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Abstract We present a generalized statistical approach for the description of fully three-dimensional fiber-
reinforced materials, resulting from the composition of two independent probability distribution functions of two
spherical angles. We discuss the consequences of the proposed formulation on the constitutive behavior of fibrous
materials. Upon suitable assumptions, the generalized formulation recovers existing alternative models, based on
averaged structure tensors both at first- and second-order approximations. We demonstrate that the generalized for-
mulation embeds standard behaviors of fiber-reinforced materials such as planar isotropy and transverse isotropy,
while any intermediate behavior is easily obtained through the calibration of two material parameters. We illustrate
the performance of themodel bymeans of uniaxial and biaxial tests. For uniaxial loading, we introduce a preliminary
discussion concerning the generalized tension–compression switch procedure.

Keywords Fiber-reinforced materials · Fourth pseudo-invariant · Isochoric anisotropic hyperelasticity · Statistical
fiber distribution

1 Introduction

The modern progress in tissue engineering design and ensuing applications calls for the definition of new sophisti-
cated constitutive modeling of soft materials, which rely on robust tools of computational mechanics [1]. In terms of
constitutive difficulties, fibrous bio-tissues can be considered among the most challenging materials, since the need
of finding patient-specific solutions requires modeling the microstructural complexity and variability typical of such
tissues [2,3]. Under several biological working conditions, biomaterials manifest reversible behaviors, suggesting
the use of hyperelastic models, where themultiscale microstructure of thematerial can be embedded, in a continuum
sense, within an appropriate strain energy density. Hyperelasticity facilitates the achievement of microstructurally
consistent material models to be used in predictive numerical applications [4–7].
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In a more general framework, fiber-reinforced composite materials characterized by two or more sets of fibers are
modeled often by assuming the mechanical superposition of distinct contributions of the material constituents. In
particular, the strain energy describing a homogeneous and isotropic matrix is usually combined with an anisotropic
strain energy density term for each fiber family considered in the model. These models apply very well to com-
posites, where the distinct fiber components are disposed in an ordered manner and with a homogeneous strong
alignment. Most soft biological tissues, by the way of contrast, are multiphasic materials [7] characterized by
a position-dependent fiber arrangement and by a random orientation of the reinforcement [8]. Biological fiber-
reinforced media represent one important example of study encompassing the well-established mechanical the-
ory of continua with large deformations with the less explored statistical characterization of anisotropic mate-
rials with microstructural features. The geometrical and topological complexity demands adopting a statistical
approach in the description of the fiber arrangement. Stochastic approaches are based on the introduction of a
probability distribution function (PDF) to express the probability of finding a fiber oriented in a given direc-
tion [9].

The description of statistical distributions of fibers in amaterialmodelwas introduced byLanir [10]. Experimental
evidence has been prompting towards the characterization of fiber distributions by means of von Mises PDF
(see, e.g., [11]), although Bingham orientation density functions built on microsphere models have also been
considered [12]. For the sake of computational convenience, however, material models for bio-tissues have been
formulated in terms of invariant-based hyperelastic strain energy densities [13–16]. Such models, i.e., account
for the presence of distributed fibers by introducing first- and second-order statistics of the pseudo-invariant I4
associated to the structure tensor of the main orientation of the fibers [11,17,18]. Note that the non-Italic symbol
I4 stands for the aleatoric variable in opposition to the deterministic variable I4. Although such approximations
introduce a theoretical limitation in the material model, nevertheless several efficient numerical implementations
based on experimental evidence [8] have been proposed in the literature; see [9] and [19] for an extended review.

In the present study, we propose a generalization of the stochastic description of fiber distributed tissues approx-
imated through the pseudo-invariant I4 statistics at the first order [11] and at the second order [18], thus extending
the approach described in [19]. In particular, we characterize the non-uniform orientation of the fiber arrangement
by generalizing the three-dimensional (3D) PDF in the composition of two independent PDFs. We begin from
a well-established theoretical framework [20] and assume the tridimensional distribution of the reinforcement to
be described by means of a PDF dependent on the first spherical angle (�) and a PDF dependent on the second
spherical angle (�). We demonstrate the ability of the present formulation to recover the typical mechanical behav-
ior of isotropic, transversely isotropic, fully anisotropic, and planar distributions [9] by tuning only two material
parameters. We characterize a complete set of parameter combinations for the superposition of the two PDFs. Fur-
thermore, we illustrate the mechanical meaning of the proposed formulation in terms of averaged integral constants
and highlight the relevance of the approach in numerical modeling of fiber-reinforced tissues and the feasibility to
introduce a switch for the exclusion of the compressed portion of fibers [21].

