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Abstract Electric potential of a point charge embedded in a three-layered dielectric system with infinite planar
interfaces is determined. Using the technique of Hankel transform, the electric potentials in all domains are obtained
in closed form. Nondimensionalization of the solution reduces the governing parameters into three scalars: a
normalized charge location and two dielectric constant ratios. Numerical parametric study reveals interesting,
coupled influences of these parameters on the distribution of electric potential. Due to the linear nature of the
electrostatic problem, the solution here can be extended to similar multilayered dielectric systemswith a distribution
of charges.
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1 Introduction

The applications of layered dielectric systems are common in energy storage and electrical insulation devices. Most
of these devices consist of multiple layers of dielectric between grounded conducting plates or charged conductors
[1,2]. Microwave technologies such as antennas, transmission lines, computers, filters, power dividers, etc. are also
made of several conductor–dielectric combinations. Studies on the performance of these electrical devices involve
the calculation of electric potential and electric field as well as electrostatic force at the interfaces due to charge
distribution in the system [3–6]. As one example, in order to determine thewave propagation properties ofmicrostrip
transmission lines, one must first obtain the electric field for a pair of charged conductors separated by a dielectric
sheet [5]. Another very common physical phenomenon in layered dielectrics is adhesion (attractive force) between
surfaces caused by contact charging [7,8]. Calculation of the surface force first requires the knowledge of the electric
potential in the space, which is occupied by dielectrics with different properties. Motivated by these applications, in
this work we aim at establishing a theoretical framework of solving the electric potential in a multilayered dielectric
system due to the presence of a point charge. Because of the linear nature of the problem, the solution can be easily
extended to calculate electric potential induced by a distribution of charges.

Electrostatic problems involving a point charge in multilayered dielectrics have been studied in a number of
previous works. Green’s function–moment method based on image theory is commonly used in literature to solve
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such problems. Pumplin [9] considered the problem of a parallel plate capacitor that consisted of two grounded
plates and a point charge in between. The electric potential was solved using image charge method and presented
in terms of Green’s function. Specifically, a distribution of point charges was introduced in the upper and lower
spaces, with each charge having the same magnitude as the original point charge. The location of the image charges
was solved to ensure that the electric potential on the two interfaces (grounded conducting plates) was zero. Pronic
et al. [10] studied a multilayered dielectric system enclosed by a cylindrical conductor. An analogy was drawn
to multistep electrical transmission line [4] which had a current source with its two ends short terminated. Based
on the analogy, Green’s function satisfying the Poisson’s differential equation was obtained for a point charge
in the structure and the solution for the electric potential was presented as a double infinite sum. Image charge
method was also used in a number of other works to obtain the electric potential in a layered dielectric sphere [11],
multiconductor transmission lines [3], etc.

Heubrandtner et al. [12] presented expressions for the electric field of a point charge in an infinite plane condenser.
They mentioned its application in particle detection process through Parallel Plate Chambers (PPC) and Resistive
Plate Chambers (RPC), which consisted of one and three homogeneous layers of dielectrics, respectively. The
condenser was modeled as a single or multilayered dielectrics packed between two grounded conducting plates.
Solution for the electric potential in the condenser was given, without detailed derivations, both in terms of infinite
series and using an integral representation. The focus of Heubrandtner et al.’s study was to examine the convergence
performance of the two forms of the solutions. Near the point of divergence, where the point charge is located, the
integral representation of the solution gives overall better result than the series solution, due to the faster decay of
the integrand and better performance in numerically evaluating the electric field when the electric potential needs
to be differentiated.

Interests in problems involving a point charge in layered dielectric medium continued in recent years. A number
of works considered the smooth transition between two dielectrics, i.e., these two dielectrics are separated by a
middle layer (called diffuse interface) with a gradual change in dielectric permittivity from one side to the other. Xue
and Deng [13] provided an excellent review of studies on diffuse interface and also revisited the problem containing
a point charge in such three-layered dielectric system. They first obtained the Green’s function for a quasi-harmonic
diffuse interface and then extended the results to general diffuse interfaces by dividing the transition layer into
multiple quasi-harmonic sublayers. There were also studies that examined layered medium containing electrolyte
solution, for instance to mimic biological membrane in electrolytic environment. Lin et al. [14] investigated such
a system, with one dielectric layer (governed by Poisson’s equation) sandwiched between two electrolyte layers
(governed by Poisson–Boltzmann equation). The electric potential due to a point charge in the middle layer was
solved using the method of image charges.

