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Abstract A novel nonlinear delayed susceptible–vaccinated–infected–recovered–susceptible (SVIRS) epidemic
model with a Holling type II incidence rate for fully susceptible and vaccinated classes, a saturated treatment rate,
and an imperfect vaccine given to susceptibles is proposed herein. Analysis of the model shows that it exhibits two
equilibria, namely disease-free and endemic.Thebasic reproductionnumber R0 is derived, and it is demonstrated that
the disease-free equilibrium is locally asymptotically stablewhen R0 < 1 and linearly neutrally stablewhen R0 = 1.
Furthermore, bifurcation analysis is performed for the undelayed model, revealing that it exhibits backward and
forward bifurcation when the basic reproduction number varies from unity. The stability behavior of the endemic
equilibrium is also discussed, revealing that oscillatory and periodic solutions may appear via Hopf bifurcation
when regarding delay as the bifurcation parameter. Moreover, numerical simulations are carried out to illustrate the
theoretical findings.

Keywords Bifurcation · Holling type II functional response · Saturated treatment rate · SVIRS epidemic model ·
Time delay
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1 Introduction

Epidemiology is often called the core science of public health, considering the appropriation and determinants
of infection risk in human populations. Mathematical epidemic models help to understand the transmission and
spread of infectious diseases, recognize the characteristics controlling the transmission process to identify successful
control techniques, and evaluate the effectiveness of surveillance strategies and interventionmeasures. Deterministic
models for communicable diseases have been introduced systematically by Kermack and McKendrick [1,2]. In

K. Goel · A. Kumar · Nilam (B)
Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India
e-mail: rathi.nilam@gmail.com

K. Goel
e-mail: kanica.dtu2016@gmail.com

A. Kumar
e-mail: abhishek.dtu14@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-020-10037-8&domain=pdf


20 K. Goel et al.

their model, three epidemiological classes are considered as the basic elements describing infectious diseases: the
susceptible class (S(t)), i.e., those individuals who are capable of contracting the disease and becoming infective,
the infective class (I (t)), i.e., those capable of transmitting the disease to others, and the removed class (R(t)),
i.e., those individuals who have recovered from the infection. Based on the theory of Kermark and Mckendrick
[1,2], the dynamics of infectious diseases can usually be described mathematically based on compartmental models
such as SIR or SIRS models, with each letter referring to a “compartment” in which an individual can reside.
Thus, to understand the mechanism of infectious disease transmission, several authors have studied various kinds
of epidemic models by considering different compartment models such as SI [3], SIS [4], SIR [5–11], SIRS [12],
SEIR [13,14], SVEIR [15], and many more.

Controlling infectious diseases has become an increasingly complex issue in recent years. One methodology to
control infectious diseases is vaccination. Vaccination plays an important role among the health interventions aimed
at reducing the spread of infectious diseases thanks to its safety and cost-effectiveness. Indeed, high immunization
take-up levels have brought about radical decreases in numerous vaccine-preventable infectious diseases or even their
eradication, as in the very notable instance of smallpox [16]. Nevertheless, a critical aspect of vaccination is its level
of safety as far as viability in preventing the illness aswell as the duration of the induced immunity. Somevaccines are
highly effective, e.g.,measles [17], while others are not, as is the case of varicella [18]. The effectiveness of and levels
of protection provided by a vaccine may naturally decrease over time because of medical conditions (medications,
aging, or when the immune system may work less well) and the alteration and evolution of infectious diseases;
For example, the flu virus [19] can change very rapidly, meaning that last year’s flu vaccine is unlikely to protect
individuals from virus strains circulating this year. In contrast, the measles virus [17] prevented by the measles–
mumps–rubella (MMR) vaccine hardly changes from year to year, indicating that it is as likely to protect individuals
today as it was 10years ago. Some vaccines minimize the infection risk but do not prevent a vaccinated individual
from catching and transmitting the infection. These imperfect vaccines may not completely prevent infection but
rather could decrease the likelihoodof becoming infected or reduce its consequences, thereby lessening the infectious
disease burden. In mathematical epidemiology literature, many studies have dealt with epidemic models including
imperfect vaccination (see, just to specify a couple of studies, [20–25]). With imperfect vaccination, the outcome
of an epidemic model may lead to the occurrence of backward bifurcation under particular conditions because
vaccinated individuals may return to the susceptible pool or become directly infected by transmission. Backward
bifurcation thus plays a relevant role in disease control and eradication. Indeed, it is well known that, in classical
disease transmission models, a necessary condition for disease eradication is that the basic reproductive number R0

[26] be less than unity. This type of bifurcation is known as forward bifurcation, where for R0 < 1 the disease-free
equilibrium (DFE) is the only equilibrium and is asymptotically stable, while for R0 > 1 the DFE is unstable and
only one asymptotically stable, endemic equilibrium exists. However, via the occurrence of backward bifurcation,
an endemic equilibrium may also exist even when the basic reproduction number R0 is less than unity. From the
public viewpoint, the occurrence of backward bifurcationmay have significant health implications regarding disease
elimination. In literature, many epidemicmodels including backward bifurcation have been studied, for both generic
and specific diseases [27,28]. Analysis of such forward and backward bifurcation is based on the center manifold
theory [27].

To determine the dynamics of epidemic models, the incidence rate (the rate of new infections) plays a major role
in the modeling of infectious diseases. Kermack and Mckendrick introduced the incidence rate in the form kSI
(called the standard mass action form) in 1927 [1]. In this incidence rate, the interaction term is a linearly increasing
function of the number of infectives, which is not suitable for a large population. Therefore, Capasso and Serio
[29] introduced the nonlinear incidence rate in the form g(I )S with g′(I ) < 0, which allows the introduction of
some “psychological” effects. Capasso and Serio motivated their formulation with behavioral changes: in epochs of
high prevalence, the perceived risk of infection might become very large, yielding dramatic changes in individuals’
behavior and therefore also reducing the actual risk of getting the disease (as widely discussed in [30]). Numerous
authors have focused on the significance of considering nonlinear incidence rates in the study of the transmission
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dynamics of infectious diseases (see, for example, Capasso et al. [29,31,32], Anderson andMay [33],Wei and Chen
[34], Zhang et al. [35], Li et al. [36], Kumar and Nilam [37–39], Goel and Nilam [8,40]). Li et al. [36] proposed a
SIR model with a nonlinear incidence rate given by

f (S, I ) = βSI

1 + γ I
.