The paper is organized as follows. In Sect. 2, we provide a brief summary of the material model for distributed
fibers and introduce the statistical definition of our generalized spatial PDF superposition. In Sect. 3, we present a
quantitative characterization of the fiber distribution identifying the limit cases and the potential three-dimensional
configurations implicitly included in themodel.We further provide a quantitative analysis of the generalized integral
constants that characterize the model. Finally, in Sect. 5 we discuss model reliability and limitations, thus presenting
future perspectives.

2 Generalized fiber distributed material model

In the following discussion, we consider only the anisotropic part of the strain energy density of a fibrous material,
which is the only part affected by the presence of the fibers, and assume a rather standard exponential form that
possesses good mathematical properties. In the following, we assume tacitly that the material is incompressible,
i.e., J = 1.
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Fig. 1 Generalized anisotropic probability distribution density functions, describing fiber orientation, mapping the directions a within
the unit sphere into real numbers that measure the density. Surface plots are defined by the vector ρ(a)a with ρ�(θ), ρ�(φ) based
on von Mises distributions (4), (5). The limit case of b� = b� = 0 describes full isotropy. The limit case b� → ∞ with b� = 0
describes fibers all aligned in the polar direction (deterministic transverse isotropy). The limit case b� → ∞ with b� = 0 describes
a two-dimensional fiber arrangement (deterministic planar isotropy). The inset describes the Euler angles associated with the generic
direction a, when it does not coincide with any of the Cartesian basis vectors

2.1 Anisotropic directional strain energy density

We complywith the usual definitions in finite kinematics and denotewithF the deformation gradient, with J = det F
the Jacobian or determinant of F, with F = J−1/3F the isochoric deformation gradient, with C = F

T
F the

isochoric right Cauchy–Green deformation tensor, and with A = a ⊗ a the structure tensor associated to a specific
orientation a. The fourth isochoric pseudo-invariant I 4 = A : C accounts for the global effects of a deformation
over the fiber reinforcement [13]. We remark that the theoretical formulation proposed in the present work can
be readily adopted with the classical anisotropic invariants in the case of compressible materials avoiding non-
physical computational issues [22,23]. The anisotropic strain energy density associated to the orientation a has the
form:

�(I 4) = k1
2k2

exp
[
k2

(
I 4 − 1

)2] − k1
2k2

, (1)

where k1 (a stiffness-like parameter) and k2 (a dimensionless rigidity parameter) control the mechanical response
at low and high strains, respectively.

We identify a specific orientation stemming from a material point of a fibrous solid in a unit sphere � with the
unit vector in spherical coordinates (see the inset in Fig. 1):

a = sin� cos� e1 + sin� sin� e2 + cos� e3 , (2)

defined in the orthogonal basis (e1, e2, e3), where� and� are the Euler angles in the reference configuration. Fibers
in � are spatially oriented according to a normalized PDF, ρ(a) ≡ ρ(−a), which quantifies the fraction of fibers in
the direction a. We regard � and � as aleatoric variables varying in the ranges [0, π ] and [0, π ], respectively. As
customary in statistical descriptions, we indicate with capital letter X the aleatoric variable and with small letter x
its occurrence, i.e., its deterministic value.
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2.2 Generalized distributed fibers

In the following, we generalize the formulation proposed by Petsche and Pinsky [24] and assume that the tridimen-
sional distribution of the reinforcement decomposes into the product of two independent PDFs, each of which is a
function of one Eulerian angle, i.e.,

ρ(a) ≡ N�,� ρ�,�(θ, φ) = N�N� ρ�(θ) ρ�(φ) . (3)

