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Abstract We present and analyze a two-grid scheme based on mixed finite element approximations for the steady
incompressible Navier–Stokes equations. This numerical scheme aims at the simulations of high Reynolds number
flows and consists of three steps: in the first step, we solve a finite element variational multiscale-stabilized nonlinear
Navier–Stokes system on a coarse mesh, and then, in the second and third steps, we solve Oseen-linearized and
-stabilized problems which have the same stiffness matrices with only different right-hand sides on a fine mesh.
We provide error bounds for the approximate solutions, derive algorithmic parameter scalings from the analysis,
and present some numerical results to verify the theoretical predictions and demonstrate the effectiveness of the
proposed method.

Keywords Navier–Stokes equations · Finite element · Oseen linearization · Two-grid method · Variational
multiscale method
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1 Introduction

We consider the incompressible Navier–Stokes equations on a bounded domain Ω ⊂ R
d (d=2 or 3):

−νΔu + (u · ∇)u + ∇ p = f in Ω, (1)

∇ · u = 0 in Ω, (2)

subject to homogeneous Dirichlet boundary conditions u = 0 on ∂Ω . In the above equations, u =
(u1(x), . . . , ud(x))T denotes the velocity field, p = p(x) denotes the pressure, f = ( f1(x), . . . , fd(x))T a given
body force field, and ν > 0 is the viscosity of fluid. Let U be a characteristic velocity and L a characteristic length,
then the Reynolds number is defined as Re = U L/ν.
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In this paper, we are interested in the simulation of the above Navier–Stokes equations at high Reynolds numbers
orwith small viscosities. It iswell understood thatwhen theReynolds number increases, theNavier–Stokes equations
become convection dominated, causing troubles for the classical Galerkin finite element methods which may lead
to spurious oscillations. Therefore, stabilization methods are essential in simulation of the Navier–Stokes equations
at high Reynolds numbers. Among various stabilization methods in the literature, we are here interested in a finite
element variational multiscale method based on two local Gauss integrations presented by Zheng et al. in [1]. The
idea of two local Gauss integrations was first considered in [2,3] to stabilize the equal-order P1 − P1 elements
approximations of Stokes andNavier–Stokes equations,which can be viewed as an variant of the general stabilization
method of Bochev and co-workers [4]. As we will see later, this finite element variational multiscale method based
on two local Gauss integrations is equivalent to a LPS (local projection stabilization, cf. [5,6])-like method for these
mixed finite element approximations where the interpolation of velocity is of second order. Its advantage over the
commonly used projection-based variationalmultiscalemethods (see, e.g., [7] and references therein) is that it is easy
to implement, free of extra storage, and hence has attracted considerable attentions from researchers (cf. [8–14]).

In this paper, by combining the above-mentioned finite element variational multiscale method based on two local
Gauss integrations with two-grid discretization strategy, we present a three-step Oseen correction method for the
Navier–Stokes equations at high Reynolds numbers. The method proceeds as follows:

– Step 1: Begin by solving a finite element variational multiscale-stabilized nonlinear Navier–Stokes system for
(u H , pH ) upon a coarse mesh of width H .

– Step 2: Pass the coarsemesh solution u H to the finemesh ofwidth h and solve a discrete finite element variational
multiscale-stabilized Oseen problem for (u∗

h, p∗
h).

– Step 3: Solve a discrete Oseen problem (which has the same stiffness matrix as Step 2, with only different
right-hand side involving u H and u∗

h) for the update (uh, ph) upon the same fine mesh.

Our theoretical analysis shows that, if we choose h ∼ H (s+1)/s for a certain integer s, the approximate solution
(uh, ph) produced by the three-stepOseen correctionmethod is asymptotically as accurate as the approximation pro-
duced by solving directly the finite element variational multiscale-stabilized Navier–Stokes system on the finemesh.
We numerically demonstrate that each step of the method significantly improves the accuracy of the approximate
solution of the previous step.The novelty of the presented three-step Oseen correction method is that it combines
the best algorithmic features of the two-grid discretization strategy and the finite element variational multiscale
method, as well as the Oseen linearization. Specifically, on the one hand, it allows high Reynolds number flows
that are challenging to simulate for the standard two-grid methods. On the other hand, it can save a large amount of
computational time compared with the one-level finite element variational multiscale method used directly on the
fine mesh. An additional decoration to the proposed method consists in using an Oseen-type partial linearization for
the fine mesh corrections, making the resulting linear systems be more tractable than the ones from the commonly
used full linearizations based on Newton iterations, such as those in [15–17]. Moreover, with the extra third step,
the presented method can yield a much better approximate solution with a greater accuracy compared with the
standard stabilized two-grid method based on Oseen correction.

Two-grid discretization strategy is a well-established technique for steady nonlinear elliptic PDEs, see [18–20].
The basic idea is to capture the lowmodes or global solution envelope by solving an initial nonlinear approximation
problem on a coarse mesh, and then capture the fine structures by computing a linearized system on a fine mesh.
This two-grid discretization strategy has been applied to numerically solving the steady Navier–Stokes equations
by Layton [15], Dai and Cheng [21], He et al. [22–25], Liu and Hou [26]. It was also combined with the subgrid
stabilizationmethod [17,27,28] and the domain decompositionmethod [29–31]. Two-gridmethods for the unsteady
Navier–Stokes equationswere also studied in [32–39]. Inmost of the aboveworks, a full linearization of the nonlinear
Navier–Stokes system based on Newton’s method is used to define the fine mesh problem, and consequently, the
resulting linear systems of equations are generally both highly nonsymmetric and indefinite. As mentioned before,
by means of an Oseen-type partial linearization studied herein, the linear systems originating from the fine mesh
problem become more tractable. The Oseen-type linearization had also been used extensively in, e.g., [40–44] to
resolve the nonlinearity in the Navier–Stokes system. It is worth mentioning that there are other types of two-grid
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methods (see, e.g., [45–48]) which are preconditioning methods for a given discretization scheme, not for designing
a discretization scheme as studied herein.

