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Abstract Continuous data dependence estimates are employed to rigorously derive conditions that validate the
quasi-static approximation for the initial homogeneous boundary value problem in the theory of small elastic
deformations superposed upon large elastic deformations. This theory imposes no sign-definite assumptions on
the linearised elastic moduli and in consequence the requisite estimates are established using methods principally
motivated by known Lagrange identity arguments.
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arguments . Dirichlet boundary conditions

1 Introduction

The quasi-static approximation assumes that when the inertia is small compared, for example, to the strain and
velocity, it may be neglected leading to a simplified problem for which the solution is more easily obtained. The
origin of the approximation is attributed by Boley and Weiner [1] to Duhamel as part of his 1837 studies into
thermoelasticity [2]. But evidently, thermal damping is not the only cause of comparatively small inertia, if not
immediately then after a short period of time. Other causes may be due to viscous damping, and time evolutionary
boundary conditions and source terms. Shock waves may be another cause. Typical of numerous applications of the
quasi-static approximation are those described by [3–6]. Dafermos [7,8], however, shows that conditions exist in
thermoelasticity under which the inertia does not asymptotically vanish in time. See also Lebeau and Zuazua [9].
Such types of long-term behaviour together with several counter-examples caution against universal acceptance
of the quasi-static approximation which although intuitively plausible is seldom rigorously established. Without
mathematical proof, the reliability of the approximation is kept in doubt irrespective of how expedient its use may
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be in practice. The relatively small literature devoted to rigorous examination of the approximation includes the
contributions [10–14] all of which are concerned with linear thermoelastodynamics.

Here the approach generally follows that introduced in [14] which interprets the quasi-static approximation in
the context of continuous data dependence. The appropriate strategy has three components:

1. Continuous dependence of inertia upon relevant data or damping mechanisms.
2. Determination of the time interval after which the inertia becomes uniformly spatially negligble compared with

other field variables such as displacement, velocity, strain, and temperature.
3. Continuous dependence upon inertia of the difference between the original dynamical solution and its quasi-

static approximation.

Rather than the thermoelastic problems discussed in the previously mentioned studies [10–13] which demonstrate
that thermal damping leads to negligble inertia independently of initial and boundary conditions, we illustrate the
strategy by treating the initial homogeneous Dirichlet boundary value problem for the self-adjoint equations of
linearised elastodynamics. Consequently, damping is absent. On the other hand, judicious choice of the underlying
large elastic deformation contravenes the sign-definiteness of the linearised elastic moduli, and accordingly our
investigation cannot appeal to classical methods based upon sign-definite assumptions. Instead, we employ Lagrange
identity techniques variously developed, for example, in [15–17], [18, Chpt 5], and [19]. Characteristic of the
approach is the restriction of the solution to certain constrained function classes. Subject to this requirement, we are
able to verify Components 1 and 3 and conclude that small non-trivial initial Cauchy data is sufficient for the inertia
to be correspondingly small both instantaneously and throughout the interval of existence. This renders the second
Component redundant. It is worth remarking that the estimate constructed in the proof of Component 3 involves
not only the inertia but also initial data. Of course, continuous dependence of the difference solution upon initial
data could be achieved without the involvement of inertia, but its introduction is essential when seeking to justify
the quasi-static approximation.

Another consequence of the loss of sign-definiteness is that that while the basic linearised dynamic problem has
a unique solution (see, for example, [16]), the quasi-static approximation system may possess several non-trivial
solutions as discussed in [20]. It must therefore be decided which of these non-unique solutions is used in the
approximation.

Section 2 formulates both the basic initial boundary value problem and its quasi-static approximation. Section 3
employs weighted mean square measures and Lagrange identity methods to construct estimates that establish
continuous dependence of the inertia upon the initial Cauchy data. Several bounds of related interest are derived
in Sect. 4 leading to estimates between the inertia, displacement, displacement gradient, and velocity. Section 5
explains how the difference between the basic dynamical solution and its quasi-static approximation depends
continuously upon the inertia and in what measures. By means of the proposed strategy, proof of the quasi-static
approximation is thus achieved for the particular initial boundary value problem of present concern. It is worth
repeating that conclusions in Sects. 3 and 5 depend upon the respective solutions belonging to certain constrained
function classes. Section 6 contains brief concluding remarks. Two key results taken from [19] are listed in the
Appendix to make the paper reasonably self-contained.

