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Abstract A theoretical approach is taken into consideration to investigate the propagation behaviour of shear
acoustic waves in a piezoelectric cylindrical layered structure composed of a piezoelectric material cylinder imper-
fectly bonded to a concentric functionally graded piezoelectric material (FGPM) cylindrical layer of finite width.
The functional gradient in the FGPM cylindrical layer is considered to vary continuously along the radial direction
(function of radial coordinate), and the imperfection of the interface of the cylindrical structure is taken into account
which may practically exist due to some mechanical and/or electrical damage. By means of mathematical transfor-
mation, the governing electromechanical coupled field differential equations are reduced to Bessel’s equations. An
analytical treatment has been employed to determine the dispersion relations of propagating shear acoustic waves
for both electrically short and electrically open conditions, which are further validated by reducing the obtained
results to the pre-established standard results and classical Love wave equation as a special case of the problem.
The effects of functional gradient parameter, radii ratio, wave number, order of Bessel’s function appearing in the
dispersion relations and mechanical/electrical imperfection parameters associated with the imperfect bonding of a
piezoelectric material cylinder and FGPM layer on the phase velocity of shear acoustic waves have been reported
through numerical simulation and graphical demonstration. For the sake of numerical computation, the data of
PZT-5H for the FGPM cylindrical layer and AlN for a piezoelectric material cylinder have been considered.
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1 Introduction

Piezoelectricity is an electromechanical effect resulting from a linear coupling between mechanical stress and strain
on one hand and an electric field and displacement field on the other. The name originates from theGreekword piezos
meaning pressure and expresses the observation that electricity is generated on applying pressure to a piezoelectric
material. The opposite also occurs: applying an electric field generates a deformation. A piezoelectric material will
aggregate electrical charges when mechanical stress is applied in certain classes of crystalline materials, which is
called the piezoelectric effect. One of the surprising features of the piezoelectric effect is its reversible nature, which
suggests that materials exhibit the direct piezoelectric effect (the internal generation of electrical charge resulting
from an applied mechanical force), and also exhibit the reverse piezoelectric effect (the internal generation of a
mechanical strain resulting from an applied electrical field). This inherent electromechanical coupling is widely
exploited in the design of numerous devices like transducers, sensors and actuators [1–5].

It is a well-known fact that surface acoustic waves (SAWs) are extensively used in sensors and transducers,
especially viscous liquid sensors because of their lower damping and smaller dimension. Piezoelectric materials are
used to manufacture SAW devices; for example, a thin film lying on a substrate is currently adopted to achieve high
performance. Numerous investigations have been undertaken for analysing the characteristics of SAW or Love-
type waves in layered piezoelectric structures by many researchers in various disciplines because of its important
applications in SAW devices. With the wider applications of SAW sensors, the studies on horizontally polarized
shear (SH) wave propagation under various working conditions have become hotspots in this field. The propagation
of SH waves in piezoelectric material composites generally exhibits dispersion behaviours, i.e., the phase velocity
is dependent on the wave number [6–8]. The dispersion behaviour is a significant factor affecting the performances
of SAW sensors; most researchers in this area focus their attention on the dispersion relations. First, Love [9]
investigated the shear horizontal surface wave in an isotropic composite structure composed of a homogeneous
isotropic layer of finite width lying over a homogeneous isotropic half-space. This shear horizontal surface wave is
known as a Love wave and refers to a shear wave that is polarized horizontally and propagates at the surface of the
medium. Curtis andRedwood [10] proposed a solution for dispersion characteristics of Lovewaves in a piezoelectric
material and the conditions for the existence of various modes. Liu et al. [11] discussed the propagation behaviour
of Love waves in layered piezoelectric/piezomagnetic structures. The dispersion of Love wave propagation in a
composite structure consisting of the finite piezoelectric and viscoelastic layers on the size-dependent half-space
was examined by Goyal and Kumar [12], and surface wave frequency in piezo-composite structure is discussed by
Singhal et al. [13]. A theoretical method for analyzing Love waves in a structure with a viscoelastic guiding layer
bounded on a piezoelectric substrate is developed by Liu et al. [14] and Liu [15]. The study of shear acoustic waves
in piezoelectric cylindrically layered composite structure is also a subject of great interest. The circulation of shear
harmonic waves around a long metallic cylinder covered with a piezoelectric layer was presented by Wang et al.
[16], and shear wave propagation in a cylindrically layered piezoelectric structure with initial stress is studied by
Du et al. [17]. The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied by
Paul and Nelson [18]. The propagation of elastic waves through piezoelectric structures has been in the forefront of
the present era because of the continued utilization of piezoelectric materials in various functional devices, namely,
sensors, actuators, filters, delay lines, oscillators, amplifiers, microbalances and air-coupled ultrasonic transducers,
which are widely used in electronic technology.