The rest of the paper proceeds as follows. In Sect. 2, we introduce some notations and preliminaries. In Sect. 3,
we present and analyze the three-step Oseen correction method. Section 4 shows some numerical results followed
by conclusions in Sect. 5.

2 Preliminaries and notations

2.1 Functional setting of the Navier–Stokes equations

In this paper, for an integer k ≥ 1, Hk(Ω)d denotes the usual Sobolev spaces of functions with kth distributional
derivatives in L2(Ω)d and equipped with norms ‖ · ‖k . H1

0 (Ω)d is the subspace of H1(Ω)d of functions trace of
which is zero on ∂Ω and L2

0(Ω) is the space of L2(Ω) functions mean value of which is zero. (·, ·) denotes the
the standard inner-product of L2(Ω) or L2(Ω)d (cf. [49]). We will denote by ‖ · ‖−1 the norm of the dual space of
H1
0 (Ω)d . The letter c or C (with or without subscript) stands for a generic positive constant which is independent of

the viscosity ν, the stabilization, andmesh parameters, andmay stand for different values at its different occurrences.
Let

X = H1
0 (Ω)d , Y = L2(Ω)d , M = L2

0(Ω).

We define

b(u, v, w) = ((u · ∇)v,w) + 1

2
((∇ · u)v,w)

= 1

2
((u · ∇)v,w) − 1

2
((u · ∇)w, v), ∀ u, v, w ∈ X,

which has the following properties (cf. [50–54]):

b(u, v, w) = − b(u, w, v), ∀ u, v, w ∈ X, (3)

|b(u, v, w)| ≤ N‖∇u‖0‖∇v‖0‖∇w‖0, ∀ u, v, w ∈ X, (4)

|b(u, v, w)| ≤ c‖u‖0‖∇v‖0‖w‖2, ∀ u, v ∈ X, w ∈ H2(Ω)d , (5)

where N and c are positive constants depending only on Ω . The weak form of (1)–(2) reads: find a pair (u, p) ∈
X × M such that

ν(∇u,∇v) + b(u, u, v) − (∇ · v, p) + (∇ · u, q) = ( f, v), ∀(v, q) ∈ X × M. (6)

A nonsingular solution u of the Navier–Stokes equations is defined as [55]

inf
v∈V

sup
w∈V

ν(∇v,∇w) + b(u, v, w) + b(v, u, w)

‖∇v‖0 ‖∇w‖0 ≥ σ > 0, (7)

and satisfies (cf. [56])

‖∇u‖0 ≤ ν−1‖ f ‖−1, ‖ f ‖−1 = sup
v∈X,v �=0

|( f, v)|
‖∇v‖0 , (8)

where σ = σ(ν, u) (see [51]) is a constant and V = {v ∈ X : (∇ · v, q) = 0, ∀q ∈ M}.
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2.2 Mixed finite element spaces

Let μ > 0 be a discretization parameter. For each μ, let T μ(Ω) = {K } be a regular family of triangulations
of Ω (see, e.g., [51]), consisting of triangles (when d = 2) or tetrahedrons (when d = 3). For each triangle
or tetrahedron K , we denote by μK the diameter of K and by μ the maximum of μK . Let (Xμ, Mμ) be a pair
of compatible finite element spaces for discretizing the velocity and the pressure. We assume that the following
Ladyzhenskaya–Babuska–Brezzi (LBB) condition holds:

β‖q‖0 ≤ sup
v∈Xμ,v �=0

(∇ · v, q)

‖∇v‖0 , ∀q ∈ Mμ, (9)

and for each (u, p) ∈ Hk+1(Ω)d × Hk(Ω) (1 ≤ k), there is an approximation pair (πμu, ρμ p) ∈ Xμ × Mμ such
that

‖u − πμu‖1 ≤ cμs‖u‖1+s, ‖p − ρμ p‖0 ≤ cμs‖p‖s, 1 ≤ s ≤ k, (10)

where β > 0 is a constant.
We consider those LBB stable, mixed finite element approximations where the finite element interpolant for

the velocity is of second order. Examples of such compatible, mixed finite element pairs are the Taylor–Hood
(P2 − P1) elements [57], the P2 − P0 elements [58], the augmented P2 − P1 elements [59,60], and the Scott–
Vogelius (P2 − Pdisc

1 ) elements under the restriction that the mesh is a barycenter refinement of a regular mesh
when d = 2 or a Powell–Sabin tetrahedralization when d = 3 (see [61–63] for details).

We define

Vμ = {vμ ∈ Xμ : (∇ · vμ, qμ) = 0, ∀qμ ∈ Mμ},

and have [51,56]

inf
vμ∈Vμ

‖∇(v − vμ)‖0 ≤ c

(
1 + 1

β

)
inf

vμ∈Xμ

‖∇(v − vμ)‖0, ∀v ∈ V . (11)

2.3 The stabilization term

We define the stabilization term as follows [1]:

Gμ(uμ, vμ) = αμ

∑
K∈T μ(Ω)

(∫
K ,m

∇uμ · ∇vμdx −
∫

K ,1
∇uμ · ∇vμdx

)
, ∀uμ, vh ∈ Xμ, (12)

where
∫

K ,m(·)dx (m ≥ 2) denotes the mth-order Gauss integral over the element K and
∫

K ,1(·)dx the first-order
Gauss integral over the element K . αμ > 0 is the stabilization coefficient.