Throughout, existence of suitably smooth solutions is assumed on some finite time interval. Generalisation to
weak solutions is not considered. The standard conventions are adopted of summation over repeated subscripts and
a comma to denote partial differentiation. Latin suffixes have the range 1, 2, 3 apart from the time variable t . Scalar,
vector, and tensor quantities are not typographically distinguished.

2 Notation and other preliminaries

Within the theory of small elastic deformations superposed upon large elastic deformations [21], we consider a
linearised non-homogeneous anisotropic compressible elastic body that occupies a bounded region � of Euclidean
three-space. The boundary ∂� is Lipschitz smooth. The body is in motion subject to homogeneous Dirichlet
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boundary conditions, zero body-force, and prescribed Cauchy initial data. For positive constant T , [0, T ) denotes the
half-open maximum time interval of existence, while u(x, t), x ∈ �, t ∈ [0, T ) denotes the vector displacement
field, where t is the time variable and x is the position vector whose components with respect to a rectangular
Cartesian coordinate system are x1, x2, x3. The vector displacement u(x, t) has components ui , i = 1, 2, 3 with
respect to same coordinate system and is assumed sufficiently smooth to satisfy all subsequent operations.

The motion of the elastic body is described by the system (cf. [21]):

(ci jkluk,l), j = ρui,t t , (x, t) ∈ � × [0, T ), (2.1)

ui (x, t) = 0, (x, t) ∈ ∂� × [0, T ), (2.2)

ui (x, 0) = u(0)
i (x), ui,t (x, 0) = u(1)

i (x), x ∈ �, (2.3)

where 0 < ρ(x) < ∞ is the time-independent mass density, and u(0), u(1) are initial data. The suitably smooth
Cartesian components ci jkl of the linearised elastic modulus tensor are supposed time independent and to possess
the major symmetry

ci jkl = ckli j , (2.4)

but otherwise are of unrestricted symmetry.
Note that the initial value of the inertia is known since the equations of motion (2.1) are assumed valid at t = 0.

Note also that the symmetry (2.4) implies the equations are self-adjoint.
We emphasise that the major symmetry (2.4) is the sole restriction on the elastic moduli apart from smoothness and

time-independence. The underlying large elastic deformation may be chosen to violate sign-definite conditions on
the elastic moduli and therefore such assumptions have no part in the problem under consideration. It can be proved,
however, either by logarithmic convexity or by Lagrange identity arguments that condition (2.4) is sufficient for
uniqueness of the solution to the initial boundary value problems of linearised elastodynamics including the system
(2.1)–(2.3); see, for example, [16,20]. Lagrange identity arguments are used in [19] to derive general continuous
data dependence results including that of the solution u(x, t) to (2.1) and (2.2) upon initial data (2.3) of particular
relevance to the present problem. Indeed, methods developed in [19] motivate the approach adopted in Sects. 3
and 5.

The usual quasi-static approximation to (2.1)–(2.3) asserts that when the inertia in (2.1) is sufficiently small
in magnitude it may be neglected and that the displacement vector u(x, t) is satisfactorily approximated by the
solution v(x) to the simplified system

(ci jklvk,l), j = 0, x ∈ �, (2.5)

vi = 0, x ∈ ∂�, (2.6)

where the components of the linearised elastic moduli continue to satisfy only the major symmetry condition (2.4).
The vector field v(x) is assumed to be a smooth function of position independent of the time variable which is
not present even as a parameter. Unlike the uniqueness of the solution to the initial boundary value problem (2.1)–
(2.3), the boundary value problem (2.5) and (2.6) subject to (2.4) does not possess a unique solution (cf. [20]).
Consequently, the quasi-static approximation may depend for its validity on the particular choice of the non-unique
solution to (2.5) and (2.6). This aspect is further discussed in Sect. 5.

