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Abstract The solution of singular two-point boundary value problem is usually not sufficiently smooth at one or
two endpoints of the interval, which leads to a great difficulty when the problem is solved numerically. In this paper,
an algorithm is designed to recognize the singular behavior of the solution and then solve the equation efficiently.
First, the singular problem is transformed to a Fredholm integral equation of the second kind via Green’s function.
Second, the truncated fractional series of the solution about the singularity is formulated by using Picard iteration and
implementing series expansion for the nonlinear function. Third, a suitable variable transformation is performed by
using the known singular information of the solution such that the solution of the transformed equation is sufficiently
smooth. Fourth, the Chebyshev collocation method is used to solve the deduced equation to obtain approximate
solution with high precision. Fifth, the convergence analysis of the collocation method is conducted in weighted
Sobolev spaces for linear singular equations. Sixth, numerical examples confirm the effectiveness of the algorithm.
Finally, the Thomas–Fermi equation and the Emden–Fowler equation as some applications are accurately solved
by the method.
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1 Introduction

In this paper, we explore the following nonlinear singular two-point boundary value problem

(
xαu′)′ = f (x, u), 0 < x < 1, 0 ≤ α < ∞, (1.1)
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where f (x, u) may be weakly singular at x = 0 and is continuously differentiable with respect to u. We consider
two kinds of boundary conditions

u(0) = A, σu(1) + γ u′(1) = B, σ ≥ 0, γ ≥ 0 and σ + γ > 0, for 0 ≤ α < 1, (1.2)

u′(0) = 0, σu(1) + γ u′(1) = B, σ > 0, γ ≥ 0, for 0 ≤ α < ∞. (1.3)

We note that Eq. (1.1) is called weakly singular when 0 < α < 1 and strongly singular when α ≥ 1 [1]. For the
weakly singular case, we can impose all kinds of boundary conditions, but for the strongly singular case, we can
only impose u′(0) = 0 at the left boundary [2]. For a more general second-order singular differential equation, the
existence and uniqueness of the solution have been explored by Kiguradze and Shekhter [3].

Nonlinear singular differential equations (1.1) occur frequently in several areas of science and engineering [4,5],
such as gas dynamics, chemical reaction, atomic calculation, and physiological studies. Some famous models
include the Emden–Fowler equation [6,7], the Lane–Emden equation [8], which are used in mathematical physics
and chemical physics, and the Thomas–Fermi equation in atomic physics describing the electron distribution in an
atom [7,9–12]. In mathematics, linear or nonlinear elliptic equations with spherically symmetry naturally reduce
to singular differential equations (1.1) with boundary condition (1.3) using spherical coordinate [13].

The solution of singular differential equation is usually not sufficiently smooth at the singularity [14], which
will deteriorate the accuracy of the standard numerical methods. Jamet [2] proved this assertion when standard
three-point finite difference scheme with a uniform mesh was used to solve the singular two-point boundary value
problem (1.1) with Dirichlet boundary condition when 0 < α < 1. Ciarlet et al. [15] obtained a similar conclusion
when a suitable Rayleigh–Ritz–Galerkin method was used to solve the problem. Chawla and Katti [16] proposed
a three-point difference method of second order under appropriate conditions by constructing an integral identity
for this kind of singular two-point boundary value problem. Followed this integral identity, a lot of finite difference
methods with second or fourth order accuracy were constructed for weakly or strongly singular differential equations,
see, for example, [1,17–21]. Another treatment for singularity was proposed by Gustafsson [22], who solved the
problem by first writing the series solution in the neighborhood of the singularity and then employing several
standard difference schemes in the remaining part of the interval. As for the further development of this method,
see [23,24]. Recently, Roul et al. [25] designed a high-order compact finite difference method for a general class
of nonlinear singular boundary value problems with Neumann and Robin boundary conditions. Some kinds of
collocation methods including cubic or quartic B-spline, Jacobi interpolation, and Chebyshev series were also used
to numerically solve singular differential equations [26–37]. As stated by Russel and Shampine [31], collocation
with piecewise polynomial functions is an effective method for solving singular problems with smooth solutions,
although the coefficients are singular. But for the problem with non-analytic solution, the accuracy becomes lower
[36]. Hence, some modifications should be adopted for these problems. For instance, nonpolynomial bases are used
in collocation space [34] or singularity is removed by splitting the interval into two subintervals [26], or graded
mesh is used in finite element method [38]. It is worth mentioning that Huang et al. [30] derived the convergence
order of Legendre and Chebyshev collocation methods for a singular differential equation (α = 1 and linear case
in (1.1)) and Guo et al. [33] developed the convergence theory of Jacobi spectral method for differential equations
possessing two-endpoint singularities.

Besides numerical methods, many semi-analytical methods were also developed to obtain approximate series
solutions for singular problems, see, for example, the homotopy perturbation method (HPM) [39], the homotopy
analysis method (HAM) [40–43], and the (improved) Adomian decomposition method (ADM) [44,45]. These
methods transformed the singular differential equations to the Fredholm integral ones using Green’s function and
then obtained recursive schemes based on HPM, HAM, or ADM. We note that the transformed integral equations
can also be discretized by numerical method [46].

The first thing to effectively solve singular differential equation is describing the singular behavior of the solution
at its singularity. A useful tool is the Puiseux series, a generalization of Taylor’s series, which may contain negative
and fractional exponents and logarithms [47–49]. In [50], this kind of series was called psi-series. We note that if the
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Puiseux series or psi-series contains only fractional exponents, it is also called fractional Taylor’s series [51,52]. For
the singular differential equation (1.1) with Dirichlet boundary conditions, Zhao et al. [53] first derived the series
expansion of the solution about zero with a parameter for the case 0 < α < 1, and then designed an augmented
compact finite volume method to solve the equation. In this paper, we consider the equation with mixed boundary
conditions for the case 0 ≤ α < ∞. We aim to explore the singular behavior of the solution at x = 0 by deriving
the fractional Taylor’s expansion for the solution about zero. The main idea is first transforming the differential
equation (1.1) to an equivalent Fredholm integral equation, and then obtaining the fractional series expansion via
Picard iteration. The key point is implementing the series expansion for the nonlinear function f (x, u(x)) about
x = 0 by symbolic computation. We note that the obtained series expansion contains an unknown parameter, which
is essentially determined by the right boundary condition. Since the series expansion may not be convergent at x = 1,
we should resort to some other methods to solve the singular differential equation, such as Chebyshev collocation
method [30,54–57]. Certainly, the series expansion can help us to find a suitable variable transformation such that
the solution of (1.1) is sufficiently smooth, even though the equation is still singular. For the transformed equation,
the Chebyshev collocation method could get accurate numerical solution if we evaluate the function values near
the singularity with very small roundoff errors. Once the numerical values at nodes are obtained, their interpolation
can give an accurate approximation to the unknown parameter in the series expansion.

As stated above, the methods for solving singular differential equations usually fall into two categories, one
is series expansion method and the other is numerical method. The series expansion method can automatically
recognize the singular behavior of the solution when generating the series solution, but it usually costs much time,
whereas the numerical method is usually fast, but it cannot recognize the singular feature of the solution. For singular
equation, it needs to introduce special techniques to treat the singularity. The method in this paper combines the
advantages of the above two classes of methods. We note that our series expansion method is different from those
of ADM, HPM, and HAM. What we obtained is exactly the truncated series of the solution about zero, which
accurately reflects the singular behavior of the solution. We also optimize the iterative procedures so that the series
decomposition has high efficiency. Based on this series expansion, we are easy to know how to perform a suitable
variable transformation to make the solution be sufficiently smooth. For the transformed differential equation, all
kinds of traditional numerical methods such as finite difference method, finite element method, and finite volume
method can be effectively used. That is to say, we develop a common technique such that the existing numerical
methods can be effectively simplified. In this paper, we only use Chebyshev collocation method to obtain numerical
solutions with high accuracy for singular differential equations.

The outline of the paper is as follows. In Sect. 2, we derive the truncated fractional series for the solution
about zero via Picard iteration for the equivalent Fredholm integral equation. In Sect. 3, we first transform the
singular differential equation to the one with smooth solution based on the series expansion, and then discretize
the transformed differential equation by Chebyshev collocation method. In Sect. 4, we discuss the convergence of
the Chebyshev collocation method by taking the corresponding linear equation as an example. In Sect. 5, some
typical examples are provided to show that the series expansion generating algorithm is feasible and the Chebyshev
collocation method is accurate for these kinds of nonlinear singular differential equations. In Sect. 6, we apply the
method to the Thomas–Fermi equation and the Emden–Fowler equation over finite interval and derive the fractional
series expansions for the solution about the two endpoints. We end with a concise conclusion in Sect. 7.

2 The singular series expansion for the solution about zero

In this section, we consider the nonlinear singular differential equation (1.1) with the boundary condition (1.2)
or (1.3). In order to guarantee the existence and uniqueness of the solution, we need to impose some additional
conditions for the function f (x, u), which will be given later. In the following, we first transform the singular
two-point boundary value problem to an equivalent Fredholm integral equation of the second kind using Green’s
function and then formulate the finite-term truncation of the fractional Taylor’s series for the solution about x = 0.

123



5 Page 4 of 28 T. Wang et al.

For the boundary value problem (1.1), (1.2), by introducing the Green’s function [44]

G(x, ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ1−α

1 − α

[
σ x1−α

σ + γ (1 − α)
− 1

]
, 0 ≤ ξ ≤ x,

x1−α

1 − α

[
σξ1−α

σ + γ (1 − α)
− 1

]
, x ≤ ξ ≤ 1,

(2.1)

we can obtain an equivalent Fredholm integral equation

u(x) = A + B − σ A

σ + γ (1 − α)
x1−α +

∫ 1

0
G(x, ξ) f (ξ, u(ξ))dξ. (2.2)

For the boundary value problem (1.1), (1.3), by introducing the Green’s function [45]

G(x, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

x1−α − 1

1 − α
− γ

σ
, 0 ≤ ξ ≤ x,

ξ1−α − 1

1 − α
− γ

σ
, x ≤ ξ ≤ 1,

for α �= 1, (2.3)

or

G(x, ξ) =

⎧
⎪⎨

⎪⎩

log x − γ

σ
, 0 ≤ ξ ≤ x,

log ξ − γ

σ
, x ≤ ξ ≤ 1,

for α = 1, (2.4)

we can also obtain an equivalent Fredholm integral equation

u(x) = B

σ
+
∫ 1

0
G(x, ξ) f (ξ, u(ξ))dξ. (2.5)

Remark 1 Under the assumptions for σ and γ in (1.2) and (1.3), it is easy to show that the Green’s functions defined
by (2.1), (2.3), and (2.4) are all nonpositive for x, ξ ∈ [0, 1].