Let P0 be the piecewise constant space on the element K , so that we set

R0 =
{
v ∈ L2(Ω) : v|K ∈ P0, ∀K ∈ T μ(Ω)

}
, Lμ = Rd×d

0 , L = L2(Ω)d×d ,
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and define L2-orthogonal projection Πμ : L → Lμ, which projects onto the piecewise constant space, can be
computed locally and satisfies

(Πμ∇u, v) = (∇u, v), ∀u ∈ X, v ∈ Lμ, (13)

‖Πμ∇v‖0 ≤ ‖∇v‖0, ∀v ∈ X, (14)

‖(I − Πμ)∇v‖0 ≤ ‖∇v‖0, ∀v ∈ X. (15)

Then the stabilization term (12) can be rewritten as [1]

Gμ(uμ, vμ) = αμ((I − Πμ)∇uh, (I − Πμ)∇vμ) = αμ(∇uμ,∇vμ) − αμ(Πμ∇uμ,∇vμ). (16)

Remark 2.1 The equivalence of the stabilizations (12) and (16) is only valid for those mixed finite element pairs
where the interpolant of the velocity is of second order (see [1] for details). However, our following error estimates
based on the stabilization (16) are also valid for higher-order LBB stable elements Pk − Pk−1(k ≥ 2) and non-LBB
stable elements such as equal-order Pk − Pk(k ≥ 2) elements (in such a case, appropriate pressure stabilizations
should be added to the formulation).

3 Three-step Oseen correction method

In our method, we need two levels meshes: a coarse mesh T H (Ω) of width H and a fine mesh T h(Ω) of width h
(0 < h < H < 1). We assume they are nested since it will simplify our analysis substantially. Let (X H , MH ) be a
pair of compatible finite element spaces associated with the coarse mesh T H (Ω), and (Xh, Mh) the one associated
with the fine mesh T h(Ω). Then our three-step Oseen correction method is stated as follows.

Algorithm I: Three-step Oseen correction algorithm.
Step 1: Find a coarse mesh solution (u H , pH ) ∈ X H × MH satisfying

ν(∇u H ,∇vH ) + b(u H , u H , vH ) − (∇ · vH , pH ) + (∇ · u H , qH ) + G H (u H , vH ) = ( f, vH ),

∀(vH , qH ) ∈ X H × MH . (17)

Step 2: Find a fine mesh solution (u∗
h, p∗

h) ∈ Xh × Mh such that for all (vh, qh) ∈ Xh × Mh

ν(∇u∗
h,∇vh) + b(u H , u∗

h, vh) − (∇ · vh, p∗
h) + (∇ · u∗

h, q) + Gh(u∗
h, vh) = ( f, vh) (18)

Step 3: Find (uh, ph) ∈ Xh × Mh such that

ν(∇uh,∇vh) + b(u H , uh, vh) − (∇ · vh, ph) + (∇ · uh, qh) + Gh(uh, vh)

= ( f, vh) + b(u H − u∗
h, u∗

h, vh), ∀(vh, qh) ∈ Xh × Mh .
(19)

Remark 3.1 It is worth mentioning that on the left side of (19) in the above algorithm, we linearize the nonlinear
convection term by b(u H , uh, vh) rather than b(u∗

h, uh, vh) as used usually in the standard Newton or Oseen
iterations. There are two reasons for this. First, by using u H instead of the newly computed solution u∗

h to linearize
the nonlinearity, we keep the same coefficient matrices as the previous step. Second, since there is a term b(u H −
u∗

h, u∗
h, vh) in the right-hand side of (19), Step 3 differs from the standard Newton or Oseen iterations which usually

use the solution newly computed at the previous iteration step to linearize the nonlinearity in the current iteration
step. In fact, our numerical results show that replacing b(u H , uh, vh) by b(u∗

h, uh, vh) in the left-hand side of (19)
will degrade the accuracy of the approximate solutions.
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We now give basic error analysis for Algorithm I in the natural energy norm for the Navier–Stokes equations.
At the beginning, we introduce some notations and definitions:

κ1 = ν + αH + 2ν−1N‖ f ‖−1, κ2 = ν + αh + ν−1N‖ f ‖−1,

δ = ν−1(ν + αh)−1‖ f ‖−1.

By a standard argument (cf. [13]), we have the following results for the approximate solution of Step 1:

Theorem 3.1 Assume (u, p) ∈ (X ∩ Hk+1(Ω)d) × (M ∩ Hk(Ω)) be the exact solution of the Navier–Stokes
equations, and αH tends to zero as H tends to zero. Then, there is H0 > 0 such that for all H ∈ (0, H0], the
approximate solution (u H , pH ) of Step 1 in Algorithm I satisfies

‖∇u H ‖0 ≤ ν−1‖ f ‖−1, (20)

‖∇(u − u H )‖0 ≤ C(β)

(
1 + 2κ1

σ

)
inf

wH ∈X H
‖∇(u − wH )‖0 + 2

σ
inf

λH ∈MH
‖p − λh‖0 + 4αH

νσ
‖ f ‖−1, (21)

‖p − pH ‖0 ≤
(
1 + 1

β

)
inf

λh∈MH
‖p − λh‖0 + κ1

β
‖∇(u − u H )‖0 + 2αH

νβ
‖ f ‖−1. (22)

‖u − u H ‖0 + ‖p − pH ‖−1 ≤ c1H (‖∇(u − u H )‖0 + ‖p − pH ‖0) + c2αH ‖∇(u − u H )‖0
+ c3‖∇(u − u H )‖20 + c4αH H‖u‖2. (23)

