
J Eng Math (2021) 128:9
https://doi.org/10.1007/s10665-021-10133-3

An asymptotic investigation of the dynamics and dispersion
of an elastic five-layered plate for anti-plane shear vibration

R. Nawaz · Rahmatullah Ibrahim Nuruddeen ·
Q. M. Zaigham Zia

Received: 17 April 2020 / Accepted: 1 November 2020 / Published online: 12 May 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract An asymptotic approach of analysis is used to analyze the antisymmetric anti-plane shear dispersion of
an elastic inhomogeneous five-layered plate in the presence of material contrasts. The resultant exact dispersion
relation, overall cut-off frequency and the low-frequency range are determined. Two different asymptotic contrasting
material setups for layered plates are employed with regards to the optimal shortened polynomial dispersion relation
in the context of the structure under consideration. The asymptotic behaviors of the displacements and stresses in
the respective layers of the plate are also examined. Finally, we provided some concluding remarks.
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1 Introduction

Wave propagations in elastic materials have been studied extensively in the literature [1–3] due to their frequent
occurrence in many engineering applications and structures. Notable among these structures and devices where the
wave propagation is of great interest include the waveguide devices [4,5], elastic beams and sandwich beams [6,7],
photovoltaic panels and laminated glass [8], elastic sandwich plates [9] and multi-layered and composite plates
of different configurations [10–22] to mention a few. In general, multilayered structures have advantages of high
resistance, weightlessness, and strength due to the presence of many layers that are made from different materials;
besides, they also possess static and dynamic excitations. Further, different methods have been employed in the
above-cited papers comprising of analytical, computational and asymptotic approaches to analyze the dispersion and
propagation of elastic and surface waves in layered structures. For instance, a plane shear problem of inhomogeneous
three-layered laminates and an anti-plane shear problem of strongly inhomogeneous three-layered infinite plates
were recently analyzed with the help of an asymptotic analysis approach in [10] and [11,12], respectively. Also, in
references [10–12], a complete analysis of the analytically obtained dispersion relation was carried out in relation
to the approximate one amidst the presence of material contrasts. This analysis was directed towards exploring the
exactness of the shortened approximate dispersion relations to the analytical ones in the presence of these contrasts
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and under long-wave low-frequency behavioral assumption. Similar consideration with regards to the elastic rods
and multi-component elastic structures can be seen in [13] and [14], correspondingly; while [15] investigated the
effects of viscous damping on the propagation of elastic waves in inhomogeneous layered plates and [16] examined
the significance of certain external excitations on the wave propagation in a layered plate; see also [17,18] for other
deliberation regarding laminated composite plates and circular nanoplates. Peculiarly, since we are examining a
five-layered plate in the present manuscript due to their vast applications in modern technology, authors in [19–22]
have examined various configurations for five-layered plates; a number of relevant studies on the five-layered plate
include the application of the Navier’s method to analyze a five-layered sandwich plate with viscoelastic core layers
[19], the analysis of static and dynamic effects in a five-layered glass plate [20], the stress analysis of a five-layered
sandwich composite based on the shear deformation theories [21], and the asymptotic investigation with regards
to the dispersion of elastic waves in a strongly non-homogeneous five-layered plate [22]. Emphasizing on [22],
the layer configuration required the introduction of a unification procedure for the complete analysis of the four
contrasting material setups to take place. In the same vein, for more on the elastic wave propagation in other layered
and composite media, see [23–42] and the references therein.

However, in this paper, we examine the anti-plane shear vibration of an isotropic five-layered plate composed
of three different layers of varying material properties. The plate which is of infinite extent is considered to be
in a symmetrical form. By symmetry here, one decides to analyze either the symmetric or antisymmetric modes.
Nevertheless, we consider the antisymmetric vibration mode having satisfied the global low-frequency regime.
Further, the resultant dispersion relation and its corresponding polynomial dispersion relation are set to be analyzed.
The two contrasting material setups [10–12] would be investigated within the long-wave low-frequency estimates.
In addition, the asymptotic behaviors of the displacements and stresses in the respective layers will be examined.
Further, the paper is organized as follows: In Sect. 2, we give the general formulation of the problem and outlined
the two setups to be analyzed. Section 3 gives the exact solution of the formulated problem. The exact dispersion
relation and the cut-off frequency are determined in Sect. 4. The shortened polynomial dispersion analyses in
connection to contrasting setups are given in Sect. 5. We give the asymptotic behaviors of the related quantities in
Sect. 6; while Sect. 7 gives the conclusion.

