) = bψ H(x), (10)

where H(.) is the Heaviside step function. In Eq. (10), bz , bϕ and bψ are the dislocation Burgers vectors of
generalized magnetoelectroelastic dislocation. The traction and charges-free conditions on the layer’s boundaries
can be written down in the following form:

σ (1)
zy (x, h1) = σ (2)

zy (x,−h2) = 0,

D(1)
y (x, h1) = D(2)

y (x,−h2) = 0,

B(1)
y (x, h1) = B(2)

y (x,−h2) = 0. (11)

Also, the continuity conditions y = 0 can be written as
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σ (1)
zy (x, 0+) = σ (2)

zy (x, 0−),

D(1)
y (x, 0+) = D(2)

y (x, 0−),

B(1)
y (x, 0+) = B(2)

y (x, 0−). (12)

By solving Eq. (8) and taking the inverse Fourier transform, we find that

w(1)(x, y) = e−βy

2π

+∞∫

−∞
(A(1)

1 (ω)e−γ1y + A(1)
2 (ω)eγ1y)eiωxdω,

ϕ̄(1)(x, y) = e−βy

2π

+∞∫

−∞
(B(1)

1 (ω)e−γ2 y + B(1)
2 (ω)eγ2 y)eiωxdω,

ψ̄(1)(x, y) = e−βy

2π

+∞∫

−∞
(C (1)

1 (ω)e−γ2 y + C (1)
2 (ω)eγ2 y)eiωxdω, (13a)

and

w(2)(x, y) = e−λy

2π

+∞∫

−∞
(A(2)

1 (ω)e−γ3y + A(2)
2 (ω)eγ3y)eiωxdω,

ϕ̄(2)(x, y) = e−λy

2π

+∞∫

−∞
(B(2)

1 (ω)e−γ4y + B(2)
2 (ω)eγ4y)eiωxdω,

ψ̄(2)(x, y) = e−λy

2π

+∞∫

−∞
(C (2)

1 (ω)e−γ4y + C (2)
2 (ω)eγ4y)eiωxdω, (13b)

where γ1 = √
β2 + (Kω)2, γ2 = √

β2 + ω2 , γ3 = √
λ2 + (Kω)2 and γ4 = √

λ2 + ω2. This completes the
formulation of the problem for the bonded dissimilar FGMEE layers in which the functions A(2)

i , B(2)
i and C (2)

i , i ∈
{1, 2} are determined from the boundary conditions. A simple calculation leads to the stress, electric displacement,
and magnetic induction expressions at the lower layer that are found to be

σ (2)
zy (x, y) = − c̃44bzeλy

2π

+∞∫

−∞
eγ3y(1 − e−2γ3(h2+y))

(λ − γ3)

P R̂ − P̂
(πδ(ω) − i/ω)eiωxdω

− (e150m + h150n)bzeλy

2π

+∞∫

−∞
eγ4y(1 − e−2γ4(h2+y))

(λ − γ4)

Q̂ − QR
(πδ(ω) − i/ω)eiωxdω

+ (e150bϕ + h150bψ)eλy

2π

+∞∫

−∞
eγ4y(1 − e−2γ4(h2+y))

(λ − γ4)

Q̂ − QR
(πδ(ω) − i/ω)eiωxdω,

D(2)
y (x, y) = (d110m + β110n)bzeλy

2π

+∞∫

−∞
eγ4y(1 − e−2γ4(h2+y))

(λ − γ4)

Q̂ − QR
(πδ(ω) − i/ω)eiωxdω

− (d110bϕ + β110bψ)eλy

2π

+∞∫

−∞
eγ4y(1 − e−2γ4(h2+y))

(λ − γ4)

Q̂ − QR
(πδ(ω) − i/ω)eiωxdω,
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B(2)
y (x, y) = (β110m + γ110n)bzeλy

2π

+∞∫

−∞
eγ4y(1 − e−2γ4(h2+y))

(λ − γ4)

Q̂ − QR
(πδ(ω) − i/ω)eiωxdω

− (β110bϕ + γ110bψ)eλy

2π

+∞∫

−∞
eγ4y(1 − e−2γ4(h2+y))

(λ − γ4)

Q̂ − QR
(πδ(ω) − i/ω)eiωxdω. (14)

