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Abstract In the present paper, a new three-scale asymptotic homogenization method is proposed to study the
electrical behavior of the cardiac tissue structure with multiple heterogeneities at two different levels. The first level
is associated with the mesoscopic structure such that the cardiac tissue is composed of extracellular and intracellular
domains. The second level is associated with the microscopic structure in such a way the intracellular medium can
only be viewed as a periodical layout of unit cells (mitochondria). Then, we define two kinds of local cells that are
obtained by upscaling methods. The homogenization method is based on a power series expansion which allows
determining the macroscopic (homogenized) bidomain model from the microscopic bidomain problem at each
structural level. First, we use the two-scale asymptotic expansion to homogenize the extracellular problem. Then,
we apply a three-scale asymptotic expansion in the intracellular problem to obtain its homogenized equation at two
levels. The first upscaling level of the intracellular structure yields the mesoscopic equation and the second step of
the homogenization leads to obtain the intracellular homogenized equation. Both the mesoscopic and microscopic
information are obtained by homogenization to capture local characteristics inside the cardiac tissue structure.
Finally, we obtain the macroscopic bidomain model and the heart domain coincides with the intracellular medium
and extracellular one, which are two inter-penetrating and superimposed continua connected at each point by the
cardiac cellular membrane. The interest of the proposed method comes from the fact that it combines microscopic
and mesoscopic characteristics to obtain a macroscopic description of the electrical behavior of the heart.
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1 Introduction

The heart is an organ that ensures life for all living beings. Indeed, its great importance comes from its organic
function which allows the circulation of blood throughout the body. It is a muscular organ composed of four cavities:
the left atrium and ventricle which represent the left heart, the right atrium and ventricle which form the right heart.
These four cavities are surrounded by a cardiac tissue that is organized into muscle fibers. These fibers form a
network of cardiac muscle cells called “cardiomyocyte” connected end-to-end by junctions. For more details about
the physiological background, we refer to [1] and about the electrical activity of the heart we refer to [2].

The structure of cardiac tissue (myocarde) studied in this paper is characterized at three different scales (see Fig.
1). At mesoscopic scale, the cardiac tissue is divided into two media: one contains the contents of the cardiomyocytes,
in particular the “cytoplasm” which is called the “intracellular” medium, and the other is called extracellular and
consists of the fluid outside the cardiomyocytes cells. These two media are separated by a cellular membrane (the
sarcolemma) allowing the penetration of proteins, some of which play a passive role and others play an active
role powered by cellular metabolism. At microscopic scale, the cytoplasm comprises several organelles such as
mitochondria. Mitochondria are often described as the “energy powerhouses” of cardiomyocytes and are surrounded
by another membrane. Then, we consider only that the intracellular medium can be viewed as a periodic perforated
structure composed of other connected cells. While at the macroscopic scale, this domain coincides with the
intracellular medium and extracellular one, which are two inter-penetrating and superimposed continua connected
at each point by the cardiac cellular membrane.

It should be noted that there is a difference between the chemical composition of the cytoplasm and that of the
extracellular medium. This difference plays a very important role in cardiac activity. In particular, the concentration of
anions (negative ions) in cardiomyocytes is higher than in the external environment. This difference of concentrations
creates a transmembrane potential, which is the difference in potential between these two media. The model that
describes the electrical activity of the heart, is called by “Bidomain model.” The first mathematical formulation
of this model was constructed by Tung [3]. The authors in [4] established the well-posedness of this microscopic
bidomain model under different conditions and proved the existence and uniqueness of their solutions (see other
work [5]).

The microscopic bidomain model [6,7] consists of two quasi-static equations, one for the electrical potential
in the intracellular medium and one for the extracellular medium, coupled through a dynamic boundary equation
at the interface of the two regions (the membrane Γ y). In our study, these equations depend on two small scaling
parameters ε and δ whose are, respectively, the ratio of the microscopic and mesoscopic scales from the macroscopic
scale.

Fig. 1 Representation of the cardiomyocyte structure http://www.cardio-research.com/cardiomyocytes
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Our goal in this paper is to derive, using a homogenization method, the macroscopic (homogenized) bidomain
model of the cardiac tissue from the microscopic bidomain model. In general, the homogenization theory is the
analysis of the macroscopic behavior of biological tissues by taking into account their complex microscopic structure.
For an introduction to this theory, we cite [8–11]. Applications of this technique can be found in modeling solids,
fluids, solid–fluid interaction, porous media, composite materials, cells, and cancer invasion. Several methods are
related to this theory. First, the multiple-scale method established by Benssousan et al. [12] and used in mechanics
and physics for problems containing several small scaling parameters.

The two-scale convergence method was introduced by Nugesteng [13] and developed by Allaire et al. [14]. In
addition, Allaire et al. [15], Trucu et al. [16] introduced a further generalization of the previous method via a three-
scale convergence approach for distinct problems. Here, we are not dealing with a rigorous multi-scale convergence
setting, as our main motivation lies in the direct application of asymptotic homogenization by following a formal
approach and accounting for a novel series expansion in terms of two distinct scaling parameters ε and δ. Recently,
the periodic unfolding method was introduced by Cioranescu et al. for the fixed domains in [17] and for the perforated
domains in [18]. This method is essentially based on two operators: the first represents the unfolding operator and
the second operator consists to separate the microscopic and macroscopic scales (see also [19,20]).

There are some of these methods that are applied on the microscopic bidomain model to obtain the homogenized
macroscopic model. First, Krassowska and Neu [21] applied the two-scale asymptotic method to formally obtain
this macroscopic model (see also [6,22] for different approaches). Furthermore, Pennachio et al. [7] used the tools
of the Γ -convergence method to obtain a rigorous mathematical form of this homogenized macroscopic model.
In [23,24], the authors used the theory of two-scale convergence method to derive the homogenized bidomain
model. Recently, the authors in [4] proved the existence and uniqueness of solution of the microscopic bidomain
model by using the Faedo–Galerkin method. Further, they applied the unfolding homogenization method at two
scales. Some recent works are available on the numerical implementation of bidomain models in the context of pure
electro-physiology in [25] and of cardiac electromechanics in [26,27].

The main of contribution of the present paper. The cardiac tissue structure is viewed at micro–macro scales and
studied at the three different scales where the intracellular medium is a periodic composed of connected cells. The
aim is to derive the two levels of homogenized bidomain model of cardiac electro-physiology from the microscopic
bidomain model. This paper presents a formal mathematical writing for the results obtained in a recent work [28]
based on a three-scale unfolding homogenization method. In [28], we used unfolding operators to converge our
meso–microscopic bidomain problem as ε, δ → 0 and then to obtain the same macroscopic bidomain system.
While in the present work, we will apply the two-scale asymptotic expansion method on the extracellular medium
(similar derivation may be found in [6]). Further, we will derive a formal approach, by accounting for a three-scale
asymptotic expansion, in terms of two distinct scaling parameters ε and δ on the intracellular medium based on the
work of Benssousan et al. [12]. The asymptotic expansion is proposed to investigate the effective properties of the
cardiac tissue at each structural level, namely, micro–meso–macro scales. Moreover, to treat the bidomain problem
in this work, the multi-scale technique is needed to be established in time domain directly.

The outline of the paper is as follows. In Sect. 2, we introduce the microscopic bidomain model in the cardiac
tissue structure featured by two parameters, ε and δ, characterizing the microscopic and mesoscopic scales. Section
3 is devoted to homogenization procedure. The two-scale asymptotic expansion method applied in the extracellular
problem is explained in Sect. 3.1. The homogenized equation for the extracellular problem is obtained in terms of the
coefficients of conductivity matrices and cell problems. In Sect. 3.2, the homogenized equation for the intracellular
problem is obtained similarly at two levels but using a three-scale asymptotic expansion which depends on ε and δ.

The first level of homogenization yields the mesoscopic problem and then we complete the second level to obtain
the corresponding homogenized equation. Finally, the main result is presented in Sect. 3.3 and the macroscopic
bidomain equations are recuperated from the extracellular and intracellular homogenized equations. In Appendix A,
we report some notations and special functional spaces used for the homogenization. More properties and theorems
including these spaces are also postponed in the Appendix A.
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Fig. 2 A Periodic heterogeneous domain Ω , B Unit cell Y at ε-structural level, and C Unit cell Z at δ-structural level

2 Bidomain modeling of the heart tissue

The aim of this section is to define the geometry of cardiac tissue and to present the microscopic bidomain model
of the heart.

2.1 Geometric idealization of the myocardium microstructure

The cardiac tissue Ω ⊂ R
d is considered as a heterogeneous double periodic domain with a Lipschitz boundary

∂Ω . The structure of the tissue is periodic at mesoscopic and microscopic scales related to two small parameters ε

and δ, respectively, see Fig. 2.
Following the standard approach of the homogenization theory, this structure is featured by two parameters �mes

and �mic characterizing, respectively, the mesoscopic and microscopic length of a cell. Under the two-level scaling,
the characteristic lengths �mes and �mic are related to a given macroscopic length L (of the cardiac fibers), such that
the two scaling parameters ε and δ are introduced by

ε = �mes

L
and δ = �mic

L
with �mic << �mes.

2.1.1 The mesoscopic scale

The domain Ω is composed of two ohmic volumes, called intracellular Ω
ε,δ
i and extracellular Ωε

e medium (for

more details see [7]). Geometrically, we find that Ω
ε,δ
i and Ωε

e are two open connected regions such that

Ω = Ω
ε,δ

i ∪ Ω
ε

e with Ω
ε,δ
i ∩ Ωε

e = ∅.

These two regions are separated by the surface membrane Γε which is expressed by

Γε = ∂Ω
ε,δ
i ∩ ∂Ωε

e ,

assuming that the membrane is regular. We can observe that the domain Ω
ε,δ
i as a perforated domain obtained from

Ω by removing the holes which correspond to the extracellular domain Ωε
e .

At this ε-structural level, we can divide Ω into Nε small elementary cells Yε = ∏d
n=1 0, ε �mes

n , with
�mes

1 , . . . , �mes
d are positive numbers. These small cells are all equal, thanks to a translation and scaling by ε,

to the same unit cell of periodicity called the reference cell Y = ∏d
n=1]0, �mes

n [. Indeed, if we denote by T k
ε a
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translation of εk with k = (k1, . . . , kd) ∈ Z
d . In addition, if the cell considered Y k

ε is located at the kiéme
i position

according to the direction i of space considered, we can write

Y k
ε := T k

ε + εY = {εξ : ξ ∈ k� + Y },
with k� := (k1�

mes
1 , . . . , kd�mes

d ).

Therefore, for each macroscopic variable x that belongs to Ω, we define the corresponding mesoscopic variable
y ≈ x/ε that belongs to Y with a translation. Indeed, we have

x ∈ Ω ⇒ ∃k ∈ Z
d such that x ∈ Y k

ε ⇒ x = ε(k� + y) ⇒ y = x

ε
− k� ∈ Y.

Since, we will study in the extracellular medium Ωε
e the behavior of the functions u(x, y) which are y-periodic,

so by periodicity we have

u
(
x,

x

ε
− k�

)
= u

(
x,

x

ε

)
.

By notation, we say that y = x/ε belongs to Y.

We are assuming that the cells are periodically organized as a regular network of interconnected cylinders at the
mesoscale. The mesoscopic unit cell Y is also divided into two parts: intracellular Yi and extracellular Ye. These
two parts are separated by a common boundary Γ y . So, we have

Y = Yi ∪ Ye ∪ Γ y, Γ y = ∂Yi ∩ ∂Ye.