Remark 2.1 The classical theory of linear elasticity requires the Cartesian components di jkl of the elastic modulus
tensor in addition to the major symmetry condition (2.4) to also satisfy the minor symmetries

di jkl = d jikl . (2.7)

Furthermore, it is customary to suppose that the elastic modulus tensor is positive-definite in the sense that there
exists a positive constant d0 such that

d0ξi jξi j ≤ di jklξi jξkl ∀ξi j = ξ j i , (2.8)

for all symmetric second order tensors ξ . Then in accordance with the procedure proposed in Sect. 1, the quasi-static
approximation is established in [14] for the initial homogeneous boundary value problem of the coupled theory of
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linear thermoelastodynamics with zero source terms. In the corresponding isothermal theory the approximation is
proved for the initial traction boundary value problem with zero body-force and prescribed time-dependent surface
traction [22].

In the next section, we consider the first component of the strategy stated in Sect. 1 for the validation of the
quasi-static approximation.

3 Dependence of inertia upon initial Cauchy data

Continuous dependence of the inertia upon initial Cauchy data is established by means of a method that modifies
arguments developed in [19, para.4]. In consequence, continuous dependence is measured with respect to time
weighted mean square norms. Although the time interval of existence is [0, T ), where 0 < T ≤ ∞, it is convenient
to restrict the time variable t to the interval [0, T/2].

Then for any positive integer m, eventually chosen to satisfy m ≥ 4, we have∫ t

0

∫
�(η)

ρui,ηηui,ηη dx dη ≤
∫ T/2

0

∫
�(η)

ρui,ηηui,ηη dx dη (3.1)

≤
(

2

T

)m ∫ T/2

0

∫
�(η)

(T − η)mρui,ηηui,ηη dx dη, (3.2)

where η denotes a time variable and �(t) signifies that terms in the corresponding integrand are evaluated at time
t . Inequality (3.2) follows on observing that 0 ≤ η ≤ t ≤ T/2 and therefore 0 ≤ (T/2 − η) = T − η − T/2 so that

T/2 ≤ (T − η). (3.3)

Rewrite inequality (3.2) as∫ t

0

∫
�(η

ρui,ηηui,ηη dx dη ≤ 1

2
(I1 + I2) , 0 ≤ t ≤ T/2, (3.4)

where

I1 =
(

2

T

)m ∫ T

0

∫
�(η)

(T − η)m
[
ρui,ηηui,ηη + ci jklui, jηuk,lη

]
dx dη, (3.5)

I2 =
(

2

T

)m ∫ T

0

∫
�(η)

(T − η)m
[
ρui,ηηui,ηη − ci jklui, jηuk,lη

]
dx dη. (3.6)

These expressions are separately discussed. Subsequent to an integration by parts, we have for I1 the alternative
representations

I1 = −
(

2

T

)m 1

(m + 1)

∫ T

0

∫
�(η)

[
(T − η)m+1

]
,η

[
ρui,ηηui,ηη + ci jklui, jηuk,lη

]
dx dη

= 2mT

(m + 1)

∫
�(0)

[
ρui,t t ui,t t + ci jklui, j t uk,lt

]
dx (3.7)

+ 2

(m + 1)

(
2

T

)m ∫ T

0

∫
�(η)

(T − η)m+1 [
ρui,ηηui,ηηη + ci jklui, jηuk,lηη

]
dx dη. (3.8)

But (2.1) and (2.2) together with the assumed smoothness of the solution u(x, t) leads to∫ T

0

∫
�(η)

(T − η)m+1 [
ρui,ηηui,ηηη + ci jklui, jηuk,lηη

]
dx dη = 0,

and we conclude that I1 through (3.7) depends only upon T and the initial data. (Recall that (2.1) is assumed valid
at t = 0.)

123



On the quasi-static approximation in the initial boundary value problem Page 5 of 12 11

Discussion of the second term I2 commences with the rearrangement

I2 =
(

2

T

)m ∫ T

0

∫
�(η)

(T − η)m
[
(ρui,ηηui,η),η − ρui,ηηηui,η − (ci jklui,ηuk,lη), j + (ci jkluk,lη), j ui,η

]
dx dη,

which after appeal to (2.1), (2.2) and (2.4) and integration by parts may be successively expressed as

I2 =
(

2

T

)m ∫ T

0

∫
�(η)

(T − η)m(ρui,ηηui,η),η dx dη

= −2m
∫

�(0)

ρui,t t ui,t dx + m

(
2

T

)m ∫ T

0

∫
�(η)

(T − η)m−1ρui,ηηui,η dx dη

= −2m
∫

�(0)