To evaluate the stress components numerically, the integrals in Eq. (14) should be split into odd and even parts
to arrive at

σ (2)
zy (x, y) = − c̃44bzeλy

π
T1(γ1, γ3) − eλy

π
[(e150m + h150n)bz − e150bϕ − h150bψ ]T2(γ2, γ4),

D(2)
y (x, y) = eλy

π
[(d110m + β110n)bz − d110bϕ − β110bψ ]T2(γ2, γ4),

B(2)
y (x, y) = eλy

π
[(β110m + γ110n)bz − β110bϕ − γ110bψ ]T2(γ2, γ4). (15)

The expressions for T1(γ1, γ3) and T2(γ2, γ4) are given in Appendix A. The field components in Eq. (15) are
unbounded for points in the vicinity of dislocation. To investigate and to separate the possible singular part of
the singular parts of the stress component, electric displacement, and magnetic induction in (15), the asymptotic
behavior of the inner integral must be examined. Thus, to identify the type of singularity, we carry out the asymptotic
analysis of the improper integrals by observing that for large values of ω → ∞, from (15), we obtain

σ (2)
zy (x, y) = − c̃44Kbzeλy

2π

x

x2 + (Ky)2 − eλy[(e150m + h150n)bz − e150bϕ − h150bψ ]
2π

x

x2 + y2

− c̃44bzeλy

π
T3(γ1, γ3) − eλy

π
[(e150m + h150n)bz − e150bϕ − h150bψ ]T4(γ2, γ4),

D(2)
y (x, y) = − ((d110m + β110n)bz − d110bϕ − β110bψ)eλy

2π

x

x2 + y2

+eλy

π
((d110m + β110n)bz − d110bϕ − β110bψ)T4(γ2, γ4),

B(2)
y (x, y) = − ((β110m + γ110n)bz − β110bϕ − γ110bψ)eλy

2π

x

x2 + y2

+eλy

π
((β110m + γ110n)bz − β110bϕ − γ110bψ)T4(γ2, γ4) (16)

in which T3(γ1, γ3) and T4(γ2, γ4) are given in Appendix A. It is worth mentioning that the stress, electric dis-
placement, and magnetic induction field due to generalized moving dislocation, Eq. (16), are Cauchy singular at
the dislocation location.

3 The integral equations

The formulation given in the previous section is used to construct integral equations for the analysis of multiple
interfacial moving cracks in two bonded dissimilar FGMEE layers. A crack configuration concerning coordinate
system x , y may be described in parametric form as

xi = xoi + li s,
yi = yoi i = 1, 2, . . . , N − 1 ≤ s ≤ 1,

(17)

where (xoi , yoi )are the coordinates of the cracks centers, N represents the number of moving cracks, and li is the
half-length of the crack. By Continuous distribution of dislocations with unknown density Bkj (t), k ∈ {z, φ, ψ} on
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the infinitesimal segment dli located on the surface of the j th crack, we obtain the integral equations of the problem.
The traction free condition on the surface of cracks results in Bkj (t).⎧⎪⎨
⎪⎩

− τ0
c̃44

− D0
d110m+β110n

− B0
β110m+γ110n

⎫⎪⎬
⎪⎭

=
N∑
j=1

∫ 1

−1

⎛
⎜⎝

⎧⎪⎨
⎪⎩

K 11
i j (s, t)

K 21
i j (s, t)

K 31
i j (s, t)

⎫⎪⎬
⎪⎭

Bzj (t) +

⎧⎪⎨
⎪⎩

K 12
i j (s, t)

K 22
i j (s, t)

K 32
i j (s, t)

⎫⎪⎬
⎪⎭

Bϕ j (t) +

⎧⎪⎨
⎪⎩

K 13
i j (s, t)

K 23
i j (s, t)

K 33
i j (s, t)

⎫⎪⎬
⎪⎭

Bψ j (t)

⎞
⎟⎠ l j dt .

(18)

The kernels of integral equations (18) are given in Appendix A. To reduce the problem to a system of integral
equations, we introduce the following new unknown functions:

w−
j (s) − w+

j (s) = l j
s∫

−1
Bz j (t)dt,

ϕ−
j (s) − ϕ+

j (s) = l j
s∫

−1
Bϕ j (t)dt,

ψ−
j (s) − ψ+

j (s) = l j
s∫

−1
Bψ j (t)dt, j = 1, 2, . . . , N .

