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Abstract Numerous problems in thermal engineering give rise to problems with abrupt changes in boundary
conditions particularly as regards structural and construction applications. There is a continual need for improved
analytical and numerical techniques for the study and analysis of such canonical problems. The present work
considers transient heat propagation in a two-dimensional half-spacewithmixedboundary conditions of theDirichlet
and the Robin (convective) type. The exact temperature field is obtained in double integral form by applying the
Wiener–Hopf technique, and this integral is then efficiently evaluated numerically with the help of numerical
algorithms developed for the present problem and by exploiting the properties of the integrand. The results are then
compared to the numerical solutions using finite elementmethods, and excellent agreement is shown. Some potential
application areas of the theory are also discussed, specifically in the regimewhere edge effects can influence thermal
convection processes.

Keywords Heat convection · Mixed boundary conditions · Transient heat problem · Wiener–Hopf technique

1 Introduction

Transient heat-transfer problems arise frequently in complex engineering applications and in general physical
phenomena. For instance, the dynamic character of a temperature field enables defect sizing analysis through
transient thermography [1,2] with the help of infrared cameras. This technique is based on the scattering of
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the temperature field, initiated by a short-duration pulse of a heat flux to a free surface of a specimen, by
virtue of the presence of various defects in a solid. Another example refers to the cooling of a hot solid by
means of a fluid. The temperature difference may cause vaporisation of the liquid. Further cooling of the solid
results in a steady-state process with an established boundary between parts of the solid covered by liquid and
vapour, forming the so-called “quench front”. This problem is known as the “quench front propagation prob-
lem” [3,4], and it plays an important role in the nuclear, metallurgical, chemical and cryogenic industries [5,6].
One more interesting application concerns the hot-film technique, which is based on the dynamic heat exchange
between a viscous fluid in a channel and a hot-film attached to its wall. It is possible to establish the depen-
dence between the heat flux across the film and the local shear rate, which is important for the analysis of fluid
behaviour [7] and can be determined through the knowledge of the heat flux. The movement of the fluid introduces
some complications in the mathematical treatment of the problem although it is possible to determine analytical
results by adopting some simplifications [8,9]. Ignoring the temporal dependence of temperature allows one to
obtain exact solutions [10,11]; however, the problem reduces to one with mixed boundary conditions for which
the derivation of final solutions is not straightforward and requires special treatment. Therefore, the develop-
ment of mathematical models for transient heat propagation makes it possible to address a number of practical
issues.

The difficulties in obtaining purely analytical results involve the presence of the dynamic terms in the heat
equation and, what is more important, the mixed type of boundary conditions. The Wiener–Hopf technique [12]
appears to be a powerful tool in handling the latter difficulty. This method allows one to obtain the solution
of the problem in terms of the Fourier and Laplace transforms, which can be inverted either analytically (for
some special cases) or numerically. The application of this technique is preferred to specific numerical mod-
elling of the problem, e.g. by means of the finite element method (FEM), as it avoids problems associated with
the changes in boundary conditions, and it also reduces computation times for the analysis of physical prob-
lems.

The aim of this work is to obtain the solution of a transient heat problem with the anisotropic thermal con-
ductivity in the half-space with mixed boundary conditions of the Dirichlet and the Robin (convective) type
by means of the Wiener–Hopf technique. This problem is of essential significance for numerous engineering
applications and in this manuscript we demonstrate it on two practical examples. The mathematical challenge
in obtaining the solution is related to the Wiener–Hopf method requiring the function factorisation which, to
the best of our knowledge, is not available in an analytical form in the literature. Furthermore, the consid-
eration of dynamic effects introduce additional difficulties for obtaining the factorisation. For these reasons,
we perform the factorisation by using a robust algorithm developed for the considered transient problem and
which can be adapted for more complicated problems as well. In such a case, the suitable reduction of singu-
larities of the function can be achieved for better performance of the subsequent computations and improved
accuracy of the results in comparison with the purely numerical methods. Moreover, we focus on the solu-
tion behaviour close to the location of the change in boundary condition where the computational difficulties
usually appear. We estimate the asymptotic behaviour of functions in this region which shows that the asso-
ciated accuracy of results is complicated to achieve with FEM unless significant mesh refinement is accom-
plished.

The paper is organised as follows. The formulation of the mathematical problem and associated notation are
introduced in Sect. 2. Section 3 presents the reduction of the problem to one that is suitable for treatment by the
Wiener–Hopf method and solutions are derived together with their asymptotic form close to the change in boundary
condition. The numerical procedures that have been employed in the present study are described in Sect. 4, followed
by the presentation of results for some particular cases in Sect. 5. We discuss particular application areas in Sect. 6.
Conclusions are drawn and future work discussed in Sect. 7. The efficiency of the proposed numerical algorithm
for the function factorisation is shown in Appendix A. For reference, the weak formulation for the FEM is provided
in Appendix B.
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Transient thermal boundary value problems 143

Fig. 1 Domain Ω of the
problem under
consideration with marked
boundaries ∂Ω+ and ∂Ω−,

where the Dirichlet and
Robin conditions are stated,
respectively

2 Governing equations and integral transforms

With reference to Fig. 1, we are interested in a transient heat problem in two spatial dimensions. The physical
domain of interest occupies the half-space Ω = {(x, y) : 0 ≤ x < ∞,−∞ < y < ∞}. The governing equation
for the temperature field T (x, y, t) in a medium with transversely isotropic thermal conductivity is given by