ρui,t t ui,t dx + m

2

(
2

T

)m ∫ T

0

∫
�(η)

(T − η)m−1(ρui,ηui,η),η dx dη

= −2m
∫

�(0)

ρui,t t ui,t dx − 2m−1m

T

∫
�(0)

ρui,t ui,t dx

+
(

2

T

)m m(m − 1)

2

∫ T

0

∫
�(η)

(T − η)m−2ρui,ηui,η dx dη

= D2 + I3, (3.9)

where the initial data term D2 is defined by

D2 = −2m
∫

�(0)

ρui,t t ui,t dx − 2m−1m

T

∫
�(0)

ρui,t ui,t dx, (3.10)

and the integral I3 by

I3 =
(

2

T

)m m(m − 1)

2

∫ T

0

∫
�(η)

(T − η)m−2ρui,ηui,η dx dη. (3.11)

Definition (3.11) for I3 is now decomposed to give

I3 = 1

2
(Q1 + Q2) , (3.12)

where

Q1 =
(

2

T

)m m(m − 1)

2

∫ T

0

∫
�(η)

(T − η)m−2 [
ρui,ηui,η + ci jklui, j uk,l

]
dx dη, (3.13)

Q2 =
(

2

T

)m m(m − 1)

2

∫ T

0

∫
�(η)

(T − η)m−2 [
ρui,ηui,η − ci jklui, j uk,l

]
dx dη. (3.14)

Consider Q1. We have

Q1 = −m

2

(
2

T

)m ∫ T

0

∫
�(η)

[
(T − η)m−1

]
,η

[
ρui,ηui,η + ci jklui, j uk,l

]
dx dη

=
(

2m−1m

T

) ∫
�(0)

[
ρui,t ui,t + ci jklui, j uk,l

]
dx

= D3, (3.15)

where D3 depends only upon T and initial data.
It remains to treat Q2 defined by (3.14). The method is similar to that applied to I2 and likewise appeals to

(2.1),(2.2) and (2.4). To avoid a circular argument, however, the displacement field u(x, t) is required later to
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belong to a constrained set of functions specified by (3.22). Accordingly, we rewrite (3.14) as

Q2 =
(

2

T

)m m(m − 1)

2

∫ T

0

∫
�(η)

(T − η)m−2 [
(ρui,ui,η),η − ρuiui,ηη − ci jklui, j uk,l

]
dx dη

= −2m−1m(m − 1)

T 2

∫
�(0)

ρuiui,t dx (3.16)

+
(

2

T

)m m(m − 1)(m − 2)

2

∫ T

0

∫
�(η)

(T − η)m−3ρuiui,η dx dη

= D4 + D5 (3.17)

+
(

2

T

)m m(m − 1)(m − 2)(m − 3)

4

∫ T

0

∫
�(η)

(T − η)m−4ρuiui dx dη, (3.18)

where the data terms D4 and D5 are defined by

D4 = −2m−1m(m − 1)

T 2

∫
�(0)

ρuiui,t dx, (3.19)

D5 = −2m−2m(m − 1)(m − 2)

T 3

∫
�(0)

ρuiui dx . (3.20)

Insertion of definitions (3.5), (3.6), (3.12), (3.10), (3.15), and (3.18)–(3.20) into (3.2) yields for 0 ≤ t ≤ T/2:
∫ t

0

∫
�(η)

ρui,ηηui,ηη dx dη ≤ D +
(

2

T

)m m(m − 1)(m − 2)(m − 3)

4

∫ T

0

∫
�(η)

(T − η)m−4ρuiui dx dη, (3.21)

where

D = 1

2
(I1 + D2) + 1

4
(D3 + D4 + D5)

is specified by initial data. The objective, however, is to derive in suitable measure an upper bound for the inertia
entirely in terms of the initial data. For this purpose, we assume the displacement u(x, t) belongs to the constrained
set given by
∫ T

0

∫
�(η)

ρuiui dx dη ≤ M2
1 , (3.22)

for some positive constant M1. On takingm = 4 , the estimate (A.2) becomes available which after a time integration
and substitution in (3.21) yields the required result:
∫ t

0

∫
�(η)

ρui,ηηui,ηη dx dη ≤ D + 3.26

T 4

(
1 + T 2

4
+ M1T 3/2

4

) ∫
�

ρu(0)
i u(0)

i dx

+M1

(
2

T

)3/2 ∫
�

ρu(1)
i u(1)

i dx, 0 ≤ 2t ≤ T . (3.23)

The interval [0, T/2] over which t varies may be iteratively extended to (1−2−n)T, n = 1, 2, 3, . . . as described
in [19].