By applying (10), we have with 1 ≤ s ≤ k that

‖∇(u − u H )‖0 ≤ C1

(
1 + 2

σ
(1 + κ1)

)
Hs + C2αH

νσ
, (24)

‖p − pH ‖0 ≤ C3

(
1 + κ1 + 2κ1

σ
(1 + κ1)

)
Hs + C4(κ1 + σ)αH

νσ
, (25)

‖u − u H ‖0 + ‖p − pH ‖−1 ≤ C5

(
1 + κ1 + 2

σ
(1 + κ1)

2
)

Hs+1 + C6

(
1 + 1 + κ1 + σ

νσ

)
αH H

+ C7

(
1 + 2

σ
(1 + κ1)

)
αH Hs + C8

(
1 + 2

σ
(1 + κ1)

)2

H2s + C9
1 + νσ

ν2σ 2 α2
H .

(26)

Remark 3.2 The results (24)–(26) show that for the solution (u H , pH ) to attain the same asymptotic convergence
rate O(Hs) as the classical finite element Galerkin solution, the stabilization parameter αH should be chosen as
αH = O(Hs).

Remark 3.3 In general, the choice of the stabilization parameters αH and αh not only depends on the mesh parame-
ters H and h, respectively, but also on the viscosity ν of the physical fluid being simulated. However, it is a nontrivial
task to derive the explicit dependence of stabilization parameters on the viscosity. In our analysis, we only give the
dependence of the stabilization parameters on the mesh parameters.

We now give error estimates for the approximate solution of Step 2.
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Theorem 3.2 Under the conditions of Theorem 3.1, the solution (u∗
h, p∗

h) ∈ Xh × Mh of Step 2 in Algorithm I
satisfies for 1 ≤ s ≤ k

‖∇u∗
h‖0 ≤ ν−1‖ f ‖−1, (27)

‖∇(u − u∗
h)‖0 ≤ c1

(
2 + δN + (ν + αh)−1

)
hs

+ 2δαh + (ν + αh)−1
{

c2

(
1 + κ1 + 2

σ
(1 + κ1)

2
)

Hs+1

+ c3

(
1 + 1 + κ1 + σ

νσ

)
αH H + c4

(
1 + 2

σ
(1 + κ1)

)
αH Hs

+ c5

(
1 + 2

σ
(1 + κ1)

)2

H2s + c6
1 + νσ

ν2σ 2 α2
H

}
, (28)

‖p − p∗
h‖0 ≤ c7

(
1 + κ2(2 + δN + (ν + αh)−1)

)
hs + c8(2δκ2 + ν−1)αh

+
(
1 + κ2(ν + αh)−1

) {
c9

(
1 + κ1 + 2

σ
(1 + κ1)

2
)

Hs+1

+ c10

(
1 + 1 + κ1 + σ

νσ

)
αH H + c11

(
1 + 2

σ
(1 + κ1)

)
αH Hs

+ c12

(
1 + 2

σ
(1 + κ1)

)2

H2s + c13
1 + νσ

ν2σ 2 α2
H

}
. (29)

Proof Taking (vh, qh) = (u∗
h, p∗

h) in (18), using (3), (16) and the Schwarz inequality, we have

ν‖∇u∗
h‖20 + αh‖(I − Πh)∇u∗

h‖20 ≤ ‖ f ‖−1‖∇u∗
h‖0,

which leads to the required result (27).
Subtracting (18) from (6), we obtain

(ν + αh)(∇e∗
h,∇vh) + b(u H , e∗

h, vh) − (∇ · vh, θ∗
h ) + (∇ · e∗

h, qh)

= αh(∇u,∇vh) − αh(Πh∇u∗
h,∇vh) + b(u H − u, u, vh), ∀(vh, qh) ∈ Xh × Mh, (30)

where (e∗
h, θ∗

h ) = (u − u∗
h, p − p∗

h). We assume (wh, λh) ∈ Vh × Mh be an approximation of (u, p) and set
e∗

h = χ − ϕh with χ = u − wh, ϕh = u∗
h − wh . Since Vh ⊂ Xh , limiting vh ∈ Vh and setting qh = 0 in (30), we

reach

(ν + αh)(∇ϕh,∇vh) + b(u H , ϕh, vh)

= (ν + αh)(∇χ,∇vh) + b(u H , χ, vh) − (∇ · vh, p − λh)

− αh(∇u,∇vh) + αh(Πh∇u∗
h,∇vh) + b(u − u H , u, vh), ∀vh ∈ Vh . (31)

Taking vh = ϕh in (31), using (3)–(5), (8), (14) (20) and (27) we infer

(ν + αh)‖∇ϕh‖0 ≤ (ν + αh + N‖∇u H ‖0)‖∇χ‖0 + ‖p − λh‖0
+ αh(‖∇u‖0 + ‖Πh∇u∗

h‖0) + c‖u‖2‖u − u H ‖0
≤ (ν + αh + ν−1N‖ f ‖−1)‖∇χ‖0 + ‖p − λh‖0

+ 2ν−1αh‖ f ‖−1 + c‖u‖2‖u − u H ‖0 (32)
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Taking the infimum over wh ∈ Vh and λh ∈ Mh , applying (8), (11) and the triangle inequality, we obtain

‖∇(u − u∗
h)‖0 ≤ C(β)(2 + δN ) inf

wh∈Xh
‖∇(u − wh)‖0 + (ν + αh)−1 inf

λh∈Mh
‖p − λh‖0

+ 2δαh + c2(ν + αh)−1‖u − u H ‖0. (33)

Inserting (10) (with μ = h) and (26) into the right-hand side of estimator (33), we get

‖∇(u − u∗
h)‖0 ≤ c1

(
2 + δN + (ν + αh)−1

)
hs + 2δαh + (ν + αh)−1

{
c2

(
1 + κ1 + 2

σ
(1 + κ1)

2
)

Hs+1

+ c3

(
1 + 1 + κ1 + σ

νσ

)
αH H + c4

(
1 + 2

σ
(1 + κ1)

)
αH Hs

+ c5

(
1 + 2

σ
(1 + κ1)

)2

H2s + c6
1 + νσ

ν2σ 2 α2
H

}
.