As customary for collagen reinforcement in biological tissues [8], we assume a von Mises type PDF for the angle
�. Additionally, we assume a von Mises type distribution centered in φ = π/2 for the PDF of �. Expression (3)
is chosen relying on recent experimental findings concerning the tridimensional distribution of the orientation of
collagen fibers in biological tissues [25], where a different physiological spreading of collagen fibers is observed in
the two orthogonal directions. To construct the sought PDF, we make use of the following observation: (i) since the
two PDFs are statistically independent, they can be normalized through two distinct coefficients N� = N�(b�) and
N� = N�(b�), respectively; (ii) the necessity of describing, in a generalmanner, all the location-dependent changes
observed in the fiber arrangement requires the introduction of two distinct and in general different concentration
parameters, b�, b�, one for each PDF; (iii) the character of the resulting distribution is fully tridimensional and
it will generalize the transversely isotropic model originally proposed in [11]; (iv) the formulation recovers, as a
limiting case, the planar distribution of the fibers. Thus, we write

ρ�(θ) = exp [b� cos 2θ ], (4)

ρ�(φ) = exp [b� cos(φ − π/2)], (5)

where b� and b� define the concentration parameters of the two independent PDFs, respectively.
We comply with the normalization condition in the half sphere

1

2π

∫ π

0

∫ π

0
ρ(a) sin θ dθ dφ ≡ N�,�

∫ π

0

∫ π

0
ρ�,�(θ, φ) sin θ dθ dφ = 1 , (6)

and define the normalization coefficients

N� = 1∫ π

0 ρ�(θ) sin θ dθ
, N� = 1∫ π

0 ρ�(φ) dφ
, (7)

such that, given (3) and (6), the following relation is obtained:

N�,� = N�N� ≡ 1

2π
. (8)

Here we note that N� in (7)2 corresponds to the correct normalization of ρ�(φ), while N� in (7)1 does not fulfill
such a condition due to the presence of sin θ . However, N� can be expressed as a function of N�,� and N� resulting
very useful in what follows.

The structure tensor approach requires introducing the average operator [18]

〈·〉 =
∫

ω

ρ(a)(·) dω, (9)

where the infinitesimal solid angle is dω = sin θ dθ dφ in polar coordinates. In particular, the average and variance
of the fourth pseudo-invariant are computed in terms of the generalized averaged structure tensors H = 〈A〉 and
H = 〈A ⊗ A〉, i.e.,
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I ∗
4 ≡ 〈I 4〉 = H : C, (10)

σ 2
I4 ≡ 〈(I 4 − I ∗

4 )2〉 = C : H : C − (H : C)2 . (11)

In keeping with the theoretical tensor notation adopted in the mechanics of fiber composites [9,26–28], the two
generalized structure tensors H, H are characterized by symmetries that reflect the symmetries of the material
behavior. In particular, the average second-order tensor H has a diagonal representation

[H ] =
⎡
⎣

κθ κφ 0 0
0 κθ (1 − κφ) 0
0 0 1 − κθ

⎤
⎦ , (12)

and the average fourth-order tensor H has non-vanishing terms

H1111 = κ̂θ κ̂φ,

H2222 = κ̂θ (1 − 2κφ + κ̂φ),

H3333 = 1 − 2κθ + κ̂θ ,

H1122 = H2211 = H1212 = H2121 = H1221 = H2112 = κ̂θ (κφ − κ̂φ),

H1133 = H3311 = H3131 = H1313 = H3113 = H1331 = κφ (κθ − κ̂θ ),

H2233 = H3322 = H2323 = H3232 = H2332 = H3223 = (κθ − κ̂θ )(1 − κφ) ,

(13)

where the coefficients are

κθ = N�

∫ π

0
ρ�(θ) sin3 θ dθ, κ̂θ = N�

∫ π

0
ρ�(θ) sin5 θ dθ , (14)

κφ = N�

∫ π

0
ρ�(φ) cos2 φ dφ , κ̂φ = N�

∫ π

0
ρ�(φ) cos4 φ dφ . (15)

In the integrals (14) and (15) expressing the coefficients, note that the exponents relative to � are one unit smaller
than those relative to �.

Remark In the limiting case of uniform distribution of the set of fibers over the range of the angle �, the non-
vanishing coefficients of H and H converge to the ones originally derived by Gasser et al. [11] and Pandolfi and
Vasta [18] (see Appendix A).