2 Problem formulation

Consider an anti-plane shear vibration of an isotropic five-layered plate including the inner core of thickness 2h1,
the outer core layers of thicknesses h2 and the skin layers of thicknesses h2 placed respectively symmetrical about
the mid-point as shown in Fig. 1 below. The inner core and skin layers are assumed to be of the same material
constituents.

The equations of motion in (x1, x2) describing the vibration in the respective layers of the plate take the following
form

∂σ i
13

∂x1
+ ∂σ i

23

∂x2
= ρi

∂2Ui

∂t2 , i = 1, 2, 3, (1)

where xn (n = 1, 2) are the spatial variables, t is the temporal variable, Ui are the out of plane displacements for
i = 1, 2, 3 standing for the inner core layer, outer core layers and the skin layers, accordingly. It is also important
to note that the inner core layer and the skin layers are considered to be of the same materials. Further, the shear
stresses σ i

j3 (i = 1, 2, 3) are defined respectively as follows:

σ i
j3 = μi

∂Ui

∂x j
, j = 1, 2, (2)

where μi are the Lame’s elastic constants of motion. We also prescribe the following continuity conditions com-
prising of the continuity of displacements and stresses along the interfaces of the respective layers

(a) U1 (x1, x2, t) = U2 (x1, x2, t) at x2 = ±h1,
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Fig. 1 A symmetric
five-layered plate

(b) σ 1
23(x1, x2, t) = σ 2

23(x1, x2, t) at x2 = ±h1,

(c) U2 (x1, x2, t) = U3 (x1, x2, t) at x2 = ±(h1 + h2),

(d) σ 2
23(x1, x2, t) = σ 3

23(x1, x2, t) at x2 = ±(h1 + h2), (3)

and the traction-free conditions on the outer faces as follows:

(e) σ 3
23(x1, x2, t) = 0 at x2 = ±(h1 + 2h2). (4)

However, in this paper, we investigate the possibilities of obtaining optimal estimate or rather the range for
the best dimensionless parameters leading to the approximate fundamental mode with a zero cut-off frequency in
relation to the inhomogeneous strongly five-layered plate under the two contrasting material setups given by the
following asymptotic relations [10–12]:
⎧
⎨

⎩

(i) μ � 1, h ∼ 1, ρ ∼ μ,

(ii) μ � 1, h ∼ μ, ρ ∼ μ2,

(5)

of which (i) corresponds to a three-layered plate with stiff skin layers and light core layer and (ii) matches with a three-
layered plate with stiff thin skin layers and light core layers, respectively. More importantly, the same asymptotic
relations for the three-layered plate given in Eq. (5) will be utilized to investigate the approximate dispersion relation
for the anti-plane shear vibration of the five-layered plate under consideration by suitably sandwiching the three-
layered plate [11,12] between new skin layers (above and below) of similar material constituents with that of the
core layer of the three-layered plate. In fact, this will not cause us to devise a different means of showcasing Eq.
(5). In addition, in a multi-layered or composite structure; it is important to note that no two successive layers are
exactly made of the same materials otherwise you have no multi-layer. It is also noteworthy to mention here that [22]
analyzed a strongly inhomogeneous five-layered plate with entirely dissimilar layers that requires the introduction
of a unification procedure for the complete analysis; whereas in the present study, the plate is considered to be of
alternating layers similar to the recently investigated elastic beams [6]. More, the present consideration preserves
the nature of the contrasting setups given in Eq. (5); that is, we need not to unify the dimensionless parameters
before proceeding to the aiming analysis.