To enhance the effect of piezoelectric material, functionally graded piezoelectric materials (FGPMs) are utilised,
which can solve practical problems arising from production and application of a new type of composite materials.
FGPMs possess a gradual variation in composition and structure over volume, which may change their properties
[19,20]. These materials find numerous applications in engineering fields because of their high performance and
multifunctional role. The desire to develop materials for specific functions, their practical applications and research
on them has turned into the foundation of current material science. It is because of the increased interdisciplinary
interactions and rapid invention of theories,methods and experimental techniques [21–23]. The effect of initial stress
on the propagation behaviour of Love waves in a layered piezoelectric structure was investigated by Liu et al. [24]
and Zhu et al. [25]. Hryniewicz [26] studied the propagation of Love-type waves in a randomly non-homogeneous
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layer over a homogeneous half-space. The propagation of shear horizontal surface acoustic waves in a functionally
graded magneto-electro-elastic half-space was studied by Shodja [27]. Sahu et al. [28] investigated the transference
of Love-type waves in an FGPM layer bonded between viscous liquid and a piezoelectric half-space. The influence
of functional gradedness and anisotropy on the propagation of surface waves has been studied by Mahanty et al.
[29], and shear wave propagation in an isotropic and fibre-reinforced cylindrical layered media was investigated
by Kumar et al. [30] and Mahanty et al. [31]. Singhal et al. [32] analysed the dispersion characteristics of Love
wave propagation in an FGPM composite layered structure. The structures based on FGPMs are being extensively
utilised in the engineering domain due to their inherent properties, indispensable characteristics and exceptional
ability of sensing, actuating and controlling.

A common feature of the above-mentioned papers is that they discussed the problems based on perfectly bonded
interfaces. It is known that the interfaces of practical piezoelectric composite structures may become damaged or
imperfect after a long time of service under harsh circumstances. Imperfect bonding often occurs in surface acoustic
wave (SAW) devices because of the aging of glue applied to two conjunct solids, micro-defects, diffusion impurities,
and other forms of damages. Also, two dissimilarmaterials cannot be perfectly bonded, and there exists an interphase
or transition with a thickness typically within a nanometre range across the interface. The existence of the interface
layer or interphase significantly affects interface mechanical behaviour, such as the inability to transfer stresses
effectively, etc.; hence, this kind of interface is called an imperfect interface. Owing to the above, many eminent
researchers have developed an analytical model of imperfect bonding in their studies [33–37]. Chen et al. [38]
provided the exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring
inter-laminar imperfections bonding modelled by a general spring layer. Wang et al. [39] displayed the scattering
of anti-plane shear waves by a piezoelectric circular cylinder having an imperfect interface. Chaudhary et al. [40]
investigated shear waves in a piezoelectric layer laid over a substrate with imperfect interface. Li and Yong Lee [41]
studied the propagation of SHwaves in a piezoelectric sensorwith an imperfect interface. Kumar et al. [42] discussed
the effect of interfacial imperfection on shear wave propagation in a piezoelectric composite structure. After this
detailed literature survey, it is found that there are number of articles concerned with the propagation of transverse
waves in a homogeneous/functionally graded piezoelectric layered structure with a rectangular frame of reference,
and very few articles are published concerned with the propagation of shear waves in homogeneous/heterogeneous
cylindrical piezoelectric structures. It is worth mentioning that, to date, no investigations have been made on the
propagation of shear acoustic waves in a piezoelectric cylindrical layered structure composed of a piezoelectric
material cylinder coated by a concentric functionally graded cylindrical piezoelectric material (FGPM) layer of
finite width in which the said inner cylinder is imperfectly bonded with the said cylindrical layer. In view of the
undertaken geometry and configuration along with the consideration of imperfect bonding, the present manuscript
provides a novel feature.

In this paper, shear acoustic wave propagation behaviour in a piezoelectric cylindrical layered structure consisting
of a piezoelectric material cylinder coated by a concentric FGPM cylindrical layer with an imperfect bonding
interface has been analysed. The functional gradient in the FGPM cylindrical layer varies simultaneously along
the radial direction, and the imperfection of the cylindrical structure’s interface is taken into account which may
practically exist due to some mechanical and/or electrical damage. An analytical treatment has been employed to
determine the dispersion relations of propagating shear acoustic waves for both electrically short and electrically
open conditions. The deduced results are validated by pre-established results and the classical Love wave equation
as a special case of the problem. Numerical calculation and graphical delineation have been carried out to unravel the
effect of functional gradient parameter, radii ratio,wave number, order ofBessel’s function andmechanical/electrical
imperfection parameters associated with the imperfect bonding of a piezoelectric material cylinder and a concentric
FGPM cylindrical layer on the phase velocity of shear acoustic waves.
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2 Methodology adopted for the mathematical model

The following methodology is used to obtain dispersion relations of a propagating wave for both electrically short
and open cases in the undertaken model:

• In view of the geometry of the problem and considered frame of reference, the mathematical condition of
propagation of a shear acoustic wave is taken into account.

• With the aid of a constitutive relation, the governing equation of motion and Gauss’s law concerned with the
electrical displacements are derived.

• Keeping in mind the shear imperfection existing between the inner cylinder and outer cylindrical layer, the
boundary conditions for electrically short and open conditions of the undertaken model are identified.