Next, we try to derive the fractional Taylor’s expansion for u(x) about x = 0 with the form

u(x) = A + a0x
1−α +

∞∑

j=1

a j x
α j , 1 − α < α1 < α2 < · · · → ∞. (2.6)

Suppose that f (x, u) is infinitely differentiable with respect to u and possesses the following Taylor’s expansion
about u = A:

f (x, u) = f (x, A) +
∞∑

i=1

1

i !
∂ i f (x, A)

∂ui
(u − A)i . (2.7)
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We further assume that ∂ i f (x, A)/∂ui , i = 0, 1, . . . ,∞ hold the following fractional Taylor’s expansions about
x = 0:

∂ i f (x, A)

∂ui
=

∞∑

j=1

ηi, j x
ρi, j , −1 < ρi,1 < ρi,2 < · · · → ∞. (2.8)

Here, we impose another condition for ρi, j , which is ρ0,1 ≤ ρ1,1 ≤ ρ2,1 ≤ · · · . Substituting (2.6), (2.8) into (2.7),
we can show that f (x, u(x)) possesses the following series expansion:

f (x, u(x)) =
∞∑

j=1

c j x
β j , −1 < β1 = ρ0,1 < β2 < · · · → ∞. (2.9)

Since we only need to obtain a finite-term series expansion for u(x) about x = 0, we further denote the expansions
of u(x) and f (x, u(x)), respectively, as

u(x) = A + a0x
1−α +

M∑

j=1

a j x
α j + ru,M (x), 1 − α < α1 < α2 < · · · < αM , (2.10)

f (x, u(x)) =
M∑

j=1

c j x
β j + r f,M (x), −1 < β1 = ρ0,1 < β2 < · · · < βM , (2.11)

where M is a suitably large integer and the remainders ru,M (x) = xαM+1 zu,M (x) (αM+1 > αM ), r f,M (x) =
xβM+1 z f,M (x) (βM+1 > βM ), and both zu,M (x), z f,M (x) are continuous over [0, 1]. We note that the coefficient a0

in (2.10) is a free parameter to be determined for the problem (1.1) with (1.2), but it vanishes for the problem (1.1)
with (1.3), where in this problem, A is a free parameter to be determined.

First, we discuss the problem (1.1) with (1.2). Substituting (2.10) and (2.11) into (2.2), we obtain

A + a0x
1−α +

M∑

j=1

a j x
α j + ru,M (x) = A + (B − σ A)x1−α

σ + γ (1 − α)
+

M∑

j=1

c j

∫ 1

0
G(x, ξ)ξβ j dξ

+
∫ 1

0
G(x, ξ)r f,M (ξ)dξ.

Using the Green’s function (2.1), a straightforward computation shows

A + a0x
1−α +

M∑

j=1

a j x
α j + ru,M (x) = A + (B − σ A) x1−α

σ + γ (1 − α)
+

M∑

j=1

c j x2−α+β j

(
1 + β j

) (
2 − α + β j

)

−
M∑

j=1

c j
(
σ + γ

(
2 − α + β j

))
x1−α

(σ + γ (1 − α))
(
1 + β j

) (
2 − α + β j

)

+
∫ 1

0
G(x, ξ)r f,M (ξ)dξ. (2.12)
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Noticing Remark 1, the last term on the right-hand side of (2.12) is estimated by

∣∣
∣∣

∫ 1

0
G(x, ξ)r f,M (ξ)dξ

∣∣
∣∣ ≤

C f,Mx1−α

(1 + βM+1)(2 − α + βM+1)

[
1 + γ (1 + βM+1)

σ + γ (1 − α)
− x1+βM+1

]
, (2.13)

where C f,M = maxx∈[0,1] |z f,M (x)|. The estimation (2.13) means that the last integral on the right-hand side of
(2.12) does not generate the terms in front of it except the one like x1−α . Hence, equating the powers and coefficients
of like powers of x on both sides of (2.12) yields

α j = 2 − α + β j , a j = c j
(1 + β j )(2 − α + β j )

, j = 1, 2, . . . , M. (2.14)

Second, we consider the problem (1.1) with (1.3). Noting that for this problem, a0 = 0 in (2.10), we have from
(2.5)

A +
M∑

j=1

a j x
α j + ru,M (x) = B

σ
+

M∑

j=1

c j

∫ 1

0
G(x, ξ)ξβ j dξ +

∫ 1

0
G(x, ξ)r f,M (ξ)dξ. (2.15)

For the case α �= 1, by substituting the Green’s function (2.3) into (2.15), we can obtain

A +
M∑

j=1

a j x
α j + ru,M (x) = B

σ
−

M∑

j=1

c j
1 + β j

(
γ

σ
+ 1

2 − α + β j

)
+

M∑

j=1

c j x2−α+β j

(1 + β j )(2 − α + β j )

+
∫ 1

0
G(x, ξ)r f,M (ξ)dξ. (2.16)

For the case α = 1, substituting the Green’s function (2.4) into (2.15) yields

A +
M∑

j=1

a j x
α j + ru,M (x) = B

σ
−

M∑

j=1

c j
1 + β j

(
γ

σ
+ 1

1 + β j

)
+

M∑

j=1

c j x1+β j

(1 + β j )2 +
∫ 1

0
G(x, ξ)r f,M (ξ)dξ.

Obviously, the above equation is a special case of (2.16) when α = 1. Hence, we only consider the general case
(2.16) in the following. For (2.16), we should further assume that β1 > α − 1 since u′(0) = 0. Equating the powers
and coefficients of like powers of x on both sides of (2.16) yields

α j = 2 − α + β j , a j = c j
(1 + β j )(2 − α + β j )

, j = 1, 2, . . . , M. (2.17)

Comparing (2.14) with (2.17), we know the singular expansions for u(x) about x = 0 are very similar for the two
different boundary conditions u(0) = A (0 ≤ α < 1) and u′(0) = 0.

From (2.14) and (2.17), we know the key point to derive the singular expansion for u(x) about x = 0 is
determining the power exponents β j and the coefficients c j of the truncated fractional series for f (x, u(x)) in
(2.11). This can be achieved by symbolic computation, for instance, using the Series command of Mathematica.
For the nonlinear equation, we need to implement a Picard iteration to recover the β j and c j step by step. Since a0 in
(2.12) and A in (2.16) cannot be determined by these equations, we take them as free parameters when implementing
the iterations. Concretely, we have the following series expansion algorithm.

Step 1: Let u0(x) = A+ a0x1−α for the problem (1.1) with (1.2), where a0 is a free parameter to be determined
or let u0(x) = A for the problem (1.1) with (1.3), where A is a free parameter to be determined.
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Step 2: For j = 1, 2, . . . , M , implement the fractional series expansion for f (x, u j−1(x)) about x = 0 by
symbolic computation. We assume that

f (x, u j−1(x)) =
j∑

k=1

ckx
βk + r f, j (x), (2.18)

where r f, j (x) = xβ j+1 z f, j (x) (β j+1 > β j ) is the remainder and the coefficients ck , k = 1, 2, . . . , j , are related
with a0 (for boundary condition (1.2)) or A (for boundary condition (1.3)). Then let

α j = 2 − α + β j , a j = c j
α j (1 + β j )

, u j (x) = u j−1(x) + a j x
α j , (2.19)

and repeat for j + 1. Finally, we obtain a truncated series

uM (x) = A + a0x
1−α +

M∑

j=1

a j x
α j . (2.20)

Theorem 1 Suppose that f (x, u) is infinitely differentiable with respect to u and ∂ i f (x, A)/∂ui , i = 0, 1, . . . ,∞,
hold the fractional Taylor’s expansions with respect to x as in (2.8), where A = u(0). We further assume that in
(2.9), β1 = ρ0,1 > −1 for the problem (1.1), (1.2), and β1 = ρ0,1 > α − 1 for the problem (1.1), (1.3). Then the
power exponents βk and the coefficients ck in the fractional series expansion of f (x, u j−1(x)), k = 1, 2, . . . , j do
not change as j increases.

Proof Performing Taylor’s expansion for f (x, u j (x)) about u at u j−1(x), noticing (2.8), we have from (2.18) and
(2.19)

f (x, u j (x)) = f (x, u j−1(x)) + ∂ f

∂u
(x, u j−1(x))(u j (x) − u j−1(x)) + · · ·

=
j∑

k=1

ckx
βk +

(
∂ f (x, A)

∂u
+ ∂2 f (x, A)

∂u2 (u j−1(x) − A) + · · ·
)
a j x

2−α+β j + · · ·

=
j∑

k=1

ckx
βk + a j

∞∑

k=1

η1,k x
2−α+β j+ρ1,k + · · · ,

where the exponents of x in the omitting part are all greater than 2 −α +β j +ρ1,1. By our assumptions about ρ1,k ,
we have

2 − α + β j + ρ1,1 ≥ 2 − α + ρ0,1 + β j = 2 − α + β1 + β j .

For the problem (1.1) with (1.2), since 0 ≤ α < 1 and β1 > −1, we know 2 − α + β1 + β j > β j . For the problem
(1.1) with (1.3), since β1 > α − 1, we obtain 2 − α + β1 + β j > 1 + β j > β j . Therefore, we can conclude that
βk and ck , k = 1, 2, . . . , j do not change as j increases for these two different boundary conditions. The proof is
complete. 	