3 Exact solution

We determine the exact analytical solution of the formulated problem. In doing so, the displacements and stresses
of the respective layers will be determined from Eqs. (1)–(4). Thus, we get from Eqs. (1) and (2) the following wave
equation:
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∂2Ui

∂x2
1

+ ∂2Ui

∂x2
2

= 1

c2
i

∂2Ui

∂t2 , i = 1, 2, 3, (6)

where ci = √
μi/ρi is the transverse speed with c1 = c3 having assumed that the inner core layer and the skin

layers to be of same material. Now, since the plate is symmetric, and with the harmonic solution assumption of the
form

Ui (x1, x2, t) = ui (x2)e
i(kx1−ωt), (7)

the solutions of Eq. (6) in the inner core layer, outer core layer and the skin layer are determined as forms
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(x2) = A1 cosh

(√

k2 − ω2

c2
1
x2

)

+ B1 sinh

(√

k2 − ω2

c2
1
x2

)

, 0 ≤ x2 ≤ h1,

u2(x2) = A2 cosh

(√

k2 − ω2

c2
2
x2

)

+ B2 sinh

(√

k2 − ω2

c2
2
x2

)

, h1 ≤ x2 ≤ h1 + h2,

u3(x2) = A3 cosh

(√

k2 − ω2

c2
1
x2

)

+ B3 sinh

(√

k2 − ω2

c2
1
x2

)

, h1 + h2 ≤ x2 ≤ h1 + 2h2,

(8)

where i = √−1, k is the wave number, and ω is the frequency. Furthermore, the formulated problem via the
solutions obtained in Eq. (8) coupled to the boundary conditions in Eqs. (3) and (4) give the following dimensionless
displacements and stresses in the respective layers of the symmetric five-layered plate after omitting the exponential
factors as follows:

u1 = h2
sinh

(
α2hξ21

)

α2
,

σ 1
13 = iμ1K

sinh
(
α2hξ21

)

α2
,

σ 1
23 = μ1 cosh

(
α2hξ21

)
, (9)

u2 = h2

α2

(
sinh (α2h) cosh

(
α1ξ22

) + � cosh (α2) sinh
(
α1ξ22

))
,

σ 2
13 = iμ2

K

α2

(
sinh (α2h) cosh

(
α1ξ22

) + � cosh (α2) sinh
(
α1ξ22

))
,

σ 2
23 = μ2

α1

α2

(
sinh (α2h) sinh

(
α1ξ22

) + � cosh (α2) cosh
(
α1ξ22

))
, (10)

and

u3 = h2	
(
cosh

(
α2

(
ξ23 + h + 1

)) − tanh (α2 (h + 2)) sinh
(
α2

(
ξ23 + h + 1

)))
,

σ 3
13 = iμ1K	

(
cosh

(
α2

(
ξ23 + h + 1

)) − tanh (α2 (h + 2)) sinh
(
α2

(
ξ23 + h + 1

)))
,

σ 3
23 = μ1α2	

(
sinh

(
α2

(
ξ23 + h + 1

)) − tanh (α2 (h + 2)) cosh
(
α2

(
ξ23 + h + 1

)))
, (11)

where

� = α2

α1μ
,	 = cosh (α2(h + 2))

α2 cosh (α2)
(cosh (α1) sinh (α2h) + � sinh (α1) cosh (α2h)), (12)

coupled to the corresponding scaled variables

ξ21 = x2

h1
, 0 ≤ x2 ≤ h1,

ξ22 = x2 − h1

h2
, h1 ≤ x2 ≤ h1 + h2,

ξ23 = x2 − (h1 + h2)

h2
, h1 + h2 ≤ x2 ≤ h1 + 2h2. (13)
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with
{

α1 = √
K 2 − 
2,

α2 =
√
K 2 − μ

ρ

2,

(14)

and the dimensionless frequency 
 and wave number K given by
{


 = ωh2
c2

,

K = kh2,
(15)

together with the following dimensionless parameters:
⎧
⎪⎨

⎪⎩

μ = μ2
μ1

,

h = h1
h2

,

ρ = ρ2
ρ1

.