• By adopting separation of the variable technique, the solution of the non-vanishing equation of motion for
propagation of shear acoustic waves in the considered geometrical model has been obtained in terms of Bessel’s
function of the first and second kind. Furthermore, with aid of boundary conditions, we obtain two distinct
dispersion relations for short and open conditions.

• For the sake of validation, the obtained dispersion relations for short and open conditions are matched with the
classical and pre-established results.

3 Mathematical formulation of the problem

Let us assume shear acoustic wave propagation in a piezoelectric cylindrical layered structure composed of a piezo-
electric material cylinder imperfectly bonded to a concentric functionally graded piezoelectric material (FGPM)
cylindrical layer of finite width. The width of the FGPM cylindrical layer is h (= r2 − r1) where r1 and r2 are inner
and outer radii of the cylindrical structure, respectively. Let us introduce a cylindrical coordinate system in such a
way that the wave propagation is along the θ direction; the poling of the linearly transversely isotropic piezoelectric
material cylinder and FGPM layer is along the z-axis;, the r -axis is the radial direction of the cylinder and O is the
centre of the cylindrical structure as shown in Fig. 1.

The constitutive relations for piezoelectric material [1] are given by

σi j = ci jkl Skl − eki j Ek, Dj = e jkl Skl + ε jk Ek, (1)

where σi j , Skl , Dj and Ek denote the stress tensors, strain tensors, electric displacements and intensity of the electric
field, respectively; ci jkl , e jkl and ε jk are elastic, piezoelectric and dielectric constants.

In view of Eq. (1), the constitutive equations for a piezoelectric medium can also be expanded in terms of
cylindrical coordinates as
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Fig. 1 Schematic of the
problem a piezoelectric
cylindrical structure, b
cross-section of the
piezoelectric cylindrical
structure

The strain components in terms of mechanical displacement components and intensity of the electric field in terms
of electric potential with cylindrical coordinates are defined as

Srr = ∂u

∂r
, Srθ =

[
∂v

∂r
− v

r
+ 1

r
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]
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∂z

]
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r
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∂z
, (4)

where u, v and w are the mechanical displacement components along the r, θ and z directions, respectively, and φ

represents the electric potential.
In the absence of body force, the equation of motion in a cylindrical coordinate system in terms of stress

components [9] and Gauss’s law of electrostatics without charge are written as
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where ρ is the material’s mass density.
On the assumption that the shear acoustic wave propagates along the θ -direction, the mechanical displacements

and electric potential can be characterised as

u = v = 0, w = w (r, θ, t) , φ = φ (r, θ, t) and
∂ ()

∂z
≡ 0. (9)

On substituting of Eqs. (4) and (9) into Eqs. (2) and (3), the following relations yield:

σr z = c44
∂w

∂r
+ e15

∂φ

∂r
, σθ z = 1

r

(
c44
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)
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In view of Eqs. (9)–(11), the equation of motion (Eqs. (5) and (6)) becomes identically zero, while Eqs. (7) and (8)
take the form as

c44∇2w + e15∇2φ = ρ
∂2w

∂t2
, (12)

e15∇2w − ε11∇2φ = 0, (13)

where
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+ 1
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∂

∂r
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r2
∂2

∂θ2

is the two-dimensional Laplace operator in polar coordinates.
The layer (r1 < r ≤ r2) is functionally gradient and it enhances the properties of piezoelectricmaterial, therefore,

by considering all the material parameters of the FGPM layer in the radial variation (along the r -direction), the
functional gradedness in the FGPM layer is introduced as
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, e15 = e(F)
15

(
r

r2

)�

, ε11 = ε
(F)
11

(
r

r2

)�

, ρ = ρ(F)

(
r
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, (14)

where c44, e15, ε11 and ρ indicate the shear elastic modulus, piezoelectric constant, dielectric coefficients and mass
density of the FGPM layer, respectively; c(F)

44 , e(F)
15 , ε

(F)
11 and ρ(F) are the associated values at r = r2, and � is the

dimensionless functional gradient parameter.
Assuming the displacement components and electric potential for an FGPM layer (r1 < r ≤ r2) as w(F), φ(F)

and Eqs. (12) and (13) with aid of Eq. (14) result in
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On simplifying of Eqs. (15) and (16), the following Eqs. (17) and (18) will serve the field equations in terms of
mechanical displacement and electric potential function as

r2
∂2w(F)

∂r2
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1
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where

β1 =
√

c̄44
ρ(F)

and c̄44 = c(F)
44 +

(
e(F)
15

)2

ε
(F)
11

.