Remark The statistical independence of the two PDFs allows us to relate the new integral coefficients κθ , κ̂θ , κφ, κ̂φ

with those previously derived in [11,18,20] (see Appendix B).

2.3 Second-order approximation of strain energy density

According to the second-order or variance approach introduced in [18], the strain energy density� is approximated
with aTaylor expansion up to the second-order terms about the expected average value of the fourth pseudo-invariant,
I ∗
4 , i.e.,

〈�〉 = �∗ + 1

2
�

′′ ∗
σ 2
I4 , (16)

where �∗ = �(I ∗
4 ) and the prime stands for the derivative with respect to I4. The closed form expression of the

average second Piola–Kirchhoff stress tensor is derived then as
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〈S〉 = 2
∂〈�〉
∂C

= f
(
I ∗
4 , σ 2

I4

)
H + g

(
I ∗
4 , σ 2

I4

)
H : C , (17)

where the coefficients f and g depend upon the statistics of I4 as

f
(
I ∗
4 , σ 2

I4

)
= �∗

0...3∑
j

a j I
∗
4
j
, g

(
I ∗
4 , σ 2

I4

)
= �∗

0...2∑
j

b j I
∗
4
j
,

with

a0 = −4k2 − 8σ 2
I4
k32 − 12σ 2

I4
k22, b0 = 4k2 + 8k22,

a1 = 24σ 2
I4
k32 + 12σ 2

I4
k22 − 8k22, b1 = −16k22,

a2 = 16k22 − 24σ 2
I4
k32, b2 = 8k22,

a3 = 8σ 2
I4
k32 − 8k22 .

For details about the derivation, we refer to the original works [18,20,29] where also the corresponding tangent
stiffness is provided.

3 Distribution characterization

In this section, we illustrate with diagrams and 3D plots the geometrical significance of the proposed generalized
approach, which clarifies the mechanical consequences on the behavior of the material.

3.1 Generalized fiber distributions

We begin with the sequence of surface plots presented in Fig. 1. For selected combinations of the concentration
parameters b�, b�, each surface plot maps on the unit sphere the weighted density ρ(a) in the direction a. Starting
from the isotropic case (b� = b� = 0, center), by increasing only the � concentration coefficient the transverse
isotropic limit case is reached, for b� → ∞ and b� = 0 (on the right). By increasing only the � concentration
coefficient, the planar isotropic limit case is reached for b� → ∞ and b� = 0 (on the left).

We note that there is a close correspondence between the sequence and the two limit conditions here described
and the ones previously presented in [9], obtained by altering of the nature of the PDF, and in [30], obtained by
including negative values of the concentration parameter b. In particular, when b� = 0, the standard von Mises
distribution is retrieved and, for b� > 0, the results are the same as in the right-hand side of the plot in Figure 1
of the paper by Federico and Gasser [9]. In contrast, for b� 
= 0, the distribution used in the present work gives
results that the traditional von Mises distribution cannot achieve, by construction, in agreement with Holzapfel
et al. [19]. Accordingly, when b� → ∞ we recover planar symmetry over the plane aligned to the symmetry
axis of the standard von Mises distribution. Contrariwise, the approach in [9] recovers axial symmetry for both
limiting conditions. Moreover, the present approach uses a unified theoretical description that allows to model
with two distinct concentration parameters a continuous variety of PDF combinations, including different forms of
fiber-dependent anisotropy.

The present model represents an enrichment and extension of previous formulations and allows to describe with
higher accuracy the microstructure of complex fibrous materials.

Figure 2 visualizes representative examples of surface plots, for different combinations of the concentration
parameters. The surface representation of the PDF considers only half spherical domain [�,�] ∈ [0, π ] and
each image compares three different combinations of the concentration parameters. The selected cases highlight
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(c)

bΘ = 2, bΦ = 0
bΘ = 2, bΦ = 2
bΘ = 1, bΦ = 8

(d)
bΘ = 2, bΦ = 0.2
bΘ = 2, bΦ = 1
bΘ = 1, bΦ = 8

(e)
bΘ = 2, bΦ = 8
bΘ = 8, bΦ = 0
bΘ = 8, bΦ = 1

(f)

Fig. 2 Surface plots defined by the vector ρ(a)a in the half range � ∈ [0, π ], � ∈ [0, π ]. Representative examples of multiple
combinations of the concentration parameters b�, b� (legend provided)

the modularity of the approach in reproducing experimental based biological tissue anisotropies that result highly
diversified by definition [25].