Theorem 2 Under the conditions imposed on f (x, u) in Theorem 1, uM (x) given in (2.20) is exactly the truncated
fractional Taylor’s series for u(x) about x = 0, but contains an unknown parameter a0 for the problem (1.1), (1.2)
or A for the problem (1.1), (1.3) (in this case a0 = 0).
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Proof We only prove the case for the problem (1.1), (1.2). Define

eM (x) = uM (x) − A − B − σ A

σ + γ (1 − α)
x1−α −

∫ 1

0
G(x, ξ) f (ξ, uM−1(ξ))dξ, (2.21)

then combining (2.12), (2.18)–(2.20), and using Theorem 1 yield

eM (x) =
⎛

⎝a0 − B − σ A

σ + γ (1 − α)
+

M∑

j=1

a j (σ + γα j )

σ + γ (1 − α)

⎞

⎠ x1−α −
∫ 1

0
G(x, ξ)r f,M (ξ)dξ. (2.22)

Further, the estimation (2.13) implies

∫ 1

0
G(x, ξ)r f,M (ξ)dξ → 0, M → ∞,

for suitably small x since βM+1 → ∞ by our assumption. Then letting M → ∞ in (2.22) yields

eM (x) →
⎛

⎝a0 − B − σ A

σ + γ (1 − α)
+

∞∑

j=1

a j (σ + γα j )

σ + γ (1 − α)

⎞

⎠ x1−α.

By choosing a0 such that the coefficient of x1−α equals to zero, we assert that eM (x) → 0 as M → ∞ for suitably
small x . Hence, by letting M → ∞ in (2.21), we know u∞(x) = A+ a0x1−α +∑∞

j=1 a j xα j is the series solution
for u(x) about x = 0, and of course, uM (x) is exactly the truncated fractional Taylor’s series for u(x) about x = 0.
A similar argument can be conducted for the problem (1.1), (1.3). The proof is complete. 	

Remark 2 Theorems 1, 2 actually give the conditions for f (x, u) such that the boundary value problem has a unique
series solution, which are (2.8) holding for f (x, A) and β1 > −1 for the problem (1.1), (1.2), β1 > α − 1 for the
problem (1.1), (1.3). These conditions can be easily checked since f (x, A) = η0,1xβ1 + · · · .

Remark 3 In this section, we first assume that u(x) possesses the fractional Taylor’s expansion (2.6). In the proof
of Theorem 2, we show the Picard iteration has truly generated this expansion under the assumptions for f (x, u),
which means that the assumption (2.6) is reasonable.

Remark 4 The truncated series expansion uM (x) contains an unknown parameter a0 for the left boundary condition
u(0) = A or A for the case u′(0) = 0, which should be determined by the right boundary condition σu(1)+γ u′(1) =
B. As is well known, the Taylor’s expansion is very good near the center of expansion, but the error may increase
rapidly as the variable moves away. This is true for uM (x). Even though we cannot expect to determine these
parameters accurately by the right boundary condition except that the series is convergent fast at x = 1, the
expansion uM (x) at least provides the information about the singular behavior of the solution, which may help us
to design numerical methods with high precision for solving singular differential equations.

Remark 5 We write a Mathematica function Pesbvp[f,α,M,A,a0] to implement the series expansion algorithm,
where f is the given function f (x, u), M is the maximal exponent of the series to be recovered, and a0,A are
the undetermined parameters corresponding to the boundary condition u(0) = A (in this case, A is known) and
u′(0) = 0, respectively.

Remark 6 If f (x, u) is singular at x = 1, we can also use the method in this section to derive the series expansion
for u(x) about x = 1.
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3 Chebyshev collocation method

The results in Sect. 2 reveal that the singular equation (1.1) with boundary condition (1.2) or (1.3) has generally
insufficiently smooth solution, which will lead to the decrease of accuracy when high-order collocation methods
are directly used to solve it. In this section, we show that this difficulty can be effectively overcome after a suitable
smoothing transformation is performed.

From the truncated fractional power series uM (x) in (2.20), we can reasonably assume that u(x) = A +∑M
j=0 a j xβρ j + · · · , where 0 < β ≤ 1 and ρ j , j = 0, 1, . . . , M are all integers. Hence, taking the variable

transformation t = xβ can make the solution sufficiently smooth about t . By letting s = 2t − 1 and v(s) = u(x),
we can transform Eq. (1.1) into

d2v

ds2 + p(s)
dv

ds
= g(s, v), −1 < s < 1, (3.1)

where

p(s) = α + β − 1

β(s + 1)
, g(s, v) = 1

4β2

(
s + 1

2

)− α+2(β−1)
β

f

((
s + 1

2

) 1
β

, v

)

.

Meanwhile, the boundary condition (1.2) is converted to

v(−1) = A, σv(1) + 2βγ v′(1) = B, (3.2)

and the boundary condition (1.3) is converted to

v′(−1) = 0, σv(1) + 2βγ v′(1) = B. (3.3)

We note that Eq. (3.1) is still singular, but its solution is sufficiently smooth. In order to obtain an accurate numerical
solution, we solve it by the Chebyshev collocation method [54–57].

We first divide the interval [−1, 1] into n subintervals and select the nodes as the Chebyshev–Gauss–Lobatto
points s j = cos (π j/n), j = 0, 1, . . . , n, which are the extreme points of the Chebyshev polynomial Tn(s) =
cos n arccos s. Then, for v(s), s ∈ [−1, 1], we construct a Lagrange interpolating polynomial vn(s) of degree n
using the nodes s j , j = 0, 1, . . . , n, which is

vn(s) =
n∑

j=0

l j (s)v(s j ), (3.4)

where the Lagrange basis functions l j (s) read as

l j (s) =
n∏

k=0,k �= j

s − sk
s j − sk

, j = 0, 1, . . . , n.

Finally, replacing v(s) in (3.1) with vn(s) and forcing the resulting equation to be held at the interior collocation
points, we get a collocation scheme

d2vn(si )

ds2 + p(si )
dvn(si )

ds
= g(si , vn(si )), i = 1, 2, . . . , n − 1. (3.5)
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In the following, we show that (3.5) is equivalent to a system of nonlinear equations. Differentiating the Lagrange
interpolation (3.4) m times, we have

v(m)
n (s) =

n∑

j=0

l(m)
j (s)v(s j ).

Let s = si , then

v(m)
n (si ) =

n∑

j=0

l(m)
j (si )v(s j ), i = 0, 1, . . . , n. (3.6)

By introducing the following notations:

V (m)
n =

⎛

⎜⎜⎜
⎜
⎝

v
(m)
n (s0)

v
(m)
n (s1)

...

v
(m)
n (sn)

⎞

⎟⎟⎟
⎟
⎠

, V =

⎛

⎜⎜⎜
⎝

v(s0)

v(s1)
...

v(sn)

⎞

⎟⎟⎟
⎠

, D(m) =

⎛

⎜⎜⎜
⎜
⎝

l(m)
0 (s0) l(m)

1 (s0) . . . l(m)
n (s0)

l(m)
0 (s1) l(m)

1 (s1) . . . l(m)
n (s1)

...
...

. . .
...

l(m)
0 (sn) l(m)

1 (sn) . . . l(m)
n (sn)

⎞

⎟⎟⎟
⎟
⎠

,

the formula (3.6) is equivalent to V (m)
n = D(m)V , where D(m) is called a differentiation matrix, which plays an

important role in the collocation method. Whenm = 1, denote D(1) by D, whose entries can be explicitly formulated
as [54]

di j = c̃i (−1)i+ j

c̃ j (si − s j )
, i �= j, dii = − si

2(1 − s2
i )

, i �= 0, n, d00 = −dnn = 2n2 + 1

6
,

where c̃i = 1 (i = 1, 2, . . . , n − 1) and c̃0 = c̃n = 2. It can be straightforwardly shown that D(m) = Dm when
m > 1.

Denote the solution of (3.5) by v j , j = 0, 1, . . . , n. Using the differentiation matrices, (3.5) can be converted to
a system of nonlinear equations

n−1∑

j=1

{(D2)i j + p(si )(D)i j −
[
(D2)i0 + p(si )(D)i0

]
α̃0 j }v j

= g(si , vi ) −
[
(D2)i0 + p(si )(D)i0

]
c̃+ −

[
(D2)in + p(si )(D)in

]
c̃−, i = 1, 2, . . . , n − 1, (3.7)

where the parameters c̃+, α̃0 j , c̃−, α̃nj are evaluated by

c̃+ = B − d̃ A

c̃
, c̃− = A, α̃0 j = 2βγ (D)0 j

c̃
, j = 1, 2, . . . , n − 1,

c̃ := σ + 2βγ (D)00, d̃ := 2βγ (D)0n

via the boundary condition (3.2). Then

v0 = c̃+ −
n−1∑

j=1

α̃0 jv j , vn = A. (3.8)
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Similarly, for the problem (3.1) with the boundary condition (3.3), we have

n−1∑

j=1

{
(D2)i j + p(si )(D)i j

}
v j = g(si , vi ) −

[
(D2)i0 + p(si )(D)i0

]
v0 −

[
(D2)in + p(si )(D)in

]
vn, (3.9)

where

v0 = c̃+ −
n−1∑

j=1

α̃0 jv j , vn = c̃− −
n−1∑

j=1

α̃njv j (3.10)

with the parameters c̃+, α̃0 j , c̃−, α̃nj being defined by

c̃+ = b̃B

c̃b̃ − ãd̃
, c̃− = ãB

ãd̃ − c̃b̃
,

α̃0 j = d̃(D)nj − 2βγ b̃(D)0 j

ãd̃ − c̃b̃
, α̃nj = 2βγ ã(D)0 j − c̃(D)nj

ãd̃ − c̃b̃
.

ã := (D)n0, b̃ := (D)nn, c̃ := σ + 2βγ (D)00, d̃ := 2βγ (D)0n .

The system of the nonlinear equations (3.7) or (3.9) can be solved by Newton’s iterative method with an initial guess,
then (3.8) or (3.10) is used to compute v0 and vn . We now discuss how to choose the initial values for Newton’s
method. For the first boundary condition, we can use the known conditions u(0) = A, u(1) = B to construct a
linear interpolation to determine the initial values. For the other boundary conditions, we first use the condition
σu(1) + γ u′(1) = B to determine the parameter a0 or A in (2.20) for uM (x), then the deduced uM (x) is used to
evaluate the initial values. As we have mentioned in Remark 4, this technique is not accurate for determining the
parameter, but it is enough to obtain the initial values for iteration. We note that we can also simply generate the
initial values randomly in practical computation. Since the collocation method has high accuracy, we set machine
precision (2.22045 × 10−16) as the stop criteria for Newton’s method.