(16)

4 Asymptotic approach to exact dispersion relation

In this section, the exact dispersion relation and cut-off frequency of the given formulated problem are determined.
Also, the this dispersion relation will further be approximated to its corresponding polynomial dispersion relation
for onward analysis in the subsequent section. Therefore, the exact analytical solution of the symmetric plate
determined in Eq. (8) coupled to the boundary conditions given in Eqs. (3) and (4) posed a 5 × 5 dispersion matrix
of such after dimensionalizing results in
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

sinh (hα2) − cosh (hα1) − sinh (hα1) 0 0
� cosh (hα2) − sinh (hα1) − cosh (hα1) 0 0

0 cosh ((h + 1)α1) sinh ((h + 1)α1) − cosh ((h + 1)α2) − sinh ((h + 1)α2)

0 sinh ((h + 1)α1) cosh ((h + 1)α1) −� sinh ((h + 1)α2) −� cosh ((h + 1)α2)

0 0 0 sinh ((h + 2)α2) cosh ((h + 2)α2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0, (17)

where � is given in Eq. (12) with the dimensionless parameters defined in Eqs. (14)–(16).
Thus, the exact dispersion relation is obtained from Eq. (17) to be

α2
1μ2 sinh (α1) cosh (α2) sinh (α2h) + α2α1μ cosh (α1) cosh (α2(h + 1))

+α2
2 sinh (α1) sinh (α2) cosh (α2h) = 0, (18)

with the following cut-off frequency at K = 0 from Eq. (18) as follows:

sin(
) sin

(√
μ

ρ



)

cos

(

h

√
μ

ρ



)

− √
μρ cos(
) cos

(

(h + 1)

√
μ

ρ



)

+μρ sin(
) cos

(√
μ

ρ



)

sin

(

h

√
μ

ρ



)

= 0. (19)

From Eq. (19), we get the predicted single cut-off frequency as


 ≈
√

ρ

rh
� 1, (20)

over the low-frequency range
ρ

r
� h � r

μ
, (21)

where

r = 1 + μρ.
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Fig. 2 Dispersion curves
from Eq. (18) for the
non-estimated range case
with the following
parameters: μ = 0.025, ρ =
0.03, h = 1.0

Fig. 3 Dispersion curves
from Eq. (18) for the
estimated range case with
the following parameters:
μ = 0.025, ρ = 5.97, h =
4.0

It is clear from Eqs. (20) and (21) that when r = 1 the predicted single cut-off frequency found in [11,12] with
regards to predicted single cut-off frequency and low-frequency range for the three-layered laminate is recovered.
More so, we mention here that the low-frequency is attained when 
 � 1, while the long wave vibration is achieved
when K � 1, [2,10].

Dispersion curves from the exact dispersion relation Eq. (18) is plotted in Fig. 2 for the non-estimated range
and Fig. 3 for the estimated range of zero cut-off frequencies, respectively. As anticipated, the cut-off frequency is
not observed in Fig. 2 since the choice of parameters is outside the estimated range given in Eq. (21); while lowest
low-frequency is achieved in Fig. 3 over the stated range.
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4.1 Polynomial dispersion relation

The polynomial dispersion relation is determined from the exact dispersion relation given in Eq. (18) by the
application of Taylor’s series expansion as follows:

μ + χ1K
2 + χ2K

4 + χ3K
2
2 + χ4


2 + χ5

4 + · · · = 0 (22)

with

χ1 = h2μ

2
+ hμ2 + hμ + μ + 1,

χ2 = h3μ2

6
+ h2μ

4
+ h2

2
+ 2hμ2

3
+ hμ

2
+ 7μ

24
+ 1

3
,

χ3 = −h3μ3

6ρ
− 1

6
h3μ2 − h2μ2

4ρ
− h2μ

ρ
− h2μ

4
− hμ3

2ρ
− hμ2

2ρ
− 5hμ2

6
− hμ

2
− μ2

4ρ
− μ

2ρ
− μ

3
− 1

6
,

χ4 = −h2μ2

2ρ
− hμ2

ρ
− hμ2 − μ2

2ρ
− μ

ρ
− μ

2
,

χ5 = h3μ3

6ρ
+ h2μ2

2ρ2 + h2μ2

4ρ
+ hμ3

2ρ
+ hμ2

2ρ
+ hμ2

6
+ μ2

6ρ2 + μ2

4ρ
+ μ

6ρ
+ μ

24
,

... (23)

