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Abstract Mass transfer in a closed-ended, cylindrical tube, under an oscillatory electro-osmotic flow, is theoreti-
cally studied. Analytical solutions are found for the distribution of the electric potential, the velocity field and the
concentration field. The time-averaged mass flux is then calculated in terms of an effective diffusion coefficient, or
dispersion coefficient, akin to the classical Taylor–Aris dispersion. Calculations suggest that enhancement of mass
transfer in dead-end pores, modelled as a closed-ended cylindrical tube, should be possible using an AC electric
field under acceptable operating conditions, allowing, for example, up to a threefold enhancement in pores with a
radius of 1 µm.
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1 Introduction

Electro-osmotic flow (EOF) may be most simply described as the fluid motion resulting from an applied electric
field acting on excess charges within an electrolyte solution. The formation of an electric double layer (EDL) at a
charged solid surface creates a region with excess charge due to attraction and repulsion of co- and counter-ions,
respectively [1]. In the presence of an electric field, the ions within the EDLmigrate and viscously drag the adjacent
fluid, resulting in bulk flow.

While microfluidic applications have been a major driver for studies aimed at exploiting EOFs and inducing
mass-transfer enhancement on the microscale [2–6], other diffusion-limited processes may also benefit from such
enhancement.Notably, adsorption and heterogeneous catalysis are often performed in packed bed reactors composed
of pelletised porous substrates, inwhich inter-particle diffusive transport is often the rate-limiting step. Flow-induced
mixing may be employed, to some extent, within the macroscale, inter-particle space, but is of limited effectiveness
in the microscale pores within the pellets [7]. Other processes that suffer from similar shortcomings include various
types of chromatographic separation [8] and super-capacitor electrodes [9]. This is particularly true inside dead-
end pores—it is practically impossible to induce pressure-driven flow within such structures; hence, the potential
advantage for EOF-mediated transport is clear, since these externally excited flows are possible even within such
confined geometries.

Guy Z. Ramon (B)
Department of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
e-mail: ramong@technion.ac.il

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-017-9949-z&domain=pdf
http://orcid.org/0000-0002-0711-0654


196 G. Z. Ramon

The flow-field generated by an EOF in confined geometries has been reported in the literature. For example,
EOF in closed-ended square and cylindrical channels has been presented by Marcos et al. [10,11], who obtained
analytical solutions for these problems, and by Zhang et al. [12] who compared an analytical solution to a numerical
scheme. These studies have shown that the flow generated within the EDL, by the applied electric field, induces
a pressure gradient which in turn drives a back-flow in the centre of the channel. However, the mass transfer
under such conditions and, specifically, the time-averaged dispersion, was not considered. Huang and Lai [13]
have presented an analytical study of the enhanced mass transfer in an oscillatory EOF, within a parallel-plate
microchannel configuration. The characteristics of the enhanced dispersion follow similar trends to those observed
for the pressure-driven case; however, the effect of the EDL thickness distinguishes between the two situations, as it
influences the degree of non-uniformity exhibited by the velocity field.When the EDL is extremely thin, the velocity
field approaches a plug-flowdistribution,whence the dispersion coefficient diminishes substantially.However, under
such conditions, it has been shown that mass-transfer enhancement is possible, if the solute undergoes a reversible
exchange with the solid boundary [14].

However, for a closed-ended configuration, which may be representative of inter-particle conditions within
granular beds and other microscale porous media, the possible effect of an EOF on mass transfer has not been
studied. It is therefore the purpose of the present paper, to consider the mass transfer in AC-driven EOF, specifically,
the time-averaged mass flux of an inert solute within a closed-ended tube. The paper is organised as follows: Sect.
2 contains the model derivation and obtained solutions for the velocity and concentration fields, as well as the
dispersion coefficient; results are then presented and discussed in Sect. 3, with concluding remarks given in Sect. 4.

2 Model formulation

Themodel considers the axis-symmetric, fully developed velocity inducedwithin a closed-ended tube by an external
electric field applied along the axis, where z and r denote the axial and radial coordinates, respectively. The general
features and notation follow similar lines to our earlier paper [14]. We begin by presenting the equations governing
the velocity and concentration fields, followed by their solutions and, finally, the dispersion coefficient.