Figure 2a, b represents typical planar configurations (green) of the fiber arrangement in which a smooth transition
from isotropy or little anisotropy (yellow) is shown. In these cases, the intermediate configurations, required for
a continuum location-dependent material assignment, are represented by the red surfaces. Figure 2c, d shows
how a uniform anisotropic case (yellow) can be modified in different flattened three-dimensional distributions
(green) where, again, the red surface indicates a possible root for the transition. Finally, Fig. 2e, f shows typical
representations of planar anisotropic distributions. In particular, Fig. 2e shows a smooth continuous transition from
yellow to green, while Fig. 2f compares a purely uniform transverse isotropic case (red) with two alternative planar
transverse isotropic cases (yellow, green). This is a key feature of our generalized formulation that allows for fine
modeling of planar anisotropic fiber arrangements not included in previous works.

In Fig. 3,weprovide the surface plots disposed in amatrix format according to different values of the concentration
parameters. By properly selecting the two concentration parameters b�, b� it is possible to investigate several
different spatial distributions of the fibers and their mechanical implications [25].

3.2 Integral constants and integration domain

In order to visualize the differences of the distribution of the fibers between previous approaches and the present
formulation, in Fig. 4 we plot the constants that characterize the structure tensorsH andH versus the concentration

123



218 A. Gizzi et al.
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Fig. 3 Surface plots ρ(a)a resulting from the combination of b�, b� ∈ [0, 0.225, 1, 2, 8]

parameters. The figure shows and compares the variability of the integral constants κ , κ̂ , κθ , κ̂θ , κφ , and κ̂φ defined
in Eqs. (14), (15), and (25), respectively, as a function of the corresponding concentration parameters b, b�, and b�.
Figure 4 shows the progressive reduction of the value of the integral constants with the increase of the concentration
parameters. This trend is in strong agreement with the expected variation of the PDF of von Mises type [11,18].
The values of the generalized integral constants κθ , κ̂θ , κφ , κ̂φ assume the same order of magnitude as of κ, κ̂ ,
underlying a similar mechanical contribution to the averaged second- and fourth-order tensorsH in Eq. (12) andH
in (13), respectively.
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Fig. 4 Dependence of the different integral constants κ and κ̂ on the corresponding concentration parameters, for different types of
PDF. a κ , κ̂ as provided in Eq. (25), versus the concentration parameter b. b κθ , κ̂θ as provided in Eq. (14), versus the concentration
parameter b�. c κφ , κ̂φ as provided in Eq. (15), versus the concentration parameter b�. d Uniaxial loading (correct integration domain)
with λ = 1.2: κ , κ̂ as provided in Eq. (25), versus the concentration parameter b. e Uniaxial loading with λ = 1.2: κθ , κ̂θ as provided in
Eq. (14), versus the concentration parameter b�. f Uniaxial loadingwith λ = 1.2: κφ , κ̂φ as provided in Eq. (15), versus the concentration
parameter b�. The plot coincides with (c), since the fourth pseudo-invariant does not depend on the � angle under uniaxial loading

Plots in Fig. 4d–f illustrate the non-linear behavior of the same integral constants when the material is under-
going uniaxial loading. In order to exclude non-physical conditions of compressed fibers, in the plots the reduced
integration domain I4 > 1 is considered, cf. [29]. In fact, under uniaxial loading conditions, the directional fourth
invariant depends only on the angle � according to the following relation:

I4 = 1

λ
+ λ3 − 1

λ
cos2 � .