κ

ρcV

(
∂2T

∂x2
+ �

∂2T

∂y2

)
= ∂T

∂t
, 0 < x < ∞, −∞ < y < ∞, t > 0, (1)

where κ and κ� are the thermal conductivities in the x and y directions, respectively, where � > 0 is a non-
dimensional constant, cV is the specific heat at constant volume, ρ is the mass density of the medium, and t is the
time. Thanks to the specific type of the material anisotropy (a transverse anisotropy), onemay perform a simple non-
dimensionalisation, which also scales out the anisotropy coefficient � by introducing the following non-dimensional
variables:

x∗ = x, y∗ = y√
�
, t∗ = ρcV

t

κ
, T ∗ = T − Tr

Tr
, (2)

noting that we have introduced the reference temperature Tr. Upon dropping asterisks the non-dimensional heat
equation can then be written

∇2T = ∂T

∂t
, (3)

where the two-dimensional Laplacian differential operator is defined as ∇2 = ∂2/∂x2 + ∂2/∂y2. We introduce the
homogeneous initial condition

T (x, y, 0) = 0, (4)

and mixed boundary conditions are imposed in the form

T |∂Ω+ = T (x = 0, y > 0, t > 0) = T0 f (t),

Θ|∂Ω− = Θ(x = 0, y < 0, t > 0) = ΘiF(t),
(5)

where we have introduced the notation

Θ(x, y, t) = T (x, y, t) − h
∂T

∂x
(x, y, t), (6)
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which is convenient for the convective boundary condition imposed. In the above T0, Θi and h are constants.
Functions f (t) and F(t) are piecewise continuous and describe the time evolution of prescribed values of boundary
conditions. The temperature T0 defines the magnitude of the applied temperature on ∂Ω+ and the parameter Θi is
the specified internal temperature. Finally h is a positive quantity, determined experimentally, and depending on
the type of “insulation” placed on x = 0.

In the present case, we assume that there is no radiation source located at the remote point x → ∞. Therefore,
we search for the solution with the following condition:

T (x, y, t) → 0,
∂T

∂x
(x, y, t) → 0,

∂T

∂y
(x, y, t) → 0 as x → ∞. (7)

The first boundary condition in (5) is referred to as the Dirichlet boundary condition while the second of (5) is
the Robin (convective) boundary condition. Due to the change in boundary condition type imposed along x = 0,
the solution of the problem is not straightforward and requires the utilisation of the Wiener–Hopf technique [12].
The closely related transient heat problem with Dirichlet and Neumann boundary conditions has been studied
in [13] where it was shown that, via the Cagniard–de Hoop technique [14], it is possible to transform the final
form of the solution into a single integral that is extremely fast to compute since its contour of integration is a path
of steepest descent in the complex plane. The Cagniard–de Hoop method can also be successfully used in other
transient diffusion problems and exact results can be obtained for specific settings. For example, this is the case
for electromagnetic diffusion between two contacting media [15]. However, due to the specific type of boundary
condition imposed in the present study, such a simplification is not possible, as we will illustrate. On the other hand,
the convective type of boundary condition considered here produces different results for the temperature distribution
and can be used in more realistic modelling of physical thermal processes. Potential applications are discussed in
Sect. 6.

We proceed to determine the solution of the problem by means of integral transforms. In this regard, it is
convenient to define notation for the Laplace transform in t and Fourier transform in y to an arbitrary function
φ = φ(x, y, t). Throughout the current study we write

φ̃(x, y, s) =
∫ ∞

0
φ(x, y, t) exp (−st) dt (8)

for the Laplace transform in t and

φ̂(x, p, s) =
∫ ∞

0

(∫ ∞

−∞
φ(x, y, t) exp (ipy) dy

)
exp (−st) dt (9)

for the combined Fourier transform in y and the Laplace transform in t,where i2 = −1.Original function φ(x, y, t)
can be recovered through the inversion of both transforms

φ(x, y, t) = 1

(2π)2i

∫ a+i∞

a−i∞

(∫ ∞

−∞
φ̂(x, p, s) exp (−ipy) dp

)
exp (st) ds, (10)

where a is a real number so that the contour path of integration is in the region of convergence of φ̃(x, y, s).
The application of the Laplace (in t) and Fourier (in y) transforms to both sides of Eq. (3) reduces the problem

to an ordinary differential equation, i.e.

[
d2

dx2
− (p2 + s)

]
T̂ (x, p, s) = 0. (11)
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Applying the transforms to the boundary conditions (5), they become

T̂+(0, p, s) = iT0
(p + iε)

f̃ (s), Θ̂−(0, p, s) = − iΘi

(p − iε)
F̃(s). (12)

The transforms T̂+(0, p, s) and Θ̂−(0, p, s) result from the half-range Fourier transforms along y > 0 and y < 0,
respectively. Note that we have added the small imaginary part ε > 0 to p in order to ensure convergence of
the integrals at infinity, i.e. the convergence of the Fourier transforms of the Heaviside functions arising from the
step-wise change in boundary conditions. It is in fact possible to justify this step rigorously and we refer the reader
to [13] for a detailed explanation. In this analysis, superscripts “+” and “−” indicate functions that are analytic in
domains of the complex variable p where its imaginary parts I(p) > −ε and I(p) < ε, respectively. The solution
of the original problem is recovered by taking the limit ε → 0.