In a similar way, we can write the corresponding common periodic boundary as follows:

Γ k
ε := T k

ε + εΓ y = {εξ : ξ ∈ k� + Γ y},
with T k

ε denoting the same previous translation.
In summary, the intracellular and extracellular medium can be described as the intersection of the cardiac tissue

Ω with the cell Y k
j,ε for j = i, e :

Ω
ε,δ
i = Ω ∩

⋃

k∈Zd

Y k
i,ε, Ωε

e = Ω ∩
⋃

k∈Zd

Y k
e,ε, Γε = Ω ∩

⋃

k∈Zd

Γ k
ε ,

with each cell defined by Y k
j,ε = T k

ε + εY j for j = i, e.

2.1.2 The microscopic scale

The cytoplasm contains far more mitochondria described as “the powerhouse of the myocardium” surrounded by
another membrane Γδ. Then, we only assume that the intracellular medium Ω

ε,δ
i can also be viewed as a periodic

perforated domain.
At this δ-structural level, we can divide this medium with the same strategy into small elementary cells Zδ =∏d
n=1]0, δ �mic

n [, with �mic
1 , . . . , �mic

d are positive numbers. Using a similar translation (noted by T k′
δ ), we return to

the same reference cell noted by Z = ∏d
n=1]0, �mic

n [. Note that if the cell considered Zk′
δ is located at the k

′iéme
n

position according to the direction n of space considered, we can write

Zk′
δ := T k′

δ + δZ = {δζ : ζ ∈ k′
�′ + Z},

with k′
�′ := (k′

1�
mic
1 , . . . , k′

d�
mic
d ).

Therefore, for each macroscopic variable x that belongs to Ω, we also define the corresponding microscopic
variable z ≈ y/δ ≈ x/(εδ) that belongs to Z with the translation T k′

δ .
The microscopic reference cell Z splits into two parts: mitochondria part Zm and the complementary part

Zc := Z \ Zm. These two parts are separated by a common boundary Γ z . So, we have

Z = Zm ∪ Zc ∪ Γ z, Γ z = ∂Zm.
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By definition, we have ∂Zc = ∂extZ ∪ Γ z .

More precisely, we can write the intracellular meso- and microscopic domain Ω
ε,δ
i as follows:

Ω
ε,δ
i = Ω ∩

⋃

k∈Zd

⎛

⎝Y k
i,ε ∩

⋃

k′∈Zd

Zk′
c,δ

⎞

⎠

with Zk′
c,δ defined by

Zk′
c,δ := T k′

δ + δZc = {δζ : ζ ∈ k′
�′ + Zc}.

In the intracellular medium Ω
ε,δ
i , we will study the behavior of the functions u(x, y, z) which are z-periodic, so by

periodicity we have

u

(

x, y,
x

εδ
− k�

δ
− k′

�′

)

= u
(
x, y,

x

εδ

)
.

By notation, we say that z = x/(εδ) belongs to Z . Similarly, we describe the common boundary at microscale as
follows:

Γδ = Ω ∩
⋃

k′∈Zd

Γ k′
δ ,

where Γ k′
δ is given by

Γ k′
δ := T k′

δ + δΓ z = {δζ : ζ ∈ k′
�′ + Γ z},

with T k′
δ denoting the same previous translation.

2.2 Microscopic bidomain model

A vast literature exists on the bidomain modeling of the heart, we refer to [2,6,7,29,30] for more details.

2.2.1 Basic equations

The basic equations modeling the electrical activity of the heart can be obtained as follows. First, we know that the
structure of the cardiac tissue can be viewed as composed by two volumes: the intracellular space Ωi (inside the
cells) and the extracellular space Ωe (outside) separated by the active membrane Γ y .

Thus, the membrane Γ y is pierced by proteins whose role is to ensure ionic transport between the two media
(intracellular and extracellular) through this membrane. So, this transport creates an electric current.
So by using Ohm’s law, the intracellular and extracellular electrical potentials u j : Ω j,T �→ R are related to the
current volume densities J j : Ω j,T �→ R

d for j = i, e:

J j = M j∇u j in Ω j,T := (0, T ) × Ω j ,

with M j representing the corresponding conductivities of the tissue (which are assumed to be isotropic at the
microscale) and are given in mS/cm2.
In addition, the transmembrane potential v is known as the potential at the membrane Γ y which is defined as
follows:

v = (ui − ue)|Γ y : (0, T ) × Γ y �→ R.

Moreover, we assume that the intracellular and extracellular spaces are source-free and thus the intracellular and
extracellular potentials ui and ue are solutions to the elliptic equations:

− divJ j = 0 in Ω j,T . (1)
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According to the current conservation law, the surface current density Im is now introduced:

Im = −Ji · ni = Je · ne on Γ
y
T := (0, T ) × Γ y (2)

with ni denoting the unit exterior normal to the boundary Γ y from intracellular to extracellular space and ne = −ni .
The membrane has both a capacitive property schematized by a capacitor and a resistive property schematized

by a resistor. On the one hand, the capacitive property depends on the formation of the membrane which can be
represented by a capacitor of capacitance Cm (the capacity per unit area of the membrane is given in μF/cm2). We
recall that the quantity of the charge of a capacitor is q = Cmv. Then, the capacitive current Ic is the amount of
charge that flows per unit of time:

Ic = ∂tq = Cm∂tv.

On the other hand, the resistive property depends on the ionic transport between the intracellular and extracellular
media. Then, the resistive current Ir is defined by the ionic current Iion measured from the intracellular to the
extracellular medium which depends on the transmembrane potential v and the gating variable w : Γ y �→ R.
The electric current can be blocked by the membrane or can be passed through the membrane with ionic current
Ir − Iapp. So, the charge conservation states that the total transmembrane current Im (see [29]) is given as follows:

Im = Ic + Ir − Iapp on Γ
y
T ,

where Iapp is the applied current per unit area of the membrane surface (given in μA/cm2). Consequently, the
transmembrane potential v satisfies the following dynamic condition on Γ y involving the gating variable w:

Im = Cm∂mv + Iion(v,w) − Iapp on Γ
y
T ,

∂tw − H(v,w) = 0 on Γ
y
T .

(3)

Herein, the functions H and Iion correspond to the ionic model of membrane dynamics. All surface current densities
Im and Iion are given in μA/cm2. Moreover, time is given in ms and length is given in cm.

Mitochondria are a subcompartment of the cell bound by a double membrane. Although some mitochondria
probably do look like the traditional cigar-shaped structures, it is more accurate to think of them as a budding and
fusing network similar to the endoplasmic reticulum. Mitochondria are intimately involved in cellular homeostasis.
Among other functions they play a part in intracellular signaling and apoptosis, intermediary metabolism, and in the
metabolism of amino acids, lipids, cholesterol, steroids, and nucleotides. Perhaps most importantly, mitochondria
have a fundamental role in cellular energy metabolism. This includes fatty acid oxidation, the urea cycle, and the
final common pathway for ATP production—the respiratory chain (see [31] for more details). For this, we assume
that the mitochondria are electrically insulated from the remainder of the intracellular space. Thus, we suppose that
the no-flux boundary condition at the interface Γ z is given by

Mi∇ui · nz = 0 on Γ z
T := (0, T ) × Γ z, (4)

with nz denoting the unit exterior normal to the boundary Γ z .

2.2.2 Non-dimensional analysis

Cardiac tissues have a number of important inhomogeneities, particularly those related to inter-cellular communica-
tions. The dimensionless analysis done correctly makes the problem simpler and clearer. In the literature, few works
in that direction have been carried out, although we can cite [6,29,32] for the non-dimensionalization procedure
of the ionic current and [22,33] for the non-dimensional analysis in the context of bidomain equations. So, this
analysis follows three steps.

First, we can define the dimensionless scale parameter:

ε :=
√

�mes

Rmλ
,
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where Rm denotes the surface specific resistivity of the membrane Γ y and λ := λi + λe, with λ j representing
the average eigenvalues of the corresponding conductivity M j for j = i, e, over the cells’ arrangement. Now, we
perform the following scaling of the space and time variables:

x̂ = x

L
, t̂ = t

τ

with the macroscopic units of length L = �mes/ε = �mic/δ and the time constant τ associated with charging the
membrane by the transmembrane current is given by

τ = RmCm.

We take x̂ to be the variable at the macroscale (slow variable)

y := x̂

ε
and z := x̂

εδ

to be, respectively, the mesoscopic and microscopic space variable (fast variables) in the corresponding unit cell.
Secondly, we scale all electrical potentials u j , v, currents and the gating variable w:

v = Δvv̂, u j = Δvû j and w = Δwŵe,

where Δv and Δw are convenient units to measure electric potentials and gating variable, respectively, for j = i, e.
By the chain rule, we obtain

LCm

τ
∂̂t v̂ + L

Δv

(Iion − Iapp
) = −Mi∇x̂ ûi · ni = Me∇x̂ ûe · ne.

Recalling that τ = RmCm and normalizing the conductivities M j for j = i, e using

M̂ j = 1

λ
M j ,

we get

L

Rmλ
∂̂t v̂ + L

Δvλ

(Iion − Iapp
) = −M̂i∇x̂ ûi · ni = M̂e∇x̂ ûe · ne.

Regarding the ionic functions Iion, H, and the applied current Iapp, we non-dimensionalize them by using the
following scales:

Îion (̂v, ŵ) = Rm

Δv
Îion (̂v, ŵ), Îapp = Rm

Δv
Iapp and Ĥ (̂v, ŵ) = τ

Δw
H(v,w).

Consequently, we have

L

Rmλ

(
∂̂t v̂ + Îion (̂v, ŵ) − Îapp

) = −M̂i∇x̂ ûi · ni = M̂e∇x̂ ûe · ne.

Remark 1 Recalling that the dimensionless parameter ε, given by ε := √
�mes/Rmλ, is the ratio between the

mesoscopic cell length �mes and the macroscopic length L , i.e., ε = �mes/L and solving for ε, we obtain

ε = L

Rmλ
.

Finally, we can convert the above microscopic bidomain system (1)–(4) to the following non-dimensional form:

−∇x̂ ·
(

M̂ε,δ
i ∇x̂ û

ε,δ
i

)
= 0 in Ω

ε,δ
i,T := (0, T ) × Ω

ε,δ
i , (5a)

−∇x̂ · (M̂ε
e∇x̂ û

ε
e

) = 0 in Ωε
e,T := (0, T ) × Ωε

e , (5b)

ε
(
∂̂t v̂ε + Îion (̂vε, ŵε) − Îapp,ε

) = Îm on Γε,T := (0, T ) × Γε, (5c)
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−M̂ε,δ
i ∇x̂ û

ε,δ
i · ni = M̂ε

e∇x̂ û
ε
e · ne = Îm on Γε,T , (5d)

∂̂t ŵε − Ĥ (̂vε, ŵε) = 0 on Γε,T , (5e)

M̂ε,δ
i ∇x̂ û

ε,δ
i · nz = 0 on Γδ,T , (5f)

with each equation corresponding to the following sense: (5a) Intra quasi-stationary conduction, (5b) Extra quasi-
stationary conduction, (5c) Reaction on face condition, (5d) Meso-continuity equation, (5e) Dynamic coupling, and
(5f) Micro-boundary condition.

For convenience, the superscript ·̂ of the dimensionless variables is omitted. Note that the bidomain equations
are invariant with respect to the scaling parameters ε and δ. Then, we define the rescaled electrical potential as
follows:

uε,δ
i (t, x) := ui

(
t, x,

x

ε
,
x

εδ

)
, uε

e(t, x) := ue
(
t, x,

x

ε

)
.

