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Abstract The purpose of this study is to theoretically probe how the joint effects of near-field source and sur-
face topography impact the seismic wavefields. A simplified canyon model, which couples a semicircular model
with a model for minor segments, is used to predict characteristic changes in ground motions due to line-source
excitation. Based on a semi-analytical procedure using the region-matching technique, a Fourier–Bessel series solu-
tion is derived. Distinct coordinate systems are unified with the aid of Graf’s addition formula. Comparisons with
boundary-element solutions verify the modelling framework proposed. Steady-state and transient simulations are
both conducted.

Keywords Near-source effect · Scattering · Topographic effect · Wavefunction

1 Introduction

Topographic irregularities have long been recognized as one of the essential elements in affecting the shaking levels
associated with earthquakes. Hence, the so-called topographic effect (i.e. interaction between incoming seismic
waves and geomorphic features) may become crucial in many researches pertinent to earthquake engineering and
engineering seismology (e.g. [1]).

Generally, theoretical schemes are feasible for simple geometrical shapes only, the two-dimensional (2-D) ones
in particular. Exact analytical solutions (see [2,3]) may be derived via the method of separation of variables (MSV),
commonly called in elastodynamics the method of wavefunction expansions. For some simple geometries that the
MSV fails to work, the region-matching technique (RMT) offers an opportunity to make the utilization of the MSV
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possible. Making good use of the RMT usually gives rise to a series solution, which is a good substitute for an
exact analytical solution. Over the last few years, the RMT has been applied to deal effectively with a number of
problems regarding antiplane scattering [4–10].

So far, comparatively little attention has been given to addressing issues of truncated surficial obstacles. Lately,
the problem of the interaction of a flat-bottomed semicircular canyon and incident plane SHwaves has been explored
by Tsaur and Chang [11]. The 2-D cross-sectional shape of a flat-bottomed semicircular canyon may be deemed as
the area remaining after removing a minor segment from a semicircle. Similar topics concerning a flat-bottomed
semielliptic canyon may be found in the work of Hsu and Tsaur [12]. As to a shallow V-shaped gorge, its cross-
sectional shape might look like the part left after cutting two pieces out of a semicircle (cf. [13,14]). Subsequently,
Zhang et al. [15] followed a similar line on domain decomposition (i.e. cutting three pieces out of a semicircle) to
examine the problem of antiplane wave scattering from a trapezoidal canyon.

As a starting point for mathematical modelling of 2-D wave scattering, the case of monochromatic plane-wave
incidence is investigated frequently. Consequently, there exists a large body of literature, including a wide range
of methodologies for theoretical analysis (e.g. [16–29]) and for numerical simulation (e.g. [30–36]), and covering
various aspects from topographic/site effect (e.g. [37–42]) to crack/cavity configuration (e.g. [19,21,22,43–50]).
Unfortunately, the far-field approximation (based on the plane-wave assumption) is only valid when seismic sources
are far enough from scatterers (e.g. [51]). Indeed, actual cases might be far from the simple plane-wave assumption.
For example, many microseismic events have been found to be source location dependent (e.g. [52]). Modern
multi-story/high-rise buildings subjected to strong near-source ground motions may exhibit unacceptable collapse
performance (e.g. [53]). Damage potential may, therefore, be severe for these structures, especially for those located
in urban areas (e.g. [54,55]). This has a direct bearing on risk management demands in seismic monitoring and
protection systems, technologies adopted, and current best practice.

To take better account of the source-induced near-field contributions, some theoretical models for 2-D cylindrical
wave propagation have been devised, such as those for surficial irregularities (e.g. [56,57]), underlying geological
structures (e.g. [58–61]), underground obstacles (e.g. [62,63]), and ideal zero-thickness anomalies (e.g. [64]).
In addition, to improve practical applicability, several simplified models concerning plane-wave incidence (e.g.
[7,10,14,65]) have been further extended to those with line-source excitation (e.g. [66–68]).

Herein, due to the paucity of literature that is available in the context of elastodynamics, the authors aim to
investigate the response of a flat-bottomed semicircular canyon subjected to SH cylindrical waves. A Fourier–
Bessel series solution is derived, using the RMT along with Graf’s addition formula. Taking into account the
joint effects of near-field source and surface topography, the characteristics of simulated ground motions will be
illuminated later.