Fibers in extension, thus contributing to the mechanical response, fall between the following limits dependent on
the stretch λ [29]:

arccos
1√

1 + λ + λ2
≤ � ≤ π − arccos

1√
1 + λ + λ2

if λ ≤ 1, (18)

0 ≤ � ≤ arccos
1√

1 + λ + λ2
∪ − arccos

1√
1 + λ + λ2

≤ � ≤ π if λ ≥ 1 . (19)
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1
2

3

Fig. 5 Orientation of fiber distribution. Axis 3 defines the main direction of the fibers. The planar distribution lies on the 1–3 plane

Table 1 Values of the model coefficients according to the dispersion parameters

b� κ� κ̂� b� κ� κ̂�

8 0.0650307 0.0084674 8 0.116834 0.0358405

7 0.0748008 0.0112277 7 0.132016 0.0448198

6 0.0881180 0.0156418 6 0.151480 0.0573751

5 0.1074390 0.0233994 5 0.177029 0.0753712

4 0.1380990 0.0388405 4 0.211292 0.1016920

3 0.1924610 0.0737624 3 0.257863 0.1405550

2 0.2955350 0.1562240 2 0.320942 0.1973790

1 0.4688560 0.3203690 1 0.403710 0.2772620

0 0.6666666 0.5333333 0 0.500000 0.3800000

Contrariwise, there is no variation of the integration domain for the angle �, which remains in [0, π ]. According
to the limitation in (18) and (19), the constants κ , κ̂ , κθ , and κ̂θ assume reduced values; see Fig. 4d, f.

The same procedure can be applied for multiaxial loading patterns, but in such cases multiple inequalities
will arise [29], which renders the evaluation of the constants rather complex. A detailed analysis of the tension–
compression problem for the generalized statistical formulation is left to a forthcoming contribution.

4 Examples of mechanical response

By way of example, we present for the proposed model numerical stress–strain curves obtained by uniaxial and
biaxial loading conducted at the constitutive level. In order to compare the present results with the those reported in
[18], we make the following simplifying assumptions: (i) compressed fibers are not excluded from the calculations
and they will contribute to the mechanical response, and (ii) only the contribution of the anisotropic part of the strain
energy density is considered. In the present calculations, the main direction of the fibers is assumed to coincide
with axis 3, while the planar condition is reached in the plane normal to axis 2, cf. Fig. 5.

We investigate the performance of the model by considering material properties in the deformation and stress
range of interest of soft biological material, such as the cornea [2], but without addressing a particular material. In
the following calculations, thus, the two rigidity parameters k1 and k2 are set to 0.15 MPa and 1, respectively. The
parameters κ�, κ̂�, κ�, and κ̂� vary according to the values of the dispersion parameters b� and b�; see Table 1.
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To assess the anisotropic response of the material, uniaxial tests are performed in three directions of loading. As
shown in Fig. 5, the first loading direction is parallel to the mean orientation of the fibers (direction 3), the second
within the plane of the fibers (direction 1), and the third coincides with axis 2.

Figure 6 shows the response of the model undergoing uniaxial loading. Curves plot the Cauchy normal stress
σi i in the loading direction versus the corresponding logarithmic strain eii . The response is shown for different
combinations of the dispersion parameters b� and b�. In particular, Fig. 6a–e shows the cases with equal values of
the two dispersion parameters, while Fig. 6b–f visualizes the effect of varying one of the two dispersion parameters.

For uniaxial loading in the direction of the fibers, shown in Fig. 6a, b, the dominant dispersion parameter is b�.
For b� = 8, the uniaxial response is almost the same, independently of the value of b�. When the dispersion of the
fibers increases (i.e., the value of b� decreases), curves differentiate, more markedly for low values of the dispersion
parameters (isotropic case). For uniaxial loading in the plane of the planar distribution of the fibers, normal to the
main direction of the fibers, it can be observed from Fig. 6c, d that the dominant dispersion parameter is still b�, but
b� contributes to the differentiation of the response. Note that the values of the stress are one order of magnitude
lower than that in the previous case. For the case of loading in the direction normal to the plane of fibers, it can be
observed from Fig. 6e, f that when fibers are aligned well the stress is substantially null. The uniaxial behavior is
in line with the assumptions of the model.

Equi-biaxial tests are performed considering two cases of loading. In the first loading case, load is applied to the
directions 1 and 3. In the second case, load is applied to the directions 1 and 2.

Results of equi-biaxial tests are shown in Fig. 7. Curves show the normal components of the Cauchy stress versus
the normal components of the logarithmic strain. The response is shown for different combinations of the dispersion
parameters b� and b�. Note that the stresses σ11 and σ22 are negative, due to the imposed isochoric condition. The
incompressibility condition is responsible also for slightly higher stresses in the direction normal to the plane of
the fibers. For equi-biaxial loading, a fully dispersed material (b� = b� = 0) provides very low stresses in both
directions of loading. The more concentrated the fiber orientation, the higher the biaxial response.