Analogously, we obtain the rescaled transmembrane potential vε = (uε,δ
i − uε

e)|Γε,T and gating variable wε. Thus,
we define also the following rescaled conductivity matrices:

Mε,δ
i (x) := Mi

(
x,

x

ε
,
x

εδ

)
and Mε

e(x) := Me

(
x,

x

ε

)
, (6)

satisfying the elliptic and periodicity conditions (11)–(29).
Finally, the ionic current Iion(v,w) can be decomposed into I1,ion(v) : R → R and I2,ion(w);R → R, where

Iion(v,w) = I1,ion(v) + I2,ion(w). Furthermore, I1,ion is considered as a C1 function, I2,ion and H : R
2 → R

are linear functions. Also, we assume that there exists r ∈ (2,+∞) and constants α1, α2, α3, α4, α5,C > 0 and
β1, β2 > 0 such that

1

α1
|v|r−1 ≤ ∣

∣I1,ion(v)
∣
∣ ≤ α1

(
|v|r−1 + 1

)
,

∣
∣I2,ion(w)

∣
∣ ≤ α2(|w| + 1), (7a)

|H(v,w)| ≤ α3(|v| + |w| + 1), and I2,ion(w)v − α4H(v,w)w ≥ α5 |w|2 , (7b)

Ĩ1,ion : z �→ I1,ion(z) + β1z + β2 is strictly increasing with lim
z→0

Ĩ1,ion(z)/z = 0, (7c)

∀z1, z2 ∈ R,
(

Ĩ1,ion(z1) − Ĩ1,ion(z2)
)

(z1 − z2) ≥ 1

C
(1 + |z1| + |z2|)r−2 |z1 − z2|2 . (7d)

Remark 2 In the mathematical analysis of bidomain equations, several paths have been followed in the literature
according to the definition of the ionic currents. We summarize below the encountered various cases:

1. Physiological models
These types of models attempt to describe specific actions within the cell membrane. Such exact models are
derived either by fitting the parameters of an equation to match experimental data or by defining equations that
were confirmed by later experiments. Moreover, they are based on the cell membrane formulation developed
by Hodgkin and Huxley for nerve fibers [34] (see [35] for more details). To go further in the physiological
description, some models consider the concentrations as variables of the system, see for example, the Beeler–
Reuter model [36] and the Luo–Rudy model [37–39]. In [5,40], such models are considered.

2. Phenomenological models
Other non-physiological models have been introduced as approximations of ion current models. They can be
used in large problems because they are typically small and fast to solve, although they are less flexible in
their response to variations in cellular properties such as concentrations or cell size. We take in this paper the
FitzHugh–Nagumo model [41,42] that satisfies assumptions (7) which reads as

H(v,w) = av − bw, (8a)

Iion(v,w) = (λv(1 − v)(v − θ)) + (−λw) := I1,ion(v) + I2,ion(w), (8b)
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3 Page 10 of 30 F. Bader et al.

where a, b, λ, θ are given parameters with a, b ≥ 0, λ < 0, and 0 < θ < 1. According to this model,
the functions Iion and H are continuous and the non-linearity Ia,ion is of cubic growth at infinity then the most
appropriate value is r = 4. We end this remark by mentioning other reduced ionic models: the Roger–McCulloch
model [43] and the Aliev–Panfilov model [44] may be considered more general than the previous model but
still rise some mathematical difficulties.

We complete system (5) with no-flux boundary conditions:
(

Mε,δ
i ∇uε,δ

i

)
· n = (

Mε
e∇uε

e

) · n = 0 on (0, T ) × ∂extΩ,

and appropriate the initial Cauchy conditions for transmembrane potential v and gating variable w. Herein, n is the
outward unit normal to the exterior boundary of Ω.

Clearly, the equations in (5) are invariant under the simultaneous change of uε,δ
i and uε

e into uε,δ
i + k; uε

e + k,
for any k ∈ R. Hence, we may impose the following normalization condition:
∫

Ωε
e

uε
e(t, x)dx = 0 for a.e. t ∈ (0, T ). (9)

3 Asymptotic expansion homogenization

In this section, we will introduce a homogenization method based on asymptotic expansion using multi-scale
variables (i.e., slow and fast variables). The aim is to show how to obtain a mathematical writing of the macroscopic
model from the microscopic model. This method, among others, is a formal and intuitive method for predicting the
mathematical writing of a homogenized solution that can eventually approach the solution of the initial problem
(5).

For that, we start to treat the problem in the extracellular medium then we will solve the other one in the
intracellular medium using this method.

3.1 Extracellular problem

In the literature, Cioranescu and Donato [9] are applied and developed the two-scale asymptotic expansion method
established by Benssousan and Papanicolaou [12] on a problem defined at two scales to obtain the homogenized
model (see also [8,10,45]). Further, the authors in [46] have used this method to derive the macroscopic linear
behavior of a porous elastic solid saturated with a compressible viscous fluid. Its derivation is based on the linear
elasticity equations in the solid, the linearized Navier–Stokes equations in the fluid, and the appropriate conditions
at the solid–fluid boundary.

In our approach, we investigate the same two-scale technique for the extracellular problem. Whereas for the
intracellular domain, we develop a three-scale approach applied to the intracellular problem to handle with the two
structural levels of this domain (see Fig. 2). We recall the following initial extracellular problem:

Aεu
ε
e = 0 in Ωε

e,T ,

Mε
e∇uε

e · ne = ε
(
∂tvε + Iion(vε, wε) − Iapp,ε

) = Im on Γε,T ,
(10)

with Aε = −∇ · (Mε
e∇

)
, where the extracellular conductivity matrices Mε,δ

e are defined by

Mε
e(x) = Me

( x

ε

)
, a.e. on R

d ,

satisfying the following elliptic and periodic conditions:
{

Me(y) ∈ M(α, β,Y ),

Me = (m pq
e )1≤p,q≤d with m pq

e y-periodic, ∀p, q = 1, . . . , d,
(11)
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with α, β ∈ R, such that 0 < α < β and M(α, β,Y ) given by Definition 10.
The two-scale asymptotic expansion is assumed for the electrical potential uε

e is as follows:

uε
e(t, x) := ue

(
t, x,

x

ε

)
= ue,0

(
t, x,

x

ε

)
+ εue,1

(
t, x,

x

ε

)
+ ε2ue,2

(
t, x,

x

ε

)
+ · · · , (12)

where each u j (·, y) is y-periodic function dependent on time t ∈ (0, T ), slow (macroscopic) variable x , and the
fast (mesoscopic) variable y. The slow and fast variables correspond, respectively, to the global and local structure
of the field. Similarly, the applied current Iapp,ε has the same two-scale asymptotic expansion.

Consequently, the full operator Aε in the initial problem (10) is represented as

Aεu
ε
e(t, x) = [(ε−2Ayy + ε−1Axy + ε0Axx )ue]

(
t, x,

x

ε

)
, (13)

with each operator defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ayy = −
d∑

p,q=1

∂

∂yp

(

m pq
e (y)

∂

∂yq

)

,

Axy = −
d∑

p,q=1

∂

∂yp

(

m pq
e (y)

∂

∂xq

)

−
d∑

p,q=1

∂

∂xp

(

m pq
e (y)

∂

∂yq

)

,

Axx = −
d∑

p,q=1

∂

∂xp

(

m pq
e (y)

∂

∂xq

)

.

Now, we substitute the asymptotic expansion (12) of uε
e in the developed operator (13) to obtain

Aεu
ε
e(x) = [ε−2Ayyue,0 + ε−1Ayyue,1 + ε0Ayyue,2 + · · · ]

(
t, x,

x

ε

)

+ [ε−1Axyue,0 + ε0Axyue,1 + · · · ]
(
t, x,

x

ε

)

+ [ε0Axxue,0 + · · · ]
(
t, x,

x

ε

)

= [ε−2Ayyue,0 + ε−1 (Ayyue,1 + Axyue,0
)

+ ε0 (Ayyue,2 + Axyue,1 + Axxue,0
)]
(
t, x,

x

ε

)
+ · · · .

Similarly, we substitute the asymptotic expansion (12) of uε
e into the boundary condition Eq. (10) on Γ y .

Consequently, by equating the powers-like terms of ε� to zero (� = −2,−1, 0), we have to solve the following
system of equations for the functions ue,k(t, x, y), k = 0, 1, 2:
⎧
⎪⎨

⎪⎩

Ayyue,0 = 0 in Ye,

ue,0 y-periodic,

Me∇yue,0 · ne = 0 on Γ y,

(14)

⎧
⎪⎨

⎪⎩

Ayyue,1 = −Axyue,0 in Ye,

ue,1 y-periodic,
(
Me∇yue,1 + Me∇xue,0

) · ne = 0 on Γ y,

(15)

⎧
⎪⎨

⎪⎩

Ayyue,2 = −Axyue,1 − Axxue,0 in Ye,

ue,2 y-periodic,
(
Me∇yue,2 + Me∇xue,1

) · ne = ∂tv0 + Iion(v0, w0) − Iapp,0 on Γ y .

(16)

The authors in [9,12,17,19,20,26,31,46,47] have successively solved the three systems into Dirichlet boundary
conditions (14)–(16). Herein, the functions ue,0, ue,1, and ue,2 in the asymptotic expansion (12) for the extracellular
potential uε

e satisfy the Neumann boundary value problems (14)–(16) in the local portion Ye of a unit cell Y (see
[6,30] for the case of Laplace equations).
The resolution is described as follows:

123



3 Page 12 of 30 F. Bader et al.

• First step We begin with the first boundary value problem (14) whose variational formulation is as follows:
⎧
⎨

⎩

Find u̇e,0 ∈ Wper(Ye) such that

ȧYe (u̇e,0, v̇) =
∫

∂Ye
(Me∇yue,0 · ne)v dσy, ∀v̇ ∈ Wper(Ye),

(17)

with ȧYe (u̇, v̇) given by

ȧYe (u̇, v̇) =
∫

Ye
Me∇yu∇yvdy, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Ye) (18)

and Wper(Ye) is given by Definition 13.
We want to clarify the right-hand side of the variational formulation (17). By the definition of ∂Ye := (∂extY ∩
∂Ye) ∪ Γ y, we use Proposition 12 and the y-periodicity of Mi by taking into account the boundary condition
on Γ y to say that

∫

∂Ye
(Me∇yue,0 · ne)v dσy =

∫

∂extY∩∂Ye
(Me∇yue,0 · ne)v dσy +

∫

Γ y
(Me∇yue,0 · ne)v dσy = 0.

Using Theorem 17, we can prove the existence and uniqueness of the solution u̇e,0. Then, the problem (14) has
a unique solution ue,0 independent of y, so we deduce that

ue,0(t, x, y) = ue,0(t, x).

In the next section, we show that ui,0 does not depend on y and z (by the same strategy). Since v0 = (ui,0 −
ue,0)|Γ y then we also deduce that v0 and w0 do not depend on the mesoscopic variable y.