2.1 The electric field

The electro-osmotic flow problem requires a description of the electric body force resulting from the electric field
acting within the EDL. For the case of a symmetric, monovalent electrolyte (such a NaCl), the electric potential is
governed by the following Poisson–Boltzmann equation:

1

r

d

dr

(
r
dψ

dr

)
= 2n0e0

ε
sinh

(
e0ψ

kbT

)
, (1)

where ψ denotes the electric potential, e0 is the elementary charge, n0 the bulk electrolyte concentration, T the
absolute temperature, kb the Boltzmann constant and ε = ε0εr is the permittivity of the liquid medium, with ε0
and εr denoting the permittivity of vacuum and the relative permittivity of the liquid, respectively. Equation (1) is
subject to the boundary conditions

dψ

dr
= 0, r = 0, (2a)

and

ψ = ψs, r = R, (2b)
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in which ψs is equivalent to the zeta potential at the edge of the immobilised Stern layer, which is here assumed to
be uniformly distributed on the solid boundary.

Equation (1) is non-linear and, generally, requires a numerical solution. However, we invoke the Debye–Hückel
approximation, ze0ψ << kT , so that sinh (e0ψ/kT ) � e0ψ/kT , and Eq. (1) becomes, in scaled form,

1

η

d

dη

(
η
dΨ

dη

)
= λ2Ψ. (3)

Here, η = r/R, Ψ = e0ψ/kT is the scaled potential and λ = χR is the scaled reciprocal Debye length, where

χ =
(
2e20n0
εkT

)1/2

, (4)

is the inverse of the characteristic EDL thickness. Equation (3), has the boundary conditions

dΨ

dη
= 0, η = 0, (5a)

and

Ψ = Ψs, η = 1. (5b)

The solution to this boundary value problem may be written as

Ψ (η) = Ψs
I0 (λη)

I0 (λ)
, (6)

where I0 is the zeroth-order modified Bessel function of the first kind.

2.2 Velocity field

As previously shown [10–12], in a closed-ended pore, the EOF originating from within the EDL, will induce a
pressure-driven back-flow in the centre of the pore. This is the consequence of mass conservation—while the liquid
flows along the pore walls, the closed-end induces a higher pressure; further, at any cross-section, the net flow-rate
will be zero as the EOF is balanced by the pressure-driven returning fluid. To find the velocity field, we write the
equation of motion for an incompressible, fully developed, electrically driven flow in a cylindrical tube,

ρ
∂u

∂t
= μ

r

∂

∂r

(
r
∂u

∂r

)
− ∂p

∂z
+ ρeE, (7)

where u is the axial velocity component, μ, ρ, are the fluid’s viscosity and density, respectively and ρe is the charge
density, such that the term ρeE represents the electric body force. Here, the boundary conditions are no-slip at the
solid wall and a finite velocity at the tube axis

∂u

∂r
= 0, r = 0, (8a)
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and

u = 0, r = R. (8b)

The flow is assumed to be driven by a uniform, time-harmonic, electric field of the form

E(t) = E0e
iωt , (9)

in which E0 is the amplitude of the applied electric field, i is the imaginary unit and ω is the angular frequency of
the oscillations. Since Eq. (7) is linear, we assume that the induced pressure gradient and velocity fields are also
time-harmonic once the initial transient has decayed. The pressure gradient is then of the form

−∂p

∂z
= K eiωt+φ, (10)

where K is a measure of the amplitude of the resulting back-pressure gradient, φ denotes the phase angle between
the oscillating electric field and the induced back pressure, and the velocity is

u = R[Us f (η)eiωt ], (11)

with R[·] the real part of a complex quantity. Here, the velocity scale is taken to be the Helmholz–Smoluchowski
velocity Us = εψsE0/μ, which is the velocity reached at steady-state under a DC electric field of magnitude E0.
Under these assumptions and with the solution to the electric potential distribution, we have

iα2 f − 1

η

d

dη

(
η
d f

dη

)
= K̃ + λ2

I0 (λη)

I0 (λ)
, (12)

where K̃ = ρK τ/Us is a scaled pressure gradient, with τ = R2/ν denoting the viscous time scale. This equation
is subject to the boundary conditions

d f

dy
= 0, η = 0, (13a)

and

f = 1, η = 1. (13b)

The solution to Eq. (12) is

f = iλ2

α2 + iλ2

(
J0(α̂η)

J0(α̂)
− I0(λη)

I0(λη)

)
− iK̃

α2

(
1 − J0(α̂η)

J0(α̂)

)
, (14)

where J0 is the zeroth-order bessel function of the first kind, α̂ ≡ i3/2α, with α denoting the Womersley number,
familiar from pressure-driven oscillating flow.We note that α2 ≡ R2ω/ν is the ratio of the viscous time scale, R2/ν

to the oscillation time scale, 1/ω. It is readily seen that this solution is a superposition of the AC-EOF obtained for
an open-ended cylindrical tube, given by the first term, with a pressure-driven oscillatory flow, given by the second
term. However, unlike the usual pressure-driven case, the pressure gradient is not a prescribed quantity; therefore,
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an additional constraint is imposed on the flow, by requiring that the volumetric flow-rate at any cross-section be
equal to zero, or

∫ 1

0
u η dη = 0. (15)

Performing the integration, the scaled amplitude of the induced pressure gradient is found to be

K̃ = iα2λ2

λ2 + iα2

Fλ − Fα

1 − Fα

, (16)

with

Fα = 2

α̂

J1(α̂)

J0(α̂)
, Fλ = 2

λ

J1(λ)

J0(λ)
.