In this incidence rate, the number of effective contacts between infective and susceptible individuals may saturate at
high infective levels due to overcrowding of infective individuals. The delay differential equation plays a significant
role in the estimation of both past and ongoing epidemics and the structure of future-focused control interventions. It
can be said with a high level of conviction that, when a disease emerges, there will be an initial delay in recognizing
it. Such a delay in the recognition of an infectious disease will lead to a delay in applying appropriate protection
measures. Infected individuals will be able to transmit the infection because healthcare workers, family members,
and infected individuals will not know how to protect themselves. In mathematical epidemiology literature, many
studies have dealt with the time delay (called the latent or incubation period) (see, e.g., [4,37–42]) and studied its
impact on their models. Motivated by the work of Capasso and Serio [29], d’Onofrio and Manfredi [30], and Li
et al. [36], a saturated nonlinear incidence rate, reflecting the psychological or inhibition effect, with the inclusion
of a time delay τ as the latent period, is considered herein.

The loss of quality of life and economic productivity due to severe illness further increase the societal cost.
Therefore, it is very important to prevent and reduce the spread of infectious diseases among people. Treatment is
the key to fight many infectious diseases. Wang and Ruan [43] considered an SIR epidemic model with a constant
treatment rate as given below:

h(I ) =
{
r, I > 0,
0, I = 0,

where r is a positive constant and I is the number of infected individuals. They carried out stability analysis and
showed that themodel exhibits various bifurcations. Furthermore, in 2012, Zhou and Fan [44]modified the treatment
rate to a Holling type II functional, as given below:

h(I ) = β I

1 + α I
, I ≥ 0, β ≥ 0, α ≥ 0.

They showed that, with varying amounts of medical resources and their supply efficiency, the target model admits
both backward and Hopf bifurcation. Motivated by the work of Zhou and Fan [44], a Holling type II treatment rate
is considered herein, and its effect on the present epidemic model is studied.

The purpose of the present work is to study the effect of saturated incidence, an imperfect vaccine, and saturated
treatment to achieve substantial progress in implementingmeasures to prevent and control infectious diseases among
people. For this, a compartmental susceptible–vaccinated–infected–recovered–susceptible (SVIRS) epidemicmodel
with a saturated incidence rate and including a time delay (representing the latent period) and saturated treatment rate
is considered. Qualitative analysis is performed through the stability and bifurcation theory approach using center
manifold theory, revealing the existence of backward, forward, and Hopf bifurcations under certain conditions,
which enrich the dynamics of infectious diseases among humans.

The remainder of this manuscript is organized as follows: in Sect. 2, the model is introduced, and some of
its basic properties are presented. Section 3 is devoted to the existence and stability analysis of disease-free and
endemic equilibria. In this section, the distribution of roots of the characteristic equation is analyzed, revealing the
existence of stability switches. The conditions for backward and forward bifurcation are also obtained. Furthermore,
by regarding the delay τ as a bifurcation parameter, the existence of Hopf bifurcation when the delay is varied is
shown. Numerical simulations are performed to provide a complete representation of the model dynamics in Sect. 4.
Finally, a discussion is given in Sect. 5.

123



22 K. Goel et al.

2 The model and its basic properties

Assume that the epidemiological status of the total population N (t) of individuals can be identified, dividing them
into susceptibles S(t), vaccinated V (t), infectives I (t), and recovered R(t). Individuals can move from one state to
another as their status concerning the disease evolves. A is the recruitment rate of susceptibles and hence of those
entering the susceptible state. Susceptible individuals are vaccinated at a rate of δ and enter the state V (t). The term
f (S(t−τ), I (t−τ)) = (βS(t−τ)I (t−τ))/(1+α I (t−τ)) is the Holling type II functional response representing
the incidence of infection among susceptibles, where β is the force of infection, α describes the inhibition measures
taken by the infected, and the time delay parameter τ represents the latent period. The protection provided by
an imperfect vaccine is only partial, so some individuals can catch the disease when they come into contact with
infected individuals. Therefore, it is assumed that γ is the rate at which vaccinated individuals become infected
when coming into contact with infected individuals. This occurs due to the imperfect nature of the vaccine, which
leaves a percentage of the susceptibles unprotected even if vaccinated. Assume that β > γ , as it is expected that the
vaccine will be at least partly effective in preventing infection, yielding a reduction in the force of infection. The
term g(V (t − τ), I (t − τ)) = (γ V (t − τ)I (t − τ))/(1 + α I (t − τ)) represents the incidence of infection among
vaccinated individuals who move from state V (t) to state I (t). The term (aI )/(1 + bI ), where a is the treatment
(cure) rate and b is a rate of limitation in medical resources, describes the treated individuals who recover and thus
move from state I (t) to R(t). Also, it is assumed that recovered individuals become susceptible again, thus the term
θR describes recovered individuals who reenter the class of susceptible individuals. The parameters μ and d are
the natural and disease-induced mortality rates, respectively. The parameter ς denotes the recovery rate, hence ς I
individuals move from the infected to recovered class.

Thus, the proposed SVIRS epidemic model consists of the following system of delay differential equations:

dS

dt
= A − δS − βS(t − τ)I (t − τ)

1 + α I (t − τ)
− μS + θR,

dV

dt
= δS − γ V (t − τ)I (t − τ)

1 + α I (t − τ)
− μV,

dI

dt
= βS(t − τ)I (t − τ)

1 + α I (t − τ)
+ γ V (t − τ)I (t − τ)

1 + α I (t − τ)
− (μ + d + ς)I − aI

1 + bI
,

dR

dt
= ς I + aI

1 + bI
− θR − μR.