5 Shortened polynomial dispersion relations

In this section, we approximate the obtained polynomial dispersion relation in Eq. (22) in connection to the two
contrasting material setups given in Eq. (5) to obtain the corresponding optimal shortened polynomial dispersion
relation in each setup. However, having sandwiched the three-layered plate [9–11] in between new skin layers below
and above of similar material constituents with that of the core layer of the three-layered plate; the asymptotic
relations in Eq. (5) under the current plate correspond to (i) a five-layered plate with stiff skin layers, light outer
core layers and stiff inner core layer; and (ii) a five-layered plate with stiff thin skin layers, light outer core layers
and stiff thin inner core layer. We thus investigate the roles of these setups on the anti-plane shear vibration of a
five-layered plate in this section.

5.1 Stiff skin layers, light outer core layers and stiff inner core layer (μ � 1, h ∼ 1, ρ ∼ μ)

Here, both the skin layers and the inner core layer are made up of the same stiff material while the outer core layers
are made up of a light material, that is, the five-layered plate is made of alternating stiff-light layers, (almost similar
consideration is made in the subsequent case, but with stiff thin skin and stiff thin inner core layers).

Thus, on using the present setup, it can be seen from Eq. (23) that the following asymptotic relation:

G1 ∼ G2 ∼ G3 ∼ G4 ∼ G5 ∼ 1, (24)

and having in mind that higher orders of μ go to zero more faster, we obtain the following by retaining only μ

G1 = 5μ

2
+ 1,

G2 = 25μ

24
+ 5

6
,

G3 =
(

−μ − 3

2

)

ν − 13μ

12
− 1

6
,
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Fig. 4 Lowest dispersion
branch for the exact (black
solid line) and shortened
polynomial (dashed red
line) dispersion relations
Eqs. (18) and (25). (Color
figure online)

G4 = (−3μ − 1)ν − μ

2
,

G5 =
(

μ + 1

6

)

ν + μ

24
+ 2ν2

3
,

... (25)

where from the present setup relation we get

h ∼ 1, ν = μ

ρ
∼ 1.

Thus, we obtain the shortened polynomial dispersion relation as follows:

μ + G1K
2 + G2K

4 + G3K
2
2 + G4


2 + G5

4 = 0. (26)

We, therefore, depict in Fig. 4 the lowest dispersion branch for the exact (black solid line) and the shortened
polynomial (dashed red line) dispersion relations (18) and (25) for the following set of parameters h = 1, μ =
0.025, ρ = 0.03.

5.2 Stiff thin skin layers, light outer core layers and stiff thin inner core layer (μ � 1, h ∼ μ, ρ ∼ μ2)

Using the present setup, the following asymptotic relation can be deduced from Eq. (23):

G1 ∼ G2 ∼ G3 ∼ G4 ∼ G5 ∼ 1, (27)

and having in mind that higher orders of μ go to zero more faster, we obtain the following by retaining only μ2 to
feel the presence of κ ,

G1 = μ2 + μ + 1,

G2 = μ2 + 7μ

24
+ 1

3
,

G3 =
(

−κ

2
− 1

2

)

μ2 − μ

3
− ν

4
− 1

6
,

G4 = −κμ2 − μ

2
− ν

2
,
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G5 = κμ2

2
+ μ

24
+ ν2

2
+ ν

4
,

... (28)

where

h ∼ μ, κ = h

ρ
∼ 1, ν = μ2

ρ
∼ 1.

Therefore, we obtain the shortened polynomial dispersion relation as follows:

μ + G1K
2 + G2K

4 + G3K
2
2 + G4


2 + G5

4 = 0. (29)

We normalize the dimensionless frequency and wave number in Eq. (29) using the following:

K 2 = μϒ2 
2 = μ�2, (30)

and thereafter making use of a near cut-off asymptotic expansion of the form

�2 = �2
0 + μ�2

1 + μ2�2
2 + · · · , (31)

on Eq. (29) to further simply it to obtain

�2
0 = 0,

�2
1 = 1 + ϒ2,

�2
2 = −ν

2
+

(
1 − ν

2

)
ϒ2 + ϒ4

3
,

...