• Second step We now turn to the second boundary value problem (15).
Using Theorem 17, we obtain that the second system (15) has a unique weak solution u̇e,1 ∈ Wper(Ye) (defined
by [12,45]).
Thus, the linearity of terms in the right-hand side of Eq. (15) suggests to look for u̇e,1 under the following form:

u̇e,1(t, x, y) =
d∑

q=1

χ̇
q
e (y)

∂ u̇e,0
∂xq

(t, x) in Wper(Ye), (19)

with the corrector function χ̇
q
e satisfying the following ε-cell problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ayy χ̇
q
e =

d∑

p=1

∂m pq
e

∂yp
in Ye,

χ̇
q
e y-periodic,

Me∇y χ̇
q
e · ne = −(Meeq) · ne on Γ y,

(20)

for eq , q = 1, . . . , d, the standard canonical basis in R
d . Moreover, we can choose a representative element χ

q
e

of the class χ̇
q
e satisfying the following variational formulation:

{
Find χ

q
e ∈ W#(Ye) such that

aYe (χ
q
e , v) = (F, v)(W#(Ye))′,W#(Ye), ∀v ∈ W#(Ye),

(21)

with aYe given by (18) and F defined by

(F, v)(W#(Ye))′,W#(Ye) =
d∑

p=1

∫

Ye
m pq

e (y)
∂v

∂yp
dy,

where the space W#(Ye) is given by the expression (79). Since F belongs to (W#(Ye))′ then the condition of
Theorem 17 is imposed in order to guarantee existence and uniqueness of the solution.
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Thus, by the form of u̇e,1 given by (19), the solution ue,1 of the second system (15) can be represented by the
following ansatz:

ue,1(t, x, y) = χe(y) · ∇xu0(t, x) + ũe,1(t, x) with ue,1 ∈ u̇e,1, (22)

where ũe,1 is a constant with respect to y (i.e., ũe,1 ∈ 0̇ in Wper(Y )).

• Last step We now pass to the last boundary value problem (16). Taking into account the form of ue,0 and ue,1,
we obtain

− Axyue,1 − Axxue,0 =
d∑

p,q=1

∂

∂yp

(

m pq
e (y)

∂ue,1
∂xq

)

+
d∑

p,q=1

∂

∂xp

(

m pq
e (y)

(
∂ue,1
∂yq

+ ∂ue,0
∂xq

))

.

Consequently, this system (16) has the following variational formulation:
{

Find u̇e,2 ∈ Wper(Ye) such that

ȧYe (u̇e,2, v̇) = (F2, v̇)(Wper(Ye))′,Wper(Ye) ∀v̇ ∈ Wper(Ye),
(23)

with ȧYe given by (18) and F2 defined by

(F2, v̇)(Wper(Ye))′,Wper(Ye)

=
∫

Γ y

(
Me∇yue,2 + Me∇xue,1

) · ne v dσy −
d∑

p,q=1

∫

Ye
m pq

e (y)
∂ue,1
∂xq

∂v

∂yp
dy

+
d∑

p,q=1

∫

Ye

∂

∂xp

(

m pq
e (y)

(
∂ue,1
∂yq

+ ∂ue,0
∂xq

))

vdy, ∀v ∈ v̇, ∀v̇ ∈ Wper(y).

(24)

The problem (23)–(24) is well posed according to Theorem 17 under the compatibility condition

(F2, 1)(Wper(Ye))′,Wper(Ye) = 0,

which is equivalent to

−
d∑

p,q=1

∫

Ye

∂

∂xp

(

m pq
e (y)

(
∂ue,1
∂yq

+ ∂ue,0
∂xq

))

dy = ∣
∣Γ y

∣
∣
(
∂tv0 + Iion(v0, w0) − Iapp

)
.

In addition, we replace ue,1 by its form (22) in the above condition to obtain

−
d∑

p,q=1

∫

Ye

∂

∂xp

(

m pq
e (y)

(
d∑

k=1

∂χk
e

∂yq

∂ue,0
∂xk

+ ∂ue,0
∂xq

))

dy

= ∣
∣Γ y

∣
∣
(
∂tv0 + Iion(v0, w0) − Iapp

)
.

By expanding the sum and permuting the index, we obtain

−
d∑

p,q=1

d∑

k=1

∫

Ye

∂

∂xp

(

m pq
e (y)

∂χk
e

∂yq

∂ue,0
∂xk

)

dy −
d∑

p,k=1

∫

Ye

∂

∂xp

(

m pk
e (y)

∂ue,0
∂xk

)

dy

= ∣
∣Γ y

∣
∣
(
∂tv0 + Iion(v0, w0) − Iapp

)
,

which is equivalent to find ue,0 satisfying the following problem:

−
d∑

p,k=1

⎡

⎣ 1

|Y |
d∑

q=1

∫

Ye

(

m pk
e (y) + m pq

e (y)
∂χk

e

∂yq

)

dy

⎤

⎦ ∂2ue,0
∂xp∂xk
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= |Γ y |
|Y |

(
∂tv0 + Iion(v0, w0) − Iapp

)
,

where

Iapp(t, x) = 1

|Γ y |
∫

Γ y
Iapp,0(·, y) dσy .

Consequently, we see that exactly the homogenized equation satisfied by ue,0 of the extracellular problem can be
rewritten as

Bxxue,0 = μm
(
∂tv0 + Iion(v0, w0) − Iapp

)
on ΩT , (25)

where μm = |Γ y | / |Y | . Herein, the homogenized operator Bxx is defined by

Bxx = −∇x · (M̃e∇x
) = −

d∑

p,k=1

∂

∂xp

(

m̃pq
e

∂

∂xk

)

, (26)

with the coefficients of the homogenized conductivity matrices M̃e =
(
m̃pk

e

)

1≤p,k≤d
defined by

m̃pk
e := 1

|Y |
d∑

q=1

∫

Ye

(

m pk
e + m pq

e
∂χk

e

∂yq

)

dy. (27)

Remark 3 (Comparison with other papers) The technique we use in the extracellular problem is closely related to
that of Krassowska and Neu [21], with some clarifications, although the resulting model differs in important ways
(described in Sect. 3.2). Keener and Panfilov [48] consider a network of myocytes, and transform to a local curvilinear
coordinate system in which one coordinate is aligned with the fiber orientation. They make a transformation to the
reference frame and then obtain the bidomain model analogous to that performed by Krassowska and Neu [21]
on a regular lattice of myocytes. As such, this model provides insight into the mechanism of direct stimulation
and defibrillation of cardiac tissue after injection of large currents. Further, Richardson and Chapman [22] have
applied the two-scale asymptotic expansion to bidomain problems which have an almost periodic microstructure
not in Cartesian coordinates but in a general curvilinear coordinate system. They used this method to derive a
version of the bidomain equations describing the macroscopic electrical activity of cardiac tissue. The treatment
systematically took into account the non-uniform orientation of the cells in the tissue and the deformation of the
tissue due to the heart beat. Recently, Whiteley [33] used the homogenization technique for an almost periodic
microstructure described by Richardson and Chapman [22], to derive the tissue level bidomain equations. They also
presented some observations on the entries of the conductivity tensors, as well as some observations arising from
the computation of the numerical solution of ε-cell problems.

3.2 Intracellular problem

Using the two-scale asymptotic expansion method, the extracellular problem is treated on two scales. Our derivation
bidomain model is based on a new three-scale approach. We apply a three-scale asymptotic expansion in the
intracellular problem to obtain its homogenized equation. Recall that uε,δ

i is the solution of the following initial
intracellular problem:

Aε,δu
ε,δ
i = 0 in Ω

ε,δ
i,T ,

−Mε,δ
i ∇uε,δ

i · ni = ε
(
∂tvε + Iion(vε, wε) − Iapp,ε

) = Im on Γε,T ,

−Mε,δ
i ∇uε,δ

i · nz = 0 on Γδ,T ,

(28)
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with Aε,δ = −∇ ·
(

Mε,δ
i ∇

)
, where the intracellular conductivity matrices Mε,δ

i are defined by

Mε,δ
i (x) = Mi

( x

ε
,
x

εδ

)

satisfying the following elliptic and periodicity conditions:

{
Mi (y, ·) ∈ M(α, β,Y ), Mi (·, z) ∈ M(α, β, Z),

Mi = (
m pq

i

)
1≤p,q≤d with m pq

i y- and z-periodic, ∀p, q = 1, . . . , d,
(29)

with α, β ∈ R, such that 0 < α < β and M(α, β,O) given by Definition 10.
In the intracellular problem, we consider three different scales: the slow variable x describes the macroscopic

one, the fast variables
x

ε
describes the mesoscopic one, while

x

εδ
describes the microscopic one.

To proceed with multi-scale formulation of the microscopic bidomain problem, a three-scale asymptotic expan-
sion is assumed for the intracellular potential uε,δ

i as follows:

uε,δ
i (t, x) := ui

(
t, x,

x

ε
,
x

εδ

)
= ui,0

(
t, x,

x

ε
,
x

εδ

)
+ εui,1

(
t, x,

x

ε
,
x

εδ

)
+ εδui,2

(
t, x,

x

ε
,
x

εδ

)

+ ε2ui,3
(
t, x,

x

ε
,
x

εδ

)
+ ε2δui,4

(
t, x,

x

ε
,
x

εδ

)

+ ε2δ2 ui,5
(
t, x,

x

ε
,
x

εδ

)
+ · · · ,

(30)

where each ui,q(·, y, z) is y- and z-periodic functions dependent on time t ∈ (0, T ), the macroscopic variable x,
the mesoscopic variable y, and the microscopic variable z.

Next, we use the chain rule to derive with respect to x

∂uε,δ
i

∂xq
(t, x) =

[
∂ui
∂xq

+ 1

ε

∂ui
∂yq

+ 1

εδ

∂ui
∂zq

] (
t, x,

x

ε
,
x

εδ

)
.

Remark 4 The authors in [49] used the iterated three-scale homogenization methods to study macroscopic perfor-
mance of hierarchical composites in the context of mechanics where the microscale and mesoscale are very well
separated, i.e.,

uε,δ(x, y, z) = u0(x, y, z) +
∞∑

k=1

εkuk(x, y, z) +
∞∑

k=1

δku′
k(x, y, z)

with y = x/ε and z = x/δ (δ << ε). The approach proposed in the present work exploited the effective properties
of cardiac tissue with multiple small-scale configurations. We note that our present technique recovers the classical
reiterated homogenization [12] where δ = ε.
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Consequently, we can write the full operator Aε,δ in the initial problem (28) as follows:

Aε,δu
ε,δ
i (t, x) = −

[
∇ ·

(
Mε,δ

i ∇uε,δ
i

)]
(t, x)

= −
⎡

⎣
d∑

p,q=1

∂

∂xp

(

m pq
i (y, z)

(
∂ui
∂xq

+ 1

ε

∂ui
∂yq

+ 1

εδ

∂ui
∂zq

))
⎤

⎦
(
t, x,

x

ε
,
x

εδ

)

− 1

ε

⎡

⎣
d∑

p,q=1

∂

∂yp

(

m pq
i (y, z)

(
∂ui
∂xq

+ 1

ε

∂ui
∂yq

+ 1

εδ

∂ui
∂zq

))
⎤

⎦
(
t, x,

x

ε
,
x

εδ

)

− 1

εδ

⎡

⎣
d∑

p,q=1

∂

∂z p

(

m pq
i (y, z)

(
∂ui
∂xq

+ 1

ε

∂ui
∂yq

+ 1

εδ

∂ui
∂zq

))
⎤

⎦
(
t, x,

x

ε
,
x

εδ

)

= [(ε−2δ−2Azz + ε−2δ−1Ayz + ε−1δ−1Axz

+ ε−2Ayy + ε−1Axy + ε0δ0Axx )ui ]
(
t, x,

x

ε
,
x

εδ

)
,

(31)

with each operator defined by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ass = −
d∑

p,q=1

∂

∂sp

(

m pq
i (y, z)

∂

∂sq

)

,

Ash = −
d∑

p,q=1

∂

∂sp

(

m pq
i (y, z)

∂

∂hq

)

−
d∑

p,q=1

∂

∂hq

(

m pq
i (y, z)

∂

∂sp

)

if s �= h,

for s, h := x, y, z.
Now, we substitute the asymptotic expansion (30) of uε,δ

i into the operator developed (31) to obtain

Aε,δu
ε,δ
i (t, x) = [ε−2δ−2Azzui,0 + ε−2δ−1Ayzui,0 + ε−2Ayyui,0 + ε−1δ−2Azzui,1 + δ−2Azzui,3

+ ε−1δ−1 (Azzui,2 + Ayzui,1 + Axzui,0
) + δ−1 (Azzui,4 + Ayzui,3 + Axzui,1

)

+ ε−1 (Ayzui,2 + Ayyui,1 + Axzui,0
)

+ ε0δ0 (Azzui,5 + Ayzui,4 + Ayyui,3 + Axzui,2 + Axyui,1 + Axxui,0
)]
(
t, x,

x

ε
,
x

εδ

)
+ · · · .