(19)

The no-net-dislocation conditions are∫ 1

−1
Bk j (t)dt = 0 k ∈ {z, ϕ, ψ}. (20)

We employ the square-root-singular fundamental function, so that

Bk j (t) = gk j (t)√
1 − t2

− 1 ≤ t ≤ 1 k ∈ {z, ϕ, ψ}, (21)

where gk j (t) are bounded at t = ±1. The system of equations (18) and (20) may be solved for the dislocation
densities. The stress, electric displacement, and the magnetic induction intensity factors at the crack tips +1 and
−1 are defined as⎧⎨
⎩

(KM
R )i

(K D
R )i

(K B
R )i

⎫⎬
⎭ = Li (+1)

2

⎧⎨
⎩

⎛
⎝

c44

−e15

−h15

⎞
⎠ gz i (+1) +

⎛
⎝

e15

d11

β11

⎞
⎠ gϕ i (+1) +

⎛
⎝
h15

β11

γ11

⎞
⎠ gψ i (+1)

⎫⎬
⎭ . (22)

Similarly,
⎧⎨
⎩

(KM
L )i

(K D
L )i

(K B
L )i

⎫⎬
⎭ = − Li (−1)

2

⎧⎨
⎩

⎛
⎝

c44

−e15

−h15

⎞
⎠ gz i (−1) +

⎛
⎝

e15

d11

β11

⎞
⎠ gϕ i (−1) +

⎛
⎝
h15

β11

γ11

⎞
⎠ gψ i (−1)

⎫⎬
⎭ , i = 1, 2, ..., N .

(23)

Finally, the integral equations (18) are solved and field intensity factors are calculated by Eqs. (22) and (23).

4 Results and discussion

In this section, some numerical calculations are carried out. As a particular case of the problem, the BaTiO3-
CoFe2O4 composite material with a volume fraction Vf = 0.50 is considered. Their material properties are given
in Table 1.

The upper and lower layers are composites made of BaTiO3 as the inclusion material and CoFe2 O4 as the
matrix material. Their properties are shown in Table 1 (2013). Using the following linear mixture rule, the material
properties of each composite component are given

χ(c) = χ(i)Vf + χ(m)(1 − Vf), (24)
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Table 1 Material properties for single-phase and the composite

Material constants (2013) BaTiO3 CoFe2O4 Composite (1:1)

c44(×1010N
/

m2) 4.3 4.53 4.4

e15(C
/

m2) 11.6 N A 5.8

d11(×10−10C
/

Vm) 112 0.8 56.4

h15 (N
/

Am) N A 550 275

γ11(×10−6Ns2
/

C2) 5 590 297.5

ρ(×103kg
/

m3) 6.02 5.3 5.7

β11(×10−11Ns
/

VC) 0.5

where superscripts c, i, and m denote the composite, inclusion, and matrix materials, respectively, and Vf is the
volume fraction of the single-phase BaTiO3.

The loading combination parameters are introduced to reflect the corresponding loading combination between
electric, magnetic, and mechanical loads.

λD = D0e15
/
τ0d11, λB = B0h15

/
τ0β11. (25)

It is convenient to adopt dimensionless parameters in the plots so that we define normalized field intensity factors
(FIFs) as

K0M = τ0
√
l, K0D = τ0

√
ld11

/
e15, K0B = τ0

√
lβ11

/
h15. (26)

In the present paper, we consider the case where the layered smart structure is under constant anti-plane mechanical
shear stress σzy = τ0, in-plane electrical loading Dy = D0 , and magnetic loading B0 In the sequel, unless otherwise
stated, the loading parameters and the dimensions of the layers are, respectively, λD = 1.0, λB = 1.0, h1 = 0.01m
and h2 = 0.01m.

Results were first validated based on those of an infinite homogeneous MEE plane weakened by moving screw
dislocation. This problem was studied by [15]. The problem is reduced to the moving magnetoelectroelastic screw
dislocation solution of [15] by setting h1 → ∞ and h2 → ∞.