For the sake of simplicity and noting the superscript (P) of material constants, density, mechanical displacement
and electric potential of the piezoelectric cylinder become c(P)

44 , e(P)
15 , ε

(P)
11 , ρ(P), w(P) and φ(P), respectively, and

therefore, the field equations of piezoelectric cylinder (0 < r ≤ r1) on simplifying Eqs. (12) and (13) reduce to

r2
∂2w(P)

∂r2
+ r

∂w(P)

∂r
+ ∂2w(P)

∂θ2
= r2

β2
2

∂2w(P)

∂t2
, (19)

r2
∂2φ(P)

∂r2
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∂φ(P)

∂r
+ ∂2φ(P)

∂θ2
= r2e(P)

15

β2
2ε

(P)
11

∂2w(P)

∂t2
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where

β2 =
√

¯̄c44
ρ(P)

and ¯̄c44 = c(P)
44 +

(
e(P)
15

)2

ε
(P)
11

.

The outer surface (r > r2) of the FGPM layer is in the air where the dielectric constant (ε0) is much smaller as
compared to piezoelectric medium, and therefore, the air can be regarded as a vacuum and the electric potential φ0

satisfies the Laplacian equation, i.e.

∇2φ0 = 0, (21)

where the subscript 0 specifies the quantities in the vacuum.

4 Boundary conditions

The outer surface of the FGPM cylindrical layer (i.e. r = r2) is mechanically traction-free and subjected to two
different kinds of boundary conditions; one is an electrically short condition and the other is an electrically open
condition. These boundary conditions can be expressed by the following mathematical formulae:

(i) Mechanical traction-free condition at the free surface of the FGPM layer common for both open and short cases
is given by

σ (F)
r z = 0 at r = r2. (22)

(ii) Electrically short condition at the free surface of the FGPM layer is given by

φ(F) = 0 at r = r2. (23)

(iii) Electrically open condition at the free surface of the FGPM layer is given by

φ(F) = φ0 at r = r2 (24)

and

D(F)
r = −ε0

∂φ0

∂r
at r = r2. (25)
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(iv) It is assumed that the interface (i.e. r = r1) of the FGPM layer and piezoelectric cylinder is assumed to be
damaged electrically and/or mechanically and becomes imperfect. According to an imperfect interfacial model,
the stresses and electrical displacements are continuous, but themechanical displacements and electric potentials
are jumped across the interface, which complies with the following relations:

σ (F)
r z = α1

(
w(F) − w(P)

)
at r = r1, (26)

D(F)
r = −α2

(
φ(F) − φ(P)

)
at r = r1, (27)

σ (F)
r z = σ (P)

r z at r = r1, (28)

D(F)
r = D(P)

r at r = r1, (29)

where the superscripts (F) and (P) in stresses and electric displacement components stand for the FGPM layer
and piezoelectric cylinder, respectively. The two imperfect interface parameters α1 and α2 are uniform and
non-negative constants. Obviously, if α1 → ∞ and α2 → ∞, the interface is perfectly bonded and conducting,
otherwise it is mechanically and/or dielectrically imperfect.

(v) As the mechanical displacement and electric potential of the piezoelectric cylinder will become finite at the
origin of the cylinder, i.e.

r → 0, w(P), φ(P) → finite value. (30)

5 Solution of the problem

To find the displacement components, electric potentials of both the FGPM layer and piezoelectric cylinder and the
electric potential of the vacuum, we dealt with the Eqs. (17)–(21).

As shear acoustic wave is propagating steadily along the circumferential direction, on assuming the solutions of
Eqs. (17) and (18) in the form

w(F) (r, θ, t) = W (F) (r) cos (nθ − ωt) r−�/2, (31)

φ(F) (r, θ, t) = ϕ(F) (r) cos (nθ − ωt) r−�/2, (32)

where W (F) (r) , ϕ(F) (r) are unknown functions and n is a non-negative real number.
In view of Eqs. (31) and (32), Eqs. (17) and (18) lead to

r2
d2W (F) (r)

dr2
+ r

dW (F) (r)

dr
+

[
r2ω2

β2
1

−
(
n2 + �2

4

)]
W (F) (r) = 0 (33)

and

r2
d2ϕ(F) (r)

dr2
+ r

dϕ(F) (r)

dr
−

(
n2 + �2

4

)
ϕ(F) (r)

= e(F)
15

ε
(F)
11

[
r2

d2W (F) (r)

dr2
+ r

dW (F) (r)

dr
−

(
n2 + �2

4

)
W (F) (r)

]
. (34)

Equation (33) is in the form of Bessel’s differential equation of order p
(
=

√
n2 + �2

4

)
, and the solution of Eq. (33)

is given by

W (F) (r) = C1 Jp

(
ωr

β1

)
+ C2Yp

(
ωr

β1

)
, (35)

where C1, C2 are undetermined constants and Jp (·) ,Yp (·) are the pth order Bessel’s function of the first and
second kind, respectively.
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In view of Eq. (35), the solution of Eq. (34) can be represented by

ϕ(F) (r) = C∗
1r

−p + C∗
2r

p + e(F)
15

ε
(F)
11

(
C1 Jp

(
ωr

β1

)
+ C2Yp

(
ωr

β1

))
, (36)

where C∗
1 and C∗

2 are undetermined constants.
Thus, the displacement component and electric potential of a functionally graded piezoelectric material (FGPM)

layer (r1 < r ≤ r2) are as follows:

w(F) =
[
C1 Jp

(
ωr

β1

)
+ C2Yp

(
ωr

β1

)]
r−�/2 cos (nθ − ωt) , (37)