2 Theoretical approach

The assumed problem geometry is depicted in Fig. 1, where a flat-bottomed semicircular canyon is considered. This
concave topography is characterized by the half-width a and the depth d. The semi-infinite stratum, bounded by the
horizontal ground surface, is assumed to be homogeneous, isotropic, and linearly elastic. The first two assumptions
are expected to be reasonable for geophysical materials and concrete. The third assumption excludes the effect of
attenuation andmay be extended to viscoelastic cases in future studies when such an effect becomesmore important.
The half-plane material has the shear modulus μ and the shear-wave velocity cs . The intersection of the central axis
of the canyon and the horizontal ground surface is taken as the origin of global coordinates (x, y) and (r, θ). The
origin of local coordinates (x1, y1) and (r1, θ1) is set at the midpoint of the bottom surface of the canyon. A line
source emitting cylindrical SH waves (with an angular frequency ω) is located at (rs, θs). Assume that in this work,
the line source is always located in region 1. We introduce the angular parameter ±β to denote the locations of the
endpoints of the flat bottom of the canyon, as shown in Fig. 1. Throughout this section, the time-harmonic regime,
with factor exp(iωt), is assumed.
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Fig. 1 Geometric layout of
the problem. (The
parameters are explained in
the text.)

Introducing an auxiliary boundary Sa of circular-arc shape, the half plane is divided into two regions: an open
region 1 and an enclosed region 2 (see Fig. 1). The steady-state out-of-plane motions in these two regions have to
obey

∂2u j

∂r2
+ 1

r

∂u j

∂r
+ 1

r2
∂2u j

∂θ2
+ k2u j = −δ(r − rs)δ(θ − θs)

r
, j = 1, 2, (1)

where the subscript j denotes the region number, k = ω/cs is the shear wavenumber, and δ(·) is Dirac’s delta
function.

The stress-free boundary conditions are imposed on the horizontal ground surface,

τ
(1)
θ z = μ

r

∂u1(r, θ)

∂θ
= 0, θ = ±π

2
, r > a, (2)

on the canyon sides,

τ (1)
r z = μ

∂u1(r, θ)

∂r
= 0, β ≤ |θ | ≤ π

2
, r = a, (3)

and at the bottom of the canyon,

τ
(2)
θ1z

= μ

r1

∂u2(r1, θ1)

∂θ1
= 0, θ1 = ±π

2
. (4)

2.1 Wavefunction expressions

For the present boundary-value problem, the use of the method of images is effective. Treating the horizontal
ground surface as an ideal mirror, an image of the incident source is introduced. For the half-plane medium without
any surface/subsurface anomalies, the free-field displacement uF may be expressed as a sum of the incident and
reflected waves,

uF (r, θ) = H (2)
0 (kr̂)

H (2)
0 (krs)

+ H (2)
0 (kr̃)

H (2)
0 (krs)

, (5)

where H (2)
0 (·) is the zeroth order Hankel function of the second kind, r̂ is the distance from the field point to the

wave source, and r̃ is the distance from the field point to the virtual wave source.
We may re-express Eq. (5) in terms of the radial and angular variables of the global coordinate (see e.g. [69]),
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uF (r, θ) = 2
∞∑

n=0

εn
H (2)
2n (krs)

H (2)
0 (krs)

cos(2nθs)J2n(kr) cos(2nθ)

+ 4
∞∑

n=0

H (2)
2n+1(krs)

H (2)
0 (krs)

sin [(2n + 1)θs] J2n+1(kr) sin [(2n + 1)θ ], (6)

where εn is the Neumann factor (equal to 1 if n = 0 and to 2 if n ≥ 1) and Jn(·) denotes the n-th order Bessel
function of the first kind. Note that Eq. (6) inherently satisfies the traction-free condition on the ground surface (2).