(1)

For biological reasons, the initial conditions are nonnegative continuous functions

S(	) = φ1(	), V (	) = φ2(	), I (	) = φ3(	), R(	) = φ4(	),

where φ(	) = (φ1, φ2, φ3, φ4)
T are functions such that φi (	) ≥ 0, (−τ ≤ 	 ≥ 0, i = 1, 2, 3, 4). C denotes the

Banach space C
([−τ, 0],R4+

)
of continuous functions mapping the interval [−τ, 0] into R4+ with supremum norm

‖φ‖ = sup
	∈[−τ,0]

|φ(	)|,

where |.| is any norm in R4+.
The transition diagram of the model (1) is shown in Fig. 1.
The model (1) monitors populations. Using Proposition 2.3 in Yang et al. [45] and Proposition 2.1 given in Hattaf

et al. [7], it can be checked that all state variables of the model (1) are nonnegative, i.e., (S, V, I, R) ∈ R4+. For
ecological reasons, it is assumed that all the parameters are positive; i.e., A, δ, β, α, μ, θ, γ, d, ς, a, and b
are positive.

Lemma 1 The compact set

� =
{
(S(t), V (t), I (t), R(t)) ∈ R

4+ : N (t) = S(t) + V (t) + I (t) + R(t) ≤ A

μ

}
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Fig. 1 Transition diagram of the model (1)

is invariant for the solutions of the model (1).

Proof The well-posedness of the model is ensured by the continuity of the terms on the right-hand side of the model
(1) and its derivatives.

Addition of the equations of the model (1) yields

dN

dt
= A − μN − d I ≤ A − μN . (2)

Thus, the invariant region for the existence of the solutions is given as

0 < lim inf
t→∞ N (t) ≤ lim sup

t→∞
N (t) ≤ A

μ
. (3)

Hence, the solutions of the model (1) are closed and bounded. 	


3 Equilibria and stability analysis

In this section, the existence of equilibria of the model (1) is confirmed. The model has two equilibria, namely:

1. The disease-free equilibrium E0, in which infected individuals are permanently absent from the population, i.e.,
I ≡ 0 for all t > 0), discussed in Sect. 3.1

2. The endemic equilibrium Ee, in which an infected population persists above a certain positive level, discussed
in Sect. 3.2

3.1 The disease-free equilibrium and its stability

Here it is established that the model (1) has a disease-free equilibrium of the form E0 =
(

A
μ+δ

, δA
μ(μ+δ)

, 0, 0
)
.

At E0, the characteristic equation of the linearized model (1) is obtained as follows:

(λ + μ) (λ + μ + δ) (λ + μ + θ)

(
λ + (d + μ + ς + a) − A(βμ + γ δ)e−λτ

μ(δ + μ)

)
= 0. (4)
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Equation (4) has real negative roots λ1 = −μ, λ2 = −μ − δ, λ3 = −μ − θ , and other roots are the solution of

λ + (d + μ + ς + a) − A(βμ + γ δ)e−λτ

μ(δ + μ)
= 0. (5)

The term (A(μβ + γ δ)e−λτ )/(μ(μ + δ)(d + μ + ς + a)) at τ = 0 is defined as the basic reproduction number
R0 of the model (1). The basic reproduction number R0 is defined as the average number of secondary infections
caused by a single infected agent, during his/her entire infectious period, in a completely susceptible population
[26]. Therefore, R0 for the model (1) is given as

R0 = A(μβ + γ δ)

μ(μ + δ)(d + μ + ς + a)
.

The stability of E0 is shown as follows:

Theorem 1 The disease-free equilibrium E0 =
(

A
μ+δ

, δA
μ(μ+δ)

, 0, 0
)
of the model (1) is

1. Unstable if R0 > 1
2. Linearly neutrally stable if R0 = 1
3. Asymptotically stable if R0 < 1

Proof As mentioned above, Eq. (4) has real negative roots λ1 = −μ, λ2 = −μ − δ, λ3 = −μ − θ , and other
roots are the solution of

f (λ) := λ + (d + μ + ς + a) − A(βμ + γ δ)e−λτ

μ(δ + μ)
= 0. (6)

1. Assuming that R0 > 1, then

f (0) = d + μ + ς + a − A(βμ + γ δ)

μ(δ + μ)

= (d + μ + ς + a)

(
1 − A(βμ + γ δ)

μ(μ + δ)(d + μ + ς + a)

)

= (d + μ + ς + a)(1 − R0)

< 0.

i.e., when R0 > 1 then f (0) < 0. Also, f ′(λ) = 1 + τ A(βμ+γ δ)
μ(δ+μ)

e−λτ > 0 so, limλ→∞ f (λ) = +∞.
Hence, f (λ) = 0 and f ′(λ) > 0 imply that there exists a unique positive root of Eq. (6) when R0 > 1.

2. If R0 = 1, then λ = 0 is a simple characteristic root of Eq. (6). Let λ = α + iω be any of the other solutions of
Eq. (6), then Eq. (6) turns into

α + iω + (d + μ + ς + a) − A(βμ + γ δ)

μ(δ + μ)
e−ατ (cosωτ − i sinωτ) = 0. (7)

Using Euler’s formula and separating real and imaginary parts yields

α + d + μ + ς + a = A(βμ + γ δ)

μ(δ + μ)
e−ατ cosωτ, (8)

ω = − A(βμ + γ δ)

μ(δ + μ)
e−ατ sinωτ. (9)

Note that R0 = 1 implies that (A(βμ + γ δ))/(μ(μ + δ)) = (d + μ + ς + a). In addition, if there exists a
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root satisfying both Eqs. (8) and (9), then this root also satisfies the equation obtained by squaring and adding
Eqs. (8) and (9), thus

(α + d + μ + ς + a)2 + ω2 = (d + μ + ς + a)2 e−2ατ . (10)

For Eq. (10) to be verified, α ≤ 0 must apply. Therefore, E0 is linearly neutrally stable.
3. Let R0 < 1. The goal is to prove that, for any values of the parameters, the roots of the characteristic equation

cannot reach the imaginary axis, which means that, for any values of the parameters and all delays τ , then
Re(λ) < 0.
Note that

Re(λ) = A(βμ + γ δ)e−Re(λ)τ cos(Im(λ))τ

μ(δ + μ)
− (d + μ + ς + a) <

A(βμ + γ δ)

μ(δ + μ)
− (d + μ + ς + a) < 0.

Therefore, all the roots of Eq. (6) must have a negative real part. Thus, E0 is asymptotically stable.