Appealing to the physics, we seek the solution that decays at infinity. Thus, the solution of (11) that admits this
condition can be written as

T̂ (x, p, s) = A(p, s) exp

(
−x

√
p2 + s

)
, (13)

where the value of the complex square root is chosen in such away that the real part of the square rootR(
√
p2 + s) ≥

0, so that the solution vanishes as x → ∞. Imposing the transformed boundary conditions (12) then permits the
determination of the coefficient A(p, s) and thus the final form of the solution as we will illustrate in the next
section.

3 Boundary conditions and a Wiener–Hopf equation

Let us introduce Φ−(p, s) and Ψ +(p, s) as follows:

Φ−(p, s) = T̂−(0, p, s), Ψ +(p, s) = Θ̂+(0, p, s). (14)

From the boundary conditions (12), together with the form of the solution of the problem in (13) and the functions
introduced in (14), the following system of equations is obtained:

T̂+(0, p, s) + Φ−(p, s) = A(p, s), Θ̂−(0, p, s) + Ψ +(p, s) = A(p, s)K (p, s), (15)

where we have introduced the kernel function of the problem

K (p, s) = 1 + h
√
p2 + s. (16)

Once the functions Φ−(p, s) and Ψ +(p, s) are determined, the desired factor A(p, s) is thus known.
To proceed, eliminate the function A(p, s) from the system (15) to arrive at the Wiener–Hopf equation

Θ̂−(0, p, s) + Ψ +(p, s) = K (p, s)(T̂+(0, p, s) + Φ−(p, s)). (17)

Further application of the Wiener–Hopf technique requires the multiplicative factorisation of the kernel function in
the form

K (p, s) = K+(p, s)K−(p, s). (18)
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Note that K (p, s) = hp + O(p−1) as p → ∞ and K (p, s) = 1 + h
√
s + O(p2) in the neighbourhood of p = 0.

Thus, we write the function K (p, s) in the form

K (p, s) = k(p, s)K0(p, s), k(p, s) =
√

(hp)2 + (1 + h
√
s)2. (19)

It is important to note that K0(p, s) → 1 as p → ∞ and K0(0, s) = 1. These properties and the fact that K0(p, s)
has zero index (winding number) permits its multiplicative factorisation by employing the Cauchy integral [12,
Sect. 1.3]. The final factorisation of K (p, s) therefore becomes

K±(p, s) = k±(p, s)K±
0 (p, s),

k± =
√
hp ± i(1 + h

√
s), K±

0 (p, s) = exp

(
± 1

2π i

∫ ∞

−∞
Log K0(ξ, s)

(ξ − p)
dξ

)
,

(20)

where Logφ(p) = log |φ(p)| + i argφ(p) is the complex logarithm of a complex function φ(p). Also log |φ(p)|
is the real-valued logarithm and argφ(p) is the principal value of the argument. Among all the possible values of
the argument of φ(p), we choose its principal value defined as argφ(p). One may recall the Plemelj formulæ [12,
Sect. 1] which is applicable for the last integral

K±
0 (p, s) = √

K0(p, s) exp

(
± 1

2π i
P.V.

∫ ∞

−∞
Log K0(ξ, s)

(ξ − p)
dξ

)
, I(p) → 0. (21)

In this expression, the notation P.V. refers to the Cauchy principal value integral. This expression is important for the
inversion of the Fourier transform if the integration path passes along I(p) = 0. With the determined factorisation
of the kernel function, we arrive at the equation

1

K+(p, s)

(
Θ̂−(0, p, s) + Ψ +(p, s)

)
= K−(p, s)(T̂+(0, p, s) + Φ−(p, s)). (22)

What remains is to sum split the known functions in (22) according to the form of the boundary conditions in (12).
This leads to the following form for the known function: S(p, s) = S+(p, s) + S−(p, s), where

S+(p, s) = Θ̂−(0, p, s)

(
1

K+(p, s)
− 1

K+(iε, s)

)
− T̂+(0, p, s)K−(−iε, s),

S−(p, s) = T̂+(0, p, s)
(
K−(p, s) − K−(−iε, s)

) − Θ̂−(0, p, s)
1

K+(iε, s)
.

(23)

These functions are obtained by the pole removal technique, and the components defining S±(p, s) come from the
imposed boundary conditions and factorised kernel function. The final form of the problem is then

Ψ +(p, s)

K+(p, s)
+ S+(p, s) = K−(p, s)Φ−(p, s) + S−(p, s). (24)

The functionsΨ +(p, s) andΦ−(p, s) should behave in such away that the temperature field T (x, y, t) is continuous
at the point y = 0 for any x ≥ 0. With the help of the Abelian and Tauberian theorems, see, e.g. [12, Sect. 1.6]
or [16, Appendix], this continuity condition can be reformulated in terms of the Fourier transforms. To be more
precise, Ψ +(p, s) and Φ−(p, s) should decay when p → ∞. Hence, both left- and right-hand sides should vanish
as |p| → ∞. With the application of Liouville’s theorem [12, Sect. 1.2], we conclude that
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Transient thermal boundary value problems 147

Ψ +(p, s) = −S+(p, s)K+(p, s), Φ−(p, s) = − S−(p, s)

K−(p, s)
. (25)

The last result completes the formal derivation of the solution in the transformed space. After taking the limit ε → 0
for the calculation of K±(±iε, s) (equal to

√±i(1 + h
√
s), respectively), the factor A(p, s) can be calculated from

either of two formulæ,

A =
(

Θ̂−(0, p, s)

1 + h
√
s

+ T̂+(0, p, s)

) √−i(1 + h
√
s)

K−(p, s)
, or

A =
(

Θ̂−(0, p, s)

1 + h
√
s

+ T̂+(0, p, s)

) √
−i(1 + h

√
s)

K+(p, s)

K (p, s)
.