Similarly, we have the boundary condition

Mε,δ
i ∇uε,δ

i · n =
[
Mε,δ

i ∇xui + ε−1Mε,δ
i ∇yui + ε−1δ−1Mε,δ

i ∇zui
]

· n, (32)

for n := ni , nz . Thus, we also substitute the asymptotic expansion (30) of uε,δ
i into the boundary condition Eq. (28)

on Γ y and on Γ z :
Mε,δ

i ∇uε,δ
i · n = [ε0δ0(Mi∇xui,0) · n + ε(Mi∇xui,1) · n + εδ(Mi∇xui,2) · n + · · · ]

(
t, x,

x

ε
,
x

εδ

)

+ [ε−1(Mi∇yui,0) · n + ε0δ0(Mi∇yui,1) · n + δ(Mi∇yui,2) · n
+ ε(Mi∇yui,3) · n + εδ(Mi∇yui,4) · n + · · · ]

(
t, x,

x

ε
,
x

εδ

)

+ [ε−1δ−1(Mi∇zui,0) · n + δ−1(Mi∇zui,1) · n + ε0δ0(Mi∇zui,2) · n
+ εδ−1(Mi∇zui,3) · n + ε(Mi∇zui,4) · n + εδ(Mi∇zui,5) · n + · · · ]

(
t, x,

x

ε
,
x

εδ

)

= [ε−1δ−1(Mi∇zui,0) · n + ε−1(Mi∇yui,0) · n + δ−1(Mi∇zui,1) · n
+ ε0δ0 (Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0

) · n + εδ−1 (Mi∇zui,3
) · n

+ ε
(
Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1

) · n + δ(Mi∇yui,2) · n
+ εδ

(
Mi∇zui,5 + Mi∇yui,4 + Mi∇xui,2

) · n]
(
t, x,

x

ε
,
x

εδ

)
+ · · · ,
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where n represents the outward unit normal on Γ y or on Γ z (n := ni , nz). Consequently, by equating the terms
of the powers coefficients ε�δm for the elliptic equations and of the powers coefficients ε�+1δm+1 for the boundary
conditions (�,m = −2,−1, 0), we obtain the following systems:

⎧
⎪⎨

⎪⎩

Azzui,0 = 0 in Zc,

ui,0 z-periodic,

Mi∇zui,0 · nz = 0 on Γ z,

(33)

⎧
⎪⎨

⎪⎩

Ayyui,0 = 0 in Yi ,

ui,0 y-periodic,

Mi∇yui,0 · ni = 0 on Γ y,

(34)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ayzui,0 = 0 in Zc,

ui,0 y- and z-periodic,

Mi∇yui,0 · ni = 0 on Γ y,

Mi∇zui,0 · nz = 0 on Γ z,

(35)

⎧
⎪⎨

⎪⎩

Azzui,1 = 0 in Zc,

ui,1 z-periodic,

Mi∇zui,1 · nz = 0 on Γ z,

(36)

⎧
⎪⎨

⎪⎩

Azzui,2 = −Ayzui,1 − Axzui,0 in Zc,

ui,2 z-periodic,
(
Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0

) · nz = 0 on Γ z,

(37)

⎧
⎪⎨

⎪⎩

Azzui,3 = 0 in Zc,

ui,3 z-periodic,
(
Mi∇zui,3

) · nz = 0 on Γ z,

(38)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Azzui,4 = −Ayzui,3 − Axzui,1 in Zc,

ui,4 y- and z-periodic,
(
Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1

) · ni = − (
∂tv0 + Iion(v0, w0) − Iapp

)
on Γ y,

(
Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1

) · nz = 0 on Γ z,

(39)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ayzui,2 = −Ayyui,1 − Axyui,0 in Zc,

ui,2 y- and z-periodic,
(
Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0

) · ni = 0 on Γ y,

Mi∇yui,2 · nz = 0 on Γ z,

(40)

⎧
⎪⎨

⎪⎩

Azzui,5 = −Ayzui,4 − Ayyui,3 − Axzui,2 − Axyui,1 − Axxui,0 in Zc,

ui,5 z-periodic,
(
Mi∇zui,5 + Mi∇yui,4 + Mi∇xui,2

) · nz = 0 on Γ z .

(41)

These systems (33)–(41) have a particular structure in the sense that their unknowns will be found iteratively.
We will solve these nine problems (33)–(41) successively to determine the homogenized problem (based on the

work [9,12]). The resolution is described as follows:
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• Step 1 We begin with the first problem (33) whose variational formulation is as follows:
⎧
⎨

⎩

Find u̇i,0 ∈ Wper(Zc) such that

ȧZc(u̇i,0, v̇) =
∫

∂Zc

(
Mi∇zui,0 · nz

)
v dσz, ∀v̇ ∈ Wper(Zc),

(42)

with ȧZc given by

ȧZc(u̇, v̇) =
∫

Zc

Mi∇zu∇zv dz, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Zc), (43)

and

Wper(Zc) = H1
per(Zc)/R,

is given by Definition 13. Similarly, we want to clarify the right-hand side of the variational formulation (42). By
the definition of ∂Zc := ∂extZ ∪ Γ z, we use Proposition 12 and the z-periodicity of Mi by taking into account
the boundary condition on Γ z to say that

∫

∂Zc

(
Mi∇zui,0 · nz

)
v dσz =

∫

∂extZ

(
Mi∇zui,0 · nz

)
v dσz +

∫

Γ z

(
Mi∇zui,0 · nz

)
v dσz = 0.

Using Theorem 17, we obtain the existence and the uniqueness of solution u̇i,0 to the problem (42). In addition,
we have
∥
∥u̇i,0

∥
∥Wper(Zc)

= 0.

So, ui,0 is independent of the microscopic variable z. Thus, we deduce that

ui,0(t, x, y, z) = ui,0(t, x, y), ∀ui,0 ∈ u̇i,0.

• Step 2 We now solve the second boundary value problem (34) that is defined in Yi . Its variational formulation
is as follows:
⎧
⎨

⎩

Find u̇i,0 ∈ Wper(Yi ) such that

ȧYi (u̇i,0, v̇) =
∫

∂Yi
Mi∇yui,0 · ni v dσy ∀v̇ ∈ Wper(Yi ),

(44)

with ȧYi given by

ȧYi (u̇, v̇) =
∫

Yi
Mi∇yu∇yvdy, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Yi ) (45)

and Wper(Yi ) given by Definition 13.

Similarly, we want to clarify first the right-hand side in the variational formulation (44). By the definition of
∂Yi := (∂extY ∩ ∂Yi ) ∪ Γ y, we use Proposition 12 and the y-periodicity of Mi by taking into account the boundary
condition on Γ y to say that

∫

∂Yi
Mi∇yui,0 · ni (y)v dσy =

∫

∂extY∩∂Yi
Mi∇yui,0 · ni (y)v dσy +

∫

Γ y
Mi∇yui,0 · ni (y) dσy = 0.

Therefore, we can apply Theorem 17 to prove the existence and uniqueness of solution u̇i,0. In addition, we have
∥
∥u̇i,0

∥
∥Wper(Yi )

= 0.

Thus, we deduce that ui,0 is also independent of the mesoscopic variable y. Consequently, the third boundary value
problem (35) is satisfied automatically.

Next, we solve the fourth problem (36) by the same process of the first step. So, we deduce that ui,1 is independent
of z. Finally, we have

ui,0(t, x, y, z) = ui,0(t, x) and ui,1(t, x, y, z) = ui,1(t, x, y).
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Remark 5 Since ui,0 is independent of y and z then it does not oscillate “rapidly.” This is why now we expect ui,0 to
be the “homogenized solution.” To find the homogenized equation, it is sufficient to find an equation in Ω satisfied
by ui,0 independent on y and z.

• Step 3 We solve the fifth problem (37). Taking into account the form of ui,0 and ui,1, system (37) can be
rewritten as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Azzui,2 =
d∑

p,q=1

∂m pq
i

∂z p

(
∂ui,1
∂yq

+ ∂ui,0
∂xq

)

in Zc,

ui,2 z-periodic,
(
Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0

) · nz = 0 on Γ z,

(46)

Its variational formulation is
{

Find u̇i,2 ∈ Wper(Zc) such that

ȧZc(u̇i,2, v̇) = (F2, v̇)(Wper(Zc))′,Wper(Zc) ∀v̇ ∈ Wper(Zc),
(47)

with ȧZc given by (43) and F2 defined by

(F2, v̇)(Wper(Zc))′,Wper(Zc) = −
d∑

p,q=1

(
∂ui,1
∂yq

+ ∂ui,0
∂xq

)∫

Zc

m pq
i (t, y, z)

∂v

∂z p
dz, (48)

for all v ∈ v̇ and v̇ ∈ Wper(Zc).

Note that F2 belongs to (Wper(Zc))
′. Then, Theorem 17 gives a unique solution u̇i,2 ∈ Wper(Zc) of the problem

(46)–(48).
Thus, the linearity of terms in the right of equation (46) suggests to look for u̇i,2 under the following form:

u̇i,2 = θ̇i (z) · (∇y u̇i,1 + ∇x u̇i,0
)

in Wper(Zc), (49)

with the corrector function θ̇
q
i (i.e., the components of the function θ̇i ) satisfies the δ-cell problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Azz θ̇
q
i =

d∑

p=1

∂m pq
i

∂z p
(y, z) in Zc,

θ̇
q
i y- and z-periodic,

Mi∇z θ̇
q
i · nz = −(Mi eq) · nz on Γ z,

(50)

for eq , q = 1, . . . , d, the standard canonical basis in R
d . Moreover, we can choose a representative element θ

q
i

of the class θ̇
q
i which satisfy the following variational formulation:

⎧
⎪⎨

⎪⎩

Find θ
q
i ∈ W#(Zc) such that

aZc(θ
q
i , v) = −

d∑

p=1

∫

Zc

m pq
i (t, y, z)

∂v

∂z p
dz, ∀v ∈ W#(Zc),

(51)

with W#(Zc) given by the expression (79). The condition of Theorem 17 is imposed to guarantee the existence
and uniqueness of the solution of the problem (50)–(51). Thus, by the form u̇i,2 given by the expression (49),
the solution ui,2 can be represented by the following ansatz:

ui,2(t, x, y, z) = θi (z) · (∇yui,1(t, x, y) + ∇xui,0(t, x)
) + ũi,2(t, x, y) with ui,2 ∈ u̇i,2, (52)

and ũi,2 is a constant with respect to z (i.e., ũi,2 ∈ 0̇ in W#(Zc)).
Next, we pass to the sixth problem (38) by the same strategy of the first step. We obtain that ui,3 is independent
of z and we have

ui,3(t, x, y, z) = ui,3(t, x, y).
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• Step 4 We now solve the seventh boundary value problem (39). Taking into account the form of ui,3 and ui,1,
we can rewrite this problem as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Azzui,4 =
d∑

p,q=1

∂m pq
i

∂z p

(
∂ui,3
∂yq

+ ∂ui,1
∂xq

)

in Zc,

ui,4 y- and z-periodic,
(
Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1

) · nz = 0 on Γ z .