	


3.1.1 Bifurcation analysis

In this section, a qualitative analysis of the model (1) is performed without delay, i.e., with τ = 0. The stability
properties of the model (1) without delay are investigated near criticality (i.e., at E0 and R0 = 1). To this aim, the
bifurcation theory approach developed in [27], which is based on the center manifold theory [46], is applied. For
this, redefine S = x1, V = x2, I = x3, and R = x4 so that the model (1) reduces to

dx1
dt

= A − δx1 − βx1x3
1 + αx3

− μx1 + θx4,

dx2
dt

= δx1 − γ x2x3
1 + αx3

− μx2,

dx3
dt

= βx1x3
1 + αx3

+ γ x2x3
1 + αx3

− (μ + d + ς)x3 − ax3
1 + bx3

,

dx4
dt

= ςx3 + ax3
1 + bx3

− θx4 − μx4,

(11)

observing that

R0 = 1 ⇐⇒ γ = γ ∗ = μ (μ + δ) (μ + d + ς + a) − Aμβ

δA
.

The Jacobian matrix J (E0, γ
∗) of the system (11) at the disease-free equilibrium E0 is given by

J
(
E0, γ

∗) =

⎛
⎜⎜⎜⎝

−δ − μ 0 − Aβ
δ+μ

θ

δ −μ − Aδγ ∗
μ(δ+μ)

0
0 0 0 0
0 0 a + ς −θ − μ

⎞
⎟⎟⎟⎠ (12)

so that the eigenvalues of the Jacobian matrix J (E0, γ
∗) are given by λ1 = 0, λ2 = −μ, λ3 = −δ − μ and

λ4 = −θ − μ.
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Thus, λ1 = 0 is a simple zero eigenvalue, and other eigenvalues are real and negative.
Hence, when γ = γ ∗ (or equivalently when R0 = 1), the disease-free equilibrium E0 is a nonhyperbolic

equilibrium.
The right eigenvector u = (u1, u2, u3, u4)T of (12) associated with λ1 = 0 is given by J (E0, γ

∗) · u = 0, thus

u1 = θ(a + ς)(δ + μ) − Aβ(θ + μ)

(a + ς)(δ + μ)2
,

u2 = δθ

μ(δ + μ)
− (θ + μ)

(
(δ + μ)2(a + d + μ + ς) − Aβμ

)
μ(a + ς)(δ + μ)2

,

u3 = θ + μ

a + ς
,

u4 = 1.

The left eigenvector w = (w1, w2, w3, w4) of (12) associated with λ1 = 0 is given by w · J (E0, γ
∗) = 0, thus

w = (0, 0, 1, 0) .

Let fk’s denote the right-hand side of the model system (11). The coefficients a1 and b1 defined in Theorem 4.1 of
Castillo-Chavez and Song [27] are given by

a1 =
4∑

k,i, j=1

wkui u j

(
∂2 fk

∂xi∂x j

)
E0

,

b1 =
4∑

k,i=1

wkui

(
∂2 fk

∂xi∂β∗

)
E0

.

Consideration of only the nonzero partial derivative associated with the functions fk’s evaluated at E0 gives

(
∂2 f3

∂x1∂x3

)
E0

= β,

(
∂2 f3

∂x2∂x3

)
E0

= γ ∗,
(

∂2 f3
∂x3∂x1

)
E0

= β,

(
∂2 f3

∂x3∂x2

)
E0

= γ ∗,
(

∂2 f3
∂x23

)
= 2ab − 2αβA

μ + δ
.

Thus, the bifurcation coefficients a1 and b1 can be computed as

a1 = − 2(θ + μ)

Aδ(a + ς)2(δ + μ)
(−A(θ + μ)(a(δ(b − α)(δ + μ) + β(δ + 2μ)) + (d + μ + ς)(β(δ + 2μ)

− αδ(δ + μ))) + (δ + μ)(a + d + μ + ς)(μ(a(δ + θ + μ) + δ(θ + μ + ς) + (θ + μ)(μ + ς))

+ d(δ + μ)(θ + μ)) + A2β2(θ + μ)),

= − 2(θ + μ)

Aδ(a + ς)2(δ + μ)
η(β),

b1 = A (μ + θ)

(a + ς) (μ + δ)
,

where
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η(β) = A2β2(θ + μ) + β(−aA(δ + 2μ)(θ + μ) − A(δ + 2μ)(θ + μ)(d + μ + ς))

− aAδ(b − α)(δ + μ)(θ + μ) + (δ + μ)(a + d + μ + ς)(μ(a(δ + θ + μ) + δ(θ + μ + ς)

+ (θ + μ)(μ + ς)) + d(δ + μ)(θ + μ)) + αAδ(δ + μ)(θ + μ)(d + μ + ς).

η(β) can be written as

η(β) = A1β
2 + A2β + A3, (13)

where

A1 = A2(θ + μ),

A2 = −A(δ + 2μ)(θ + μ)(a + d + μ + ς),

A3 = (δ + μ)(aAδ(α − b)(θ + μ) + (a + d + μ + ς)(μ(a(δ + θ + μ) + ς(δ + θ + μ) + (δ + μ)(θ + μ))

+ d(δ + μ)(θ + μ)) + αAδ(θ + μ)(d + μ + ς)).

Note that b1 is always positive. According to Theorem 4.1 of Castillo-Chavez and Song [27], the sign of a1, and
hence the sign of η(β), determines the local dynamics around the disease-free equilibrium.

Note that A1 > 0 and A2 < 0. The discriminant D of (13) is obtained as

D = A2
2 − 4A1A3

= A2δ(θ + μ)(a2(δ(θ − 3μ) − 4μ2) + 2a(2A(b − α)(δ + μ)(θ + μ) − (d + μ)(δ(θ + 3μ) + 2μ(θ + 2μ))

+ ς(δ(θ − 3μ) − 4μ2)) − (d + μ + ς)((θ + μ)(4αA(δ + μ) + d(3δ + 4μ) + μ(3δ + 4μ))

+ ς(−δθ + 3δμ + 4μ2))).

(14)

Let β1 and β2 be the two real positive roots of the equation A1β
2 + A2β + A3 = 0, given by

β1 = −A2 − √
D

2A1
and β2 = −A2 + √

D

2A1
.