σzy(x, y) = (α2e150 + α3h150 − K c̃44)bz
2π

x

x2 + (Ky)2 − (e150bϕ + h150bψ)

2π

x

x2 + y2 ,

Dy(x, y) = − (α2d110 + α3β110)bz − (d110bϕ + β110bψ)

2π

x

x2 + y2 ,

By(x, y) = − (α2β110 + α3γ110)bz − (β110bϕ + γ110bψ)

2π

x

x2 + y2 . (27)

The results are in complete agreement with the results obtained by Tupholme which demonstrate the validity of the
dislocation solution. These imply the correctness and accuracy of our results.

4.1 Single crack problem

Consider a finite crack with constant length propagating at a constant speed V along with the interface between two
dissimilar functionally graded magnetoelectroelastic layers, as shown in Fig. 2a.

Graphical plots of normalized field intensity factors (FIFs) against V
/
C1 different values of gradient parameters

λL are presented in Fig. 2. The general feature of these curves is that the FIFs increase with the increase of
crack velocity. Significant effects of the material gradient λL upon stress intensity factors (SIFs) can be observed
V

/
C1 < 0.6. However, when the material properties are graded, a significant increase in FIFs is observed with an
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Fig. 2 a A moving crack at the interface of two dissimilar FGMEE layers. b Variation of normalized stress intensity factor versus the
crack speed. c Variation of normalized electric displacement intensity factor versus the crack speed. d Variation of normalized magnetic
induction intensity factor versus the crack speed. e Variation of normalized stress intensity factor versus the crack speed for different
material volume fractions
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Fig. 2 continued

increase in crack speed and gradient of the materials. The remarkable difference between different FGM exponents
λL is shown in Fig. 2c and d. Generally speaking, smaller positive values of FGM constants can reduce the FIFs
and larger values can lead to larger values of FIFs. To investigate the effect of the composite type on DSIFs, a
moving crack at the interface of dissimilar functionally graded MEE layers with different material volume fractions
is considered, Fig. 2e. The loading parameters and nonhomogeneous parameter are λD = 1.0, λB = 1.0 and
λL = 2.0, respectively.

It is shown that, in all composite materials, as the crack velocity increases the SIFs increase. The volume fraction
of the single-phase BaTiO3 has a drastic effect on the dynamic stress intensity factor.

In the next example, the dependency of stress intensity factors of a moving interfacial crack on the FGM exponent
is examined. The plots of dimensionless stress intensity factors for different dimensionless crack velocities V

/
C1

versus FGM exponent are drawn in Fig. 3. It is observed that stress intensity factors grow rapidly as the FGM
exponent increases from the negative to the positive value. A remarkable difference is seen for a higher value of
crack velocity.

123



Dissimilar nonhomogeneous magnetoelectroelastic. . . Page 11 of 17 8

Fig. 3 Variation of normalized stress intensity factor versus λL

Fig. 4 Variation of normalized stress intensity factor versus L
/
h1

Figure 4 displays the variation of the normalized SIFs against the crack length for different values of normalized
crack velocity and loading parameters. It is seen that the SIFs rise with the increase of the crack length. For a very
large crack or very thin layer thickness, we obtain the higher values of SIFs.

The SIFs for V
/
C1 = 0, as shown in the figure, correspond to the static solution of an interface crack in two

bonded FGMEE layers under different loading conditions.
We observe that the positive electric or magnetic loading increases the normalized stress intensity factor more

than the negative one. Therefore, the sign of electric or magnetic loading could enhance or impede the dielectric
crack growth.

4.2 Multiple cracks problem

The formulation may be used for the analysis of multiple moving cracks along with the interface.
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Fig. 5 Two equal-length
moving cracks at the
interface of two dissimilar
FGMEE layers

Fig. 6 Variation of normalized stress intensity factor two interfacial cracks versus V
/
C1

The next example deals with the interaction between two identical interfacial moving cracks (Fig. 5). Figure 6,
displays the variations of normalized stress intensity factors verses V

/
C1 for different ratios of the FGM exponent.