By using the computational values (si , vi ), i = 0, 1, . . . , n, we can construct a Lagrange interpolant vn(s) =∑n
j=0 v j l j (s). By letting l̃ j (x) = l j (2xβ − 1), we obtain un(x) = ∑n

j=0 v j l̃ j (x), which is the interpolating
approximation of u(x) based on the Chebyshev–Gauss–Lobatto points. Expanding un(x) about x = 0, we can also
determine the unknown parameter a0 or A in the truncated series expansion uM (x) with high precision.

Remark 7 Although the solution of (3.1) is smooth, the equation is still singular. In order to avoid the cancellation
of significant digits, we should treat the singular parts carefully. For instance, when evaluating p(si ) in (3.1), we
should rewrite

p(si ) = α + β − 1

2β
sec2

(
π i

2n

)
, si = cos

(
π i

n

)
, i = 1, 2, . . . , n − 1.

4 Convergence analysis

The implementation of collocation method is simple, but its convergence analysis is not easy. Canuto, Quarteroni,
Shen, et al. [55–57] constructed the framework for analyzing the convergence of collocation method in weighted
Sobolev spaces and Huang [30], Guo [33] conducted the convergence analysis of spectral collocation methods for
singular differential equations. In this section, we only consider the linear case of Eq. (3.1) with homogeneous
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Dirichlet boundary conditions, which is rewritten as

d2v

ds2 + κ

1 + s

dv

ds
= g(s), −1 < s < 1, v(−1) = 0, v(1) = 0. (4.1)

where κ = α+β−1
β

(0 ≤ α < 1) and g̃ = (1 + s)g(s) is sufficiently smooth about s ∈ [−1, 1].
Denote vn(s) by the collocation solution to (4.1) corresponding with the Chebyshev–Gauss–Lobatto points si ,

i = 0, 1, . . . , n, then

v′′
n (si ) + κ

1 + si
v′
n(si ) = g(si ), i = 1, 2, . . . , n − 1, vn(s0) = vn(sn) = 0, (4.2)

where the Lagrange interpolating polynomial vn(s) of degree n reads

vn(s) =
n∑

j=0

l j (s)v j ,

and v j is the approximation of v(s j ). Denote by

Φn,0 = {φ ∈ Pn, φ(−1) = φ(1) = 0},

where Pn is the polynomial space of degree less than or equal to n. By introducing the Chebyshev weight function
ω(x) = (1 − x2)−1/2, we know the Chebyshev–Gauss–Lobatto quadrature formula holds [55]

∫ 1

−1
φ(s)ω(s)ds =

n∑

i=0

ωiφ(si ) for φ(s) ∈ P2n−1, (4.3)

where ω0 = ωn = π
2n , ωi = π

n , i = 1, 2, . . . , n − 1.
For ∀φ(s) ∈ Φn,0, multiplying the equation in (4.2) by (1 + si )ωiφ(si ), summing over the range of i from 1 to

n − 1, and noting that φ(s0) = φ(sn) = 0, we have

n∑

i=0

(1 + si )ωiφ(si )v
′′
n (si ) + κ

n∑

i=0

ωiφ(si )v
′
n(si ) =

n∑

i=0

ωiφ(si )g̃(si ). (4.4)

Noting that vn(s) is a polynomial of degree n, we know from (4.3) that Eq. (4.4) is equivalent to

∫ 1

−1
ω(s)φ(s)(1 + s)v′′

n (s)ds + κ

∫ 1

−1
ω(s)φ(s)v′

n(s)ds =
n∑

i=0

ωiφ(si )g̃(si ), (4.5)

which yields by integrating by parts for the first integral in (4.5)

∫ 1

−1
(1 + s)v′

n(s)(ω(s)φ(s))′ds − (κ − 1)

∫ 1

−1
ω(s)φ(s)v′

n(s)ds = −
n∑

i=0

ωiφ(si )g̃(si ). (4.6)
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By introducing the following notations:

aω(v, φ) =
∫ 1

−1
(1 + s)v′(ωφ)′ds, bω(v, φ) =

∫ 1

−1
ω(s)φ(s)v′(s)ds, (4.7)

(g̃, φ)ω =
∫ 1

−1
ω(s)g̃(s)φ(s)ds, (g̃, φ)ω,n =

n∑

i=0

ωiφ(si )g̃(si ), (4.8)

Eq. (4.6) is written as

aω(vn, φ) − (κ − 1)bω(vn, φ) = − (g̃, φ)ω,n ∀φ ∈ Φn,0. (4.9)

Analogously, the boundary value problem (4.1) can be transformed to

aω(v, φ) − (κ − 1)bω(v, φ) = − (g̃, φ)ω ∀φ ∈ Φn,0. (4.10)

Then, subtracting (4.9) from (4.10) gives the error equation

aω(v − vn, φ) − (κ − 1)bω(v − vn, φ) = − [(g̃, φ)ω − (g̃, φ)ω,n
] ∀φ ∈ Φn,0. (4.11)

Generally, it is convenient to estimate the error v − vn in weighted Sobolev spaces. Denote I = (−1, 1), and let
ω(γ,δ)(s) = (1 − s)γ (1 + s)δ be the Jacobi weight. For this weight, we define weighted L2 space

L2
ω(γ,δ) (I ) = {v| v is measurable and ‖v‖ω(γ,δ) < ∞}

with inner product and norm

(u, v)ω(γ,δ) =
∫

I
u(s)v(s)ω(γ,δ)(s)ds, ‖v‖ω(γ,δ) = √(v, v)ω(γ,δ) .

For any integer m ≥ 0, we set

Hm
ω(γ,δ) (I ) =

{
v ∈ L2

ω(γ,δ) (I )| v(k) ∈ L2
ω(γ,δ) (I ), 0 ≤ k ≤ m

}

with norm and semi-norm

‖v‖m,ω(γ,δ) =
(

m∑

k=0

‖v(k)‖2
ω(γ,δ)

)1/2

, |v|m,ω(γ,δ) = ‖v(m)‖ω(γ,δ) .

We also set H1
ω(γ,δ),0

(I ) = {v ∈ H1
ω(γ,δ) (I )| v(−1) = v(1) = 0}. We note that when γ = δ = − 1

2 , the Jacobi

weight ω(γ,δ)(s) degenerates to Chebyshev weight ω(s) = (1 − s2)−1/2, and the notations for spaces and norms
are correspondingly simplified. In the following, we provide some useful lemmas.

Lemma 1 ([33], Lemma 3.7) If ρ ≤ γ + 2, τ ≤ δ + 2, and −1 < ρ, τ < 1, then for any v ∈ H1
ω(ρ,τ),0

(I ), we have
‖v‖ω(γ,δ) ≤ c|v|1,ω(ρ,τ ) , where c is a positive constant.
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Lemma 2 ([30], Lemma 3.6) For v, φ ∈ H1
ω,0(I ), we have for aω(v, φ) defined in (4.7)

1

4
|v|21,ω(−1/2,1/2) + 3

8

∫

I

v2(s)ω(s)

1 − s
ds − 1

8

∫

I

v2(s)ω(s)

1 + s
ds ≤ aω(v, v) ≤ |v|21,ω(−1/2,1/2) , (4.12)

|aω(v, φ)| ≤ 3|v|1,ω(−1/2,1/2) |φ|1,ω(−1/2,1/2) . (4.13)

Lemma 3 For v, φ ∈ H1
ω,0(I ), we have for bω(v, φ) defined in (4.7)

bω(v, v) = −1

4

∫

I

v2(s)ω(s)

1 − s
ds + 1

4

∫

I

v2(s)ω(s)

1 + s
ds, (4.14)

|bω(v, φ)| ≤ c|v|1,ω(−1/2,1/2) |φ|1,ω(−1/2,1/2) . (4.15)

Proof From the definition of bω(v, φ), noting that v(−1) = v(1) = 0, we know

bω(v, v) = 1

2

∫

I
ω(s)

dv2

ds
ds = −1

2

∫

I
v2(s)

dω(s)

ds
ds = −1

2

∫

I

s

1 − s2 v2(s)ω(s)ds

= −1

4

∫

I

v2(s)ω(s)

1 − s
ds + 1

4

∫

I

v2(s)ω(s)

1 + s
ds.

As for (4.15), by using Cauchy inequality, we have

|bω(v, φ)| =
∣
∣∣∣

∫

I
(1 + s)ω(s)

φ(s)

1 + s
v′(s)ds

∣
∣∣∣

≤
(∫

I
(1 + s)ω(s)(v′(s))2ds

)1/2 (∫

I

φ2(s)ω(s)

1 + s
ds

)1/2

.

In Lemma 1, taking γ = − 1
2 , δ = − 3

2 , ρ = − 1
2 , τ = 1

2 implies

∫

I

φ2(s)ω(s)

1 + s
ds ≤ c2|φ|21,ω(−1/2,1/2) .

Hence, (4.15) holds. The proof is complete. 	

Lemma 4 ([33], Lemma 3.16) For the orthogonal projection P0

n,γ,δ: H1
ω(γ,δ),0

(I ) → Φn,0 defined by ((v −
P0
n,γ,δv)′, φ′)ω(γ,δ) = 0, v ∈ H1

ω(γ,δ),0
(I ), ∀φ ∈ Φn,0, there holds

‖v − P0
n,γ,δv‖1,ω(γ,δ) ≤ c n1−m‖v‖m,ω(γ,δ),∗ ≤ c n1−m‖v‖m,ω(γ,δ) , m > 1. (4.16)

where c > 0 is a constant and the definition of the norm ‖v‖m,ω(γ,δ),∗ can be found in [33].

Lemma 5 ([56,57]) For all φ ∈ Φn,0 and v ∈ Hm
ω (I ), m ≥ 1, there holds

|(v, φ)ω − (v, φ)ω,n| ≤ c n−m‖v‖m,ω‖φ‖ω.