By applying Theorem 4.1 [27], the occurrence of forward and backward bifurcations is discussed separately below:

Backward bifurcation The model (11) exhibits a backward bifurcation if η(β) < 0. Hence, the following conditions
allow the existence of backward bifurcation around E0:

{
D > 0,

β1 < β < β2.
(15)

Forward bifurcation The forward bifurcation occurs if η(β) > 0. Thus, the conditions for the existence of forward
bifurcation are as follows:

{
D > 0,

β < β1 or β > β2.
(16)

The forward and backward bifurcations are illustrated numerically in Fig. 2:
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(a) Forward bifurcation (β = 0.003)
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(b) Backward bifurcation (β = 0.007)

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

R0

I
t

(c) forward bifurcation when β = 0.009

Fig. 2 Graphs depicting the forward and backward bifurcation for the parameter values A = 5, α = 0.01, μ = 0.01, θ = 0.04, d =
0.01, ς = 0.01, a = 2, b = 0.1, δ = 0.01

For the above set of parameter values, the discriminant D, obtained in Eq. (14), is evaluated as D =
0.0000278476 > 0. According to the theoretical results, stated in inequalities (15), the backward bifurcation
occurs for D > 0, and β1 = 0.00397917 < β < β2 = 0.00820083. Setting β = 0.007, the model (11) exhibits
a backward bifurcation, as shown in Fig. 2b. This figure shows that the reduction of the value of R0 below unity
does not guarantee the elimination of the infection. This implies a range that exhibits a region of coexistence of
the disease-free equilibrium and two endemic equilibria: a smaller endemic equilibrium, i.e., with a small num-
ber of infected individuals, which is unstable, and a larger one, i.e., with a larger number of infected individuals,
which is stable. According to the inequalities given in (16), the forward bifurcation occurs when D > 0 and
if β is sufficiently small or sufficiently large, i.e., if either β < β1 or β > β2 holds. Figure 2a is plotted for
β = 0.003 < β1 = 0.00397917, and Fig. 2c for β = 0.009 > β2, revealing that, when R0 < 1, the disease-free
equilibrium is stable, while if R0 crosses unity, the model admits a stable unique endemic equilibrium.

3.2 Endemic equilibrium

Stability analysis of the endemic equilibrium Ee for the model (1) is now carried out. First, equate the right-hand
terms of the model (1) to zero, to establish the existence of endemic equilibrium, as given below:

A − δS∗ − βS∗ I ∗

1 + α I ∗ − μS∗ + θR∗ = 0, (17)
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δS∗ − γ V ∗ I ∗

1 + α I ∗ − μV ∗ = 0, (18)

βS∗ I ∗

1 + α I ∗ + γ V ∗ I ∗

1 + α I ∗ − (μ + d + ς)I ∗ − aI ∗

1 + bI ∗ = 0, (19)

ς I ∗ + aI ∗

1 + bI ∗ − θR∗ − μR∗ = 0. (20)

Solution of these algebraic equations yields the endemic equilibrium Ee = (S∗, V ∗, I ∗, R∗) as

S∗ = (α I ∗ + 1)(θ I ∗(a + bI ∗ς + ς) + A(bI ∗ + 1)(θ + μ))

(bI ∗ + 1)(θ + μ)(δ + μ + I ∗(α(δ + μ) + β))
,

V ∗ = δ(α I ∗ + 1)2(θ I ∗(a + bI ∗ς + ς) + A(bI ∗ + 1)(θ + μ))

(bI ∗ + 1)(θ + μ)(μ + I ∗(αμ + γ ))(δ + μ + I ∗(α(δ + μ) + β))
,

R∗ = I ∗(a + bI ∗ς + ς)

(bI ∗ + 1)(θ + μ)
,

where I ∗ is given by the real positive solutions of the equation

A3 I
∗3 + A2 I

∗2 + A1 I
∗ + A0 = 0, (21)

with the coefficients A3, A2, A1, and A0 given as

A3 = −b(μ(β(αμ + γ )(θ + μ + ς) + α(α(δ + μ)(θ + μ)(μ + ς) + γ ς(δ + θ + μ)

+ γ (δ + μ)(θ + μ))) + d(θ + μ)(αμ + γ )(α(δ + μ) + β)),

A2 = −μ(a(β(αμ + γ ) + α(α(δ + μ)(θ + μ) + γ (δ + θ + μ))) + ς(α(α(δ + μ)(θ + μ)

+ γ (δ + θ + μ)) + β(μ(α + b) + γ ) + b(2α(δ + μ)(θ + μ) + γ (δ + θ + μ)))

+ (θ + μ)(β(μ(α + b) + γ ) + (δ + μ)(γ (α + b) + αμ(α + 2b)))) + Ab(θ + μ)(β(αμ + γ ) + αγ δ)

− d(θ + μ)(β(μ(α + b) + γ ) + (δ + μ)(γ (α + b) + αμ(α + 2b))),

A1 = −μ(a(2α(δ + μ)(θ + μ) + βμ + γ (δ + θ + μ)) + ς((2α + b)(δ + μ)(θ + μ) + βμ + γ (δ + θ + μ))

+ (θ + μ)((δ + μ)(μ(2α + b) + γ ) + βμ)) + A(θ + μ)(β(μ(α + b) + γ ) + γ δ(α + b))

− d(θ + μ)((δ + μ)(μ(2α + b) + γ ) + βμ),

A0 = μ(δ + μ)(θ + μ)(a + d + μ + ς) (R0 − 1) .

Theorem 2 If R0 > 1, then there is either one unique or three positive endemic equilibria, if all equilibria are
simple roots.

Proof Suppose R0 > 1. Equation (21) gives a third-degree polynomial in I ∗:

F(I ∗) = A3 I
∗3 + A2 I

∗2 + A1 I
∗ + A0.

The leading coefficient of I ∗ is A3, which is negative. Hence

lim
I ∗→∞ F(I ∗) = −∞.

Also, F(0) = A0 and A0 > 0 if R0 > 1. F(I ∗) is a continuous function of I ∗, and using the fundamental theorem
of algebra, this polynomial can have at most three real roots. 	
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The case of a unique endemic equilibrium only is considered herein. (H1): Suppose that R0 > 1. It is noted that
A3 is negative and A0 is positive. For the existence of a unique endemic equilibrium, the following possibilities for
the signs of A1 and A2 exist:

(i) A1 > 0, and A2 > 0,

(ii) A1 > 0, and A2 < 0,

(iii) A1 < 0, and A2 < 0.