4 Subsidiary results

Further results may be extracted from calculations in Sect. 3 and lead to additional estimates for continuous
dependence. In particular, they demonstrate that in weighted mean square measure, the inertia does not exceed
either the displacement, displacement gradient, or velocity. Proofs of these inequalities are now sketched.
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The bound (3.21) indicates the sense in which the inertia is no greater than the displacement. However, in
conjunction with Poincaré’s inequality, for which

λ

∫
�

ρuiui dx ≤
∫

�

ρui, j ui, j dx (4.1)

and λ is the first eigenvalue for the fixed membrane problem for �, the same estimate (3.21) provides an upper
bound for the inertia in terms of initial data and displacement gradients.

On the other hand, insertion of identity (3.9) into inequaltiy (3.4) leads to continuous dependence of the inertia
upon initial data and velocity. We obtain for 0 ≤ t ≤ T/2:

∫ t

0

∫
�(η)

ρui,ηηui,ηη dx dη ≤ 1

2
(I1 + D2) +

(
2

T

)m m(m − 1)

4

∫ T

0

∫
�(η)

(T − η)m−2ρui,ηui,η dx dη. (4.2)

The conclusion that the velocity, again in suitable weighted mean-square measure, is itself bounded above by the
displacement, and consequently by initial data for displacement fields in the constrained set (3.22), is immediate
from the decomposition (3.12) and the expression (3.18) for Q2. The explicit bound involving the displacement
becomes
∫ T

0

∫
�(η)

(T − η)m−2ρui,ηui,η dx dη ≤ (m − 2)(m − 3)

2

∫ T

0

∫
�(η)

(T − η)m−4ρuiui dx dη

+
(
T

2

)m 1

m(m − 1)

[
D2 + 1

2
(D3 + D4)

]
. (4.3)

An upper bound in mean-square measure for the velocity in terms solely of initial data may be derived from (4.3)
on putting m = 4, imposing the constraint (3.22) and using inequality (3.23).

The estimate (4.3) establishes the sense in which the velocity is bounded above by the displacement. Nevertheless,
a reverse bound is possible. From (3.17) and (3.18), we have

(
T

2

)m 4D5

m(m − 1)(m − 2)
+ (m − 3)

∫ T

0

∫
�(η)

(T − η)m−4ρuiui dx dη

= 2
∫ T

0

∫
�(η)

(T − η)m−3ρuiui,η dx dη

≤
∫ T

0

∫
�(η)

α(T − η)m−3ρuiui dx dη +
∫ T

0

∫
�(η)

α−1(T − η)m−3ρui,ηui,η dx dη, (4.4)

where Young’s inequality is employed and α is a positive function. For each η choose

α = γ (T − η)−1,

where the positive constant γ satisfies 0 < γ < m − 3. Then (4.4) reduces to

(
T

2

)m 4D5

m(m − 1)(m − 2)
+ (m − 3 − γ )

∫ T

0

∫
�(η)

(T − η)m−4ρuiui dx dη

≤ γ −1
∫ T

0

∫
�(η

(T − η)m−2ρui,ηui,η dx dη, (4.5)

which represents the required reverse bound.
Particular conclusions are obtained when 2γ = (m − 3) or γ = (m − 3). Other specific choices of the positive

constant γ do not appear to yield inequalities of especial significance.
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5 Continuous dependence upon inertia

The final step in the proof of the quasi-static approximation for the linearised elastodynamic system (2.1)–(2.4)
demonstrates that the difference between the original dynamical solution and its quasi-static approximation depends
continuously upon inertia.