(32)

and yielding the optimal shortened dispersion relation below

K 2
(

−μ2ν

2
+ μ2 + μ

)

+ μ

3
K 4 − 
2 +

(

μ2 − μ3ν

2

)

= 0. (33)

Therefore, we depict in Fig. 5 the lowest dispersion branch for the exact (black solid line) and the shortened
polynomial (dashed red line) dispersion relations (18) and (33) using the parametersh = 1, μ = 0.053, ρ = 0.0032.

6 Asymptotic behaviour for the displacements and stresses

In this section, we study the asymptotic behaviours of the obtained displacements and stresses in the respective
layers presented in Sect. 2.

To achieve the set objective, the following rescaling of

K 2 = μϒ2 
2 = μ�2,

into Eqs. (9)–(12) is necessary. We thus obtain to the asymptotic formulae:

u1 = h2hξ21,

σ 1
13 = iμ1

√
μϒhξ21,

σ 1
23 = μ1, (34)

u2 = h2

(

h + 1

μ
ξ22

)

,

σ 2
13 = iμ2

√
μϒ

(

h + 1

μ
ξ22

)

,
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Fig. 5 Lowest dispersion
branch for the exact (blue
solid line) and shortened
polynomial (dashed red
line) dispersion relations
Eqs. (18) and (33). (Color
figure online)

σ 2
23 = μ2

μ
, (35)

and

u3 = h2

(

h + 1

μ

) (
1 − α2

2 (h + 2)
(
ξ23 + h + 1

))
,

σ 3
13 = iμ1

√
μϒ

(

h + 1

μ

) (
1 − α2

2 (h + 2)
(
ξ23 + h + 1

))
,

σ 3
23 = μ1α

2
2

(

h + 1

μ

)
(
ξ23 − 1

)
,

(36)

with

α2 =
√

μϒ2 − μ2

ρ
�2. (37)

We therefore deduce the mentioned asymptotic relation taking into account both the setups (i) and (ii) as follows:

u1

h2h
∼

σ 1
13

μ1
√

μh
∼

σ 1
23

μ1
, (38)

and

ui
h2N

∼

σ i
13

μi
√

μN
∼

σ i
23

μi
, (39)

for i = 2, 3, where μ1 = μ3 as stated earlier, and

N = h + μ−1. (40)

7 Conclusion

In summary, an asymptotic approach of study is used to analyze the antisymmetric anti-plane shear vibration of an
elastic inhomogeneous five-layered plate. The plate under consideration consists of five alternating layers; precisely,
two different layers arranged symmetrically to form an alternating five-layered plate. The exact displacements,
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stresses and dispersion relation have been determined analytically after reducing the governing equations to ordinary
differential equations with the help of the prescribed boundary and interfacial conditions. The obtained exact
dispersion relation and its corresponding polynomial dispersion relation were investigated within the long-wave
low-frequency region in favour of its vast applications. Furthermore, we have analyzed the both the exact and
approximate dispersion relations by considering two contrasting material setups that are of industrial applications
and corresponding to layered plates with light-stiff layer combinations [10–12]. In addition, some asymptotic
formulae for the obtained exact displacement and stresses have been derived in each layer of the plate. It is
remarkable that the contrasting material setup (i) is applicable over the whole low-frequency range; whereas (ii) is
valid over a constricted vicinity of the range. This in fact is similar to the three-layered plate case [10]. However, it
is interesting to note that more dispersion curves are noted here in distinction with [10] as shown in Fig. 3. Similarly,
the recovery of the results in [10] can be realized upon setting r = 1 in Eqs. (20)–(21). Finally, it is recommended
that a similar study should be carried out by considering strongly inhomogeneous layered plates in the presence of
some structural or material discontinuities such as cracks or voids together with the influence of certain external
excitations. Approximate equations of vibration can also be of interest in this regard.
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