(22)

Now, the local stability of the endemic equilibrium for the model (1) is discussed.
The characteristic equation of the model (1) at Ee is a fourth-degree transcendental equation:

λ4 + (p0λ
3 + q0λ

2 + r0λ + s0) + (p1λ
3 + q1λ

2 + r1λ + s1)e
−λτ + (q2λ

2 + r2λ + s2)e
−2λτ = 0, (23)

where

s0 = μ(δ + μ)(θ + μ)
(
a + (bI ∗ + 1)2(d + μ + ς)

)
(bI ∗ + 1)2

,

s1 = 1

(bI ∗ + 1)2(α I ∗ + 1)2
(aI ∗(α I ∗ + 1)(βμ(2θ + μ) + γ (δ(2θ + μ) + μ(θ + μ)))

+ (bI ∗ + 1)2(d I ∗(θ + μ)(α I ∗ + 1)(βμ + γ (δ + μ)) + βμ(−S∗)(δ + μ)(θ + μ) − μ(θ + μ)(γ V ∗(δ + μ)

− I ∗(α I ∗ + 1)(μ(β + γ ) + γ δ)) + I ∗ς(α I ∗ + 1)(βμ(2θ + μ) + γ (μ(δ + θ) + 2δθ + μ2)))),

s2 = 1

(bI ∗ + 1)2(α I ∗ + 1)3
((βγ I ∗(aI ∗(2θ + μ)(α I ∗ + 1) + (bI ∗ + 1)2((θ + μ)(I ∗(d + μ)(α I ∗ + 1)

+ μ(−S∗ − V ∗)) + I ∗ς(2θ + μ)(α I ∗ + 1))))),

r0 = 1

(bI ∗ + 1)2
(a(2μ(δ + θ) + δθ + 3μ2) + (bI ∗ + 1)2(d(2μ(δ + θ) + δθ + 3μ2) + ς(2μ(δ + θ)

+ δθ + 3μ2) + μ(3μ(δ + θ) + 2δθ + 4μ2))),

r1 = 1

(bI ∗ + 1)2(α I ∗ + 1)2
(aI ∗(α I ∗ + 1)(2β(θ + μ) + γ (δ + θ + 2μ)) + (bI ∗ + 1)2(d I ∗(α I ∗ + 1)(β(θ + 2μ)

+ γ (δ + θ + 2μ)) − βS∗(2μ(δ + θ) + δθ + 3μ2) − γ δθV ∗ − 2γ δμV ∗ − 2γ θμV ∗ − 3γμ2V ∗ + 2αβθμI ∗2

+ 3αβμ2 I ∗2 + αγ δθ I ∗2 + 2αγ δμI ∗2 + 2αγ θμI ∗2 + 3αγμ2 I ∗2 + I ∗ς(α I ∗ + 1)(2β(θ + μ)

+ γ (δ + θ + 2μ)) + 2βθμI ∗ + 3βμ2 I ∗ + γ δθ I ∗ + 2γ δμI ∗ + 2γ θμI ∗ + 3γμ2 I ∗)),

r2 = βγ I ∗ (
aI ∗(αY + 1) + (bI ∗ + 1)2(I ∗(α I ∗ + 1)(d + θ + 2μ + ς) + (θ + 2μ)(−S∗ − V ∗))

)
(bI ∗ + 1)2(α I ∗ + 1)3

,

q0 = a(δ + θ + 3μ) + (bI ∗ + 1)2(d(δ + θ + 3μ) + δ(θ + 3μ + ς) + ς(θ + 3μ) + 3μ(θ + 2μ))

(bI ∗ + 1)2
,

q1 = 1

(bI ∗ + 1)2(α I ∗ + 1)2
(aI ∗(β + γ )(α I ∗ + 1) + (bI ∗ + 1)2(d I ∗(β + γ )(α I ∗ + 1) − βS∗(δ + θ + 3μ)

− γ δV ∗ − γ θV ∗ − 3γμV ∗ + αβθ I ∗2 + 3αβμI ∗2 + αγ δ I ∗2 + αγ θ I ∗2 + 3αγμI ∗2 + I ∗ς(β + γ )(α I ∗ + 1)

+ βθ I ∗ + 3βμI ∗ + γ δ I ∗ + γ θ I ∗ + 3γμI ∗)),

q2 = βγ I ∗ (−S∗ − V ∗ + α I ∗2 + I ∗)
(α I ∗ + 1)3

,

p0 = a + (bI ∗ + 1)2(d + δ + θ + 4μ + ς)

(bI ∗ + 1)2
,

123



A deterministic time-delayed SVIRS epidemic model 31

p1 = β(−S∗) − γ V ∗ + I ∗(β + γ )(α I ∗ + 1)

(α I ∗ + 1)2
.

Theorem 3 At τ = 0, the endemic equilibrium Ee is locally asymptotically stable if the real parts of all the roots
of (23) are negative.

Proof Equation (23) reveals that the characteristic equation at τ = 0 near Ee is given by

λ4 + (p0 + p1)λ
3 + (q0 + q1 + q2)λ

2 + (r0 + r1 + r2)λ + (s0 + s1 + s2) = 0. (24)

The proof of this theorem is based on the conditions proposed by the Routh–Hurwitz criterion. Using this criterion,
all roots of Eq. (24) have negative real parts if and only if
(H2): p0 + p1 > 0, r0 + r1 + r2 > 0, s0 + s1 + s2 > 0 and, (p0 + p1)(q0 + q1 + q2)(r0 + r1 + r2) >

(p0 + p1)2(s0 + s1 + s2) + (r0 + r1 + r2)2. 	

Equation (23) yields

p1λ
3 + q1λ

2 + r1λ + s1 + (λ4 + p0λ
3 + q0λ

2 + r0λ + s0)e
λτ + (q2λ

2 + r2λ + s2)e
−λτ = 0. (25)

Let iω (ω > 0) be a root of Eq. (25), then

− ip1ω
3 − q1ω

2 + ir1ω + s1 +
(
ω4 − ip0ω

3 − q0ω
2 + ir0ω + s0

)
eiωτ +

(
−q0ω

2 + ir2ω + s2
)
e−iωτ = 0.