5 Discussion

We presented a generalized statistical formulation of the constitutive behavior of fiber-reinforced anisotropic tissues
characterized by a distributed arrangement of fibers. We began our discussion from a consolidated theoretical
hyperelastic framework [20], based on the definition of structure tensors [31] that are introduced to characterize
the microstructural properties of the fibrous tissue by means of directional fourth pseudo-invariants. With the
generalized formulation, we extend the recent suggestion appeared in [19,24] by introducing two independent
probability distribution functions of von Mises type, one for each Eulerian angle �, � that identifies the generic
spatial orientation. In doing so, we characterize the non-uniform spatial orientation of fiber distribution by means
of two parameters that represent the concentration coefficients of the two von Mises distributions. The approach
allows to recover previous formulations available in the literature as a limiting case, when a uniform distribution
of the PDF of � is considered. As an additional feature, important configurations of the fiber distributions are
recovered for specific values of the concentration parameters, e.g., isotropic, transversely isotropic, and planar
isotropic configurations [9] characterized by planar symmetry rather than axial symmetry.

Our approach is well suited for computational applications when soft hyperelastic materials with dispersed fibers
are involved [32,33]. We presented examples of the mechanical response of the model, for various values of the
dispersion parameters, in uniaxial and biaxial loading under isochoric conditions.

We highlighted that the proposed formulation allows for the direct implementation of the tension–compression
switch procedure [21,29,34], in which fibers under compression are excluded, within a statistical description of the
tissue.

Limitations of the present approach are related to the assumption of statistical independence of the two vonMises
PDF. However, notable examples of fiber disorganization [25] can easily be modeled via the proposed approach in a

123



222 A. Gizzi et al.

e33

σ 33

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

bth = 8, bph = 8
bth = 7, bph = 7
bth = 6, bph = 6
bth = 5, bph = 5
bth = 4, bph = 4
bth = 3, bph = 3
bth = 2, bph = 2
bth = 1, bph = 1
bth = 0, bph = 0

e33

σ 33

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

bth = 8, bph = 8
bth = 8, bph = 2
bth = 8, bph = 0
bth = 2, bph = 8
bth = 2, bph = 2
bth = 2, bph = 0
bth = 0, bph = 8
bth = 0, bph = 2
bth = 0, bph = 0

e22

σ 22

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

bth = 8, bph = 8
bth = 7, bph = 7
bth = 6, bph = 6
bth = 5, bph = 5
bth = 4, bph = 4
bth = 3, bph = 3
bth = 2, bph = 2
bth = 1, bph = 1
bth = 0, bph = 0

e22

σ 22

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03
bth = 8, bph = 8
bth = 8, bph = 2
bth = 8, bph = 0
bth = 2, bph = 8
bth = 2, bph = 2
bth = 2, bph = 0
bth = 0, bph = 8
bth = 0, bph = 2
bth = 0, bph = 0

e11

σ 11

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

bth = 8, bph = 8
bth = 7, bph = 7
bth = 6, bph = 6
bth = 5, bph = 5
bth = 4, bph = 4
bth = 3, bph = 3
bth = 2, bph = 2
bth = 1, bph = 1
bth = 0, bph = 0

e11

σ 11

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

bth = 8, bph = 8
bth = 8, bph = 2
bth = 8, bph = 0
bth = 2, bph = 8
bth = 2, bph = 2
bth = 2, bph = 0
bth = 0, bph = 8
bth = 0, bph = 2
bth = 0, bph = 0