In order to describe the problem, let

w(x, t) = u(x, t) − v(x), x ∈ �, t ∈ [0, T ), (5.1)

where u and v are the respective solutions to (2.1)–(2.3) and the quasi-static approximation system (2.5) and (2.6)
subject to the symmetry relation (2.4). As remarked in Sect. 2, the solution v(x) in general is non-unique and in
consequence both trivial and non-trivial solutions may exist to (2.5) and (2.6). Thus, in definition (5.1), there must
be a single definite choice for v from among the non-unique solutions which we recall are supposed continuously
differentiable and mean-square integrable. Once v is selected, the vector field w(x, t) is likewise continuously
differentiable and satisfies the system

(ci jklwk,l), j = ρwi,t t , (x, t) ∈ � × [0, T ), (5.2)

wi (x, t) = 0, (x, t) ∈ ∂� × [0, T ), (5.3)

wi (x, 0) = w
(0)
i = u(0)

i (x) − v(x), wi,t (x, 0) = w
(1)
i (x) = u(1)

i (x), x ∈ �, (5.4)

where (see (2.4))

ci jkl(x) = ckli j (x). (5.5)

Before proceeding to establish that the difference displacement vector field w(x, t) depends continuously upon
the inertia ρui,t t equivalently expressed as ρwi,t t , it is of interest to derive certain continuous dependence bounds that
are independent of any governing equations. The proof repeatedly uses the one-dimensional Wirtinger inequality
[23] which for real-valued continuously differentiable functions g(t) defined on [0, t] is given by
∫ t

0
[g(η)) − g(0)]2 dη ≤ 4t2

π2

∫ t

0
g2
,η dη. (5.6)

Then, by standard inequalities, the difference displacement w satisfies the bounds∫
�(t)

ρwiwidx ≤ 2
∫

�(t)
ρ(wi − w

(0)
i )(wi − w

(0)
i )dx + 2

∫
�

ρw
(0)
i w

(0)
i dx

= 4
∫ t

0

∫
�(η)

ρ(wi − w
(0)
i )wi,ηdx dη + 2

∫
�

ρw
(0)
i w

(0)
i dx

≤ 4
[ ∫ t

0

∫
�(η)

ρ(wi − w
(0)
i )(wi − w

(0)
i ) dx dη

∫ t

0

∫
�(η)

ρwi,ηwi,ηdx dη
]1/2

+2
∫

�

ρw
(0)
i w

(0)
i dx

≤ 8t

π

∫ t

0

∫
�(η)

ρwi,ηwi,ηdx dη + 2
∫

�

ρw
(0)
i w

(0)
i dx . (5.7)

The same argument applied to the velocity wi,t leads to an inequality which after a time integration is given by
∫ t

0

∫
�(η)

ρwi,ηwi,ηdx dη ≤ 4t2

π

∫ T

0

∫
�(η)

ρwi,ηηwi,ηηdx dη + 2t
∫

�

ρw
(1)
i w

(1)
i dx, (5.8)

where 0 ≤ t ≤ T/2. Substitution of (5.8) in (5.7) leads to
∫

�(t)
ρwiwi dx ≤ 32t3

π2

∫ T

0

∫
�(η)

ρwi,ηηwi,ηη dx dη + 16t2

π

∫
�

ρw
(1)
i w

(1)
i dx + 2

∫
�

ρw
(0)
i w

(0)
i dx . (5.9)
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A time integration of (5.9) provides a second form of the required inequality:

∫ t

0

∫
�(η)

ρwiwidx dη ≤ 8t4

π2

∫ T

0

∫
�(η)

ρwi,ηηwi,ηη dx dη

+16t3

3π

∫
�

ρw
(1)
i w

(1)
i dx + 2t

∫
�

ρw
(0)
i w

(0)
i dx . (5.10)

Improved estimates are possible for vectors satisfying the system (5.2)-(5.4) and which additionally belong
to certain constraint sets. While such estimates are established, for example, in [19], another derivation is here
presented that results in modified inequalities.

The alternative approach for continuous dependence of the solution wi (x, t) upon the inertia ρwi,t t starts by
rewriting the equation of motion (5.2) as

(ci jklwk,l), j + ρwi,t t = 2ρwi,t t , (x, t) ∈ � × [0, T ), (5.11)

subject to the boundary and initial conditions (5.3) and (5.4) and the symmetry (5.5). Set

fi (x, t) = wi,t t , (5.12)

so that (5.11) becomes

(ci jklwk,l), j + ρ fi = 2ρwi,t t , (x, t) ∈ � × [0, T ], (5.13)

which are the equations of motion for a linearised elastic theory with mass density 2ρ(x) and body force fi (x, t)/2
per unit mass.