(26)

Equation (26) implies that((
p0ω

3 − r0ω + r2ω
)
sin(τω) +

(
−q0ω

2 − q2ω
2 + s0 + s2 + ω4

)
cos(τω) − q1ω

2 + s1
)

+ i
((

−p0ω
3 + r0ω + r2ω

)
cos(τω) − p1ω

3 +
(
−q0ω

2 + q2ω
2 + s0 − s2 + ω4

)
sin(τω) + r1ω

)
= 0. (27)

Separation of real and imaginary parts gives

q1ω
2 − s1 =

(
p0ω

3 − r0ω + r2ω
)
sin(τω) +

(
−q0ω

2 − q2ω
2 + s0 + s2 + ω4

)
cos(τω), (28)

p1ω
3 − r1ω =

(
−p0ω

3 + r0ω + r2ω
)
cos(τω) +

(
−q0ω

2 + q2ω
2 + s0 − s2 + ω4

)
sin(τω); (29)

That is,

h1(ω) cosωτ − h2(ω) sinωτ = h3(ω), (30)

h4(ω) sinωτ + h5(ω) cosωτ = h6(ω), (31)

where

h1(ω) = ω4 − (q0 + q2) ω2 + s0 + s2,

h2(ω) = (r0 − r2) ω − p0ω
3,

h3(ω) = q1ω
2 − s1,

h4(ω) = ω4 − (q0 − q2) ω2 + s0 − s2,

h5(ω) = (r0 + r2) ω − p0ω
3,

h6(ω) = p1ω
3 − r1ω.
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Thus,

cosωτ = P01(ω)

P00(ω)
,

sinωτ = P02(ω)

P00(ω)
,

(32)

with

P00(ω) = ω4
(
−2p0r0 + q20 − q22 + 2s0

)
+ ω6

(
p20 − 2q0

)
+ ω2

(
−2q0s0 + 2q2s2 + r20 − r22

)

+ s20 − s22 + ω8,

P01(ω) = ω4 (p0r1 + p1 (r0 − r2) + q1 (q2 − q0) − s1) + ω6 (q1 − p0 p1)

+ ω2 ((q0 − q2) s1 + q1 (s0 − s2) + r1 (r2 − r0)) − s0s1 + s1s2,

P02(ω) = p1ω
7 + ω5 (p0q1 − p1 (q0 + q2) − r1) + ω3 (−p0s1 + p1 (s0 + s2) + (q0 + q2) r1 − q1 (r0 + r2))

+ ω ((r0 + r2) s1 − r1 (s0 + s2)) .

(33)

Equation (32) gives

P2
01(ω) + P2

02(ω) = P2
00(ω). (34)

Now, assume that, (H3): Eq. (34) has at least one positive root ω0.
Then, Eq. (25) has a pair of purely imaginary roots ±iω0. For ω0, the corresponding critical value of the time

delay is obtained as

τ0 = 1

ω0
arccos

P01(ω0)

P00(ω0)
+ 2π j

ω0
, j = 0, 1, 2, . . . (35)

To establish the Hopf bifurcation at τ = τ0, it must be shown that

Re

(
dλ

dτ

)
�= 0.

Differentiating Eq. (23) with respect to τ gives

dλ

dτ
= −λeλτ

(
λ4 + P0λ3 + q0λ2 + r0λ + s0

) + λ
(
q2λ2 + r2λ + s2

)
e−λτ

L
, (36)

where

L = 3P1λ
2 + 2q1λ + r1 +

(
4λ3 + 3P0λ

2 + 2q0λ + r0
)
eλτ + τ

(
λ4 + P0λ

3 + q0λ
2 + r0λ + s0

)
eλτ

+ (2q2λ + r2) e
−λτ − τe−λτ

(
q2λ

2 + r2λ + s2
)

.

It follows that

(
dλ

dτ

)−1

= −Y1(λ)

Y2(λ)
− τ

λ
, (37)
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where

Y1(λ) =
(
3P1λ

2 + 2q1λ + r1
)

+
(
4λ3 + 3P0λ

2 + 2q0λ + r0
)
eλτ + (2q2λ + r2) e

−λτ ,

Y2(λ) = λeλτ
(
λ4 + P0λ

3 + q0λ
2 + r0λ + s0

)
−

(
q2λ

2 + r2λ + s2
)
e−λτ .

(38)

Application of λ = iw0 yields

(
dλ

dτ

)−1 ∣∣∣
λ=iω0

= −3P1ω2
0 + 2iq1ω0 + r1 + eiτω

(−4iω3
0 − 3P0ω2

0 + 2iq0ω0 + r0
) + e−iτω (2iq2ω0 + r2)

iω0 eiτω0
(
ω4
0 − iP0ω3

0 + ir0ω0 − q0ω2
0 + s0

) − e−iτω0
(
ir2ω0 − q2ω2

0 + s2
)

+ i
τ

ω0
.

Re

(
dλ

dτ

)−1 ∣∣∣
λ=iω0

= V1V2 + V3V4
V 2
2 + V 2

4

.

where

V1 = 4ω3
0 sin(τω0) − 3P0ω

2
0 cos(τω0) − 3P1ω

2
0 − 2q0ω0 sin(τω0) + 2q2ω0 sin(τω0) + r0 cos(τω0)

+ r2 cos(τω0) + r1,

V2 = P0ω
4
0 sin(τω0) + q0ω

3
0 sin(τω0) + q2ω

2
0 cos(τω0) − r0ω

2
0 cos(τω0) − r2ω0 sin(τω0) − s0ω0 sin(τω0)

− s2 cos(τω0) + ω5
0(− sin(τω0)),

V3 = 3P0ω
2
0 sin(τω0) − 2q0ω0 cos(τω0) − 2q2ω0 cos(τω0) − 2q1ω0 − r0 sin(τω0) + r2 sin(τω0)

+ 4ω3
0 cos(τω0),

V4 = −P0ω
4
0 cos(τω0) − q0ω

3
0 cos(τω0) − q2ω

2
0 sin(τω0) − r0ω

2
0 sin(τω0) − r2ω0 cos(τω0) + s2 sin(τω0)

+ s0ω0 cos(τω0) + ω5
0 cos(τω0).