In Lemma 1, by taking γ = δ = − 1
2 , ρ = − 1

2 , τ = 1
2 , we know ‖φ‖ω ≤ c|φ|1,ω(−1/2,1/2) for φ ∈ Φn,0. Hence

|(g̃, φ)ω − (g̃, φ)ω,n| ≤ c n−m‖g̃‖m,ω|φ|1,ω(−1/2,1/2) . (4.17)
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Now we state the convergence result of the Chebyshev collocation method. We note that C1, C2 and c are general
positive constants in this section, which may have different values in different places.

Theorem 3 Suppose that v(s) ∈ H1
ω,0(I ) ∩ Hm

ω(−1/2,1/2) (I ) is the solution of the singular differential equation (4.1)
(0 ≤ α < 1) and vn(s) ∈ Φn,0 is the collocation solution to (4.1) corresponding with n + 1 Chebyshev–Gauss–
Lobatto points. If κ = α + β − 1/β satisfies − 1

2 ≤ κ ≤ 1
2 (or equivalently 1

2β ≤ 1 − α ≤ 3
2β), then there exist

two positive constant C1, C2 such that the error v − vn is estimated by

|v − vn|1,ω(−1/2,1/2) ≤ C1 n
1−m‖v‖m,ω(−1/2,1/2) + C2 n

−m‖g̃‖m,ω, (4.18)

where g̃ = (1 + s)g(s) is sufficiently smooth.

Proof For ∀ψ ∈ Φn,0, we rewrite the error equation (4.11) as

aω(ψ − vn, φ) − (κ − 1)bω(ψ − vn, φ)

= −aω(v − ψ, φ) + (κ − 1)bω(v − ψ, φ) − [(g̃, φ)ω − (g̃, φ)ω,n
] ∀φ ∈ Φn,0.

Taking φ = ψ − vn and using (4.13), (4.15), (4.17), we have

aω(ψ − vn, ψ − vn) − (κ − 1)bω(ψ − vn, ψ − vn)

≤ (3|v − ψ |1,ω(−1/2,1/2) + c|κ − 1||v − ψ |1,ω(−1/2,1/2) + c n−m‖g̃‖m,ω

) |ψ − vn|1,ω(−1/2,1/2) . (4.19)

From (4.12) and (4.14), we know when − 1
2 ≤ κ ≤ 1

2

aω(ψ − vn, ψ − vn) − (κ − 1)bω(ψ − vn, ψ − vn)

≥ 1

4
|ψ − vn|21,ω(−1/2,1/2) + 1 + 2κ

8

∫

I

(ψ(s) − vn(s))2ω(s)

1 − s
ds

+ 1 − 2κ

8

∫

I

(ψ(s) − vn(s))2ω(s)

1 + s
ds

≥ 1

4
|ψ − vn|21,ω(−1/2,1/2) . (4.20)

Combining (4.19) with (4.20) yields

|ψ − vn|1,ω(−1/2,1/2) ≤ C1|v − ψ |1,ω(−1/2,1/2) + C2 n
−m‖g̃‖m,ω.

Taking ψ = P0
n,−1/2,1/2v defined in Lemma 4, we know

|P0
n,−1/2,1/2v − vn|1,ω(−1/2,1/2) ≤ C1 n

1−m‖v‖m,ω(−1/2,1/2) + C2 n
−m‖g̃‖m,ω. (4.21)

Further using the triangle inequality

|v − vn|1,ω(−1/2,1/2) ≤ |v − P0
n,−1/2,1/2v|1,ω(−1/2,1/2) + |P0

n,−1/2,1/2v − vn|1,ω(−1/2,1/2)

and Lemma 4, we know (4.18) holds. The theorem is proved. 	

Theorem 3 tells us that the accuracy of the collocation method depends upon the smoothness of the solution and the
source term. In order to increase the accuracy of the scheme, it is necessary to perform a smooth transformation as
done in Sect. 3. In this section, we only discuss a special linear case for 0 ≤ α < 1. We note that the case includes

123



5 Page 16 of 28 T. Wang et al.

the most important one β = 1 − α corresponding to κ = 0. As for the other cases, we are going to explore in the
future.

Remark 8 As stated in [33], the semi-norm |v|1,ω(−1/2,1/2) is a norm of the space H1
ω(−1/2,1/2),0

(I ), which is equivalent
to the norm ‖v‖1,ω(−1/2,1/2) . Hence, (4.18) also holds for this norm.

5 Numerical examples

In this section, we present three examples to show the performance of our proposed methods. All the experiments
are performed on a Laptop with Intel Core i5-6200U CPU (2.30 GHz) and 8 GB RAM by using Mathematica.

Example 1 Solve the following linear strongly singular two-point boundary value problem using our method, the
Adomian decomposition method (ADM) [45], and the optimal homotopy analysis method (OHAM) [41]

(xu′)′ = g(x)u := 9

4

(√
x + x2

)
u, u′(0) = 0,

1

2
u(1) + 1

3
u′(1) = 4e. (5.1)

We know its exact solution is u(x) = 4ex
3/2

.

In this example, α = 1, but g(x) = 9
4

(√
x + x2

)
involves a term

√
x . Hence the solution is not sufficiently smooth

at x = 0. By implementing the series expansion method, we obtain the truncated fractional power series expansion
for u(x) about x = 0 with a parameter A = u(0), denoted by

u p(x) = A + Ax3/2 + A

2
x3 + A

6
x9/2 + A

24
x6 + A

120
x15/2 + A

720
x9,

from which we know the transformation s = 2
√
x−1 can make the solution u(x) infinitely smooth. By discretizing

the transformed equation (3.1) using the Chebyshev collocation method with n = 18, we obtain a fractional
Lagrange interpolation

utc(x) = 4 − 4.57551 × 10−14√x + 3.42666 × 10−8x + 4x3/2 + 1.17129 × 10−4x2

− 0.00222858x5/2 + 2.02614x3 − 0.20533x7/2 + 1.13593x4 − 3.90777x9/2 + 13.6913x5

− 30.8144x11/2 + 52.5145x6 − 66.8327x13/2 + 63.2231x7 − 43.0473x15/2 + 20.0611x8

− 5.74558x17/2 + 0.776323x9.

Comparing this approximate solution with u p(x), we know the parameter A = 4 in the fractional series expansion
u p(x), which leads to

u p(x) = 4 + 4x3/2 + 2x3 + 2

3
x9/2 + 1

6
x6 + 1

30
x15/2 + 1

180
x9.

As a comparison, we also solve this example using ADM and OHAM. Since Eq. (5.1) is equivalent to

u(x) = u(0) +
∫ x

0
t−1
∫ t

0
g(ξ)u(ξ)dξ dt,

the Adomian iteration reads

y0(x) = A, yi (x) =
∫ x

0
t−1
∫ t

0
g(ξ)yi−1(ξ)dξ dt, i = 1, 2, . . . ,
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Fig. 1 The absolute errors
of the approximate solutions
to the exact solution in
Example 1

from which the m-th approximate solution of ADM is uadm
m (x) = ∑m

i=0 yi (x). We note that the parameter A is
determined by the right boundary condition. A direct computation shows

uadm
6 (x) = 4 + 4x3/2 + 2x3 + 2

3
x9/2 + 1

6
x6 + 1

30
x15/2 + 0.00555556x9

+ 0.000793494x21/2 + 0.0000988595x12 + 0.0000107118x27/2

+ 9.54922 × 10−7x15 + 6.01026 × 10−8x33/2 + 1.8838 × 10−9x18.

The OHAM is based on the integral equation (2.5). By introducing an optimal parameter h, the OHAM reads

y0(x) = B

σ
, y1(x) = −h

∫ 1

0
G(x, ξ)g(ξ)y0(ξ))dξ,

yi (x) = (1 + h)yi−1(x) − h
∫ 1

0
G(x, ξ)g(ξ)yi−1(ξ)dξ, i = 2, 3, . . . ,

from which the m-th approximate solution of OHAM is uoham
m (x) = ∑m

i=0 yi (x). The parameter h is determined
by minimizing the error

∫ 1

0

[
uoham
m (x) − B

σ
−
∫ 1

0
G(x, ξ)g(ξ)uoham

m (ξ)dξ

]2

dx .

When m = 6, we obtain the optimal h = −0.394885 and the approximate solution

uoham
6 (x) = 3.98385 + 4.02531x3/2 + 2.03473x3 + 0.667562x9/2 + 0.151846x6 + 0.0254998x15/2

+ 0.00321373x9 + 0.000299202x21/2 + 0.0000228003x12 + 1.15048 × 10−6x27/2

+ 5.57005 × 10−8x15 + 1.23837 × 10−9x33/2 + 3.88143 × 10−11x18.

We note that when h = −1, the OHAM degenerates to the improved Adomian decomposition method [45], but it
is not convergent for this example. In order to discuss the accuracy of these approximations, we plot their absolute
errors with logarithmic scale, as shown in Fig.1.

It can be seen from Fig. 1 that the Chebyshev collocation method with smoothing transformation has the highest
accuracy even though the highest degree of utc(x) is only half compared with the ones of the other two methods
and the OHAM has the lowest accuracy in this example. Since the standard OHAM is not convergent fast, Roul et
al. [42] further designed a domain decomposition OHAM to accelerate the convergence. As we expected, the series
expansion u p(x) approximates u(x) with high precision only over a small interval near x = 0. When the variable
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x moves away from x = 0 to x = 1, the accuracy decreases gradually. In the computation, we also record the CPU
time for these methods. For our method, the total CPU time for generating u p(x) and calculating utc(x) is only
0.03125 seconds, whereas the ADM and OHAM cost 8.04688 and 99.6719 seconds, respectively. Obviously, our
method is much faster than the other two methods. Although both the iteration procedures of the ADM and OHAM
are very simple, they cost much time since many integrals are evaluated analytically by symbolic computation in
their iterations.

Example 2 Solve the following nonlinear singular two-point boundary value problem:

(
x1/2u′)′ = f (x, u) := 2√

x(2 − x)
−

√
u

(2 − x)3/2 ,

u(0) = A := π2

4
, u(1) = 0.

(5.2)

Its exact solution is u(x) = (arcsin(1 − x))2.