(26)

Equations (13) and (26) lead to the final expressions for the temperature field in the transformed space. The evaluation
of T (x, y, t) can be performed through numerical inversion of the Laplace and Fourier transforms of the function
in (13). The utilised numerical methods are described in Sect. 4. The complementary computations by means of
FEMs have been carried out by FreeFEM++ [17].

Before we proceed to the numerical calculation of the integrals in the next section, let us first make some
comments on the asymptotic form of solutions close to the change in boundary condition. It is possible to estimate
the asymptotic behaviour of the temperature field close to the origin if one recalls the Abelian and Tauberian
theorems which establish relations between the asymptotics of functions and their transforms. From (13) and (15),
the behaviour of the transform of the temperature at x = 0 is

T̂ (0, p, s) = iT0 f̃ (s)

p
+

([
Θi F̃(s)

1 + h
√
s

− T0 f̃ (s)

]
exp

(−i 3π4
) √

1 + h
√
s√

h

1

p3/2
iT0 f̃ (s)

p

)
+ O

(
1

p5/2

)
, |p| → ∞.

(27)

In order to obtain this expression, one should express T̂ (0, p, s) as a sum of “+” and “−” functions. Given this,
the first term in the last expression corresponds to expansion of the “+” function, whereas the remaining term
corresponds to the “−” function when |p| → ∞. The behaviour of the Laplace transform of the temperature field
when y → 0 is

T̃ (0, y, s) = T0 f̃ (s)H(y) +
[

2√
hπ

(
Θi F̃(s)√
1 + h

√
s

− T0 f̃ (s)
√
1 + h

√
s

)
√−y

+ T0 f̃ (s) + O
(
(−y)3/2

) ]
H(−y),

(28)

where H(y) is the Heaviside step function. One can see that even though the behaviour of the solution close to
x = 0 and y = 0 is continuous, its derivative, i.e. the heat flux, is not. The following section is devoted to an
explanation of the numerical evaluation of the integral transforms.

4 Numerical evaluation of the integral transforms

In this section, we define the strategy for calculation of the integral transforms in order to recover the solution in the
physical domain. We are interested in computing the following integrals (10). In the implementation of numerical
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148 N. Gorbushin et al.

algorithms, the parameter s of the Laplace transform should take complex values which improve the convergence,
while p can be chosen to be real valued.

We should mention that we solve the problem for a particular type of kernel function for which the inversion of
transforms is applied. The integration can be significantly accelerated if the following properties of the following
functions (for real values of p) are taken into account:

k(p, s) = k(−p, s), K0(p, s) = K0(−p, s), K (p, s) = K (−p, s),

k+(−p, s) = ik−(p, s), K+
0 (−p, s) = K−

0 (p, s), K+(−p, s) = iK−(p, s),

T̂+(0, p, s) = −T̂+(0,−p, s), Θ̂−(p, s) = −Θ̂−(−p, s), ε → 0.

(29)

We conclude that

A(−p, s) = −iA(p, s)
K−(p, s)

K+(p, s)
. (30)

Given these properties, it is possible to decrease the number of function evaluations at points p, i.e. it is enough to
evaluate functions for positive p only and then utilise these properties to construct values for negative p. In addition,
one may notice that there is a singularity at p = 0 of the function A(p, s) which causes problems in the calculation
of the integral transform since the function values become unbounded in the close neighbourhood of this point. To
overcome this, (13) can be written as

T̂ (p, s) =
[
A(p, s) exp

(
−x

√
p2 + s

)
−

(
Θ̂−(0, p, s)

1 + h
√
s

+ T̂+(0, p, s)

)

× exp
(−(|p| + √

s)x
)] +

(
Θ̂−(0, p, s)

1 + h
√
s

+ T̂+(0, p, s)

)
exp

(−(|p| + √
s)x

)
,

(31)

where we subtract and add the same term, the second and the third in the last expression, to the original expression.
In this case, the inverse integral of the last term can be calculated analytically, whereas the function composed of the
first two terms does not possess singularity at p = 0 any more. We include the factor exp(−|p|x) which preserves
the fast decay of the function when x > 0 and, at the same time, it does not affect the subtracted singularity at
p = 0. Hence, the expression in the first square parenthesis does not have any singularities along the real axis of
p, while the second expression can be calculated analytically and added to the final result. For that purpose, we
employ convolutions, noting the following integrals:

1

2π

∫ ∞

−∞
exp (−|p|x − ipy) dp = x

π

1

(x2 + y2)
,

H(y) ∗
(
x

π

1

(x2 + y2)

)
= 1

π
atan

( y

x

)
+ 1

2
,

H(−y) ∗
(
x

π

1

(x2 + y2)

)
= 1

2
− 1

π
atan

( y

x

)
,

(32)

where symbol “∗” stands for the convolution of the functions in y and atan(x) is the inverse tangent function. The
inverse Fourier transform of the term on the second line of (31) can thus be evaluated analytically, and it takes the
form
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Transient thermal boundary value problems 149

1

(2π)2i

∫ a+i∞

a−i∞

∫ ∞

−∞

(
Θ̂−(0, p, s)

1 + h
√
s

+ T̂+(0, p, s)

)
exp

(−(|p| + √
s)x − ipy + st

)
dp ds

= 1

2π i

∫ a+i∞

a−i∞

(
Θi F̃(s)

1 + h
√
s

[
1

2
− 1

π
atan

( y

x

)]
H(−y)

+ T0 f̃ (s)

[
1

π
atan

( y

x

)
+ 1

2

]
H(y)

)
exp

(−√
sx + st

)
ds.