The total scattered field uS in the open region 1 may be separated into two parts, uS1 and uS2. Thus,

uS(r, θ) = uS1(r, θ) + uS2(r, θ). (7)

The first component uS1 represents the scattered field without the effect of region 2. We may regard uS1 as the
scattered field induced by a semicircular canyon,

uS1(r, θ) =
∞∑

n=0

Ãn
H (2)
2n (kr)

H (2)′
2n (ka)

cos(2nθ) +
∞∑

n=0

B̃n
H (2)
2n+1(kr)

H (2)′
2n+1(ka)

sin [(2n + 1)θ ] , (8)

where H (2)
n (·) is the n-th order Hankel function of the second kind, and the primes stand for differentiation with

respect to the arguments of corresponding functions. Following the derivation given by Trifunac [2] for plane-
wave incidence, we derive a line-source version for the scattered coefficients Ãn and B̃n , whose exact analytical
expressions are as follows:

Ãn = −2εn
H (2)
2n (krs)

H (2)
0 (krs)

cos(2nθs)J
′
2n(ka), (9)

B̃n = −4
H (2)
2n+1(krs)

H (2)
0 (krs)

sin [(2n + 1)θs] J
′
2n+1(ka). (10)

The second component uS2 indicates the scattered field induced by the existence of region 2. Following Eq. (8), we
may write

uS2(r, θ) =
∞∑

n=0

An
H (2)
2n (kr)

H (2)′
2n (ka)

cos(2nθ) +
∞∑

n=0

Bn
H (2)
2n+1(kr)

H (2)′
2n+1(ka)

sin [(2n + 1)θ ], (11)

where the complex expansion coefficients An and Bn are unknown. Actually, Eq. (11) can be viewed as a correction
term to Eq. (8).

In region 1, the resultant wavefield displacement u1, that is composed of the free wavefield and the total scattered
wavefield, is given by

u1(r, θ) = uF (r, θ) + uS(r, θ). (12)

In region 2, thewavefield displacement u2 that satisfies Eq. (1) without the forcing term andEq. (4)may be expressed
as

u2(r1, θ1) =
∞∑

n=0

Cn
J2n(kr1)

J ′
2n(ka)

cos(2nθ1) +
∞∑

n=0

Dn
J2n+1(kr1)

J ′
2n+1(ka)

sin [(2n + 1)θ1], (13)

where the complex expansion coefficients Cn and Dn will be determined later.
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2.2 Coordinate transformation

Before imposing the matching conditions on Sa , the two distinct polar coordinate systems in regions 1 and 2 have
to be unified. This is a key step of the solution process. In order to rewrite Eq. (13) in terms of (r, θ), the necessary
coordinate transformation from (r1, θ1) to (r, θ) is made via Graf’s addition formula for Bessel functions (see [70]),
which is recast in an appropriate form as follows:

Jn(kr1)

{
cos nθ1
sin nθ1

}
= (−1)n

∞∑

m=0

Jm(kr)

{
J+
m,n cosmθ

J−
m,n sinmθ

}
, (14)

where

J±
m,n = εm

2

[
(−1)n Jm−n(kd) ± Jm+n(kd)

]
. (15)

Substituting Eq. (14) into (13) results in

u2(r, θ) =
∞∑

n=0

Cn

J ′
2n(ka)

∞∑

m=0

Jm(kr)J+
m,2n cosmθ −

∞∑

n=0

Dn

J ′
2n+1(ka)

∞∑

m=1

Jm(kr)J−
m,2n+1 sinmθ. (16)

2.3 Determination of expansion coefficients

Taking into account the stress continuity condition on Sa , we have

τ (1)
r z (r, θ) = τ (2)

r z (r, θ), −β ≤ θ ≤ β, r = a. (17)

Multiplying Eq. (17) by a sequence of cosine/sine functions and integrating over the appropriate intervals leads to
∫ π/2

−π/2

∂u1(a, θ)

∂r
cos(2qθ) dθ =

∫ β

−β

∂u2(a, θ)

∂r
cos(2qθ) dθ, q = 0, 1, . . . , (18)

∫ π/2

−π/2

∂u1(a, θ)

∂r
sin [(2q + 1)θ ] dθ =

∫ β

−β

∂u2(a, θ)

∂r
sin [(2q + 1)θ ] dθ, q = 0, 1, . . . . (19)

Exploiting the orthogonal property, the following relations hold:

An = εn

π

∞∑

p=0

Cp

J ′
2p(ka)

∞∑

m=0

J ′
m(ka)J+

m,2p I
C
m,2n, (20)

Bn = − 2

π

∞∑

p=0

Dp

J ′
2p+1(ka)

∞∑

m=1

J ′
m(ka)J−

m,2p+1 I
S
m,2n+1, (21)

where

I Cm,n =

⎧
⎪⎪⎨

⎪⎪⎩

2β, m = n = 0,
β + sin(2nβ)

2n , m = n �= 0,

2m cos(nβ) sin(mβ)−n cos(mβ) sin(nβ)

m2−n2
, m �= n,

(22)

I Sm,n =
⎧
⎨

⎩
β − sin(2nβ)

2n , m = n,

2 n cos(nβ) sin(mβ)−m cos(mβ) sin(nβ)

m2−n2
, m �= n.