For this example, f (x, u) is obviously weakly singular at x = 0. Even so, we can also use the series expansion
Mathematica function Pesbvp[f,1/2,10,A,a0] to obtain

u p(x) = π2

4
+ a0

√
x + 2x − π

6
√

2
x3/2 +

(
1

6
− a0

6
√

2π

)
x2 +

(

− 1

5
√

2π
− 3π

80
√

2
+ a2

0

10
√

2π3

)

x5/2

+
[

7

180
+ a0

(
2
√

2

15π3 − 1

20
√

2π

)

−
√

2a3
0

15π5

]
x3

+
[

2
√

2

21π3 − 5

63
√

2π
− 5π

448
√

2
− a0

252π2 + a2
0

(

−2
√

2

7π5
+ 1

28
√

2π3

)

+ 5a4
0

21
√

2π7

]
x7/2

+
[

53

4480
− 1

120π2 + a0

(

−3
√

2

7π5
+ 5

42
√

2π3
− 15

896
√

2π

)

+ 17a2
0

1680π4

+ a3
0

(
5
√

2

7π7 − 3

56
√

2π5

)

− a5
0

2
√

2π9

]
x4 + · · · .

Based on this series expansion, we choose the smoothing transformation s = 2
√
x −1. By applying the Chebyshev

collocation method with n = 20 to the transformed equation (3.1), we can obtain the Chebyshev interpolation

utc(x) = 2.4674 − 4.44288
√
x + 2x − 0.370241x3/2 + 0.333357x2 − 0.0838254x5/2

+ 0.0961995x3 − 0.0946874x7/2 + 0.506482x4 − 2.42262x9/2 + 9.22243x5

− 26.9487x11/2 + 60.9291x6 − 106.786x13/2 + 144.658x7 + · · · + 0.683452x10,

which is an approximate solution to u(x). Since utc(x) and u p(x) are both accurate when x is small, we can conclude
that a0 = −4.442882938175524 in the series expansion u p(x). Thus

u p(x) = 2.4674 − 4.44288
√
x + 2x − 0.37024x3/2 + 0.333333x2 − 0.0833041x5/2

+ 0.0888889x3 − 0.0247929x7/2 + 0.0285714x4 − 0.00843646x9/2 + 0.0101587x5

− 0.00310615x11/2 + 0.003848x6 − 0.00120463x13/2 + · · · + 0.000110849x10.
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Fig. 2 The absolute errors
of the approximate solutions
to the exact solution in
Example 2

Table 1 Convergence order and CPU time in Example 2

n En Order CPU time (s)

5 7.61219 × 10−4 0.09375

10 4.76436 × 10−7 0.493276 0.15625

20 8.7097 × 10−13 0.524212 0.17188

For comparison, we apply the Chebyshev collocation method (taking n = 20) directly to solve the problem (5.2)
and obtain an approximate solution

uc(x) = 2.4674 − 55.407x + 2542.05x2 − 80553.5x3 + 1.60707 × 106x4 − 2.13328 × 107x5

+ 1.98344 × 108x6 − 1.34265 × 109x7 + 6.80723 × 109x8 + · · · + 1.01071 × 109x20.

The absolute errors of the approximate solutions utc(x), u p(x), and uc(x) are plotted in Fig. 2 with logarithmic
scale.

It can be seen from Fig. 2 that the approximate solution uc(x) has very low precision of about 10−1 order. After
smoothing transformation, the solution utc(x) achieves a very high precision, whose accuracy is about 10−13 order.
In addition, the fractional power series u p(x) is a good approximation to u(x) when x ≤ 0.25, but it gradually
becomes less accurate as x tends to 1.

We further explore the convergence order of the Chebyshev collocation method for the transformed equation
using different n, and the results are shown in Table 1, where in this table, the maximal absolute error En =
max0≤x≤1 |u(x) − utc(x)| and the order is defined by log En/ log E2n . From Table 1, we know the order is about
0.5, which means En = O (exp(−θn)) (θ > 0). Rubio [58] called this convergence as exponential convergence.
We note that we only discuss the algebraic convergence in Sect. 4. In addition, we can also see that the CPU time
increases slowly as n increases to two times.

Example 3 Solve the nonlinear strongly singular two-point boundary value problem

(
x3/2u′)′ = −4

9
π2x13/6u − 11

9
πx5/6

√
1 − u2,

u′(0) = 0, u(1) + 3u′(1) = −2π,

(5.3)

with the exact solution u(x) = cos
(
πx4/3/2

)
.
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Fig. 3 The absolute errors
of the approximate solutions
to the exact solution in
Example 3

This example is a strongly singular problem. By means of the proposed series expansion method, we obtain the
truncated fractional series expansion for u(x) about x = 0

u p(x) = A − π

2

√
1 − A2x4/3 − Aπ2

8
x8/3 + π3

48

√
1 − A2x4 + Aπ4

384
x16/3

− π5

3840

√
1 − A2x20/3 − Aπ6

46080
x8 + π7

√
1 − A2x28/3

645120
+ π8Ax32/3

10321920
.

Hence, we choose the smoothing transformation s = 2x2/3 − 1. By applying the Chebyshev collocation method
with n = 20 to the new equation, we can formulate a Lagrange interpolation

utc(x) = 1 + 3.59234 × 10−14x2/3 − 8.57432 × 10−11x4/3 + 4.70386 × 10−9x2 − 1.2337x8/3

+ 1.90657 × 10−6x10/3 − 1.99629 × 10−5x4 + 0.000148541x14/3 + 0.252854x16/3

+ 0.00339015x6 − 0.0108396x20/3 + 0.0269292x22/3 − 0.073067x8 + 0.0788706x26/3

− 0.0921944x28/3 + 0.0821393x10 − 0.053415x32/3 + 0.0255147x34/3 − 0.00784089x12

+ 0.00132846x38/3 − 0.000099176x40/3.

From this approximate solution, we know the parameter A = 1 in the series expansion u p(x), which leads to

u p(x) = 1 − π2

8
x8/3 + π4

384
x16/3 − π6

46080
x8 + π8

10321920
x32/3.

We can also directly solve Eq. (5.3) using the Chebyshev collocation method (taking n = 20) to obtain an approx-
imate solution uc(x). The absolute errors of the three approximate solutions utc(x), u p(x), and uc(x) to the exact
solution u(x) are plotted in Fig. 3.

We can see from Fig. 3 that the approximate solution uc(x) has the accuracy 10−6 since the exact solution is
twice continuously differentiable over the interval [0, 1]. By using smoothing transformation, the solution utc(x)
achieves the accuracy 10−14. For this example, the series expansion u p(x) has very high accuracy when x ≤ 0.2,
but it becomes less accurate as x → 1.

The three examples in this section demonstrate that the Chebyshev collocation method can be applied directly
to solve the singular two-point boundary value problem, but the approximate solution is not accurate due to the
low regularity of the exact solution u(x) at x = 0. Obviously, the smoother the solution is, the higher accuracy
will be achieved for the Chebyshev collocation method. With the proposed series decomposition method, we can
give an accurate description of the singular behavior of the solution using the fractional series expansion. Then,
a suitable smoothing transformation is taken for the equation so that the solution is sufficiently smooth. For the
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transformed equation, the accuracy of the Chebyshev collocation method can be improved significantly. In addition,
the Lagrange interpolation of the Chebyshev collocation solution can also determine the unknown parameter a0 or
A in the fractional series expansion with high precision. In most cases, the fractional series expansion approximates
u(x) with high precision only in the neighborhood of x = 0. When the variable x is away from the point x = 0,
the series expansion gradually becomes less accurate.

6 Applications to the Thomas–Fermi equation and Emden–Fowler equation

In this section, we apply our method to solve the Thomas–Fermi equation and Emden–Fowler equation over finite
interval. We first consider the Thomas–Fermi equation. It is used to model the potentials and charge densities in
atoms [7,9–12]. The equation is

u′′ = u3/2

√
x

, x > 0. (6.1)

There are three kinds of boundary conditions of interest for this equation [9,10]. Here, we only consider the ion
case

u(0) = 1, u(1) = 0. (6.2)

By implementing the Mathematica function Pesbvp[f,0,10,1,a0], we obtain the series expansion with an
undetermined parameter a0 for the solution u(x) about x = 0

u p,l(x) = 1 + a0x + 4

3
x3/2 + 2a0

5
x5/2 + 1

3
x3 + 3a2

0

70
x7/2 + 2a0

15
x4 +

(
2

27
− a3

0

252

)

x9/2

+ a2
0

175
x5 +

(
31a0

1485
+ a4

0

1056

)

x11/2 +
(

4

405
+ 4a3

0

1575

)

x6

+
(

557a2
0

100100
− 3a5

0

9152

)

x13/2 + · · · +
(

51356a0

103378275
− 99856a4

0

70945875
+ 256a7

0

1044225

)

x10. (6.3)

Next, we discuss the asymptotic behavior of u(x) about x = 1. Since u(1) = 0, we can reasonably let u(x) =
(1 − x)βw(x), where β > 0 and w(1) = b0 �= 0. Substituting it into (6.1) yields

w′′ − 2β

1 − x
w′ + β(β − 1)

(1 − x)2 w = (1 − x)β/2

√
x

w3/2. (6.4)

Noting that w(x) = b0 + (1 − x)β1g(x), β1 > 0, we can deduce that the third term on the left-hand side of (6.4)
must vanish, which means β = 1. Hence, Eq. (6.4) becomes

(
(1 − x)2w′)′ = f (x, w) := (1 − x)5/2

√
x

w3/2, w(0) = 1, w(1) = b0 �= 0. (6.5)

Obviously, f (x, w) is infinitely differentiable with respect to w at w = b0. Hence, w(x) possesses the fractional
power series about x = 1. Substituting w(x) = b0 + b1(1 − x)γ1 + · · · into (6.5), we can deduce γ1 = 5

2 , which
means we can impose a right boundary condition w′(1) = 0 for Eq. (6.5). Hence, we can obtain the series expansion
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of w(x) about x = 1 by using our decomposition method for Eq. (6.5) at x = 1, denoted by wp(x). Further by
letting u p,r (x) = (1 − x)wp(x), we have

u p,r (x) = b0(1 − x) + 4b3/2
0

35
(1 − x)7/2 + 2b3/2

0

63
(1 − x)9/2 + b3/2

0

66
(1 − x)11/2 + b2

0

175
(1 − x)6

+ 5b3/2
0

572
(1 − x)13/2 + b2

0

315
(1 − x)7 + 7b3/2

0

1248
(1 − x)15/2 + 16b2

0

8085
(1 − x)8

+ b3/2
0 (25725 + 1408b0)

6664000
(1 − x)17/2 + 4b2

0

3003
(1 − x)9 + · · · + 128b2

0

135135
(1 − x)10, (6.6)

where b0 is a parameter to be determined.