(33)

It therefore remains to perform the following inverse Laplace transform in (33), which can be done through
convolution formulae numerically or analytically, depending on the form of the functions F(t) and f (t) that appear
on the right hand side of the boundary conditions (5).

What remains is the evaluation of the term in the first line of (31). Inversion of Laplace transform depends on the
form of the functions F̃(s) and f̃ (s). Below, we describe numerical schemes that have been used for calculations
of final results.

(1) Inversion of the Fourier transform For inversion of the Fourier transform, the fast Fourier transform (FFT) can
be used. This procedure is implemented in many codes and can be applied straightforwardly. In the present
study, MATLAB software has been used to present all the numerical results.

(2) Inversion of the Laplace transform The Laplace transform was evaluated through the convolution quadrature
method which was implemented in MATLAB; the method is described in [18]. In summary, this method
evaluates the convolution of two arbitrary functions φ(t) and ψ(t)

Q(t) =
∫ t

0
φ(t − τ)ψ(τ) dτ. (34)

Firstly, the time step �t is chosen and the value of the integral at the point n�t is computed as

Q(n�t) =
n∑

m=0

ωn−m(�t)ψ(m�t), n = 0, 1, . . . , N . (35)

Coefficients ωn are computed through the values of the Laplace transform φ̃(s) of the function φ(t)

ωn(�t) = R−N

N

N−1∑
k=0

φ̃

(
γ

(
R exp

(
ik 2π

N

))
�t

)
exp

(
−ink

2π

N

)
,

γ (z) = 3

2
− 2z + 1

2
z2.

(36)

Due to the presence of the exponential factor in the definition of ωn, the FFT can be applied, thus rendering
computational efficiency in time. If the values φ̃(s) are calculated with an error bounded by ε, then the choice
R−N = √

ε yields an error inωn of O(
√

ε).Additionally, this formula allows the calculation of φ̃(s) regardless
of the value of t. This is advantageous if the computation of the function itself is time consuming.

(3) Numerical factorisation of K0 in (20) The integral in (20) is known as the Hilbert transform. The detailed
procedure of its computational treatment is described in [19, Appendix A.1] where the time change is not taken
into account. Here, we mention the strategy that we followed for its evaluation and specifically extended the
algorithm for the transient problem of interest. First, note that for the integral in (20), s can be considered fixed,
i.e. s = sk . Moreover, for any value sk, the function K0(p, sk) is an even function of p, when p is real. Thus,
we can reduce the integration to a semi-infinite line
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Fig. 2 Comparison of analytical results with results from FEM simulations with T0 = Θi = 1 and h = 1: a dependence of temperature
T on y at point t = 0.1 and different points x, and b time dependence of temperature T at different points

∫ ∞

−∞
LogK0(ξ, sk)

(ξ − p)
dξ = 2p

∫ ∞

0

log |K0(ξ, sk)| + i arg(K0(ξ, sk))

(ξ2 − p2)
dξ. (37)

In the last formula, we used the fact that the functions log |K0(ξ, sk)| and arg(K0(ξ, sk)) are even functions
of p for the problem under consideration. Therefore, we need to calculate the last integral only along the
semi-infinite line, which saves computational time. The principal problem with this integral is that it possesses
a singularity at ξ = p apart from the singularities that the kernel function may contain in some cases.
We estimate the asymptotic behaviour of the functions log |K0(ξ, sk)| and arg(K0(ξ, sk)). Then we divide
the integration interval into two: one along the interval [0, A0], and the other along (A0,∞). For the tail
of the integral, we substitute functions with their asymptotics and integrate the last analytically. Then we
divide the finite interval [0, A0] into subintervals, and on each subinterval, we approximate log |K0(ξ, sk)|
and arg(K0(ξ, sk)) with splines, and then perform the integration analytically. All the intermediate results are
summed, and the final result is thus achieved. The point A0 is chosen by checking the relative error between
the approximated asymptotic expressions and the values of functions. It has been validated that the change in
relative error 10−1 was sufficient in order to obtain an appropriate accuracy of the computed values of K±

0 (p, s)
and in order to keep the computational time low.

All the implemented codes have been tested on simpler cases before application to the problem under consider-
ation. The demonstration of the efficiency of the factorisation algorithm is discussed in Appendix A. We present
some examples of solutions to the present problem in the next section.

5 Results

The developed quasi-analytical solution can be evaluated and visualised if one chooses particular values of the
physical parameters and functions F(t) and f (t) involved in the problem. It is interesting to consider a case of
suddenly applied temperature and heat exchange to a free surface. In other words, we take F(t) = f (t) = H(t), and
their Laplace transforms are F̃(s) = f̃ (s) = 1/s. Firstly, we may estimate the asymptotics of the temperature field
at the point x = 0 close to y = 0 using (28). Referring to the Tauberian theorem [20, Sect. XIII.5] we conclude that
T (0, y, t) = O(t−1/4)when t tends zero and y approaches zero from the left. Hence, it possesses a weak singularity
at the beginning of the heating process which influences the accuracy of the FEM solution. Such behaviour is a
direct consequence of the high-rate loading type in the boundary conditions.
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Fig. 3 Colour maps of the temperature field, computed from the analytical expressions for T0 = Θi = 1 and h = 1: a at t = 0.01, and
b at t = 0.5. The colour bars present the normalised temperature values T (x, y, t)/T0. (Color figure online)

For this problem, in Fig. 2a, we have plotted the temperature as a function of y for two values of x, at t = 0.1, and
we have illustrated the temporal dependence in Fig. 2b for specified spatial locations. We notice the rapid change
of temperature profile close to a free surface, see Fig. 2a at the point x = 0.05. On the other hand, the temperature
T (x, y, t) possesses smaller gradients further away from the boundary. The rate of change of temperature with
respect to time is much higher in the region where y < 0 which is, of course, dictated by the choice of the boundary
conditions.