If (H4): V1V2 + V3V4 �= 0 holds, then Re
( dλ
dτ

)−1
∣∣∣
λ=iω0

�= 0. Thus, the following theorem can be stated:

Theorem 4 For the model (1), if conditions (H1–H4) hold, then the endemic equilibrium Ee = (S∗, V ∗, I ∗, R∗) is
locally asymptotically stablewhen τ ∈ [0, τ0); themodel (1) undergoes aHopf bifurcation at Ee = (S∗, V ∗, I ∗, R∗)
when τ = τ0, and a family of periodic solutions bifurcate from Ee = (S∗, V ∗, I ∗, R∗).

4 Numerical simulations

In this section, numerical simulations are carried out to illustrate the effectiveness of the obtained results.
The case of endemic equilibrium is illustrated for the following numerical data: A = 12, β = 0.05, α = 0.15,

μ = 0.1, d = 0.01, θ = 0.1, δ = 0.1, a = 2, b = 10, ς = 0.1, and γ = 0.001. It is estimated that, with these
parameter values, the basic reproduction number of the model (1) is R0 = 1.38462 and the endemic equilibrium is
Ee(S, V, I, R) = (28.9926, 27.4302, 39.1123, 20.5536).

Figure 3a shows the behavior of the susceptible, vaccinated, infected, and recovered populations at τ = 1. It can
be seen that, as time increases, the susceptible population decreases while the vaccinated, infected, and recovered
population increase, and finally, all the subpopulations settle down to the endemic equilibrium Ee. Figure 3b shows
the impact of time delay on the infected population, clearly revealing that infection increases among society with
an increase in the time delay τ .
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(a) (b)

Fig. 3 Impact of time delay on population

Fig. 4 Infected population
with and without saturated
treatment rate for τ = 1

(a) (b)

Fig. 5 Impact of vaccination on infected population

Figure 4 reveals the impact of saturated treatment on the infected population for a time delay of τ = 1. When
treatment is given to infected individuals, the infection spreads at a lower level compared with the case without
treatment, revealing that medical resources and their supply efficiency have a great influence on the spread and
control of an epidemic. Thus, it can be seen that the saturated treatment rate helps to lessen the transmission and to

123



A deterministic time-delayed SVIRS epidemic model 35

(a) (b)

(c) (d)

Fig. 6 Hopf bifurcation for various values of time delay τ with parameter values of A = 12, β = 0.05, α = 0.15, δ = 0.01, μ =
0.1, θ = 0.1, γ = 0.001, d = 0.01, ς = 0.1, a = 5, b = 10

control the spread of the infection. Therefore, it is very important to make treatment facilities available quickly to
infectives to diminish the infection among society.

Figure 5 shows the impact of vaccination on infected individuals. Figure 5a shows the infected population with
and without vaccination, revealing that, even though the vaccine is imperfect, it helps to reduce the spread of the
infection. Meanwhile, Fig. 5b shows the variation in the infected population for different values of the vaccination
rate, where the infected population is plotted for δ = 0.1, 0.2, or 0.3. It can be seen that, when the vaccination rate
is high, the infected population diminishes at a higher rate. Thus, immunization by vaccination is a counteractive
tool that can lessen the transmission of an infection and control its spread. Therefore, public health agencies need to
ensure effective vaccination by increasing the time until loss of immunity and immunizing the maximum number
of individuals.

Figure 6 shows the relation between the susceptible and infected populations for different values of the time
delay, confirming the occurrence of Hopf bifurcation. The red dot on the curves indicates the endemic equilib-
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rium Ee whose components are (S, I ) = (36.4105, 48.5345), and at this value the results give (S, V, I, R) =
(36.4105, 3.43944, 48.5345, 26.7621). These figures show how the fraction of infectives oscillates for higher val-
ues of the time delay, finally approaching the endemic equilibrium Ee. Figure 6c, d indicates that increasing the
time delay τ results in a longer period of periodic oscillations around the endemic equilibrium Ee.

5 Discussion

An SVIRS epidemic model with a Holling type II functional incidence rate, time delay, imperfect vaccine, and
saturated treatment rate is studied herein. The analysis of the model shows that it exhibits two equilibria: a disease-
free equilibrium (DFE) and an endemic equilibrium (EE). The basic reproduction number R0 is obtained, and the
dynamics of the model for disease transmission is characterized by R0, both with and without time delay. For τ > 0,
it is shown that the DFE is locally asymptotically stable when R0 is less than unity, unstable when R0 is greater
than unity, and linearly neutrally stable at R0 equal to unity. However, use of center manifold theory reveals that
the model undergoes backward or forward bifurcation at R0 = 1 when there is no time delay. This analysis is of
interest in itself, as it provides some information on the stability of the DFE and EE. The model exhibits forward or
backward bifurcation under particular conditions obtained by inequalities (15), and (16). The phenomenon where
the disease-free equilibrium loses its stability and a stable endemic equilibrium appears as R0 increases through
unity is the case of forward bifurcation, whereas the phenomenon where a stable endemic equilibrium coexists
with a stable DFE when R0 < 1 is the case of backward bifurcation. The epidemiological implication of backward
bifurcation is that the condition R0 < 1 is necessary but not sufficient for eradication of the infectious disease.
Schematic diagrams of forward and backward bifurcation are depicted in Fig. 2. Furthermore, stability analysis of
the endemic equilibrium is performed, and the local stability of the endemic equilibrium is shown in Theorems 3
and 4. Regarding time delay as a bifurcation parameter and analyzing the corresponding characteristic equation,
the occurrence of Hopf bifurcation near the endemic equilibrium is shown, illustrating the presence of oscillatory
and periodic solutions. Numerical simulations are performed to demonstrate the effectiveness of the theoretical
findings. The graphical representation elucidates the impact of time delay on infected individuals, revealing that,
when the time delay is high, there is a large number of infected individuals. The impact of a saturated treatment
rate is also shown graphically, revealing that the considered treatment is imperative to control the spread of the
infection, as it lessens transmission and reduces the number of infectives. The occurrence of the oscillatory and
periodic solution is also illustrated, confirming the existence of Hopf bifurcation. The present study demonstrates
that an imperfect vaccine and saturated treatment rate may lead to backward bifurcation, but at the same time it
should be emphasize that these measures reduce the size of the infected population. High vaccine take-up levels
result in radical decreases of infectious disease, as shown in Fig. 5. If a vaccine which is completely effective can
be made, this plausibility does not emerge, while a program which reduces the contact rate can further control
infection without inciting backward bifurcation.
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