Remark 9 In history, many researchers studied the series expansions of the solution for the Thomas–Fermi equation.
As early as 1930, Baker [59] obtained the series expansion (6.3) for the Cauchy problem of the Thomas–Fermi
equation. Hille [10] proved the convergence of this series and obtained the radius of convergence. Hille also discussed
the series expansion (6.6). Here, we reproduce these series expansions by our method.

From (6.3) and (6.6), we know the solution u(x) is not smooth enough at the two endpoints, but we can take a
variable substitution t = 2

√
1 − √

1 − x − 1 in (6.1) such that the solution v(t) = u(x), t ∈ [−1, 1] is sufficiently
smooth. Correspondingly, the equation (6.1) with boundary condition (6.2) is transformed to

v′′ + −1 + 6t + 3t2

(1 − t2)(3 + t)
v′ = (1 − t2)(1 − t)(3 + t)2

4
√

7 − 2t − t2
v3/2, −1 < t < 1,

v(−1) = 1, v(1) = 0. (6.7)

By taking n = 20 in the Chebyshev collocation method, we obtain an approximate solution to the transformed
Thomas–Fermi equation (6.7). Taking t = 2

√
1 − √

1 − x − 1 again, we obtain

utc(x) = 0.48501 − 0.700536t + 0.0268687t2 + 0.136627t3 − 0.00556901t4 + 0.0792602t5

− 0.00887676t6 − 0.0158342t7 + 0.00163158t8 − 0.0000678796t9 + 0.00123403t10

+ 0.000680707t11 − 0.000282336t12 − 0.00013135t13 − 0.0000289612t14 + 1.90737 × 10−7t15

+ 0.0000156853t16 + 2.01339 × 10−6t17 − 2.85306 × 10−6t18 − 7.09989 × 10−7t19

+ 2.07261 × 10−9t20, t → 2
√

1 − √
1 − x − 1. (6.8)

In order to show the accuracy of the approximate solution, we introduce an error function

etc(x) = u′′
tc(x) − (utc(x))3/2

√
x

,

which is plotted in Fig. 4 in logarithmic scale. In this figure, we also plot the error computed by directly applying
the Chebyshev collocation method to the original Thomas–Fermi equation (6.1) (ec(x), dashed line). Obviously, the
transformed approximate solution is more accurate than the one obtained by direct Chebyshev collocation method,
which further shows our singular transformation is successful.

By expanding utc(x) as fractional power series about x = 0 and x = 1, respectively, we know a0 =
−1.9063841613597106 in (6.3) and b0 = 0.8365830238318072 in (6.6). Hence, we can plot the errors
|utc(x) − u p,l(x)|, |utc(x) − u p,r (x)| with logarithmic scale, shown in Fig. 5.
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Fig. 4 The errors of the
approximate solutions in
logarithmic scale for the
Thomas–Fermi equation

Fig. 5 The errors between
the collocation solution and
the series expansions for the
Thomas–Fermi equation

It can be seen from Fig. 5 that the collocation solution utc(x) approximates the series expansions u p,l(x),
u p,r (x) as x → 0, x → 1, respectively. Hence, it is a good approximation to the Thomas–Fermi equation (6.1)
with boundary condition (6.2) over the whole interval [0, 1].

Now we consider the Emden–Fowler equation, which can be imposed initial or boundary conditions [6,7,12,43].
Here, we only discuss the first boundary value problem, which reads [6]

(
xαu′)′ + xθuρ = 0, 0 < x < 1, (6.9)

u(0) = 0, u(1) = 0, (6.10)

where α and ρ are real numbers satisfying 0 < α < 1, ρ > 0. Obviously, this equation has a trivial solution u = 0.
Here, we explore the positive solution. By introducing a variable transformation y = x1−α and letting v(y) = u(x),
we obtain

v′′(y) + 1

(1 − α)2 y
μvρ(y) = 0, 0 < y < 1, (6.11)

v(0) = 0, v(1) = 0, (6.12)

where μ = α + θ/1 − α. Here, we further require that μ ≥ 0. Now we discuss the asymptotic behaviors of v(y)
about y = 0, 1. Since v(0) = 0, we can reasonably assume that v(y) = yβwl(y), where β > 0 and wl(0) = a0 > 0.
Substituting it into (6.11) yields

w′′
l + 2β

y
w′
l + β(β − 1)

y2 wl + 1

(1 − α)2 y
μ+(ρ−1)βw

ρ
l = 0. (6.13)
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The fact wl(0) = a0 > 0 implies wl(y) = a0 + yγ1g(y), where γ1 > 0, g(y) is continuous over [0, 1] and g(0) �= 0.
Substituting this expression of wl(y) into (6.13) yields

yγ1g′′(y) + 2(γ1 + β)yγ1−1g′(y) + γ1(γ1 + 2β − 1)yγ1−2g(y) + β(β − 1)

y2

[
a0 + yγ1g(y)

]

+ aρ
0

(1 − α)2 y
μ+(ρ−1)β

[

1 + ρ

a0
yγ1g(y) +

(
ρ

2

)
y2γ1g2(y)

a2
0

+ · · ·
]

= 0. (6.14)

For Eq. (6.14), the only term involving y−2 (the smallest exponent about y) must be vanished. Hence β = 1.
Further, since the coefficient of the term involving yγ1−2 is not equal to zero (γ1(γ1 + 1) > 0, g(0) �= 0), we must
set γ1 − 2 = μ + ρ − 1 ⇒ γ1 = μ + ρ + 1 to make the terms involving yγ1−2 be zero. Since γ1 = μ + ρ + 1 > 1,
we can impose a left boundary condition w′

l(0) = 0 on Eq. (6.14). Finally, we obtain a boundary value problem
from (6.13)

(
y2w′

l

)′ + 1

(1 − α)2 y
μ+ρ+1w

ρ
l = 0, w′

l(0) = 0, wl(1) = 0. (6.15)

Analogously, we can show v(y) = (1 − y)wr (y) and wr (y) satisfies

(
(1 − y)2w′

r

)′ + 1

(1 − α)2 y
μ(1 − y)ρ+1wρ

r = 0, wr (0) = 0, w′
r (1) = 0. (6.16)

Obviously, (6.15) and (6.16) are standard equations in Sect. 2, but (6.16) is singular at the right boundary
y = 1. Hence, we can generate the series expansions of wl(y) and wr (y) about y = 0 and y = 1, respectively,
by the algorithm in Sect. 2. In the following, we show that the exponents of the series expansion for v(y) about
y = 0 can be directly determined from (2.14) for the problem (6.11), (6.12). From the above deduction, we
can suppose that v(y) = a0y +∑∞

j=1 a j yα j . By substituting v0(y) = a0y into (2.18), we know β1 = μ + ρ,
and hence α1 = 2 + μ + ρ. Further let v1(y) = a0y + a1yα1 , then the binomial expansion of v1(y)ρ implies
β2 = 1 + 2(μ+ ρ), which deduces α2 = 3 + 2(μ+ ρ). Recursively, we can conclude that α j = j + 1 + j (μ+ ρ),
j = 1, 2, . . .. By similar arguments, we know the exponents of the series expansion for v(y) about y = 1 have the
form {1} ∪ {i + jρ} (i ≥ 2, j = 1, 2, . . . i − 1). We only consider the case that both μ and ρ are rational numbers.
Let μ + ρ = ξ0/η0 and ρ = ξ1/η1, where ξ0, η0 and ξ1, η1 are coprime numbers, respectively. Then the variable
substitution t = (

1 − (1 − y)1/η1
)1/η0 can make the solution of Eq. (6.11) sufficiently smooth, which yields by

letting w(t) = v(y)

w′′(t) + (η0η1 − 1)tη0 − η0 + 1

t (1 − tη0)
w′(t) + q(t)wρ(t) = 0, 0 < t < 1, (6.17)

w(0) = 0, w(1) = 0, (6.18)

where

q(t) =
[
η0η1tη0−1(1 − tη0)η1−1

]2

(1 − α)2

[
1 − (1 − tη0)η1

]μ
.

We choose α = 1
2 , θ = − 1

3 , and ρ = 1
3 in (6.9), then a computation yields η0 = η1 = 3 in (6.17). By applying the

Chebyshev collocation method to Eq. (6.17) with boundary condition (6.18), we obtain the approximate solution
by taking n = 20
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Fig. 6 The approximate
solution of the
Emden–Fowler equation

Fig. 7 The errors of the
approximate solutions in
logarithmic scale for the
Emden–Fowler equation

utc(x) = 0.18215 + 0.303731t − 0.407715t2 − 1.08104t3 − 0.127282t4 + 1.36295t5 + 1.15084t6

− 0.495033t7 − 1.31964t8 − 0.494441t9 + 0.56986t10 + 0.657761t11 + 0.0845911t12 − 0.2992t13

− 0.208823t14 + 0.033786t15 + 0.0922835t16 + 0.015476t17 − 0.0175699t18 − 0.00399044t19

+ 0.0013115t20, t → 2
(

1 − (1 − √
x)1/3

)1/3 − 1, (6.19)

which is plotted in Fig. 6.
Finally, the logarithmic absolute errors of the approximate solutions obtained by the Chebyshev collocation

method to (6.17) (etc(x), solid line) and (6.9) (ec(x), dashed line) are plotted in Fig. 7, which show that the given
singular transformation improves the computational accuracy significantly. Here, we note that the error etc(x) is
defined by

etc(x) = (xαu′
tc(x)

)′ + xθuρ
tc(x).