In the figures, we also determine the solution for this set-up and configuration with the FEM, the weak form of
which is set out in Appendix B. This was implemented in FreeFEM++. As it is described in Appendix B we chose
a rectangular domain for the FEM simulations with the sides a = 5 and b = 10 in order to avoid edge effects. We
used regular grids in x and y directions with step sizes of �x = 0.01 and �y = 0.02, respectively, and time step of
�t = 0.01. The same steps are used for the evaluation of the integral transforms, and the number of interpolation
points in y was chosen to be N = 2500 in order to have the same number of points as in the FEM simulations. The
overall computation time required for the semi-analytical approach of the current work is 82 s. On the other hand,
the FEM computations took 2171s. The ratio between the two methods is close to 27 which is significant when the
evaluation is repeated a large number of times.

Unfortunately, there is no analytical solution for the problem of interest for estimation of errors of the presented
approaches.Wewould like to stress that the presented semi-analytical approach allows one to obtain the solution in a
way alternative to the FEMmethod. The solution to model problems similar to the considered one in (semi-)infinite
domains can be obtainedmore efficiently with theWiener–Hopfmethod, although it does require intermediate steps.

We present heatmaps of the temperature field in Fig. 3 at two differentmoments of time. Figure 3a shows the early
stage of heat propagation whereas Fig. 3b depicts a time when the heat has already advanced inside the medium.We
present normalised heatmaps. One can notice the contour lines become smootherwhen they advance inside the solid.

Other forms of F(t) and f (t) lead to expressions that can be evaluated analogously.

6 Potential applications of the model

The considered transient problem and its analogues together with the quasi-analytical solution form can play an
important role in the analysis of various thermal phenomena. In particular, it can be exceptionally useful in applica-
tionswhere edge effects influence convection processes.We shall nowpresent two examples of potential applications
of this theory and describe the manner in which the theory can be adapted in order to tackle these problems.
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(a) (b)

Fig. 4 a Diffusive mass process in electrochemical cells and b typical geometries of ultramicroelectrodes

6.1 Electrochemical measurements by ultramicroelectrodes

A common task performed by electrochemists is the prediction of the time-dependence of the concentration of an
electroactive species at an electrode during some electrochemical experiment in which transport is dominated by
diffusion. Decreasing the size of the electrodes, for which the name ultramicroelectrodes has been coined, brings
advantages for studying electrode reactions at small spatial and temporal scales. It is possible to perform dynamic
measurements in some poorly conductive media and obtain results that were not available before. Microelectrodes
allow one to carry out much more straightforward measurements of rapid homogeneous and heterogeneous reac-
tions with electrodes. A review paper [21] presents basic principles and results on this topic. The process can be
stated as follows. When an electrode is introduced into an electroactive substance, the electron transfer between
them is initiated. At the same time the concentrations at the electrode surface starts to change which causes the
mass transfer to and from the electrode.

The configuration that defines the problem is presented on Fig. 4a. There are numerous geometries of the elec-
trodes and the commonly used options are illustrated in Fig. 4b. The measurements of interest are greatly influenced
by the edge effects where a change in charge exchange conditions takes place and, hence, the results of the present
work can be of significant interest in this application. Here, we focus mainly on the mathematical aspects of this
problem. The electron-transfer reaction can be formulated by a diffusion equation [21,22], a non-dimensional form
of which is written as

∂c

∂t
= ∇2c, (z, y) ∈ R

2, x > 0,

c = 0, t = 0,

∂c

∂x

∣∣∣
R2\Ω = 0,

(
c − h

∂c

∂x

) ∣∣∣
Ω

= 1, x = 0.

(38)

In the last equation, the function c = c(x, y, z, t) defines a diffusion field, and the reference frame (x, y, z) is shown
in Fig. 4. The operator ∇2 should be taken in a three-dimensional space. The domainΩ,marked in grey in Fig. 4, is
occupied by the cross-section of an electrode and its extent depends on its geometry. Although the physical process
is essentially different, themathematical formulation remains the same as considered in the present study. Themodel
analysed in the current study refers to the analysis of the effects that arise in the vicinity of the boundary ∂Ω and can
be employed as a good approximation to the results in this area at early stages of the convection process during an
electrode reaction. The problem as is formulated for the function c(x, y, z, t) possesses mixed boundary conditions
that are different from the ones considered in the main part of this work. On the other hand, however, the developed
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Fig. 5 Diffusion process for electrode reaction with h = 1: a concentration of electroactive substance at two points close to the
boundary and b concentration field at t = 0.5

formulae can be adjusted to suit to this electrochemical problem. In this regard, the kernel function becomes

K (p, s) = 1 + h
√
p2 + s√

p2 + s
, (39)

for which the following preliminary factorisation can be expressed as

K (p, s) = k(p, s)K0(p, s), k(p, s) =
√

(hp)2 + (1 + h
√
s)2√

p2 + s
. (40)

The function k(p, s) can be easily factorised analytically, and the function K0(p, s) is exactly the same as shown
in our study above. To complete the model, the initial conditions should be taken into account. The derivation of
the final solution remains almost unchanged.