As explained in [19, eqn. (2.17)], introduction of the system adjoint to (5.13), (5.3) and (5.5) leads to (A.1) which
in our case for mass density 2ρ and body-force fi/2 = wi,t t/2 per unit mass becomes the identity

4
∫

�(t)
ρwiwi,t dx = A(t) + B(t), 0 ≤ 2t ≤ T, (5.14)

where

A(t) =
∫ t

0

∫
�(η)

ρ[wi,ηη(η)wi (2t − η) − wi (η)wi,ηη(2t − η)] dx dη, (5.15)

B(t) = 2
∫

�(t)
ρ[wi (2t)w

(1)
i + w

(0)
i wi,t (2t)] dx . (5.16)

Explicit dependence upon the spatial variables is not displayed. A further time integration of (5.14) produces

2
∫

�(t)
ρwiwi dx =

∫ t

0
[A(η) + B(η)] dη + 2

∫
�

ρw
(0)
i w

(0)
i dx . (5.17)

Let the vector displacement field u(x, t) belong to the constraint set

max[0,T ]

∫
�(t)

ρuiui dx ≤ M2
2 (5.18)

for some positive constant M2, which implies that u satisfies the constraint (3.22) for finite T . The difference vector
field wi consequently belongs to the set

max[0,T ]

∫
�(t)

ρwiwi dx ≤ 2M2
2 + 2

∫
�

ρvividx ≤ M2
3 , (5.19)

where M3 is a positive constant.
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Consider the time integrals appearing on the right of (5.17) and let 0 ≤ 2s ≤ t ≤ T/2. An application of
Schwarz’s inequality leads to

∫ t

0
A(η) dη =

∫ t

0

∫ s

0

∫
�(η)

ρ[wi,ηη(η)wi (2s − η) − wi (η)wi,ηη(2s − η)] dx dη ds

≤
(∫ t

0

∫ s

0

∫
�(η)

ρ[wi (η)wi (η) + wi (2s − η)wi (2s − η)] dx dη ds

)1/2

×
(∫ t

0

∫ s

0

∫
�(η)

ρ[wi,ηη(η)wi,ηη(η) + wi,ηη(2s − η)wi,ηη(2s − η)] dx dη ds

)1/2

=
(∫ t

0

∫ s

0

∫
�(η)

ρwi (η)wi (η) dx dη ds +
∫ t

0

∫ 2s

s

∫
�(η)

ρwi (η)wi (η) dx dη ds

)1/2

×
(∫ t

0

∫ s

0

∫
�(η)

ρwi,ηη(η)wi,ηη(η) dx dη ds +
∫ t

0

∫ 2s

s

∫
�(η)

ρwi,ηη(η)wi,ηη(η) dx dη ds

)1/2

=
(∫ t

0

∫ 2s

0

∫
�(η)

ρwi (η)wi (η) dx dη ds
∫ t

0

∫ 2s

0

∫
�(η)

ρwi,ηη(η)wi,ηη(η) dx dη ds

)1/2

≤ T M3

2

(∫ t

0

∫ 2s

0

∫
�(η)

ρwi,ηη(η)wi,ηη(η) dx dη ds

)1/2

≤
(
T 3/2

2

)
M3

(∫ 2t

0

∫
�(η)

ρwi,ηη(η)wi,ηη(η) dx dη

)1/2

, 0 ≤ t ≤ T/2. (5.20)

Again, we have

∫ t

0
B(η) dη = 2

∫ t

0

∫
�(η)

ρ[wi (2η)w
(1)
i + w

(0)
i wi,η(2η)] dx dη, 0 ≤ 2t ≤ T,

=
∫ 2t

0

∫
�(η)

ρwi (η)w(1) dx dη + 2
∫ 2t

0

∫
�(η)

ρw
(0)
i wi,η(η) dx dη

=
∫ 2t

0

∫
�(η)

ρwi (η)w(1) dx dη + 2
∫

�(t)
ρw

(0)
i wi (2t) dx − 2

∫
�

ρw
(0)
i w

(0)
i dx

≤ (T )1/2
(∫ 2t

0

∫
�(η)

ρwi (η)wi (η) dx dη

∫
�

ρw
(1)
i w

(1)
i dx

)1/2

+2

(∫
�(t)