(23)
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Likewise, enforcing the displacement continuity across Sa ,

u1(r, θ) = u2(r, θ), −β ≤ θ ≤ β, r = a, (24)

applying a succession of cosine functions, and integrating over the range [−β, β] gives
∫ β

−β

u1(a, θ) cos(2qθ) dθ =
∫ β

−β

u2(a, θ) cos(2qθ) dθ, q = 0, 1, . . . . (25)

Applying Eq. (20) to eliminate the scattering coefficients An , using the Wronskian relations for Bessel and Hankel
functions (e.g. [71], pp. 113, Eq. 5.9.3), and rearranging, we get a system of linear algebraic equations with unknown
coefficients Cn ,

∞∑

n=0

CnL
C
q,n = RC

q , q = 0, 1, . . . , (26)

where the pertinent functions used for brevity are shown in Appendix A (see Eqs. A1 and A2).
Similarly, multiplying Eq. (24) by a chain of sine functions yields

∫ β

−β

u1(a, θ) sin [(2q + 1)θ ] dθ =
∫ β

−β

u2(a, θ) sin [(2q + 1)θ ] dθ, q = 0, 1, . . . . (27)

Accordingly, we arrive at another system of linear algebraic equations:

∞∑

n=0

DnL
S
q,n = RS

q , q = 0, 1, . . . , (28)

where the detailed expressions are given in Appendix A (see Eqs. A3 and A4).
For numerical computations, it is necessary to truncate the infinite series of Eqs. (26) and (28) to a finite number

of terms. The expansion coefficients Cn and Dn may be evaluated by standard matrix techniques. In Eqs. (26) and
(28), the summation indices n and weighting indices q are truncated after N −1 terms. Therefore, Eqs. (26) and (28)
constitute a system of N equations with N unknowns, respectively. The number of truncation terms in consideration
depends only on the requirement of accuracy. Once the coefficients Cn and Dn are found, the expansion coefficients
An and Bn may be evaluated straightforwardly via Eqs. (20) and (21).

3 Results and discussions

The displacement amplitude |u| at a specific location in the region concerned is given by

|u| =
{

|u1| =
√
[Re(u1)]2 + [Im(u1)]2 for region 1,

|u2| =
√
[Re(u2)]2 + [Im(u2)]2 for region 2.

(29)

The dimensionless frequency η is defined as

η = ka

π
= 2a

λ
, (30)

in which λ is the excitation wavelength.
Before turning to parametric analysis, the determination of the appropriate truncation value N in Eqs. (26) and

(28) is necessary. It is worth emphasizing that the series with indices m (see Eqs. A1 and A3 in Appendix A)
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are truncated to M terms. To get rid of the problem regarding relative convergence, the inner sums with indices
m should be checked carefully, thereby leaving only one parameter (i.e. indices n for outer sums). The process
of checking the truncation value M involves successive computations for the surface displacement amplitudes |u|
against the dimensionless horizontal distance x/a, calculated from M = 10 to 400 with the interval of 10. The
maximum values of relative errors are evaluated from the displacement amplitudes at 800 equally spaced locations,
ranging between x/a = −4 and 4. The convergence criterion for M is that the maximum relative error falls below
the threshold value of 10−10%. Following extensive numerical experiments, the value of M = 200 is adequate to
produce all the graphs hereafter. Similarly, the same checking procedure is applied to obtain the suitable truncation
value N . Generally, a rise in excitation frequency increases the value of N .