To adapt the results presented previously, we suppose that the diffusion process is independent of z coordinate
andΩ = {(x, y) : 0 ≤ x < ∞,−∞ < y < ∞}. The zero flux condition is imposed for y > 0, x = 0,whereas the
Robin condition is set for y < 0, x = 0. The results for this particular problem are shown in Fig. 5 with h = 1.One
can see that diffusion of this process happens slower than the heat propagation in studied in Fig. 5. The reason for
this comes directly from the different types of boundary conditions. Nonetheless, the mixed boundary conditions
at x = 0 still reveal high gradients of diffusion field at point y = 0 of the boundary. Thus, this region should be
carefully taken into account when electrode reactions are analysed.

6.2 Green roofs as a cooling system

A second application refers to the area of civil engineering and the associated design of cooling systems. During
warm seasons and in specific regions with hot weather, there are a variety of mechanisms to ensure that the tem-
peratures inside buildings remain cool. A common technique is to utilise electrical cooling systems, which are very
efficient when the exterior temperature is very high. However, in areas with a lack of access to electricity, alternative
solutions are required. Amongst them, natural cooling techniques can be employed, and in particular green roofs,
which are able to provide a desirable protection from heating [23,24]. Soil with growing vegetation protects a roof
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Fig. 6 A simplified model
of a cooling system for a
building partially covered
with a green roof
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Fig. 7 Temperature propagation inside the building for h = 1: a temperature at two points close to the boundary and b temperature
field at t = 0.5

from the direct solar radiation and evaporation process and therefore enhances the cooling of a building. In addition,
this method is also eco-friendly and, thus, is highly preferable to electrical cooling systems.

Green roofs therefore provide a potentially exceptional solution for cooling systems. Nevertheless, the investi-
gation of the capacity for such techniques is still in question. For this reason, many studies are aimed at solving
heat-transfer problems associated with buildings with roofs covered by layers of vegetation [23,24]. It should be
mentioned that these layers bring extra load on roofs. Thus, it can bemore advantageous to cover roofs only partially
as shown in Fig. 6, which will not impose extra load on the roof and at the same time the building will remain cool
inside. In this case, themodel presented in the study above canbedirectly applied to study the temperature distribution
if all model parameters are known, together with the time-dependent functions f (t) and F(t) and initial conditions.

For illustrative purposes, we suppose that f (t) and F(t) are slowly varying functions of timewhich increase from
0 and approach to 1 at infinite times. This case corresponds to the slow increase of outside temperature from zero
to its final steady-state value. One may set f (t) = F(t) = tan−1(t), the inverse tangent function, as it corresponds
to the desired behaviour. One can see in Fig. 7 that temperature slowly grows inside the building. However, the
vegetation level prevents its rapid growth and provides the required cooling effect.
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This problem can be extended if the temperature field of a vegetation layer is considered as time dependent.
Indeed, due to chemical reactions and the evaporation process, the temperature of the green roof may change. In this
case, the mathematical treatment becomes more complicated but, on the other hand, it can be possible to achieve a
more precise description of the convection process.

7 Conclusion and future work

The present work demonstrates the significant features of solutions of transient heat problems in a two-dimensional
half-space when the boundary condition type is discontinuous. Heat propagation is initiated by an applied temper-
ature on one half of the free boundary whilst a convective boundary condition is imposed on the remaining part
of the boundary. This type of problem requires special mathematical techniques for its solution. Specifically, the
Wiener–Hopf method has been used and the final expressions for the solutions were derived in integral form. It
transpires that for this problem it is impossible to obtain the explicit analytical expression for the solution. In this
regard, we selected numerical procedures suitable for the evaluation of the solution and successfully implemented
them into computer codes. The algorithms can be applied and adopted for different problems involving theWiener–
Hopf technique. The results were demonstrated for the case of step-change boundary conditions.We also performed
complementary FEM analysis of the problem for comparison and verification of the quasi-analytical results. We
subsequently described some practical problems, to which aspects of this analysis apply.

The considered problem supplements the results of [13] where more specific inhomogeneous Dirichlet or Neu-
mann boundary conditions were chosen. Future plans involve the consideration of dynamic problems in thermoe-
lasticity. In this problem, the coupling between thermal and elastic fields is often weak, and therefore the problem
decouples into solving a decoupled heat equation and the problem of elasticity with external forces induced by
the temperature field that arises from the solution to the heat equation. The transient temperature field induces
thermal stresses [25] and the evaluation of the solution with mixed boundary conditions can be helpful in the
subsequent stress analysis. In this case, the solution for the values of the temperature field are provided by results
of the present work and can then be used for the solution of the equations of motion for the solid. Note that there
is a similarity between the equations of thermoelasticity and poroelasticity [26]. For the latter problem, coupling
becomes essential, and the two physical problems should be treated simultaneously. Hence, the problem becomes
even more complicated from a mathematical point of view and can be reduced to a matrix Wiener–Hopf problem.
The factorisation procedure for a matrix problem turns out to be sophisticated and may require different approach
to solve. However, the algorithms employed in the present study can be adapted for the factorisation of matrix
components and thus can, eventually, allow a study of the effects of interplay between different physical processes.

Acknowledgements This work has benefited from a French Government Grant managed by ANR within the frame of the National
Program of Investments for the Future ANR-11- LABX-022-01 (LabEx MMCD Project). W.J.P. is grateful to the EPSRC for his
Fellowship Award EP/L018039/1.