φ(F) =
[
C∗
1r

−p + C∗
2r

p + e(F)
15

ε
(F)
11

(
C1 Jp

(
ωr

β1

)
+ C2Yp

(
ωr

β1

))]
r−�/2 cos (nθ − ωt) . (38)

Similarly, the displacement component and electric potential of the piezoelectric cylinder (0 < r ≤ r1) will be
served as

w(P) =
[
D1 Jn

(
ωr

β2

)
+ D2Yn

(
ωr

β2

)]
cos (nθ − ωt) , (39)

φ(P) =
[
D∗
1r

−n + D∗
2r

n + e(P)
15

ε
(P)
11

(
D1 Jn

(
ωr

β2

)
+ D2Yn

(
ωr

β2

))]
cos (nθ − ωt) , (40)

where D1, D2, D∗
1 and D∗

2 are undetermined constants and Jn (·) and Yn (·) are the nth order Bessel’s function of
the first and second kind, respectively.

With the aid of the boundary condition (Eq. (30)), the mechanical displacement and electric potential of the
piezoelectric cylinder (0 < r ≤ r1) result in

w(P) = D1 Jn

(
ωr

β2

)
cos (nθ − ωt) , (41)

φ(P) =
[
D∗
1r

−n + e(P)
15

ε
(P)
11

D1 Jn

(
ωr

β2

)]
cos (nθ − ωt) . (42)

The solution of Eq. (21) for electric potential in the vacuum can be assumed as

φ0 = ϕ0 (r) cos (nθ − ωt) , (43)

where ϕ0 (r) is the undetermined function.
On substituting Eq. (43) into Eq. (21) and taking note of the fact that the electric potential in the vacuum

approaches zero as r → ∞, the electric potential of a vacuum is given by

φ0 = A0r
−n cos (nθ − ωt) , (44)

where A0 is the undetermined constant.

6 Dispersion relations

6.1 Frequency equation for the case of an electrically short condition

Substitution ofEqs. (37), (38), (41) and (42) and their corresponding stresses and electrical displacement components
into boundary conditions Eqs. (22), (23) and (25)–(28)will provide the following algebraic equationswith unknowns
C1,C2,C∗

1 ,C
∗
2 , D1 and D∗

1 as follows:

M11C1 + M12C2 + M13C∗
1 + M14C∗

2 + M15D1 + M16D∗
1 = 0, (45)

123



76 M. Mahanty et al.

M21C1 + M22C2 + M23C∗
1 + M24C∗

2 + M25D1 + M26D∗
1 = 0, (46)

M31C1 + M32C2 + M33C∗
1 + M34C∗

2 + M35D1 + M36D∗
1 = 0, (47)

M41C1 + M42C2 + M43C∗
1 + M44C∗

1 + M45D1 + M46D∗
1 = 0, (48)

M51C1 + M52C2 + M53C∗
1 + M54C∗

2 + M55D1 + M56D∗
1 = 0, (49)

M61C1 + M62C2 + M63C∗
1 + M64C∗

2 + M65D1 + M66D∗
1 = 0, (50)

where Mi j are defined in Appendix A.
In order to find the non-trivial solution of the arbitrary constants C1,C2,C∗

1 ,C
∗
2 , D1 and D∗

1 , the determinant of
the coefficient matrix M

(= ∣∣Mi j
∣∣) obtained from the algebraic system of equations (Eqs. (45)–(50)) must be zero,

i.e.
∣∣Mi j

∣∣
6×6 = 0. (51)

Equation (51) will serve the dispersion equation for the electrically short case for shear acoustic wave propagation
in a piezoelectric cylinder coated by an FGPM layer.

6.2 Frequency equation for the case of an electrically open condition

For the electrically open case, Eq. (46) will be substituted by the following two equations:

N21C1 + N22C2 + N23C
∗
1 + N24C

∗
2 + N25D1 + N26D

∗
1 + N27A0 = 0, (52)

N31C1 + N32C2 + N33C
∗
1 + N34C

∗
2 + N35D1 + N36D

∗
1 + N37A0 = 0. (53)

For the non-trivial solution of this system of equations with coefficients C1,C2,C∗
1 ,C

∗
2 , D1, D∗

1 and A0 , the
determinant of the coefficient matrix derived from Eq. (45), Eqs. (47)–(50), Eqs. (52) and (53) will be zero, i.e.
∣∣Ni j

∣∣
7×7 = 0, (54)

where Ni j = Mi j ; for i = 1, Ni j = M(i−1) j ; for i = 4 . . . 7 and Ni j for i = 2, 3 are defined in Appendix A.
Equation (54) is the dispersion equation for electrically open case for shear acoustic wave propagation in the

considered cylindrical structure.
The expansions of Eqs. (51) and (54) will result in a quite lengthy expression and, hence, has not been presented

here. Moreover, Eqs. (51) and (54) indicate that the expanded expression contains only real terms which will
lead to dispersion relations for the electrically short and open conditions, respectively, for the propagation of the
shear acoustic wave in a piezoelectric cylindrical structure with imperfect bonding of the cylinder and concentric
layer. It is worth mentioning that the dispersion relations, Eqs. (51) and (54) relating the phase velocity of the shear
acoustic wave with wave number, which is our prime interest, will be considered for further study to unearth distinct
characteristics associated with the shear acoustic wave propagation in the considered model.