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Uniaxial response of the proposed model for loading acting a, b in the direction of the fibers, c, d in the direction normal to the
plane of fibers, and e, f in the plane of the fibers, normal to the main direction. Figures compare the dimensionless uniaxial response for
different values of the dispersion parameters b� and b�. Curves are combined to show the effect of a–e equal values of the dispersion
parameters for the two distributions and b–f different values of the dispersion parameters for the two distributions. Note that the stress
axis scales are different. Stress in MPa. a Main fiber direction, b main fiber direction, c normal to the fiber plane, d normal to the fiber
plane, e in the fiber plane, f in the fiber plane
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Fig. 7 Biaxial response of the proposed model for loading acting a, b in the plane of the fibers, c, d in the direction of the fibers
and in the normal direction in the plane of the fibers. The figures show the comparison of the biaxial response for different values of
the dispersion parameters b� and b�. Curves are combined to show the effect of different values of the dispersion parameters for the
two distributions. Note that the stress axis scales are different. Stress in MPa. a Main fiber direction, b in the fiber plane, c main fiber
direction, d normal to the fiber plane

location-dependent fashion as well as failure mode prediction [35–37], non-local elasticity [38], multiscale [39,40],
and multiphysics problems [41–45].
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Appendix A: Proof of the limiting case for uniform � distribution

In the derivation of the proof, it has to be considered that we follow the half sphere integration range � ∈ [0, π ],
� ∈ [0, π ] as in [24], and not the whole range as in [11].
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Let us recall the definitions of the integral coefficients as defined in [11,18]:

κ = 1

4

∫ π

0
ρ�(θ) sin3 θ dθ, κ̂ = 1

16

∫ π

0
ρ�(θ) sin5 θ dθ, (20)

and the definitions introduced in the present work:

κθ = N�

∫ π

0
ρ�(θ) sin3 θ dθ, κ̂θ = N�

∫ π

0
ρ�(θ) sin5 θ dθ , (21)

κφ = N�

∫ π

0
ρ�(φ) cos2 φ dφ , κ̂φ = N�

∫ π

0
ρ�(φ) cos4 φ dφ . (22)

In order to reduce the new definitions (21) to the old ones (20), we have to keep the PDF of � as uniformly
distributed, i.e., ρ�(φ) = 1/π in the half sphere [0, π ]. Accordingly, we can compute the normalization condition
as

N�

∫ π

0
ρ�(φ)dφ = 1 → N� = 1, (23)

and the integral constants (22) related to �

κφ = N�

∫ π

0
ρ�(φ) cos2 φ dφ = 1

2
, κ̂φ = N�

∫ π

0
ρ�(φ) cos4 φ dφ = 3

8
. (24)

Finally, by comparing (i) the expressions of the components of the averaged second-order structure tensor provided
in Eq. (12) with those in [11] and (ii) the components of the averaged fourth-order structure tensor provided in
Eq. (13) with those in [18], with little algebra we obtain

κ = κθ

2
, κ̂ = κ̂θ

8
(25)

where N� = 1/2.

Appendix B: Normalization of the integral coefficients

In the derivation, we follow the half sphere integration range [24] and we link the new definitions of the integral
coefficients introduced in this work with the three-dimensional and planar cases studied in [20].

Let us recall the normalization conditions (7) and (8) for the bivariate PDF:

N�,� = N�N� = 1

2π
, ρ(a) = 1

2π
ρ�(θ) ρ�(φ) . (26)

We can introduce then the three-dimensional and planar integral coefficients according to [20] for the first-order [11]
and second-order [18] approximation:

κ = 1

4

∫ π

0
ρ�(θ) sin3 θ dθ, κpl = 1

π

∫ π

0
ρ�(φ) cos2 φ dφ, (27)

κ̂ = 1

16

∫ π

0
ρ�(θ) sin5 θ dθ, κ̂pl = 1

π

∫ π

0
ρ�(φ) cos4 φ dφ . (28)
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By comparing then these definitions with Eqs. (14) and (15), we get

κθ = N�

∫ π

0
ρ�(θ) sin3 θ dθ = 4N� κ, κφ = N�

∫ π

0
ρ�(φ) cos2 φ dφ = πN� κpl , (29)

κ̂θ = N�

∫ π

0
ρ�(θ) sin5 θ dθ = 16N� κ̂ , κ̂φ = N�

∫ π

0
ρ�(φ) cos4 φ dφ = πN� κ̂pl . (30)

According to the components of the averaged structure tensors H and H, the previous expressions allow to define
the following simple relations:

κθκφ = 2κκpl , κ̂θ κ̂φ = 8κ̂ κ̂pl , κφκ̂θ = 8κpl κ̂ , (31)

entering the definition of the non-null components of the tensors in (2.2) and (2.2).
We remark that such a result is independent of the uniformity distribution of ρ�(φ) but can be applied in general.
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