2.3 The concentration field

The concentration field of the soluble species is governed by an advection–diffusion equation

∂C

∂t
+ u

∂C

∂z
= Dm

(
1

r

∂

∂r

(
r
∂C

∂r

)
+ ∂2C

∂z2

)
, (17)

where C is the concentration and Dm is the molecular diffusion coefficient. The boundary conditions are symmetry
at the tube axis,

∂c

∂r
= 0, r = 0, (18a)

and no-flux at the tube wall,

∂C

∂r
= 0, r = R. (18b)

Neglecting end effects, we may seek a solution of the form [15,16]

C(r, z, t) = γ
(
z + g(r)eiωt

)
, (19)

in which the axial concentration gradient, γ , is assumed to be constant. The equation for the radial distribution of
the solute is then, in non-dimensional form,

iΩ2g − 1

η

d

dη

(
η
dg

dη

)
= −Pe f, (20)

where Pe = UsR/Dm is the Péclet number, f is given by Eq. (14), and

Ω2 = R2ω

Dm
= α2Sc, (21)
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is the ratio of the diffusive time scale to the oscillation time scale, with Sc = ν/D denoting the Schmidt number.
Equation (20) is subject to the boundary conditions

dg

dη
= 0, η = 0, (22a)

and

dg

dη
= 0, η = 1, (22b)

with the solution

g(η) = Pe

(
B3 − B1

I0(λη)

I0(λ)
+ (B4 − B2)

J0(α̂η)

J0(α̂)
+ B5

J0(Ω̂η)

J0(Ω̂)

)
, (23)

where Ω̂ = i3/2Ω , and the following definitions have been made:

B1 = λ2(
λ2 − iα2

) (
λ2 − iΩ2

) ,

B2 = iλ2(
λ2 − iα2

) (
α2 − Ω2

) ,

B3 = K̃

α2Ω2 , B4 = K̃

α2(α2 − Ω2)
,

and

B5 = B2
Gα

Ω̂

(
K̃ (α2 + iλ2)

α2λ2

)
− B1

Gλ

Ω̂
,

with

Gλ = λ
J1(λ)

J0(λ)
, Gα = α̂

J1(α̂)

J0(α̂)
, GΩ = Ω̂

J1(Ω̂)

J0(Ω̂)
.

2.4 The time-averaged streaming mass flux

With the velocity and concentration distributions obtained, we are in a position to calculate the time-averaged
mass flux resulting from the interaction of the two oscillating fields. This may most conveniently be written as an
enhanced diffusion or hydrodynamic dispersion coefficient,

De = −1

2
R

[〈u∗g〉] , (24)

where angle brackets are a cross-sectional average, and the star denotes a complex conjugate. In scaled form, the
ratio of the dispersion coefficient to the molecular diffusion coefficient may be expressed as [16,17]

De

Dm
= 1 − Pe

2
R

[〈 f ∗g〉] , (25)
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enabling one to easily appreciate the comparative contribution of the oscillation-induced transport. Substituting the
expressions for the functions f and g and performing the necessary integration, we find the dispersion coefficient,
which may be written, after some algebra, as

De = PeR

[
iK̃ ∗

α2

(
B1

(
Hλα∗ − Gα

α̂2

)
+ B2

(
Hα − Gα

α̂2

)
+ B4

(
1

2
− Gα

α̂2

)

+ B5

(
Gα

α̂2 − Hα∗
)

+ B6

(
1

Ω̂
+ HΩα∗

))

− λ2

λ2 + iα2

(
B1 (G + Hλα) + B2 (Hαλ + Hα∗)

− B4

(
G∗

α

α̂2 − Gλ

λ2

)
− B5 (Hα∗ − Hαλ)

+ B6 (HΩλ + Hα∗Ω)

)]
, (26)

where, for brevity, we introduce the notation

G = 1

2

(
1 − I 21 (λ)

I 20 (λ)

)
,

Hα∗ = Gα − Gα∗

α̂2 − α̂∗2 , Hαλ = Gα + Gλ

α̂2 + λ2
,

Hλα = Gα + Gλ

λ2 + α̂∗2 , Hλα∗ = Gλ + Gα∗

λ2 + α̂∗2 ,

and

HΩλ = Ω̂

Ω̂2 − α̂∗2

(
1 − Gλ

GΩ

)
,

Hα∗Ω = Ω̂

Ω̂2 − α̂∗2

(
1 − G∗

α

GΩ

)
,

HΩα∗ = Ω̂

α̂∗2 − Ω̂2

(
1 + Gλ

GΩ

)
.