(53)

Its variational formulation is as follows:
{

Find u̇i,4 ∈ Wper(Zc) such that

ȧZc(u̇i,4, v̇) = (F4, v̇)(Wper(Zc))′,Wper(Zc) ∀v̇ ∈ Wper(Zc),
(54)

with ȧZc given by (43) and F4 defined by

(F4, v̇)(Wper(Zc))′,Wper(Zc) = −
d∑

p,q=1

(
∂ui,3
∂yq

+ ∂ui,1
∂xq

)∫

Zc

m pq
i (t, y, z)

∂v

∂z p
dz, (55)

for all v ∈ v̇ and v̇ ∈ Wper(Zc).

The problem (53)–(55) is well posed according to Theorem 17 under the compatibility condition:

(F4, 1)(Wper(Zc))′,Wper(Zc) = 0.

This implies that problem (39) has a unique periodic solution up to a constant. Thus, the linearity of terms in
the right-hand side of Eq. (53) suggests to look for ui,4 under the following form:

ui,4(t, x, y, z) = θi (z) · (∇yui,3(t, x, y) + ∇xui,1(x)
) + ũi,4(t, x, y) with ui,4 ∈ u̇i,4, (56)

where ũi,4 is a constant with respect to z and θi satisfies problem (50).
• Step 5 We consider the eighth problem (40):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ayzui,2 = −Ayyui,1 − Axyui,0 in Zc,

ui,2 z-periodic,
(
Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0

) · ni = 0 on Γ y,

Mi∇yui,2 · nz = 0 on Γ z .

Taking into account the form of ui,0 and ui,1, we can rewrite the first equation as follows:

Ayzui,2 =
d∑

p,q=1

∂

∂yp

(

m pq
i (y, z)

∂ui,1
∂yq

)

+
d∑

p,q=1

∂m pq
i

∂yp
(y, z)

∂ui,0
∂xq

.

To find the explicit form of ui,1, we will follow the following steps: First, we integrate over Zc the above equation
as follows:

−
d∑

p,q=1

∫

Zc

∂

∂yp

(

m pq
i (y, z)

∂ui,2
∂zq

)

dz −
d∑

p,q=1

∫

Zc

∂

∂z p

(

m pq
i (y, z)

∂ui,2
∂yq

)

dz

=
d∑

p,q=1

∫

Zc

∂

∂yp

(

m pq
i (y, z)

∂ui,1
∂yq

)

+
d∑

p,q=1

∫

Zc

∂m pq
i

∂yp
(y, z)

∂ui,0
∂xq

dz.

(57)

We denote by Ei with i = 1, . . . , 4 the terms of the previous equation which is rewritten as follows (to respect
the order):

E1 + E2 = E3 + E4.
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Next, we use the divergence formula for the second term E2 together with Proposition 12 and the boundary
condition on Γ z to obtain

E2 = −
∫

∂Zc

Mi∇yui,2 · nz dσz −
∫

∂extZ
Mi∇yui,2 · nz dσz −

∫

Γ z
Mi∇yui,2 · nz dσz = 0.

Now, we replace ui,2 by its expression (52) in the first term E1 to obtain the following:

E1 = −
d∑

p,q=1

∫

Zc

∂

∂yp

(

m pq
i (y, z)

(
d∑

k=1

∂θki

∂zq

(
∂ui,1
∂yk

+ ∂ui,0
∂xk

)))

dz.

By permuting the index in the right-hand side of Eq. (57), we obtain

E3 =
d∑

p,k=1

∫

Zc

∂

∂yp

(

m pk
i (y, z)

∂ui,1
∂yk

)

,

E4 =
d∑

p,k=1

∫

Zc

∂m pk
i

∂yp
(y, z)

∂ui,0
∂xk

dz.

Finally, we obtain an equation for the mesoscopic scale (independent of z) satisfied by ui,1

−
d∑

p,k=1

∂

∂yp

⎛

⎝ 1

|Z |
d∑

q=1

[∫

Zc

(

m pk
i + m pq

i

∂θki

∂zq

)

dz

]
∂ui,1
∂yk

⎞

⎠

=
d∑

p,k=1

∂

∂yp

⎛

⎝ 1

|Z |
d∑

q=1

[∫

Zc

(

m pk
i + m pq

i

∂θki

∂zq

)

dz

]⎞

⎠ ∂ui,0
∂xk

.

Similarly, we replace ui,2 by its form (52) in the boundary condition on Γ y then we integrate over Zc to obtain
another condition satisfied by ui,1. Then, we obtain a mesoscopic problem defined on the unit cell portion Yi
and satisfied by ui,1 as follows:
⎧
⎪⎨

⎪⎩

Byyui,1 =
d∑

p,k=1

∂m̃pk
i

∂yp

∂ui,0
∂xk

in Yi ,

(
M̃i∇yui,1 + M̃i∇xui,0

) · ni = 0 on Γ y,

(58)

with the operator Byy (homogenized operator with respect to z) defined by

Byy = −
d∑

p,k=1

∂

∂yp

(

m̃pk
i (y)

∂

∂yk

)

, (59)

where with the coefficients of the (homogenized with respect to z) conductivity matrices M̃i = (m̃pk
i )1≤p,k≤d

defined by

m̃pk
i (y) = 1

|Z |
d∑

q=1

∫

Zc

(

m pk
i + m pq

i

∂θki

∂zq

)

dz, ∀p, k = 1, . . . , d. (60)

Note that the y-periodicity of function m̃pk
i comes from the fact that the coefficients of conductivity matrix Mi

and of the function θi are y-periodic.
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Remark 6 The operatorByy has the same properties of the homogenized operator (26) for the extracellular problem.
At this point, we deduce that this method is used to homogenize the problem with respect to z and then with respect
to y. We remark also that allows to obtain the effective properties at δ-structural level and which become the input
values in order to find the effective behavior of the cardiac tissue.

Now, we prove the existence and uniqueness of solution of the problem (58) defined inYi . Consider the variational
formulation of problem (58)
{

Find u̇i,1 ∈ Wper(Yi ) such that

ḃYi (u̇i,1, v̇) = (F1, v̇)(Wper(Yi ))′,Wper(Yi ) ∀v̇ ∈ Wper(Yi ),
(61)

with ḃY given by

ḃYi (u̇, v̇) =
∫

Yi
M̃i∇yu∇yvdy, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Yi ), (62)

and F1 defined by

(F1, v̇)(Wper(Yi ))′,Wper(Yi ) = −
d∑

p,k=1

∂ui,0
∂xk

∫

Yi
m̃pk

i (y)
∂v

∂yp
dy, ∀v ∈ v̇, ∀v̇ ∈ Wper(Yi ). (63)

The linear form F1 belongs to (Wper(Yi ))′. Thus, there exists a unique solution u̇i,1 ∈ Wper(Yi ) of problem (61)–
(63).
Finally, the linearity of terms in the right-hand side of equation (58) suggests to look for u̇i,2 under the following
form:

u̇i,1 = χ̇(y) · ∇x u̇i,0 in Wper(Yi ), (64)

with each element of the corrector function χ̇i = (
χ̇k
i

)
k=1,...,d satisfying the following ε-cell problem:

⎧
⎪⎨

⎪⎩

Byy χ̇
k
i =

d∑

p=1

∂m̃pk
i

∂yp
in Yi ,

M̃i∇y χ̇
k
i · ni = − (

M̃i ek
) · ni on Γ y,

(65)

for ek, k = 1, . . . , d, the standard canonical basis in R
d . Moreover, we can choose a representative element χk

i of
the class χ̇k

i which satisfies the following variational formulation:

⎧
⎪⎪⎨

⎪⎪⎩

Find χk
i ∈ W#(Yi ) such that

ḃYi (χ
k
i , v̇) = −

d∑

p=1

∫

Yi
m̃pk

i (y)
∂w

∂yp
dy, ∀w ∈ W#(Yi ),

(66)

with ḃYi given by (62). Thus, we prove the existence and uniqueness of the solution χk
i of the problem (65) using

Theorem 17.
So, by the form of u̇i,1 given by (64), the solution ui,1 of the problem (58) can be represented by the following

ansatz:

ui,1(t, x, y) = χi (y) · ∇xui,0(t, x) + ũi,1(t, x) avec ui,1 ∈ u̇i,1, (67)

where ũi,1 is a constant with respect to y, (i.e., ũi,1 ∈ 0̇ in Wper(Yi )).
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• Last step Our interest is the last boundary value problem (41). We have

−Ayzui,4 − Ayyui,3 − Axzui,2 − Axyui,1 − Axxui,0

=
d∑

p,q=1

∂

∂yp

(

m pq
i (y, z)

(
∂ui,4
∂zq

+ ∂ui,3
∂yq

+ ∂ui,1
∂xq

))

+
d∑

p,q=1

∂

∂z p

(

m pq
i (y, z)

(
∂ui,4
∂yq

+ ∂ui,2
∂xq

))

+
d∑

p,q=1

∂

∂xp

(

m pq
i (y, z)

(
∂ui,2
∂zq

+ ∂ui,1
∂yq

+ ∂ui,0
∂xq

))

.

Note that, the variational formulation of system (41) can be written as follows:
{

Find u̇i,5 ∈ Wper(Zc) such that

ȧZc(u̇i,5, v̇) = (F5, v̇)(Wper(Zc))′,Wper(Zc) ∀v̇ ∈ Wper(Zc),
(68)

with ȧZc given by (43) and F5 defined by

(F5, v̇)(Wper(Zc))′,Wper(Zc)

=
∫

Γ z

[(
Mi∇zui,5 + Mi∇yui,4 + Mi∇xui,2

) · nz
]
v dσz

+
d∑

p,q=1

∫

Zc

∂

∂yp

(

m pq
i (y, z)

(
∂ui,4
∂zq

+ ∂ui,3
∂yq

+ ∂ui,0
∂xq

))

vdz

−
d∑

p,q=1

∫

Zc

m pq
i (y, z)

(
∂ui,4
∂yq

+ ∂ui,2
∂xq

)
∂v

∂z p
dz

+
d∑

p,q=1

∫

Zc

∂

∂xp

(

m pq
i (y, z)

(
∂ui,2
∂zq

+ ∂ui,1
∂yq

+ ∂ui,0
∂xq

))

vdz, ∀v ∈ v̇, ∀v̇ ∈ Wper(Zc).

(69)

The aim is to find the homogenized equation in Ω. Firstly, we will homogenize the problem (41) with respect
to z. Next, we homogenize the last one with respect to y using the explicit forms of previous solutions. Finally,
we obtain the corresponding homogenized model.
Firstly, the problem (68)–(69) defined in Zc is well posed if and only if F5 belongs to (Wper(Zc))

′, i.e.,

(F5, 1)(Wper(Zc))′,Wper(Zc) = 0

which equivalent to

− 1

|Z |
d∑

p,q=1

∫

Zc

∂

∂yp

(

m pq
i (y, z)

(
∂ui,4
∂zq

+ ∂ui,3
∂yq

+ ∂ui,1
∂xq

))

dz

= 1

|Z |
d∑

p,q=1

∫

Zc

∂

∂xp

(

m pq
i (y, z)

(
∂ui,2
∂zq

+ ∂ui,1
∂yq

+ ∂ui,0
∂xq

))

dz.

In addition, we replace ui,4 by its expression (56) into the above condition and into the boundary condition
equation on Γ y satisfied by ui,4. Then, we obtain that ui,3 satisfies the following problem defined in Yi
{
Byyui,3 = −Bxyui,1 − Bxxui,0 in Yi ,
(
M̃i∇yui,3 + M̃i∇xui,1

) · ni = − (
∂tv0 + Iion(v0, w0) − Iapp

)
on Γ y,

(70)
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with Bxy := −∇x · (M̃i∇y
) − ∇y · (M̃i∇x

)
.