7 Special cases

7.1 Case 1

When in the considered structure, the outer layer becomes free from the functional gradient, i.e. � = 0, and the
dispersion relations, Eqs. (51) and (54), associated with electrically short condition and electrically open condition,
respectively, reduce to
∣∣Mi j

∣∣ = 0 (55)

and
∣∣Ni j

∣∣ = 0, (56)
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where Mi j and Ni j are defined in Appendix B.
Equations (55) and (56) are the dispersion relations for the propagation of the shear acousticwave in the cylindrical

structure composed of a piezoelectric cylinder bonded imperfectly to a piezoelectric layer of finite width for both
electrically short condition and electrically open condition, respectively.

7.2 Case 2

When in the considered structure, the outer layer becomes free from the functional gradient and the inner piezoelectric
cylinder becomes dielectric, i.e. � = 0 and e(P)

15 = 0. Then the dispersion relations, Eqs. (51) and (54), associated
with electrically short and open conditions, respectively, reduce to
∣∣∣Mi j

∣∣∣ = 0 (57)

and∣∣∣Ni j

∣∣∣ = 0, (58)

where Mi j and Ni j are defined in Appendix B.
Equations (57) and (58) represent the dispersion relations for shear acoustic wave propagation in the cylindrical

structure composed of a dielectric cylinder bonded imperfectly to a piezoelectric layer of finite width for electrically
short and electrically open conditions, respectively, which are found to be in good agreement with the result obtained
by Li and Lee [41].

7.3 Case 3

When in the considered structure, the outer layer becomes free from the functional gradient and is bonded perfectly
(welded contact) to the inner elastic cylinder, i.e. � = 0, ε(P)

11 = 0, e(P)
15 = 0, c(P)

44 = μ2 and α1 → ∞, α2 → ∞.

Then the dispersion relations, Eqs. (51) and (54), associatedwith electrically short and open conditions, respectively,
reduce to∣∣∣∣Mi j

∣∣∣∣ = 0 (59)

and∣∣∣∣Ni j

∣∣∣∣ = 0 (60)

where Mi j and Ni j are defined in Appendix B.
Equations (59) and (60) are the dispersion relations for shear acousticwave propagation in the cylindrical structure

composed of an elastic cylinder perfectly bonded to a piezoelectric layer of finite width for electrically short and
electrically open conditions, respectively, which are found to be in good agreement with the result obtained by Du
et al. [17] on neglecting initial stress in the study.

7.4 Case 4

When the FGPM layer and piezoelectric cylinder become homogeneous, isotropically elastic and are perfectly
bonded with each other, i.e. � = 0, e(F)

15 = e(P)
15 = ε

(F)
11 = ε

(P)
11 = 0, α1 → ∞, α2 → ∞ and c(F)

44 = μ1, c
(P)
44 =
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Table 1 Material constants used for the FGPM layer and piezoelectric cylinder

Material Material constants Density

c44
(
109N/m2

)
e15

(
C/m2

)
ε11

(
10−9C2/Nm2

)
ρ

(
103kg/m3

)

PZT-5H 23.0 17.00 27.7 7.500

AlN 118.0 −0.48 9.0 3.512

μ2, then both the dispersion relations (51) and (54) for both electrically short condition and electrically open
condition, respectively, reduce to

tan

(
kh

√
c2

β2
1

− 1

)
=

μ2

√
1 − c2

β2
2

μ1

√
c2

β2
1

− 1
, (61)

which is the classical Love wave equation [43].

8 Numerical simulation and discussion

In this section, numerical simulation and graphical demonstration are carried out to illustrate the analytical results
obtained for shear acoustic wave propagation in a piezoelectric cylindrical structure composed of a piezoelectric
material cylinder imperfectly bonded to a concentric FGPM cylindrical layer. The materials PZT-5H and AlN are
used for FGPM cylindrical layer [24] and inner piezoelectric material cylinder [44], respectively. The values of
the material constants and densities in the computation part are listed in Table 1, and the value of the dielectric
parameter (ε0) for the vacuum is 8.85 × 10−12 C/Nm2. For numerical computation purposes, the mechanical and
electrical imperfection parameters are made dimensionless as

R1 = α1r1(
e(F)
15

)2
/ε

(F)
11

and R2 = α2r1

ε
(F)
11

,

respectively.
The influence of the functional gradient parameter (�) , mechanical imperfection parameter (R1) , electrical

imperfection parameter (R2) , radii ratio (r2/r1) and order of Bessel’s function (n) on the dimensionless phase
velocity (c/β1) of shear acoustic wave propagation in the considered piezoelectric cylindrical structure with respect
to the dimensionless wave number (kh) has been delineated through Figs. 2, 3, 4, 5 and 7 for both electrically short
and electrically open conditions. The analysis of different modes of the phase velocity of the shear acoustic wave
is delineated in Fig. 6. An overview of Figs. 2, 3, 4, 5, 6 and 7 shows that the phase velocity of the shear acoustic
wave decreases when the wave number increases.