The required result (28) follows.
We now give error estimate for the pressure. Taking qh = 0 in (30), applying (4), (8), (14), (20) and the Schwarz

inequality, we have

(∇ · vh, p∗
h − λh) = (∇ · vh, p − λh) − (ν + αh)(∇e∗

h,∇vh) − b(u H , e∗
h, vh)

+ b(u − u H , u, vh) + αh(∇u,∇vh) − αh(Πh∇u∗
h,∇vh)

≤
(
‖p − λh‖0 + (ν + αh + ν−1N‖ f ‖−1)‖∇e∗

h‖0
)

‖∇vh‖0
+

(
c‖u||2‖u − u H ‖0 + 2αhν−1‖ f ‖−1

)
‖∇vh‖0.

The applications of LBB condition and the triangle inequality lead to

‖p − p∗
h‖0 ≤

(
1 + 1

β

)
‖p − λh‖0 + 1

β

(
ν + αh + ν−1N‖ f ‖−1

)
‖∇e∗

h‖0 + c

β
‖u‖2‖u − u H ‖0 + 2αh

νβ
‖ f ‖−1.

Taking the infimum over λh ∈ Mh , applying (10), (26) and (28), we obtain

‖p − p∗
h‖0 ≤

(
1 + 1

β

)
inf

λh∈Mh
‖p − λh‖0 + κ2

β
‖∇(u − u∗

h)‖0 + c

β
‖u‖2‖u − u H ‖0 + 2αh

νβ
‖ f ‖−1

≤ c7
(
1 + κ2(2 + δN + (ν + αh)−1)

)
hs + c8(2δκ2 + ν−1)αh

+ (1 + κ2(ν + αh)−1)

{
c9

(
1 + κ1 + 2

σ
(1 + κ1)

2
)

Hs+1

+ c10

(
1 + 1 + κ1 + σ

νσ

)
αH H + c11

(
1 + 2

σ
(1 + κ1)

)
αH Hs

+ c12

(
1 + 2

σ
(1 + κ1)

)2

H2s + c13
1 + νσ

ν2σ 2 α2
H

}
,

which leads to (29). ��
Remark 3.4 From Theorem 3.2, we see that when H = O(hs/(s+1)), αh = O(hs) and αH = O(Hs), the desired
asymptotic convergence rate O(hs) for the solution (u∗

h, p∗
h) is expectedly obtained.
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Remark 3.5 Due to technical difficulty, there are terms (ν + αh)−1hs and (ν + αh)−1Hs+1 in the estimates (28)
and (29), making the error estimates not being optimal with respect to the viscosity ν. However, compared with the
standard two-level Oseen correction method without stabilizations which has a term ν−1hs in the error estimates
(see, e.g., [24,64,65]), the stabilizations in our method improve the error factor from ν−1 to (ν + αh)−1. It is worth
mentioning that the full Navier–Stokes equations with the established stabilization methods have also usually a term
C(ν−1)hs in their error estimates; for example, there is a term ν−2hs in the the error estimator for the streamline
diffusion method (see Theorem 4.3 and Remark 4.2 in [66]).

Theorem 3.3 Under the conditions of Theorem 3.1, the solution (uh, ph) ∈ Xh × Mh obtained from Algorithm I
satisfies for 1 ≤ s ≤ k

‖∇uh‖0 ≤ ν−1‖ f ‖−1 + 2ν−3N‖ f ‖2−1, (34)

‖∇(u − uh)‖0 ≤ c1

{
1 + κ2(ν + αh)−1 + δN

(
2 + δN + (ν + αh)−1

) }
hs

+ c2(ν + αh)−1
{
(1 + κ1)(1 + δN ) + 2

σ
(1 + κ1)[1 + δN (1 + κ1)]

}
Hs+1

+ c3(ν + α)−1(1 + δN
)(

1 + 1 + κ1 + σ

νσ

)
αH H

+ 2δ
(
1 + ν−1‖ f ‖−1 + δN

)
αh + c4

(
1 + δN

)
(ν + α)−1

(
1 + νσ

ν2σ 2

)
α2

H , (35)

‖p − ph‖0 ≤ c1κ2

{
1 + κ2(ν + αh)−1 + δN

(
2 + δN + (ν + αh)−1

) }
hs

+ c2κ2(ν + αh)−1
{
(1 + κ1)(1 + δN ) + 2

σ
(1 + κ1)[1 + δN (1 + κ1)]

}
Hs+1

+ c3κ2(ν + α)−1(1 + δN )

(
1 + 1 + κ1 + σ

νσ

)
αH H

+ {
2κ2δ(1 + ν−1‖ f ‖−1 + δN ) + 2ν−1‖ f ‖1(1 + ν−2‖ f ‖−1)

}
αh

+ c4κ2
(
1 + δN

)
(ν + α)−1

(
1 + νσ

ν2σ 2

)
α2

H . (36)

Proof The proof is similar to that for Theorem 3.2. Taking (vh, qh) = (uh, ph) in (19), using (3), (4), (16), (20),
(27), and the Schwarz inequality, we have

ν‖∇uh‖20 + αh‖(I − Πh)∇uh‖20 ≤ ‖ f ‖−1‖∇uh‖0 + N‖∇(u H − u∗
h)‖0‖|∇u∗

h‖0‖∇uh‖0.