It is seen that for large values of FGM exponent, stress intensity factor increases significantly.
Two interfacial equal-length cracks with length L = 0.5h are shown in Fig. 7. The length of the cracks is fixed

while the location of crack centers is changing in the interface. Due to symmetry, as it is expected, the SIFs at L1

and R1 are equal to those at R2 and L2, respectively. Also, the interaction of cracks d > 1.7L is weak and it decays
out. It is observed from Fig. 7, the crack velocity has a significant effect on the value of stress intensity factors.
Similar phenomena can be observed for other values V/C .

In the remaining section, more examples are rendered to demonstrate the applicability of the proposed method.
Therefore, the study of the interaction between three cracks is taken up, Fig. 8. We observe that interaction between
cracks enhances the SIFs of crack L2R2 and experiences much larger stress intensity factors. In contrast, crack
tips L1 and R3experience smaller SIF than the other tips. It can be seen from Fig. 9 that the stress intensity factors
increase as the FG exponent increases.

The model of interfacial unequal cracks is of more practical significance than the widely studied model of equal
cracks because actual interfacial cracks are always unequal. As the last example, the study of the interaction between
three unequal-length cracks is taken up, Fig. 10.

In comparison with the previous example, we observe that interaction between cracks enhances the SIFs of crack
L2R2, which is larger than the other cracks. The SIFs are the lowest at crack tips L1 and R3, which is the farthest
crack tip from the other crack tips.
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Fig. 7 Variation of normalized stress intensity factor of two interfacial cracks versus d
/
L

Fig. 8 Three equal-length
moving cracks at the
interface of two dissimilar
FGMEE layers

Fig. 9 Variation of normalized stress intensity factor three interfacial cracks versus V
/
C1
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Fig. 10 Three
unequal-length moving
cracks at the interface of two
dissimilar FGMEE layers

Fig. 11 Variation of normalized stress intensity factor three unequal interfacial moving cracks versus V
/
C1

5 Conclusions

The dynamic crack problem of moving crack at the interface of two dissimilar functionally graded magnetoelec-
troelastic layers is studied. The exponential Fourier transform method and distributed dislocation technique are
used to construct the singular integral equations with Cauchy type kernel, which is further solved numerically. A
generalized dislocation is obtained, which can be used as the fundamental solution for solving multiple interfacial
moving cracks problems in two dissimilar nonhomogeneous magnetoelectroelastic layers. The formulation is quite
useful in analyzing the problem of multiple interfacial moving cracks.

The results are obtained for different values of the nonhomogeneity parameter λL at the tips of multiple moving
cracks and are shown in Figs. 2, 6, and 9. The figures also show another physically expected result, and the field
intensity factors depend on the crack velocity and the sign of loading parameters. It can be concluded that the
dynamic field intensity factor increases significantly with the increase of crack velocity. Furthermore, the results
are highly affected by the material volume fractions. To study the interaction between cracks, field intensity factors
are obtained for some examples. The interaction of multiple moving cracks decreases when the distance between
the cracks increases.
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Appendix A

The coefficients of Eq. (14) are

A(2)
2 (ω) = bz

P R̂ − P̂
(πδ(ω) − i

/
ω),

B(2)
2 (ω) = mbz − bϕ

Q̂ − QR
(πδ(ω) − i

/
ω),

C (2)
2 (ω) = nbz − bψ

Q̂ − QR
(πδ(ω) − i

/
ω),

A(2)
1 (ω) = −e−2γ3h2

λ − γ3

λ + γ3

bz

P R̂ − P̂
(πδ(ω) − i

/
ω),

B(2)
1 (ω) = −e−2γ4h2

λ − γ4

λ + γ4

mbz − bϕ

Q̂ − QR
(πδ(ω) − i

/
ω),

C (2)
1 (ω) = −e−2γ4h2

λ − γ4

λ + γ4

nbz − bψ

Q̂ − QR
(πδ(ω) − i

/
ω). (A-1)

In the above equations

P = 1 − e−2γ1h1
β + γ1

β − γ1
, P̂ = 1 − e−2γ3h2

λ − γ3

λ + γ3
, (A-2)

Q = 1 − e−2γ2h1
β + γ2

β − γ2
, Q̂ = 1 − e−2γ4h2

λ − γ4

λ + γ4
, (A-3)

R = (λ − γ4)(1 − e−2γ4h2)

(β + γ2)(1 − e−2γ2h1)
, R̂ = (λ − γ3)(1 − e−2γ3h2)

(β + γ1)(1 − e−2γ1h1)
, (A-4)

the following functions are used in the field components.