3.1 Validation

Since there are no similar results available in the existing literature, a computer program based on the classical
boundary-element method (BEM) is utilized for validation. The results are computed for both the analytical expres-
sions and the BEM solution. Figure 2 gives the computed results of |u| versus x/a. Figure 2a illustrates the case
of the deep canyon of d/a = 0.7 subjected to an on-axis source at rs/a = 2 and θs = 0◦ with η = 4. Figure 2b
shows the shallow canyon of d/a = 0.3 subjected to an off-axis source at rs/a = 1.5 and θs = 45◦ with η = 2. The
abscissa ranges from x/a = −4 to 4. A bold black line displays the locations within canyon site (from x/a = −1
to 1). From Figure 2a and b, one can find that these results show a reasonably good quantitative agreement. This
confirms the validity of Eqs. (6)–(16), (20)–(23), (26), and (28) shown in Sect. 2. In following subsections, only the
theoretical series expansion solution is plotted, not the BEM.

Fig. 2 Surface
displacement amplitude
versus x/a: a on-axis source
with η = 4 for d/a = 0.7; b
off-axis source with η = 2
for d/a = 0.3. Solid green
lines display the results of
the theoretical series
solution (given by Eqs. 12
and 13), while hollow red
rhombuses show those
obtained by the BEM
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Fig. 3 Surface
displacement amplitude
versus x/a for different
source distances: a
θs = 45◦, η = 1 and
d/a = 0.3; b θs = 30◦,
η = 6 and d/a = 0.7

3.2 Frequency-domain motions

In order to demonstrate the impact of source distance on surface motions, Fig. 3 features the computed results for
rs/a = 1.5, 2, and 3: Fig. 3a for θs = 45◦, η = 1 and d/a = 0.3, and Fig. 3b for θs = 30◦, η = 6 and d/a = 0.7.
As observed in Fig. 3a and b, the amplitudes of motions on the left-hand horizontal ground surface (i.e. x/a ≤ −1)
increase when the value of source distance rises. Similar trend may be found for the peak values of motions on the
right-hand horizontal ground surface close to the upper right corner of the canyon (about 1 ≤ x/a ≤ 1.3). However,
the displacement amplitudes at the bottomof the canyon decreasewith increasing rs/a (see about−0.5 ≤ x/a ≤ 0.8
in Fig. 3a and about −0.3 ≤ x/a ≤ 0.7 in Fig. 3b).

In the high-frequency case (see Fig. 3b), some extreme oscillation to the right of the canyon particularly for
rs/a = 3 can be found. Such an oscillatory behaviour may be attributed to two main reasons. Firstly, more parts
of the wavefront of the off-axis source hit the upper right corner area (cf. Fig. 7b) when the value of rs/a becomes
larger. This implies that more standing waves through constructive interference occur near the right-angled area (i.e.
x/a = 1). Secondly, with higher frequencies, more standing waves are possible. This also leads to an oscillatory
trait of displacement amplitudes, which is evident in the later diagram (see Fig. 5b).

Typical simulation results for different source angles (θs = 15◦, 30◦, and 45◦) are presented in Fig. 4: Fig. 4a for
rs/a = 1.5, η = 0.5 and d/a = 0.3, and Fig. 4b for rs/a = 2, η = 2 and d/a = 0.5. Both Fig. 4a and b reveal that
the shielding effect of the canyon becomes more apparent when the seismic source moves gradually towards the
horizontal ground surface. See an overall decreasing trend in displacement amplitudes on the left-hand horizontal
ground surface. Furthermore, the peak amplitudes of motions in the range of 1 < x/a < 1.5 shift upward as θs
increases. This may be primarily because of geometric focusing occurring near the upper right corner of the canyon.
Besides, in Fig. 4b, some extreme dips around the two upper corners of the canyon can be observed. The existence
of pronounced and sharp dips can be also found in Figs. 2a, b, 3b, 5a, and b. Such a localized de-amplification
effect on displacement amplitudes may be due to destructive interference between the reflected waves (from the
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Fig. 4 Surface
displacement amplitude
versus x/a for different
source angles: a rs/a = 1.5,
η = 0.5 and d/a = 0.3; b
rs/a = 2, η = 2 and
d/a = 0.5

Fig. 5 Surface
displacement amplitude
versus x/a for different
dimensionless frequencies:
a rs/a = 4, θs = 0◦ and
d/a = 0.3; b rs/a = 1.5,
θs = 45◦ and d/a = 0.5
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Fig. 6 Synthetic
seismograms for the canyon
with d/a = 0.6 subjected to
incident SH pulses with
fc = 2 Hz and rs/a = 2: a
θs = 0◦; b θs = 30◦

canyon face and the horizontal ground surface) and the direct waves. This phenomenon is quite obvious when the
characteristic length of the canyon is greater than two times the wavelength of excitation source (i.e. η ≥ 2).