The applications of (20), (27) and the triangle inequality yield the required result (34).
By setting (eh, θh) = (u − uh, p − ph) and subtracting (19) from (6), we arrive at

(ν + αh)(∇eh,∇vh) + b(u H , eh, vh) − (∇ · vh, θh) + (∇ · eh, qh)

= αh(∇u,∇vh) − αh(Πh∇uh,∇vh) + b(u H − u, u, vh)

+ b(u∗
h − u H , u∗

h, vh), ∀(vh, qh) ∈ Xh × Mh . (37)
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Letting (wh, λh) ∈ Vh ×Mh be an approximation of (u, p), splitting eh = ξ−ϕh with ξ = u−wh, ϕh = uh −wh

and setting qh = 0 in (37), we obtain for all vh ∈ Vh that

(ν+αh)(∇ϕh,∇vh) + b(u H , ϕh, vh)

= (ν + αh)(∇ξ,∇vh) + b(u H , ξ, vh) − (∇ · vh, p − λh) − αh (∇u,∇vh)

+ αh
(
Πh∇uh,∇vh

) − b(u H − u, u, vh) − b(u∗
h − u H , u∗

h, vh). (38)

Noting that

b(u∗
h − u H , u∗

h, vh) = b(u∗
h − u, u∗

h, vh) + b(u − u H , u∗
h, vh)

= b(u∗
h − u, u∗

h − u, vh) + b(u∗
h − u, u, vh)

+ b(u − u H , u∗
h − u, vh) + b(u − u H , u, vh),

taking vh = ϕh in (38), and applying (3)–(5) and (14), we infer

(ν + αh)‖∇ϕh‖0 ≤ (ν + αh + N‖∇u H ‖0)‖∇ξ‖0 + ‖p − λh‖0
+ αh(‖∇u‖0 + ‖∇uh‖0) + c‖u‖2‖u − u H ‖0
+ N‖∇(u − u∗

h)‖20 + N‖∇u‖0‖∇(u − u∗
h)‖0

+ N‖∇(u − u∗
h)‖0‖∇(u − u H )‖0. (39)

Taking the infimum over wh ∈ Vh and λh ∈ Mh , applying (8), (10), (11), Theorems 3.1 and 3.2, the triangle
inequality, noting that 0 < αH , αh, H, h < 1, and omitting the higher-order terms, we obtain

‖∇(u − uh)‖0 ≤
(
1 + κ2(ν + αh)−1)

)
hs

+ 2δ(1 + ν−2‖ f ‖1)αh + c(ν + αh)−1‖u − u H ‖0
+ N (ν + αh)−1‖∇(u − u∗

h)‖20 + δN‖∇(u − u∗
h)‖0

+ N (ν + αh)−1‖∇(u − u∗
h)‖0‖∇(u − u H )‖0,

≤ c1

{
1 + κ2(ν + αh)−1 + δN

(
2 + δN + (ν + αh)−1

) }
hs

+ c2(ν + αh)−1
{
(1 + κ1)(1 + δN ) + 2

σ
(1 + κ1)[1 + δN (1 + κ1)]

}
Hs+1

+ c3(ν + α)−1(1 + δN )

(
1 + 1 + κ1 + σ

νσ

)
αH H

+ 2δ
(
1 + ν−1‖ f ‖−1 + δN

)
αh + c4(1 + δN )

(
ν + α

)−1
(
1 + νσ

ν2σ 2

)
α2

H .

The reminder of the proof follows exactly the same way as for Theorem 3.2. ��
Remark 3.6 From Theorem 3.3, we see that if we choose

H = O(h
s

s+1 ), αh = O(hs), αH = O(Hs), (40)

the desired asymptotic convergence rate O(hs) is expectedly obtained.
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Remark 3.7 Comparing Remark 3.6 to Remark 3.4, we see that there is no improvement in the scaling between the
coarse and fine meshes for the solution (uh, ph) of Step 3 compared with the solution (u∗

h, p∗
h) of Step 2. A similar

result was also obtained by Layton and Tobiska in [40], where a coarse mesh correction step is employed based on
a full linearization for the nonlinearity in the Navier–Stokes equations. However, although the scaling between the
coarse and fine meshes is not improved, we will see in the followed section that there is a significant improvement
in accuracy of the solution (uh, ph) of Step 3 compared with that of (u∗

h, p∗
h) of Step 2.

4 Numerical results

We present numerical results for two examples in incompressible flow problems. The main goals of this section
are to illustrate the numerical performance of the proposed method and to numerically verify its effectiveness. In
all the computations reported herein, uniform meshes and Taylor–Hood elements are used for the finite element
discretizations, and the public domain software FreeFem++ [67] is used. In addition, the Oseen iterative method
(cf. [68]) is applied to solve the nonlinear coarse mesh system. The stopping criteria for the nonlinear iterations is
set as 10−6, and the initial guess is obtained by solving a Stokes problem.