3 Results and discussion

In the following section, calculations of the electric potential, velocity and concentration distribution are presented,
as well as the resulting dispersion coefficient, as influenced by the dimensionless variables α, representing the scaled
oscillation frequency; λ, the EDL characteristic thickness; Sc, a measure of the solution transport properties, and
the fluid motion, represented by Pe.

When applying an electric field to drive the EOF, a relatively wide range of frequencies is accessible provided that
these are kept below∼ 1MHz, in order to avoid EDL relaxation effects. Further, the amplitude of the applied electric
field must in general be E0 < 100 V/mm to avoid Joule heating and possible electro-kinetic instabilities [13]. These
restrictions correspond with a range of scaled frequencies α, e.g. in an aqueous solution with ν ≈ 10−6m2/s, a
value of α = 0.5 corresponds with a frequency of ∼ 4 Hz in a tube with R = 100 µm, while for a pore with
R = 1 µm, a frequency of 1600 Hz corresponds with a value of α ≈ 0.1. To conform with the restricted amplitude,
in an aqueous solution at T = 298 K with ψs = −0.1 V and Sc = 1000, we limit the velocity to Us < 2 mm/s, or
Pe = 0.8 − 20, in pores of radii R = 0.1 − 10 µm, respectively.
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Fig. 1 Distribution of the scaled electric potential, Ψ , in the electric double layer, calculated for various values of the parameter λ.
Solid curves are calculations based on a numerical solution of the Poisson–Boltzmann equation, while dashed curves are calculated
using the approximate analytical solution of the linearised equation
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Fig. 2 Scaled velocity distribution for the closed-ended tube, at different times during an oscillation cycle. a α = 0.1, λ = 10. b
α = 0.1, λ = 100

We begin by examining the properties of the EDL, as manifested through the distribution of the electric potential.
The scaled potential, Ψ , obtained from a numerical solution of Eq. (1) and from the approximate solution (6), is
plotted in Fig. 1. It may clearly be seen that for a lower surface potential, the approximate solution is virtually
indistinguishable from the exact numerical solution; for high surface potentials, the approximation deviates and
clearly over-predicts the exact solution. A value ofΨs = 4 correspondswith a zeta potential ofψs � − 0.1 V,which
is considered to be a representative value [1]; Nevertheless, the approximate solution used in deriving the solutions
for the velocity and concentration fields and, consequently, the dispersion coefficients, should be reasonably valid,
particularly for large values of λ. Also noteworthy, the potential does not decay to zero when the ratio of the tube
radius to the Debye length, λ < 7, in which case an overlapping of the EDLs may occur and the obtained solution
may no longer be valid; in subsequent calculations, values of λ used will be chosen such that overlapping should
not occur.

Next, the flow and concentration fields are examined, followed by their combined effect on the solute transport
by an oscillating EOF within a closed-ended tube. This situation may be viewed as an approximate model of dead-
end pores within a porous structure, where transport is generally limited to molecular diffusion alone; this often
presents the bottleneck of processes such as catalysis and adsorption, which occur within such porous structures.
For example, in packed beds of pelletised adsorbents, fluid induced mixing is effective in the intra-particle domain,
where bulk flow may be driven by a pressure gradient. This pressure-driven mixing is ineffective when considering
the inter-particle mass transfer. In such cases, applying an AC electric field will drive flow even in confined pores,
and it is therefore of interest to examine the potential enhancement to the mass transfer within such dead-end pores.

As may be seen in Fig. 2, the flow under such conditions is essentially a superposition of an electro-osmotic
flow, driven within the EDL, and a back-flow at the center of the tube, driven by the induced back-pressure. This
velocity distribution becomes essentially parabolic, if the EDL is thin and α ≤ 1, save that the fluid adjacent to the
wall flows in a direction opposite to that of the tube axis region. Increasing α will alter this velocity distribution and
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Fig. 3 The function g, representing the scaled radial concentration distribution for the closed-ended tube, at different times during an
oscillation cycle. a α = 0.1, λ = 10. b α = 0.1, λ = 100. Calculations made with Pe = 1 and Sc = 1000
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Fig. 4 The variation of the dispersion coefficient and mass-transfer enhancement, represented by the ratio De/Dm , for various values
of the Schmidt number, Sc. a As a function of the Womersley number, α. b As a function of the Péclet number, Pe. Calculations made
with λ = 100

decrease the maximum velocity attainable. The concentration field (Fig. 3) shows considerably larger variations
compared with a classical EOF in an open-ended tube, even for a low value of α. This is a direct consequence of the
back-flow; the low frequency limit is no longer a nearly uniform, plug-like flow outside the EDL, but a parabolic
profile typical of laminar pressure-driven flow.