Remark 10 The solutions of the Thomas–Fermi equation and the Emden–Fowler equation are not sufficiently
smooth at the two endpoints. For these kinds of problems, we tactically perform a smoothing transformation
reflecting the singular behaviors of the solution at the two endpoints such that the solution is sufficiently smooth
over the whole interval. Hence, the Chebyshev collocation method can be effectively used to solve these problems
with high accuracy.
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7 Conclusions

Nonlinear singular two-point boundary value problem is an important model equation, which has wide applications
in many branches of mathematics, physics, and engineering. Since the solution of the equation is not sufficiently
smooth at the one or two endpoints of the interval, the computational accuracy is low when standard numerical
algorithms are used to solve the problem. In this paper, we design a simple method to recover the truncated
fractional series expansion for the solution about the endpoint, which accurately describes the singular behavior of
the solution. Although the series expansion involves an undetermined parameter, the singular feature of the solution
is known. By taking a simple variable transformation, the solution is sufficiently smooth, and hence, the Chebyshev
collocation method can be used to effectively solve the transformed differential equation, which has been confirmed
by convergence analysis. Numerical examples illustrate the high efficiency of the algorithm, which shows that
the computational accuracy improves significantly compared with the direct implementation of the Chebyshev
collocation method to the original differential equation. The method is capable of solving the problems with two-
endpoint singularities. As some applications, the Thomas–Fermi equation and the Emden–Fowler equation over
finite interval are solved by the proposed algorithm with high accuracy.

Acknowledgements The authors are very grateful to the editors and anonymous referees for their valuable comments and suggestions.

References

1. El-Gebeily MA, Abu-Zaid IT (1998) On a finite difference method for singular two-point boundary value problems. IMA J Numer
Anal 18:179–190

2. Jamet P (1970) On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems.
Numer Math 14:355–378

3. Kiguradze IT, Shekhter BL (1988) Singular boundary-value problems for ordinary second-order differential equations. J Math Sci
43:2340–2417

4. Lin SH (1976) Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J Theor Biol 60:449–457
5. Gray BF (1980) The distribution of heat sources in the human head-theoretical considerations. J Theor Biol 82:473–476
6. Wong JSW (1975) On the generalized Emden–Fowler equation. SIAM Rev 17:339–360
7. Pikulin SV (2019) The Thomas–Fermi problem and solutions of the Emden–Fowler equation. Comput Math Math Phys 59:1292–

1313
8. Boyd JP (2011) Chebyshev spectral methods and the Lane–Emden problem. Numer Math Theor Meth Appl 4:142–157
9. Hille E (1969) On the Thomas–Fermi equation. Proc Natl Acad Sci USA 62:7–10

10. Hille E (1970) Some aspects of the Thomas–Fermi equation. J Anal Math 23:147–170
11. Amore P, Boyd JP, Fernández FM (2014) Accurate calculation of the solutions to the Thomas–Fermi equations. Appl Math Comput

232:929–943
12. Flagg RC, Luning CD, Perry WL (1980) Implementation of new iterative techniques for solutions of Thomas–Fermi and Emden–

Fowler equations. J Comput Phys 38:396–405
13. Eriksson K, Thomée V (1984) Galerkin methods for singular boundary value problems in one space dimension. Math Comput

42:345–367
14. Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers. Springer, New York
15. Ciarlet PG, Natterer F, Varga R (1970) Numerical methods of high-order accuracy for singular nonlinear boundary value problems.

Numer Math 15:87–99
16. Chawla MM, Katti CP (1982) Finite difference methods and their convergence for a class of singular two point boundary value

problems. Numer Math 39:341–350
17. Chawla MM, Katti CP (1985) A uniform mesh finite difference method for a class of singular two-point boundary value problems.

SIAM J Numer Anal 22:561–565
18. Chawla MM (1987) A fourth-order finite difference method based on uniform mesh for singular two-point boundary-value problems.

J Comput Appl Math 17:359–364
19. Han GQ, Wang J, Ken H, Xu YS (2000) Correction method and extrapolation method for singular two-point boundary value

problems. J Comput Appl Math 126:145–157
20. Abu-Zaid IT, El-Gebeily MA (1994) A finite-difference method for the spectral approximation of a class of singular two-point

boundary value problems. IMA J Numer Anal 14:545–562
21. Kumar M, Aziz T (2006) A uniform mesh finite difference method for a class of singular two-point boundary value problems. Appl

Math Comput 180:173–177

123



The series expansion and Chebyshev collocation method Page 27 of 28 5

22. Gustafsson B (1973) A numerical method for solving singular boundary value problems. Numer Math 21:328–344
23. Kanth ASVR, Reddy YN (2003) A numerical method for singular two point boundary value problems via Chebyshev economizition.

Appl Math Comput 146:691–700
24. Kadalbajoo MK, Aggarwal VK (2005) Numerical solution of singular boundary value problems via Chebyshev polynomial and

B-spline. Appl Math Comput 160:851–863
25. Roul P, Goura VMKP, Agarwal R (2019) A compact finite difference method for a general class of nonlinear singular boundary

value problems with Neumann and Robin boundary conditions. Appl Math Comput 350:283–304
26. Khuri S, Sayfy A (2010) A novel approach for the solution of a class of singular boundary value problems arising in physiology.

Math Comput Model 52:626–636
27. De Hoog FR, Weiss R (1978) Collocation methods for singular boundary value problems. SIAM J Numer Anal 15:198–217
28. Burkotová J, Rachunková I, Weinmüller EB (2017) On singular BVPs with nonsmooth data: convergence of the collocation schemes.

BIT 57:1153–1184
29. Auzinger W, Koch O, Weinmüller EB (2005) Analysis of a new error estimate for collocation methods applied to singular boundary

value problems. SIAM J Numer Anal 42:2366–2386
30. Huang WZ, Ma HP, Sun WW (2003) Convergence analysis of spectral collocation methods for a singular differential equation.

SIAM J Numer Anal 41:2333–2349
31. Russel RD, Shampine LF (1975) Numerical methods for singular boundary value problems. SIAM J Numer Anal 12:13–36
32. El-Gamel M, Sameeh M (2017) Numerical solution of singular two-point boundary value problems by the collocation method with

the Chebyshev bases. SeMA 74:627–641
33. Guo BY, Wang LL (2001) Jacobi interpolation approximations and their applications to singular differential equations. Adv Comput

Math 14:227–276
34. Doedel EJ, Reddien GW (1984) Finite difference methods for singular two-point boundary value problems. SIAM J Numer Anal

21:300–313
35. Kumar D (2018) A collocation scheme for singular boundary value problems arising in physiology. Neural Parallel Sci Comput

26:95–118
36. Babolian E, Hosseini MM (2002) A modified spectral method for numerical solution of ordinary differential equations with

non-analytic solution. Appl Math Comput 132:341–351
37. Roul P, Thula K (2018) A new high-order numerical method for solving singular two-point boundary value problems. J Comput

Appl Math 343:556–574
38. Schreiber R (1980) Finite element methods of high-order accuracy for singular two-point boundary value problems with nonsmooth

solutions. SIAM J Numer Anal 17:547–566
39. Roul P, Warbhe U (2016) A novel numerical approach and its convergence for numerical solution of nonlinear doubly singular

boundary value problems. J Comput Appl Math 296:661–676
40. Roul P, Biswal D (2017) A new numerical approach for solving a class of singular two-point boundary value problems. Numer

Algorithms 75:531–552
41. Roul P (2019) A fast and accurate computational technique for efficient numerical solution of nonlinear singular boundary value

problems. Int J Comput Math 96:51–72
42. Roul P, Madduri H (2018) A new highly accurate domain decomposition optimal homotopy analysis method and its convergence

for singular boundary value problems. Math Meth Appl Sci 41:6625–6644
43. Singh R (2019) Analytic solution of singular Emden–Fowler-type equations by Green’s function and homotopy analysis method.

Eur Phys J Plus 134(583):1–17
44. Singh R, Kumar J, Nelakanti G (2013) Numerical solution of singular boundary value problems using Green’s function and improved

decomposition method. J Appl Math Comput 43:409–425
45. Singh R, Kumar J (2014) An efficient numerical technique for the solution of nonlinear singular boundary value problems. Comput

Phys Commun 185:1282–1289
46. Cen ZD (2006) Numerical study for a class of singular two-point boundary value problems using Green’s functions. Appl Math

Comput 18:310–316
47. Wang TK, Liu ZF, Zhang ZY (2017) The modified composite Gauss type rules for singular integrals using Puiseux expansions.

Math Comput 86:345–373
48. Wang TK, Zhang ZY, Liu ZF (2017) The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions.

Adv Comput Math 43:319–350
49. Wang TK, Gu YS, Zhang ZY (2018) An algorithm for the inversion of Laplace transforms using Puiseux expansions. Numer

Algorithms 78:107–132
50. Hemmi MA, Melkonian S (1995) Convergence of psi-series solutions of nonlinear ordinary differential equations. Can Appl Math

Q 3:43–88
51. Wang TK, Li N, Gao GH (2015) The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order

singularities. Int J Comput Math 92:579–590
52. Liu ZF, Wang TK, Gao GH (2015) A local fractional Taylor expansion and its computation for insufficiently smooth functions. E

Asian J Appl Math 5:176–191
53. Zhao TJ, Zhang ZY, Wang TK (2021) A hybrid asymptotic and augmented compact finite volume method for nonlinear singular

two point boundary value problems. Appl Math Comput 392:125745

123



5 Page 28 of 28 T. Wang et al.

54. Shen J, Tang T (2006) Spectral and high-order methods with applications. Science Press, Beijing
55. Shen J, Tang T, Wang LL (2011) Spectral methods: algorithms, analysis and applications. Springer, New York
56. Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, New York
57. Quarteroni A, Valli A (2008) Numerical approximation of partial differential equations. Springer, New York
58. Rubio G, Fraysse F, Vicente J, Valero E (2013) The estimation of truncation error by τ -estimation for Chebyshev spectral collocation

method. J Sci Comput 57:146–173
59. Baker EB (1930) The application of the Fermi–Thomas statistical model to the calculation of potential distribution in positive ions.

Phys Rev 36:630–647

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

123


	The series expansion and Chebyshev collocation method for nonlinear singular two-point boundary value problems
	Abstract
	1 Introduction
	2 The singular series expansion for the solution about zero
	3 Chebyshev collocation method
	4 Convergence analysis
	5 Numerical examples
	6 Applications to the Thomas–Fermi equation and Emden–Fowler equation
	7 Conclusions
	Acknowledgements
	References