4.1 Assessment by the problem with an analytic solution

In this part, we first investigate the asymptotic errors provided by the proposed algorithm, and then compare our
method with other related methods to illustrate its effectiveness. For convenience, we present that the exact solution
describing the steady flow of an incompressible viscous Newtonian fluid in a bounded domainΩ = [0, 1]×[0, 1] ⊂
R
2 is given by

p = 3x2 + 3y2 − 2, u = (u1, u2)
T ,

u1(x, y) = 0.5ϕ(x)ϕ′(y), u2(x, y) = −0.5ϕ(y)ϕ′(x),

with polynomial ϕ(t) = t2(t − 1)2.
It is worth noting that using Taylor–Hood elements, an optimal convergence rate of O(h2) in the natural energy

norm can be obtained. According to Remark 3.6, we choose the stabilization parameters as αH = 0.1H2 and
αh = 0.1h2. We set h = n−3 (n = 2, 3, 4, 5, 6) with H satisfying H = h2/3 and compute the finite element
solutions applying Algorithm I. Figure 1 describes the errors of the computed solutions with different values of
ν = 10−t (t = 0, 1, 2, 3, 4), from which we see that the numerical results are in good agreement with the theoretical
predictions, where optimal convergence rates are obtained. Table 1 compares the computed solutions by our present
method, the standard stabilized two-grid Oseen correction method (denoted by Std-Oseen) and the one-level finite
element variational multiscale method based on two local Gauss integrations [1] (denoted by One-VMS) on the fine
mesh with ν = 0.0001, where i t is the nonlinear iteration’s count satisfying the stopping criterion for the nonlinear
coarse mesh system and the CPU time is the wall time of the program, which includes the mesh generation time,
the computing time, and the error computing time. From Table 1 we see that our present method yields better
approximate solutions than the standard stabilized two-grid Oseen correction method. Noting that the standard
stabilized two-grid Oseen correction method (cf. [24]) consists of the first two steps of our present method, the
extra third step in our method increases the accuracy of the solution by nearly two times when h = 1/125 and
1/256, compared with the standard stabilized two-grid Oseen correction method. On the other hand, our method
yields approximate solutions with an accuracy comparable to that from the one-level variational multiscale method
applied directly on the fine mesh, with a substantial reduce in computational time.

To further investigate the performance of our present method, we fix the mesh sizes as H = 1/36, h = 1/256
and then compare our method to other related methods with various viscosities ν = 10−n(n = 1, 2, 3, 4, 5, 6). The
compared methods include the one (denoted by T-New) obtained by replacing the linearized term b(uH , uh, vh) in
the left-hand side of (19) with b(u∗

h, uh, vh) as mentioned in Remark 3.1, the present three-step method without
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Fig. 1 Errors in H1-semimorm for the computed velocities (left) and L2-norm for the pressures (right)

Table 1 A comparison of the computed solutions with ν = 0.0001

Method h H it CPU(s) ‖∇(u − uh)‖0 ‖p − ph‖0 u H1 rate pL2 rate

Present 1/8 1/4 5 0.111104 0.00885109 0.00494106 – –

1/27 1/9 9 1.17815 0.00122779 0.000433783 1.62392 2

1/64 1/16 8 5.6903 0.00015578 7.72041×10−05 2.39214 2

1/125 1/25 8 22.3615 2.47966×10−05 2.02387×10−05 2.74523 1.99999

1/256 1/36 8 75.3801 5.39433×10−06 6.77866×10−06 2.78877 1.9998

Std-Oseen 1/8 1/4 5 0.079629 0.00945567 0.00494107 – –

1/27 1/9 9 0.770729 0.0015577 0.000433784 1.48258 2

1/64 1/16 8 3.395 0.000241688 7.72042×10−05 2.39214 2

1/125 1/25 8 12.5667 5.17066×10−05 2.02387×10−05 2.30354 1.99999

1/256 1/36 8 44.3976 1.42059×10−05 6.77873×10−06 2.36199 1.99978

One-MVS 1/8 – 9 0.313996 0.00874645 0.00494106 – –

1/27 – 8 3.34713 0.00122174 0.000433783 1.6182 2

1/64 – 8 19.6292 0.000153435 7.72041×10−05 2.40399 2

1/125 – 8 86.3744 2.37394×10−05 2.02387×10−05 2.78765 1.99999

1/256 – 8 298.152 4.97126×10−06 6.77857×10−06 2.85844 1.99982

stabilizations (i.e., αH = αh = 0, denoted by W-Stab), a four-step Oseen correction method (denoted by F-Oseen)
obtained by adding an additional fine mesh stabilized Oseen correction step to the present Algorithm I, and a
three-step Newton iteration method (denoted by T-Newton) which consists of one stabilized coarse mesh nonlinear
system and two fine mesh steps of stabilized Newton iterations. Tables 2 and 3 report the computed velocities and
the CPU time taken by the methods.

FromTable 2 we see that when the viscosity ν is big (not less than 10−3), there is no obvious difference among the
computed solutions by the methods being compared. However, when the viscosity is small (less or equal to 10−4),
our present method yields solutions with a much higher accuracy than the ones obtained by replacing b(u H , uh, vh)
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Table 2 A comparison of error ‖∇(u − uh)‖0 for the computed solutions uh by various methods

ν 10−1 10−2 10−3 10−4 10−5 10−6

Present 1.80733×10−06 1.80793×10−06 1.8675×10−06 5.39433×10−06 4.75197×10−05 0.000368516

T-New 1.80733×10−06 1.80801×10−06 1.89131×10−06 1.36087×10−05 0.000308918 0.0020353

W-Stab 1.80732×10−06 1.80732×10−06 1.80732×10−06 1.80789×10−06 1.85887×10−06 –

F-Oseen 1.80733×10−06 1.80793×10−06 1.86747×10−06 4.99212×10−06 4.14871×10−05 0.000226104

T-Newton 1.80733×10−06 1.80793×10−06 1.86747×10−06 4.97125×10−06 4.04561×10−05 0.00019037