ρwi (2t)wi (2t)dx
∫

�

ρw
(0)
i w

(0)
i dx

)1/2

− 2
∫

�

ρw
(0)
i w

(0)
i dx

≤ T M3

(∫
�

ρw
(1)
i w

(1)
i dx

)1/2

+ 2M3

(∫
�

ρw
(0)
i w

(0)
i dx

)1/2

− 2
∫

�

ρw
(0)
i w

(0)
i dx . (5.21)

Substitution of (5.20) and (5.21) in (5.17) leads to the upper bound

∫
�(t)

ρwiwi dx ≤
(
T 3/2

4

)
M3

(∫ 2t

0

∫
�(η)

ρwi,ηηwi,ηη dx dη

)1/2

+ T M3

2

(∫
�

ρw
(1)
i w

(1)
i dx

)1/2

+M3

(∫
�

ρw
(0)
i w

(0)
i dx

)1/2

, 0 ≤ t ≤ T/2, (5.22)

and continuous dependence of the difference vector wi upon the inertia ρwi,t t : or equivalently ρui,t t : is established.
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The initial values w(0)(x) and w(1)(x) in mean-square measure should be small compared to the measured inertia
in order that the bound (5.22) is meaningful. The magnitude of the inertia, however, is determined by that of the
initial values u(0)(x) and u(1)(x). In consequence, the solution v(x) to (2.5) and (2.6) should be selected to ensure
its measured difference from u(0) is as small as possible.

In summary, the combined estimates (5.22), (3.21) with m = 4, and (3.23) define the sense in which the
quasi-static approximation is valid for the initial homogeneous Dirichlet boundary value problem of linearised
elastodynamics.

Remark 5.1 Different constraint sets to those previously introduced lead to different estimates as shown in [19],
but do not lead to fundamentally different conclusions.

Remark 5.2 As already mentioned, the interval [0, T/2] can be iteratively extended to (1 − 2−n)T, n = 1, 2, 3 . . .

as shown in [19].

6 Concluding remarks

The comparatively simple initial boundary value problem of linearised elastodynamics under discussion has initial
Cauchy conditions as the only non-zero data. The procedure proposed in Sect. 1 is followed to rigorously justify the
relevant quasi-static approximation but it remains open whether the corresponding conditions are both necessary
and sufficient.

It is of obvious interest to generalise the present treatment to include non-vanishing body-forces and time-
dependent Dirichlet, Neumann, and mixed boundary conditions. Equally, methods similar to those developed in
this study may be applicable to various linearised coupled theories such as thermoelastodynamics, whose classical
counterparts are the subject of the previously cited contributions [10–14], and viscous elastodynamics.

Finally, interpretation of the quasi-static approximation within the broader context of continuous data dependence
suggests a possible relationship with continuity of maps and in particular notions of stability. These topics await
investigation.

Acknowledgements The work of R. Quintanilla has been supported by Ministerio de Economía y Competitividad under the research
project “Análisis Matemático de Problemas de la Termomecánica” (MTM2016-74934-P), (AEI/FEDER, UE), and Ministerio de Ciencia,
Innovación y Universidades under the research project “Análisis matemático aplicado a la termomecánica” (PID2019-105118GB-I00).

Appendix A

For ease reference, we list without proof two key results previously derived in [19]. Notation has been altered to
that adopted here, and a body-force vector f (x, t) per unit mass is now included in the equation of motion (2.1) .
We have for 0 ≤ 2t ≤ T [19, eqn.(2.17)]:

2
∫

�(t)
ρui (t)ui,t (t) dx =

∫ t

0

∫
�(η)

ρ[ui (2t − η) fi (η) − ui (η) fi (2t − η)] dx dη

+
∫

�(t)
ρui (2t)u

(1)
i dx +

∫
�(t)

ρui,t (2t)u
(0)
i dx . (A.1)

Secondly, when fi = 0, the following bound holds [19, eqn.(3.22)] for 0 ≤ 2t ≤ T :
∫

�(t)
ρui (t)ui,t (t) dx ≤ T

4

∫
�

ρu(0)
i u(0)

i dx + M1T 1/2

4

[∫
�

ρu(0)
i u(0)

i dx + T√
2

∫
�

ρu(1)
i u(1)

i dx

]
, (A.2)

where M1 is given by (3.22).
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