Since we are interested in mass-transfer enhancement within pores with small radii, there are two factors to
consider before calculations of the dispersion coefficient are made. First, it is expected that the relevant values of α

will be correspondingly small, even for relatively high frequencies. This is particularly important since achieving
a significant Pe at a high frequency may be difficult. Second, It may be plausible to consider the effect of relatively
large EDL to pore radius ratios, say λ = 10.

Typical curves showing the variation of the dispersion coefficient with α and Pe, for different Sc, are shown
in Fig. 4. At a constant Pe, increasing the frequency results in a decreased maximum velocity attainable, which
reduces the dispersion and level of mass-transfer enhancement. Another aspect is the fact that under a constant Pe,
a slow diffuser exhibits a lower dispersion coefficient at higher frequencies; this is due to the fact that increasing
the frequency leaves less time for the solute to diffuse in and out of the slower moving wall region of the velocity
field, an essential part of the dispersion mechanism. A thicker EDL will also result in a lower dispersion coefficient,
as illustrated in Fig. 5; this is due to the fact that, at a given applied electric field, the maximum velocity is lower
in the presence of a thicker EDL.

Significant mass-transfer enhancement appears to be possible within the range of parameters employed. For
example, in a pore with R = 1µm, applying a frequency of 400Hz corresponds with a value of α = 0.05. For a
solution with Sc = 1000, an electric field which results in a value of Pe = 20 should be possible, resulting in a
300% increase in the mass-transfer rate. For a faster diffuser, the achievable Péclet number will be smaller, resulting
in a lower degree of enhancement, ≈ 20% and ≈ 80% for Sc = 5000 and Sc = 2000, respectively. For smaller
pores, it would appear that only slow diffusing solutes may benefit from the enhanced mass transfer, under the
considered constraints. As a final note, we consider that the mass-transfer efficiency can be viewed here as simply
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Fig. 5 The variation of the mass-transfer enhancement, represented by the ratio De/Dm , as a function of Pe, for various values of λ.
Calculations made for α = 0.1, Sc = 1000

the ratio of dispersion to molecular diffusivity, which has been referred to in the forgoing sections as the degree of
enhancement. Further, one may also estimate the power consumed, P ≈ UsρeE0, the multiple of the velocity and
the electric body force that generates it. We may scale the power against the Péclet number, as this quantity would
then represent the power consumed per unit increase in dispersion effectiveness. Taking the charge density based
on the average electric potential within the EDL, we find that P ≈ eψsDmE0/λ, which shows that the energetic
efficiency of the electro-osmotic mass-transfer process increases when the EDL is thin (large λ), and for a slow
diffuser—for which Pe is high.

4 Summary and conclusions

The foregoing analysis presented the time-averaged flux, represented by a dispersion coefficient, generated by an
oscillating electro-osmotic flow in a closed-ended cylindrical tube. This configuration is envisioned as an approxi-
mate geometry for porous structures within pelletised, granular beds used, for example, for adsorption and catalysis.
Within such pores, mass transfer is limited by diffusion and so enhancement of the transport rate is desirable. The
calculated dispersion coefficient depends on the thickness of the electric double-layer relative to the pore size, as
well as the solution properties and oscillation frequency—this is manifested by a parameter that represents the ratio
of the diffusion and oscillation time-scales. At a given pore radius, the dispersion decreases with the frequency at a
constant Pe, as has generally been observed for dispersion in oscillating flows; this is due to the reduced amplitude
of the oscillatory motion. The effect of the scaled EDL thickness has been found to be of particular importance
in determining the degree of mass-transfer enhancement, which appears to favour thin double layers. The results
indicate that enhancement of mass transfer, due to time-averaged dispersion, is indeed possible under acceptable
operating conditions, allowing, for example, up to a threefold enhancement in pores with a radius of 1µm. The
ability to increase mass transfer within dead-end pores using an external stimuli may find use in nano/microfluidic
devices, as well as applications where diffusion and chemical reactions occur within confined pores of a larger solid
matrix, such as catalysis, adsorption and chromatography.
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