Table 3 A comparison of CPU time in second by various methods

ν 10−1 10−2 10−3 10−4 10−5 10−6

Present 69 69 70 75 77 93

T-New 71 73 72 72 80 95

W-Stab 69 69 80 87 103 –

F-Oseen 106 108 108 110 115 131

T-Newton 80 81 82 85 89 105

Fig. 2 Lid-driven cavity
flow problem u1=1, u2=0

u1=u2=0

u1=u2=0 u1=u2=0

L=1

L=1

with b(u∗
h, uh, vh) in the left-hand side of (19). The method without stabilizations yields better solutions than our

present method when ν = 10−4 and 10−5; however, it dosen’t work when ν = 10−6 due to the divergence of the
iterative method for the nonlinear coarse mesh system, while our present method works well. The numerical results
of the four-step Oseen correction method show that further correction doesn’t significantly improve the accuracy
of the solutions. The accuracy of the computed solutions between our present method and the Newton corrections
method is also comparable, except the case ν = 10−6 in which the Newton correction method performs better;
however, it takes more CPU time than our present method (see Table 3 for details). We see that from Table 3,
when the viscosity is small (i.e., ν = 10−t , t = 3, 4, 5, 6), our present method takes the least CPU time among the
methods being compared.

4.2 Assessment by the lid-driven cavity flow

We here consider the 2D lid-driven cavity flow. The flow domain is a unit square [0, 1]×[0, 1]with no-slip boundary
conditions, only in the top boundary with (u1, u2)

T = (1, 0)T ; see Fig. 2 for detailed information.

123



158 Y. Shang

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
1
−velocity

y
Re=1000

 

 

Step 1

Step 2

Present

T−Newton

F−Oseen

Erturk et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

u
2
−

ve
lo

ci
ty

Re=1000

 

 

Step 1

Step 2

Present

T−Newton

F−Oseen

Erturk et al.

Fig. 3 Comparison of u1-velocity profiles along the vertical centreline (left) u2-velocity profiles along the horizontal centreline (right)
for the lid-driven cavity flow at Re = 1000
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Fig. 4 Comparison of u1-velocity profiles along the vertical centreline (left) u2-velocity profiles along the horizontal centreline for the
lid-driven cavity flow at Re = 2500

In this test case, we set the Reynolds number as Re = 1000, 2500 and 5000, where uniform meshes of sizes
H = 1/40 and h = 1/160 are used and the stabilization parameters are set as αH = 0.025H and αh = 0.025h. We
compute the solutions by the first step, the second step and the entire algorithm of present method. For comparison,
as done in Sect. 4.1, we also compute the solutions by applying the three-step Newton iteration method (denoted by
T-Newton) consisted of one stabilized coarse mesh nonlinear system and two steps of stabilized Newton iterations
on the fine mesh and the four-step Oseen correction method (denoted by F-Oseen) obtained by adding an additional
fine mesh third Oseen correction step to the present Algorithm I. Figures 3, 4, 5 compare the numerical results with
the existed data of Erturk et al. [69] who used a very fine mesh grid of 601 × 601. From Figs. 3, 4, 5 we see that
each step of our present method significantly improves the accuracy of the approximate solutions of the previous
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Fig. 5 Comparison of u1-velocity profiles along the vertical centreline (left) u2-velocity profiles along the horizontal centreline for the
lid-driven cavity flow at Re = 5000

Table 4 CPU time in second spent by the methods for the lid-driven cavity flow

Re Step 1 Step 2 Present T-Newton F-Oseen

1000 (# 31) 22 38 52 58 68

2500 (# 41) 29 44 59 65 74

5000 (# 60) 42 57 72 78 89

step. Again, noting that the standard stabilized two-grid Oseen correction method consists of the first two steps of
our present method, this test case shows that our method can yield an approximate solution with a higher accuracy
than the standard stabilized two-grid Oseen correction method. The accuracy of the computed solutions is very
comparable among our present method, the three-step Newton iteration method, the four-step Oseen correction
method and the data of Erturk et al. [69]. However, our present method spends less CPU time than the three-step
Newton iteration method and the four-step Oseen correction method (see Table 4 for details, where the number in
bracket is the nonlinear iterations count satisfying the stopping criterion for the nonlinear coarse mesh system).
Comparing the numerical results by our present method and that from the four-step Oseen correction method, we
see that further iteration does not obviously improve the solutions. Figures 6, 7, 8 describe the computed streamlines
and isobars, which are also in good agreement with those in the literature (cf. [69,70]). This test case illustrated the
effectiveness of the proposed method.

5 Conclusions

In this work, we proposed and studied a three-step Oseen correction method for the steady incompressible Navier–
Stokes equations at high Reynolds numbers. This method uses a two-grid discretization strategy and a finite element
variational multiscale approach based on two local Gauss integrations for stabilizations. It is based on a variational
multiscale-stabilized small nonlinear coarse mesh system and two Oseen-linearized fine mesh problems which have
the same stiffness matrices with only different right-hand sides. The theoretical analysis shows that, with suitable
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Fig. 6 Computed streamlines (left) and isobars (right) for the lid-driven cavity flow at Re = 1000
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Fig. 7 Computed streamlines (left) and isobars (right) for the lid-driven cavity flow at Re = 2500

values of the algorithmic parameters, the proposed method can yield an optimally asymptotic convergence rate.
Numerical results demonstrated the effectiveness of the proposed method, which show that the method can yield a
convergence rate of the same order as the one-level finite element variational method used directly on the fine mesh,
with a substantial reduction in computational time. It can also yield a much better solution with a higher accuracy
than the standard stabilized two-grid Oseen correction method.
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Fig. 8 Computed streamlines (left) and isobars (right) for the lid-driven cavity flow at Re = 5000
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