The results for different dimensionless frequencies (η = 2, 4, and 8) are plotted in Fig. 5: Fig. 5a for rs/a = 4,
θs = 0◦ and d/a = 0.3, and Fig. 5b for rs/a = 1.5, θs = 45◦ and d/a = 0.5. As shown in Fig. 5a and b,
the fluctuation of surface motions in the illuminated area becomes more oscillatory as η increases. For the case
of on-axis source, the patterns of displacement amplitudes are symmetric about the central axis of the canyon, as
expected due to geometric symmetry of the canyon (see Fig. 5a).

3.3 Time-domain motions

Transient response of the present concave topography may be simulated via the inverse fast Fourier transform. The
symmetric Ricker wavelet given by
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Antiplane response of a flat-bottomed semicircular canyon 135

Fig. 7 Snapshots of subsurface displacements around the canyon with d/a = 0.6 subjected to incident SH pulses with fc = 2 Hz,
rs/a = 2 and θs = 30◦

u(t) = (2π2 f 2c t
2 − 1) exp(−π2 f 2c t

2) (31)

is adopted as the source time function with characteristic frequency fc. The canyon with d/a = 0.6 is selected as
the targeted site. The half-width of the canyon top is taken as 1 km. The shear-wave velocity of the semi-infinite
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medium is 1 km/s. The frequency-domain results evaluated for fc = 2 Hz range between 0.0625 and 8 Hz. The
frequency increment is set to 0.0625 Hz, corresponding to a forecasting time window of 16 s.

The theoretically predicted synthetic seismograms are given in Fig. 6: Fig. 6a for an on-axis source at rs/a = 2
and θs = 0◦, and Fig. 6b for an off-axis source at rs/a = 2 and θs = 30◦. The simulated ground-motion time
histories are taken from eighty-one equispaced seismometers situated between x = −4 and 4 km. As shown in
Fig. 6a and b, several reflected and scattered wave signals may be clearly detected after the direct-wave signals.
For receivers close to the two upper corners of the canyon (x = ±1 km), the de-amplified signals attributed to the
shielding effect of the canyon are evident, as well as the amplified signals due to geometric focusing (see Fig. 6b).

For the sake of clearly identifying the causes of displacement waveforms displayed in Fig. 6b, the snapshots
of the spatial distribution of underground motions at eight different representative times are shown in Fig. 7. As
expected, the two wavefronts spreading outwards from the two lower corners of the canyon meet each other and
eventually dissipates at much later times (see also X-shaped patterns in Fig. 6b).

4 Conclusions

We have improved the 2-D simplified canyon model previously proposed by Tsaur and Chang [11] and extended it
to explore ground-motion variability induced by the joint effects of near-field source and surface topography. The
forward elastodynamic problem for a specific scatterer considered herein has been solved by theRMT.Displacement
responses in each frequency-domain case were in good agreement with the results generated fromBEM simulations.
The theoretical modelling indicates that the phenomenon of geometric focusing of seismic wavefields near the two
upper corners of the canyon may bring about potential amplification of ground motions. In future 2-D modelling
going forward, we may wish to consider the effects of attenuation and stacked layered materials.
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Appendix A: Pertinent functions in Eqs. (26) and (28)

In Eqs. (26) and (28), the associated functions are listed as follows:

LC
q,n =

∞∑

m=0

J+
m,2n

J ′
2n(ka)

∞∑

p=0

⎡

⎣εp J ′
m(ka)

π

H (2)
2p (ka)

H (2)′
2p (ka)

I Cm,2p I
C
2p,2qδp,q Jm(ka)I Cm,2q

⎤

⎦ , (A1)

RC
q = 4i
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H (2)
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H (2)
0 (krs)
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H (2)′
2n (ka)
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LS
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∞∑

m=1

J−
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⎡

⎣2J ′
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π

H (2)
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S
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⎤

⎦ , (A3)

RS
q = − 8i

πa
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n=0

H (2)
2n+1(krs)

H (2)
0 (krs)

sin [(2n + 1)θs]

H (2)′
2n+1(ka)

I S2n+1,2q+1. (A4)
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