Consequently, system (70) has the following variational formulation:
{

Find ui,3 ∈ Wper(Yi ) such that

ḃYi (ui,3, ẇ) = (F3, ẇ)(Wper(Yi ))′,Wper(Yi ) ∀ẇ ∈ Wper(Yi ),
(71)

with ḃYi given by (62) and F3 defined by

(F3, ẇ)(Wper(Yi ))′,Wper(Yi )

=
∫

Γ y

(
M̃i∇yui,3 + M̃i∇xui,1

) · niw dσy −
d∑

p,k=1

∫

Yi
m̃pk

i
∂ui,1
∂xk

∂w

∂yp
dy

+
d∑

p,k=1

∫

Yi

∂

∂xp

(

m̃pk
i

(
∂ui,1
∂yk

+ ∂ui,0
∂xk

))

w dy,

(72)

for all w ∈ ẇ, ẇ ∈ Wper(Yi ).
Observe that problem (70)–(72) is well posed if and only if F3 belongs to (WperY ))′, which means

(F3, 1)(Wper(Yi ))′,Wper(Yi ) = 0

which gives

−
d∑

p,k=1

∫

Yi

∂

∂xp

(

m̃pk
i

(
∂ui,1
∂yk

+ ∂ui,0
∂xk

))

dy = − ∣
∣Γ y

∣
∣
(
∂tv0 + Iion(v0, w0) − Iapp

)
.

Next, we replace ui,1 by its form (67) in the above condition. Then, we obtain

−
d∑

p,k=1

∫

Yi

∂

∂xp

⎛

⎝m̃pk
i

⎛

⎝
d∑

q=1

∂χ
q
i

∂yk
(y)

∂ui,0
∂xq

+ ∂ui,0
∂xk

⎞

⎠

⎞

⎠ dy

= − ∣
∣Γ y

∣
∣
(
∂tv0 + Iion(v0, w0) − Iapp

)
.

By expanding the sum and permuting the index, we obtain

−
d∑

p,q=1

∫

Yi

∂

∂xp

[(
d∑

k=1

m̃pk
i

∂χ
q
i

∂yk
(y) + m̃pq

i

)
∂ui,0
∂xq

]

dy

= − ∣
∣Γ y

∣
∣
(
∂tv0 + Iion(v0, w0) − Iapp

)
.

Then, the function ui,0 satisfies the following problem:

−
d∑

p,q=1

[
1

|Y |
d∑

k=1

∫

Yi

(

m̃pk
i

∂χ
q
i

∂yk
(y) + m̃pq

i

)

dy

]
∂2ui,0
∂xp∂xq

= −|Γ y |
|Y |

(
∂tv0 + Iion(v0, w0) − Iapp

)
.

Finally, we deduce the homogenized equation satisfied by ui,0 for the intracellular problem:

Bxxui,0 = −μm
(
∂tv0 + Iion(v0, w0) − Iapp

)
on ΩT , (73)
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where μm = |Γ y | / |Y |. Here, the homogenized operator Bxx (with respect to y and z) is defined by

Bxx = −∇x ·
(
˜̃Mi∇x

)
= −

d∑

p,q=1

∂

∂xp

(

˜̃mpq
i

∂

∂xq

)

with the coefficients of the homogenized conductivity matrix ˜̃Mi = (
˜̃mpq

i

)
1≤p,q≤d defined by

˜̃mpq
i := 1

|Y |
d∑

k=1

∫

Yi

(

m̃pk
i

∂χ
q
i

∂yk
(y) + m̃pq

i

)

dy

= 1

|Y |
1

|Z |
d∑

k,�=1

∫

Yi

∫

Zc

[(

m pk
i + m p�

i

∂θki

∂z�

)
∂χ

q
i

∂yk
(y) +

(

m pq
i + m p�

i

∂θ
q
i

∂z�

)]

dz dy,

(74)

with the coefficients of the conductivity matrix M̃i =
(
m̃pk

i

)

1≤p,k≤d
defined by (60).

Remark 7 The authors in [6] treated the initial problem with the coefficients mpq
j depending only on the variable y

for j = i, e. Using the same two-scale technique, we found three systems to solve and then obtained its homogenized
model with respect to y which is well defined in Sect. 3.1. But in the intracellular problem, the coefficients m pq

i
depend on two variables y and z. Using a new three-scale expansion method, we obtain nine systems to solve
in order to find the homogenized model (73) of the initial problem (28). Obtaining this homogenized problem is
described in six steps. First, the first five steps help to find the explicit forms of the associated solutions. Second, the
last step describes the two-level homogenization whose coefficients ˜̃mpq

i of the homogenized conductivity matrix
˜̃Mi are integrated with respect to z and then with respect to y. Finally, we obtain the homogenized model defined
on Ω.

3.3 Macroscopic bidomain model

At macroscopic level, the heart domain coincides with the intracellular and extracellular ones, which are inter-
penetrating and superimposed connected at each point by the cardiac cellular membrane. The homogenized model
of the microscopic bidomain model is recuperated from the extracellular and intracellular homogenized Eqs. (25)–
(73), which is called the macroscopic bidomain model (Reaction–Diffusion system):

μm∂tv + ∇ · (M̃e∇ue
) + μmIion(v,w) = μmIapp in ΩT ,

μm∂tv − ∇ ·
(
˜̃Mi∇ui

)
+ μmIion(v,w) = μmIapp in ΩT ,

∂tw − H(v,w) = 0 on ΩT ,

(75)

completed with no-flux boundary conditions on ui , ue on ∂extΩ :
(
M̃e∇ue

) · n =
(
˜̃Mi∇ui

)
· n = 0 on ΣT := (0, T ) × ∂extΩ,

where n is the outward unit normal to the boundary of Ω, and by assigning the initial Cauchy condition for the
transmembrane potential v and the gating variable w we have:

v(0, x) = v0(x) and w(0, x) = w0(x), a.e. on Ω. (76)

Herein, the conductivity matrices M̃e and ˜̃Mi are defined, respectively, in (27)–(74). System (75)–(76) corresponds
to the sought macroscopic equations. Finally, note that we close the problem by the normalization condition on the
extracellular potential for almost all t ∈ [0, T ],
∫

Ω

ue(t, x)dx = 0.

Remark 8 Following [9,12], it is easy to verify that these homogenized conductivity tensors are symmetric, positive
definite. Moreover, the functions Iion and H(v,w) preserve the same form of Fitzhugh–Nagumo model defined in
(8).
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4 Conclusion

Many biological and physical phenomena arise in highly heterogeneous media, the properties of which vary on
three (or more) length scales. In this paper, a new three-scale asymptotic homogenization technique have been
established for predicting the bioelectrical behaviors of the cardiac tissue with multiple small-scale configurations.
Furthermore, we have presented the main mathematical models to describe the bioelectrical activity of the heart,
from the microscopic activity of ion channels of the cellular membrane to the macroscopic properties in the whole
heart. We have described how reaction–diffusion systems can be derived from microscopic models of cellular
aggregates by homogenization method and a new three-scale asymptotic expansion.

The present study has some limitations and is open to several improvements. For example, analytical formulas
have been found for an ideal particular geometry at the mesoscale and microscale. Nevertheless, the natural next step
is to consider more realistic geometries by solving the appropriate cellular problems analytically and numerically.

A key assumption underlying the whole method is periodicity of the microstructure at both structural levels.
This assumption can be considered realistic for specific types of microstructures only. However, our framework
is extended to more complex geometries by taking into account two parameters of scaling dependent on the cell
geometry on the macroscale. A special attention to the boundary conditions for the unit cell to ensure periodicity.

The homogenization process described in this work is also suitable for regions far enough from the boundary
so that its effect is not felt (for example composite material). To account properly the homogenization process on
bounded domains, the so-called boundary-layer technique established by Benssousan et al. [12] could be used (see
also the work of Panasenko [50]). We know the results from reiterated and two-scale asymptotic homogenization
techniques as particular cases of the proposed method.

Funding This research was supported by IEA-CNRS in the context of HIPHOP project.

Appendix: Periodic Sobolev space

In this section, we give the properties which play an important role in the theory of homogenization (see [9]). For
more details on functional analysis, the reader is referred to the following references: [47,51–54]. We denote by O
the interval in R

d defined by

O = ]0, �1[ × · · · × ]0, �d [ , (77)

where �1, . . . , �d are given positive numbers. We will refer to O as the reference cell.
We define now the periodicity for functions which are defined almost everywhere.

Definition 9 Let O the reference cell defined by (77) and f a function defined a.e on R
d .

The function f is called y-periodic, if and only if,

f (y + k�i ei ) = f (y) p.p. on R
d , ∀k ∈ Z, ∀i ∈ {1, . . . , d},

where {e1, . . . , ed} is the canonical basis of Rd .

Definition 10 Let α, β ∈ R, such that 0 < α < β. We denote by M(α, β,O) the set of the d × d matrices
M = (m pq)1≤p,q≤d ∈ L∞(O)d×d such that
{

(M(x)λ, λ) ≥ α |λ|2 ,

|M(x)λ| ≤ β |λ| , (78)

for any λ ∈ R
d and almost everywhere on O.

In this part, we introduce a notion of periodicity for functions in the Sobolev space H1. In the sequel, we take
O an open bounded set in R

d .
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Definition 11 Let C∞
per(O) be the subset of C∞(Rd) of periodic functions. We denote by H1

per(O) the closure of

C∞
per(O) for the H1-norm, namely,

H1
per(O) = C∞

per(O)
H1(O)

.

Proposition 12 Let u ∈ H1
per(O). Then u has the same trace on the opposite faces of O.

In the sequel, we will define the quotient space H1
per(O)/R and introduce some properties on this space.

Definition 13 The quotient space Wper(O) is defined by

Wper(O) = H1
per(O)/R.

It is defined as the space of equivalence classes with respect to the following relation:

u � v ⇔ u − v is a constant, ∀u, v ∈ H1
per(O).

We denote by u̇ the equivalence class represented by u.

Proposition 14 The following quantity

‖u̇‖Wper(O) = ‖∇u‖L2(O) , ∀u ∈ u̇, u̇ ∈ Wper(O)

defines a norm on Wper(O).

Moreover, the dual space (Wper(O))′ can be identified with the set

(Wper(O))′ = {F ∈ (H1
per(O))′ tel que F(c) = 0, ∀c ∈ R},

with

F(u) = (F, u̇)(Wper(O))′,Wper(O) = (F, u)(H1
per(O))′,H1

per(O), ∀u ∈ u̇, u̇ ∈ Wper(O).

Remark 15 In particular, we can choose a representative element u of the equivalence class u̇ by fixing the constant.
Then, we define a particular space of periodic functions with a null mean value as follows:

Wper(O) = {u ∈ H1
per(O) such that MO(u) = 0}. (79)

with

MO(u) = 1

|O|
∫

O
u dx . (80)

Its dual nature coincides with the dual space (Wper(O))′ and the duality bracket is defined by

F(v) = (F, v)(W#(O))′,W#(O) = (F, u)(H1
per(O))′,H1

per(O), ∀u ∈ W#(O).

Furthermore, by the Poincaré–Wirtinger’s inequality, the Banach space W#(O) has the following norm:

‖u‖W#(O) = ‖∇u‖L2(O) , ∀u ∈ W#(O).