8.1 Effect of functional gradient parameter on phase velocity

The pronounced effect of the functional gradient parameter associated with the FGPM layer on the phase velocity
of shear acoustic wave propagation in a piezoelectric cylindrical structure is delineated by Fig. 2. The dispersion
curve 1 is traced out by considering the FGPM layer as a homogeneous piezoelectric layer, whereas curves 2 and 3
are associated to the effect of the gradient parameter of the FGPM layer. Figure 2a and b exhibits the impact of the
gradient parameter on the phase velocity of the shear acoustic wave through the piezoelectric cylindrical structure
for electrically short and electrically open conditions, respectively. The variation of phase velocity increases with
the increment of gradient parameter for the electrically short case, while for the electrically open case, the gradient
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R1= 1
R1= 1000

R1= 0.001
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R1= 1000

1
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1
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Fig. 2 Effect of functional gradient parameter (�) associated
with the FGPM layer on the dimensionless phase velocity (c/β1)

of shear acoustic wave propagation against dimensionless wave
number (kh) for a electrically short condition, b electrically open
condition

Fig. 3 Effect of mechanical imperfection parameter (R1) associ-
ated with the imperfectly bonded interface of the layer and cylin-
der on the dimensionless phase velocity (c/β1) of shear acoustic
wave propagation against dimensionless wave number (kh) for a
electrically short condition, b electrically open condition

parameter has decreasing effect on the phase velocity. Also, a comparative study of Fig. 2a and b depicts that
the impact of gradient parameter for the electrically short condition is more as compared to the electrically open
condition.

8.2 Effect of imperfection parameter on phase velocity

Figures 3 and 4 demonstrate the remarkable impact of the mechanical imperfection parameter (R1) and electrical
imperfection parameter (R2) associated to the imperfect bonding of the FGPM layer and piezoelectric cylinder
on the phase velocity of a shear acoustic wave. The interface of the structure is perfectly bonded and conducting
when the imperfection parameters are very large or tends to infinity; otherwise, it is mechanically or electrically
imperfect. Thus the smaller values of imperfection parameter lead to more interfacial imperfection. The dispersion
curve 1 in both the figures is drawn for high imperfection in the interface, while curve 2 and curve 3 in Figs. 3 and
4 are associated to the weak imperfection and perfectly bonded/conducted interface, respectively.

Figure 3a and b reveals the influence of the mechanical imperfection parameter on the phase velocity of a shear
acoustic wave for electrically short and electrically open conditions, respectively. The values of the mechanical
imperfection parameter have an encouraging effect on the phase velocity for both electrically short and open
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(a)

(b)
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R2 = 0.001

R2 = 1

R2 = 1000

R2 = 0.001

R2 = 1

R2 = 1000

(a)

(b)

1
2

3

1
2

3

Fig. 4 Effect of electrical imperfection parameter (R2) asso-
ciated with the imperfectly bonded interface between the layer
and cylinder on the dimensionless phase velocity (c/β1) of shear
acoustic wave propagation against dimensionless wave number
(kh) for a electrically short condition, b electrically open condi-
tion

Fig. 5 Effect of radii ratio parameter (r2/r1) on the dimension-
less phase velocity (c/β1) of shear acoustic wave propagation
against dimensionless wave number (kh) for a electrically short
condition, b electrically open condition

conditions, and, therefore, the phase velocity ismaximumwhen the interface is perfectly bonded.Also, a comparative
study of Fig. 3a and b indicates that the effect of the mechanical imperfection parameter for a short case is more
as compared to the open case. The influence of the electrical imperfection parameter on the phase velocity of shear
acoustic wave is portrayed in Fig. 4a and b for both electrically short and electrically open conditions, respectively.
The phase velocity of the shear acoustic wave decreases when values of the electrical imperfection parameter
increase for electrically short condition, whereas it has an encouraging impact on the phase velocity of shear
acoustic wave propagation for an electrically open condition.

8.3 Effect of radii ratio parameter on phase velocity

The effect of the radii ratio parameter on the phase velocity of shear acoustic wave propagation in a piezoelectric
cylindrical structure is manifested through Fig. 5. In particular, Fig. 5a and b corresponds to the electrically short and
electrically open conditions, respectively. The dispersion curves 1, 2 and 3 are traced out to show the effect of radii
ratio on the phase velocity for shear acoustic wave propagation in both the figures. Figure 5a and b demonstrates
the impact of radii ratio parameter on the phase velocity of shear acoustic wave propagation in the aforesaid
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Fig. 6 Dispersion curves for first three modes, viz., first mode,
second mode and third mode for a electrically short condition, b
electrically open condition

Fig. 7 Variation of order of Bessel’s function of the first and
second kind appearing in the dispersion relation for a electrically
short condition, b electrically open condition

structure. The radii ratio parameter has a favourable effect on the phase velocity for both electrically short condition
and electrically open condition. Also, a subtle examination discussing on the comparative study of Fig. 5a and b
indicates that the influence of the radii ratio parameter for an electrically open condition is greater as compared to
that of an electrically short condition.