Appendix A Comparison of the factorisation algorithm to the conventional approach

The proposed algorithm involved in the function factorisation is explained in Sect. 4. This algorithm allows one to
evaluate the Hilbert transform of an arbitrary function φ(p) which is defined as follows:

H[φ](p) = 1

π

∫ ∞

−∞
φ(ξ)

(ξ − p)
dξ, (A.1)

whereH[.] stands for the Hilbert transform. There exists a connection between the Fourier transform of the Hilbert
transform of φ(p) and the Fourier transform of φ(p) itself. This relations is expressed as

123



156 N. Gorbushin et al.

F[H[φ]](p) = (−i sgn(p))F[φ](p), (A.2)

whereF[.] is the Fourier transform and sgn(p) is the signum function. According to the last relation one can utilise
the FFT which is implemented in many software. Specifically, one should apply the FFT to φ(p) and then apply
the inverse FFT to obtain (A.1).

One of the main advantages of the FFT is that it can be performed extremely fast and usually this algorithm is
already optimised in computational software. Nevertheless, it possesses several drawbacks. Firstly, it is well suited
for fast decaying functions at infinity. However, in many cases, the functions decay reasonably slowly, and a large
integration interval should be taken in order to achieve accurate results. For instance, in the problems presented in
the main body of the text, the functions behave as O(|p|−1) as p → ∞.Moreover, if the interpolation points where
the function φ(ξ) is computed are ξ j = ( j − N/2)�ξ, j = 0, 1, . . . , (N − 1) with the step size �ξ and the total
number of points N , then evaluation points of the FFT are p j = ( j − N/2)�p, j = 0, 1, . . . , (N − 1) with the
step size �p = 1/(N�ξ). Thus, the scales are linked, and they depend on the number of evaluation points.

On the contrary, the proposed algorithm is well adapted for functions with slow decay. Furthermore, the scales
of interpolation points and evaluation points are not connected and one can use a small number of interpolation
points of φ(ξ) adapted to the particular function, e.g. to intensify the mesh in regions of rapid change of function
curvature, and obtain a large number of the evaluation points of H[φ](p) (Fig. 8).

In order to illustrate our argument, we compare the two procedures for the function x/(1 + x2) the Hilbert
transform of which is

H
[

x

(1 + x2)

]
(p) = 1

(1 + p2)
. (A.3)

The relative errors for the evaluation of this transform with the two different approaches is shown in (8). The
evaluation points on this plot are distributed with the step �p = 0.1 between 0 and 20. The results are chosen in
such a way that the L2-norm (mean-square norm) of the difference between the numerical algorithms and the exact
results is the same within this range and is equal to 1.7 × 10−4. With this restriction the number, the total number
of interpolation points for the FFT-based algorithm is N = 2 × 106 (the evaluation points are then extracted from
the whole range) whereas for the spline interpolation only 30 points were required (although the mesh density is
higher close to ξ = 0). Moreover, the relative error for the spline-based algorithm of this work is lower within
the considered interval, regardless of its non-monotonic behaviour. Finally, the evaluation time for the FFT-based
algorithm appears to be 0.25 s but the time for the developed algorithm is 0.015 s.

Both algorithms have potential for improvements and optimisations, but this lies outside the scope of the present
work.

Fig. 8 Relative error of the
Hilbert transform through
different algorithms (the
FFT-based algorithm and
the algorithm discussed in
this work) and the exact
results in (A.3)
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Appendix B Variational formulation used for the FEM simulations

The numerical simulations of the problem defined by Eqs. (3),(4) and (5) defined for the semi-infinite domain Ω

require the definition of the finite domainΩ0.We choose a rectangular domainΩ0 = {(x, y) : 0 ≤ x < a,−0.5b <

y < 0.5b} where values a and b are big enough in order to avoid the reflections from the boundaries. The boundary
of such domain is formed by ∂Ω±

0 which corresponds to ∂Ω±, respectively, and the remaining part of the boundary
∂Ω ′

0 = ∂Ω0 \ (∂Ω+
0 ∪ ∂Ω−

0 ), where temperature is fixed to be zero. The problem is formulated as follows:

∂T

∂t
− ∇2T = 0 in Ω0,

T = T0 f (t) on ∂Ω+
0 ,

T − h
∂T

∂x
= ΘiF(t) on ∂Ω−

0 ,

T = 0 on ∂Ω ′
0.

(B.1)

Let δT be a trial function of T, the weak formulation of this problem becomes

∫
Ω0

δT
∂T

∂t
dV +

∫
Ω0

∇(δT ) · ∇T dV +
∫

∂Ω−
0

T − ΘiF(t)

h
dS = 0,

T = T0 f (t) on ∂Ω+
0 , and T = 0 on ∂Ω ′

0,

(B.2)

where differential elements of surface and volume are denoted by dS and dV , respectively, and test function δT
and function T belong to the spaces S1 and S2, respectively

S1 =
{
f (x, y) ∈ H1(Ω0) : f (x, y) = 0, (x, y) ∈ ∂Ω+

0 ∪ ∂Ω ′
0

}
, S2 =

{
f (x, y) ∈ H1(Ω0)

}
.

The space H1(Ω0) designates the Sobolev spaces of scalar functions, having square-integrable first generalised
derivatives. For the simulations, we chose a = 5 and b = 10 while the simulation time range was t = [0, 1]. The
border lines were discretised with the element sizes �x = 0.05 and �y = 0.05 in x and y directions, respectively.
The time step is �t = 0.005, and piecewise continuous elements were taken.
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