In the sequel, we will introduce some elliptic partial differential equations with different boundary conditions:
Neumann and periodic conditions. In these cases, to prove existence and uniqueness, the Lax–Milgram theorem will
be applied. Few works are available in the literature about boundary value problems, we cite for instance [55,56].
In this part, we will treat the following partial equation:

Au = f in O,

with the operator A defined by

A = −∇ · (M∇) (81)

where the matrix M = (m pq)1≤p,q≤d ∈ M(α, β,O) is given by Definition 10 but with different boundary condi-
tions:
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• Non-homogenous Neumann condition:

M∇u · n = g on ∂O.

• Periodic–Neumann condition:LetO j a portion of a reference cellO given by (77), with a boundary Γ separate
the two regions O j and O \ O j . So, we have

∂O j = (∂O ∩ ∂O j ) ∪ Γ.

The boundary condition which plays an essential role in the homogenization of perforated periodic media,
namely,
{
u y-periodic,

M∇u · n = g on Γ.

Theorem 16 (Non-homogenous Neumann condition) We consider the following problem:
{
Au = f in O,

M∇u · n = g on ∂O.
(82)

with the operator A defined by (81). Its variational formulation is:
{
Find u ∈ H1(O) such that

aO(u, v) = ( f, v)H−1(O),H1(O) + (g, v)
H− 1

2 (∂O),H
1
2 (∂O)

∀v ∈ H1(O),
(83)

with aO defined by

aO(u, v) =
∫

O
M∇u∇vdx, ∀u, v ∈ H1(O).

We take V = H1(O). Suppose that f ∈ L2(O) and g ∈ H
1
2 (∂O) satisfy the following compatibility condition:

( f, 1)H−1(O),H1(O) + (g, 1)
H− 1

2 (∂O),H
1
2 (∂O)

= 0. (84)

Then, the problem (82)–(83) has a unique solution u ∈ H1(O). Moreover,

‖u‖H1(O) ≤ 1

α0

(

‖ f ‖L2(O) + Cγ ‖g‖
H− 1

2 (∂O)

)

,

where α0 = min(1, α) and Cγ is the trace constant.

Theorem 17 (Periodic–Neumann condition) Let O j a portion of a unit cell O is given by (77), with Lipschitz
continuous boundary Γ separating the two regions O j and O \ O j . Consider the following problem:
⎧
⎪⎨

⎪⎩

Au = f in O j ,

u y-periodic,

M∇u · n = g on Γ.

(85)

We take V = Wper(O j ). Then, for any f ∈ (Wper(O j ))
′ and for any g ∈ H

1
2 (Γ ), the variational formulation of

the problem (85) is
{
Find u̇ ∈ Wper(O j ) such that

ȧO j (u̇, v̇) = (F, v̇)(Wper(O j ))
′,Wper(O j ) ∀v̇ ∈ Wper(O j ),

(86)

with aO j is given by

ȧO j (u̇, v̇) =
∫

O j

M∇u∇vy, ∀u ∈ u̇, ∀v ∈ v̇,

123



Derivation of a new macroscopic bidomain model including three scales Page 29 of 30 3

and F is defined by

(F, v̇)(Wper(O j ))
′,Wper(O j ) =

∫

Γ

Mi∇u · nv dσy +
∫

O j

f v dy, ∀v ∈ v̇, ∀v̇ ∈ Wper(O j ),

where n denotes the unit outward normal to Γ .
Assume that M belongs to M(α, β,O) with y-periodic coefficients. Suppose that F belongs to (Wper(O j ))

′
which equivalent to

(F, 1)(Wper(O j ))
′,Wper(O j ) = 0.

Then problem (86) has a unique weak solution. Moreover, we have the following estimation:

‖u̇‖Wper(O j ) ≤ 1

α0

(

‖ f ‖L2(O j )
+ Cγ ‖g‖

H− 1
2 (Γ )

)

.

where α0 = min(1, α) and Cγ is the trace constant.

By the definition of Wper, the previous theorem shows that the problem (85) admits a solution in H1
per, defined

up to an additive constant. If we take the particular case V = W#(O) defined by (79), we obtain the same result.

References

1. Keener JP, Sneyd J (1998) Mathematical physiology, vol 1. Springer, New York
2. Pierre C (2005) Modélisation et simulation de l’activité électrique du coeur dans le thorax, analyse numérique et méthodes de

volumes finis. Ph.D. thesis, Université de Nantes
3. Tung L (1978) A bi-domain model for describing ischemic myocardial DC potentials. Ph.D. thesis, Massachusetts Institute of

Technology
4. Bendahmane M, Mroue F, Saad M, Talhouk R (2019) Unfolding homogenization method applied to physiological and phenomeno-

logical bidomain models in electrocardiology. Nonlinear Anal 50:413–447
5. Veneroni M (2009) Reaction–diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal

10(2):849–868
6. Henriquez CS, Ying W (2009) The bidomain model of cardiac tissue: from microscale to macroscale. In: Efimov IR et al (eds)

Cardiac bioelectric therapy. Springer, New York, pp 401–421
7. Pennacchio M, Savaré G, Franzone PC (2005) Multiscale modeling for the bioelectric activity of the heart. SIAM J Math Anal

37(4):1333–1370
8. Bakhvalov NS, Panasenko G (2012) Homogenisation: averaging processes in periodic media: mathematical problems in the mechan-

ics of composite materials, vol 36. Springer, New York
9. Cioranescu D, Donato P (1999) An introduction to homogenization, vol 17. Oxford University Press, Oxford

10. Hubert JS, Palencia ES (1992) Introduction aux méthodes asymptotiques et à l’homogénéisation: application à la mécanique des
milieux continus. Masson

11. Tartar L (2009) The general theory of homogenization: a personalized introduction, vol 7. Springer, New York
12. Bensoussan A, Lions JL, Papanicolaou G (2011) Asymptotic analysis for periodic structures, vol 374. American Mathematical

Society, Providence
13. Nguetseng G (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J Math Anal

20(3):608–623
14. Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23(6):1482–1518
15. Allaire G, Briane M (1996) Multiscale convergence and reiterated homogenisation. Proc R Soc Edinb Sect A 126(2):297–342
16. Trucu D, Chaplain M, Marciniak-Czochra A (2012) Three-scale convergence for processes in heterogeneous media. Appl Anal

91(7):1351–1373
17. Cioranescu D, Damlamian A, Griso G (2002) Periodic unfolding and homogenization. Comptes Rendus Math 335(1):99–104
18. Cioranescu D, Donato P, Zaki R (2006) The periodic unfolding method in perforated domains. Portugaliae Math 63(4):467
19. Cioranescu D, Damlamian A, Donato P, Griso G, Zaki R (2012) The periodic unfolding method in domains with holes. SIAM J

Math Anal 44(2):718–760
20. Cioranescu D, Damlamian A, Griso G (2008) The periodic unfolding method in homogenization. SIAM J Math Anal 40(4):1585–

1620
21. Neu J, Krassowska W (1993) Homogenization of syncytial tissues. Crit Rev Biomed Eng 21(2):137–199
22. Richardson G, Chapman SJ (2011) Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM

J Appl Math 71(3):657–675

123



3 Page 30 of 30 F. Bader et al.

23. Collin A, Imperiale S (2018) Mathematical analysis and 2-scale convergence of a heterogeneous microscopic bidomain model.
Math Models Methods Appl Sci 28(05):979–1035

24. Grandelius E, Karlsen KH (2019) The cardiac bidomain model and homogenization. Netw Heterog Media 14:173–204
25. Dal H, Göktepe S, Kaliske M, Kuhl E (2012) A fully implicit finite element method for bidomain models of cardiac electrophysiology.

Comput Methods Biomech Biomed Eng 15(6):645–656
26. Cansız B, Dal H, Kaliske M (2018) Computational cardiology: the bidomain based modified hill model incorporating viscous

effects for cardiac defibrillation. Comput Mech 62(3):253–271
27. Dal H, Göktepe S, Kaliske M, Kuhl E (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics.

Comput Methods Appl Mech Eng 253:323–336
28. Bader F, Bendahmane M, Saad M, Talhouk R Three scale unfolding homogenization method applied to cardiac bidomain model

(Preprint 2020)
29. Colli-Franzone P, Pavarino LF, Scacchi S (2012) Mathematical and numerical methods for reaction–diffusion models in electro-

cardiology. In: Modeling of physiological flows, pp 107–141. Springer
30. Franzone PC, Savaré G (2002) Degenerate evolution systems modeling the cardiac electric field at micro-and macroscopic level.

In: Evolution equations, semigroups and functional analysis, pp. 49–78. Springer
31. Chinnery PF, Schon EA (2003) Mitochondria. J Neurol Neurosurg Psychiatry 74(9):1188–1199
32. Rioux M, Bourgault Y (2013) A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology.

ESAIM 47(4):987–1016
33. Whiteley JP (2020) An evaluation of some assumptions underpinning the bidomain equations of electrophysiology. Math Med Biol

37(2):262–302
34. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation

in nerve. J Physiol 117(4):500–544
35. Noble D, Garny A, Noble PJ (2012) How the Hodgkin–Huxley equations inspired the cardiac physiome project. J Physiol

590(11):2613–2628
36. Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268(1):177–210
37. Luo Ch, Rudy Y (1991) A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction.

Circ Res 68(6):1501–1526
38. Luo Ch, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concen-

tration changes. Circ Res 74(6):1071–1096
39. Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. II. After depolarizations, triggered activity,

and potentiation. Circ Res 74(6):1097–1113
40. Veneroni M (2006) Reaction–diffusion systems for the microscopic cellular model of the cardiac electric field. Math Methods Appl

Sci 29(14):1631–1661
41. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466
42. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50(10):2061–2070
43. Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans

Biomed Eng 41(8):743–757
44. Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7(3):293–301
45. Oleinik OA, Shamaev A, Yosifian G (2009) Mathematical problems in elasticity and homogenization, vol 2. Elsevier, Amsterdam
46. Burridge R, Keller JB (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70(4):1140–1146
47. Brezis H, Ciarlet PG, Lions JL (1999) Analyse fonctionnelle: théorie et applications, vol 91. Dunod, Dunod
48. Keener JP, Panfilov A (1996) A biophysical model for defibrillation of cardiac tissue. Biophys J 71(3):1335–1345
49. Ramírez-Torres A, Penta R, Rodríguez–Ramos R, Merodio J, Sabina FJ, Bravo-Castillero J, Guinovart-Díaz R, Preziosi L, Grillo

A (2018) Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int J Solids Struct
130:190–198

50. Panasenko GP (2005) Multi-scale modelling for structures and composites, vol 615. Springer, New York
51. Adams R, Fournier J (1975) Sobolev spaces. Acad Press, New York
52. Edwards RE (1995) Functional analysis: theory and applications. Courier Corporation, Chelmsford
53. Rudin W (1973) Functional analysis. Higher mathematics. McGraw-Hill, Inc, New York
54. Zeidler E (2013) Nonlinear functional analysis and its applications, vol 4. Applications to mathematical physics. Springer, New

York
55. Lions JL (1969) Quelques méthodes de résolution des problemes aux limites non linéaires
56. Lions JL, Magenes E (1968) Problemes aux limites non homogenes et applications

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

123


	Derivation of a new macroscopic bidomain model including three scales for the electrical activity of cardiac tissue
	Abstract
	1 Introduction
	2 Bidomain modeling of the heart tissue
	2.1 Geometric idealization of the myocardium microstructure
	2.1.1 The mesoscopic scale
	2.1.2 The microscopic scale

	2.2 Microscopic bidomain model
	2.2.1 Basic equations
	2.2.2 Non-dimensional analysis


	3 Asymptotic expansion homogenization
	3.1 Extracellular problem
	3.2 Intracellular problem
	3.3 Macroscopic bidomain model

	4 Conclusion
	Appendix: Periodic Sobolev space
	References