T1(γ1, γ3) =
+∞∫

0

(eγ3y − e−γ3(y+2h2))
λ − γ3

ω(P R̂ − P̂)
sin ωx dω, (A-5)

T2(γ2, γ4) =
+∞∫

0

(eγ4y − e−2γ4h2 e−γ4y)
λ − γ4

ω(Q̂ − QR)
sin ωx dω, (A-6)

T3(γ1, γ3) =
+∞∫

0

[
(eγ3y − e−γ3(y+2h2))

λ − γ3

ω(P R̂ − P̂)
− K

2
eKωy

]
sin ωx dω, (A-7)

T4(γ2, γ4) =
+∞∫

0

(
(eγ4y − e−γ4(y+2h2))

λ − γ4

ω(Q̂ − QR)
+ eωy

2

)
sin ωx dω, (A-8)

The kernels of singular integral equations (18) are:

K 11
i j (s, t) = −K eλ(yi−y j )

2π

xi − x j
(xi − x j )2 + [K (yi − y j )]2 + [(e150m + h150n)]eλ(yi−y j )

2π c̃44

xi − x j
(xi − x j )2 + (yi − y j )2 ,

−
+∞∫

0

[
(λ − γ3)(eγ3(yi−y j ) − e−γ3((yi−y j )+2h2))

ω(P R̂ − P̂)
− K

2
ekω(yi−y j )

]
sin ω(xi − x j )dω,
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− (e150m + h150n)eλ(yi−y j )

π c̃44

+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ 1

2
eω(yi−y j )

]

× sin ω(xi − x j )dω,

K 12
i j (s, t) = −e150eλ(yi−y j )

2π c̃44

xi − x j
(xi − x j )2 + (yi − y j )2 + e150eλ(yi−y j )

π c̃44
,

×
+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ 1

2
eω(yi−y j )

]
sin ω(xi − x j )dω,

K 13
i j (s, t) = −h150eλ(yi−y j )

2π c̃44

xi − x j
(xi − x j )2 + (yi − y j )2 + h150eλ(yi−y j )

π c̃44

×
+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ eω(yi−y j )

2

]
sin ω(xi − x j )dω,

K 21
i j (s, t) = eλ(yi−y j )

2π

xi − x j
(xi − x j )2 + (yi − y j )2 + eλ(yi−y j )

π

×
+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ eω(yi−y j )

2

]
sin ω(xi − x j )dω,

K 22
i j (s, t) = d110eλ(yi−y j )

2π(d110m + β110n)

xi − x j
(xi − x j )2 + (yi − y j )2 − d110eλ(yi−y j )

π(d110m + β110n)
,

×
+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ eω(yi−y j )

2

]
sin ω(xi − x j )dω,

K 23
i j (s, t) = β110eλ(yi−y j )

2π(d110m + β110n)

xi − x j
(xi − x j )2 + (yi − y j )2 − β110eλ(yi−y j )

π(d110m + β110n)
,

×
+∞∫

0

[ (λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ eω(yi−y j )

2
] sin ω(xi − x j )dω

K 31
i j (s, t) = eλ(yi−y j )

2π

xi − x j
(xi − x j )2 + (yi − y j )2 + eλ(yi−y j )

π
,

×
+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ eω(yi−y j )

2

]
sin ω(xi − x j )dω,

K 32
i j (s, t) = β110eλ(yi−y j )

2π(β110m + γ110n)

xi − x j
(xi − x j )2 + (yi − y j )2 − β110eλ(yi−y j )

π(β110m + γ110n)
,

×
+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ eω(yi−y j )

2

]
sin ω(xi − x j )dω,

K 33
i j (s, t) = γ110eλ(yi−y j )

2π(β110m + γ110n)

xi − x j
(xi − x j )2 + (yi − y j )2 − γ110eλ(yi−y j )

π(β110m + γ110n)
,
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×
+∞∫

0

[
(λ − γ4)(eγ4(yi−y j ) − e−γ4((yi−y j )+2h2))

ω(Q̂ − QR)
+ eω(yi−y j )

2

]
sin ω(xi − x j )dω. (A-9)
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