8.4 Analysis of distinct mode of phase velocity

Dispersion curves for the first three modes, viz., first mode, second mode and third mode, are plotted for both
electrically short and open conditions in Fig. 6a and b, respectively. As per the validity condition of the propagation
of a shear acoustic wave in the considered piezoelectric cylindrical structure, the common wave velocity (c) lies
between the shear velocities of the wave in an FGPM cylindrical layer (β1) and piezoelectric cylinder (β2) where
β2 > β1. For the data taken into consideration, the dimensionless phase velocity (c/β1) of the propagating shear
acoustic wave lies in the range 1 < c/β1 < 2.75 in both conditions. Therefore, for the admissible range of phase
velocity, the range of dimensionless frequency for the first mode, second mode and third mode is (1.5, 4.6), (2.3,
6.6) and (2.7, 7.6), respectively, for an electrically short condition. On the other hand, for the electrically open
condition, the range of dimensionless frequency for the first mode, second mode and third mode are (0.3, 1), (1, 3)
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and (1.5, 4.2), respectively. It has been found that the fundamental (first) mode lies in the lower-frequency region,
and the higher mode lies in the higher-frequency region.

Figure 7 shows the effect of the order of Bessel’s function of the first and second kind appearing in the dispersion
relation on the phase velocity of a shear acoustic wave for both electrically short and electrically open conditions.
In particular, Fig. 7a stands for the electrically short condition, whereas Fig. 7b is associated to the electrically open
condition. It is revealed from Fig. 7a and b that the phase velocity of the shear acoustic wave increases with the
increment of the order of Bessel’s function of the first and second kind appearing in the dispersion relation.

A common observation drawn from the comparative study of all Figs. 2a, 3, 4, 5, 6 and 7b is that the phase
velocity of a shear acoustic wave is found to be greater in the case of an electrically short condition as compared to
the electrically open condition.

9 Conclusion

The present work emphasizes study of the propagation behaviour of a shear acoustic wave through a piezoelectric
cylindrical layered structure composed of a piezoelectric material cylinder imperfectly bonded to a concentric
FGPM cylindrical layer of finite width. Two distinct dispersion relations for electrically short and electrically
open conditions are obtained with the aid of some mathematical treatment. Numerical simulation and graphical
demonstration have been done to show the effect of the functional gradient parameter, radii ratio parameter, order
of Bessel’s functions appearing in the dispersion relations and mechanical and electrical imperfection parameters
on the phase velocity of a propagating wave. A comparative analysis is also carried out to examine the dispersion
relations for short and open conditions. The outcome of the current study can be encapsulated as follows:

• Wave number disfavours the phase velocity of a propagating wave in the considered piezoelectric cylindrical
layered structure.

• The functional gradient parameter has an increasing effect on the phase velocity of a propagating wave for
an electrically short condition, while for an electrically open condition, phase velocity decreases when the
functional gradient parameter increases.

• The mechanical imperfection parameter enhances the phase velocity of shear acoustic wave propagation for
both electrically short and open conditions.

• The electrical imperfection parameter disfavours the phase velocity of a propagatingwave for an electrically short
condition, while for an electrically open condition, phase velocity is enhanced when the electrical imperfection
parameter increases.

• The radii ratio of the piezoelectric cylinder and concentric FGPM cylindrical layer favours the phase velocity
of a shear acoustic wave for both electrically short and open conditions.

• It has been observed that the fundamental (first) mode exists in the lower-frequency region, and the higher
modes exist in the higher-frequency region.

• The deduced dispersion relations are matched with the pre-established results and classical Love wave equation.

It is revealed that based on the material properties of a piezoelectric cylinder imperfectly bonded with a concentric
FGPM cylindrical layer, a propagating shear acoustic wave (along the azimuthal direction) can be entrapped in the
cylindrical structure for a longer duration in both electrically short and open conditions. Numerical results show that
the transient electromechanical responses are also sensitive to the weakness of the mechanically and/or electrically
imperfect interface. Therefore, by involving the functional gradient in the layer and the extent of imperfection in
the bonding of the concentric cylindrical piezoelectric material medium, we may enhance the confinement of the
shear acoustic wave in the structure. As it is a well-known fact that the principle of surface acoustic wave (SAW)
devices relies on phase delay, therefore, from an applicative point of view, the consequences of the present study
can be employed in the design of Love wave or shear acoustic wave sensors/transducers. The present problem is
an important foundation in engineering science for evaluating the interfacial properties, such as non-destructive
testing, structural health monitoring, etc.
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