The specific problem considered in this work is shown in Fig. 1. The space is separated into three dielectric
domains, each being homogeneous and having dielectric constants of ε1 (domain I, in the middle), ε2 (domain II,
in the lower domain), and ε3 (domain III, in the upper domain), respectively. Because in the multilayered dielectric
systems used in practice the horizontal dimension is typically much larger than the thickness of the middle layer
(H), the three layers are approximated to be infinitely large in the horizontal direction. For the same reason, since the
thicknesses of the top and bottom layers are usually much larger than H , the lower space (II) is assumed to extend
downward to infinity, while the upper space (III) is assumed to extend upwards to infinity. These three domains are
separated by hypothetical planar interface. A point charge of magnitude q is located at a distance d above the lower
interface (0 < d < H). The objective is to solve for the electric potential in all three domains in terms of q, d, H ,
and the three dielectric constants ε1, ε2, and ε3.

Although the problem shown in Fig. 1 appears to be a simple system, our extensive literature searches only found
one previous work that considered the same situation [15]. The work was done by Barrera where the author started
with the electric potential derived from the method of images, a series solution corresponding to an infinite array of
image charges, and converted it into an integral form using two-dimensional Fourier transform. The original work
contained mistakes, which was pointed out by an erratum published later [16], but without further examination.

It is clear that the method of image charges has been the most widely used approach to solve electrostatic
problems in layered dielectrics. Even though some works attempted to improve convergence performance using
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Fig. 1 Schematic of the electrostatic problem considered in this work

solutions in integral form, the series solution obtained from image charges still served as a starting point. Given
the apparent axisymmetry in many of those problems, it is surprising that there has been no attempt to tackle them
using Hankel transform, a technique that is very useful for axisymmetric problems and has been used in mechanics
(see ref. [17–19] for example).

In this paper, we demonstrate the application of Hankel transform in solving the problem shown in Fig. 1.
A detailed and rigorous procedure is demonstrated in Sect. 2 including the formulation of the boundary value
problem (BVP) for the electric potential, the mathematical treatment that reduces the dimension of the BVP, and
the closed-form analytical solution for the electric potential. Section 3 contains nondimensionalization, validation
of the solution, presentation of the results, and a parametric study. Conclusions are given in Sect. 4.

2 Formulation

It is clear from Fig. 1 that the problem possesses axisymmetry; therefore, it is most appropriate to use the cylindrical
coordinates r , z, and θ as shown. Without loss of generality, the z-axis is placed so that the point charge is located
directly on it. Due to axisymmetry, the electric potential φ is expected to be a function of r and z only.

In a homogeneous charge-free dielectric, the electric potential φ is governed by the Laplace equation:

∇2φ(r, z) = 0. (1)

Equation (1) applies to all the spatial points except for the location of the point charge q. The effect of point charge
will be represented by a boundary condition (BC) given below. Accompanying Eq. (1) are several BCs:

lim
Sq→0

∮
Sq

(−ε0ε1∇φ) · ndA = q, (2a)

lim
z→0+ φ = lim

z→0− φ, (2b)

lim
z→0+ ε1

∂φ

∂z
= lim

z→0− ε2
∂φ

∂z
, (2c)

lim
z→H+ φ = lim

z→H− φ, (2d)
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lim
z→H+ ε3

∂φ

∂z
= lim

z→H− ε1
∂φ

∂z
, (2e)

φ(r, z → ∞) → 0, (2f)

φ(r, z → −∞) → 0. (2g)

Equation (2a) is the BC for the point charge, where Sq is a closed surface enclosing q (see Fig. 1) and n is the
outward normal of Sq . Equations (2b) and (2d) are the continuity conditions for the electric potential across the two
interfaces, and Eqs. (2c) and (2e) describe the continuity for the normal electric displacement across the interfaces.
Equations (2f) and (2g) are the far-field BCs, i.e., vanishing potential at infinity.

To solve the BVP, we start by denoting the electric potentials on the interfaces z = 0 and z = H by two unknown
functions φ0(r) and φH (r), respectively. This is warranted by the continuity conditions (2b) and (2d), and facilitates
the construction of separate Dirichlet BVPs in all three domains. Next, we apply the zeroth-order Hankel transform
to these BVPs on the radial coordinate r : H0 [φ(r); ρ] ≡ ∫ ∞

0 rφ(r)J0(ρr)dr , where J0(ρr) is the zeroth-order

Bessel function of the first kind. Making use of the property H0

[
1
r

∂
∂r (r

∂φ
∂r ); ρ

]
= −ρ2H0[φ(r); ρ], the BVPs in

the upper and lower domains for the transformed electric potential Φ(ρ, z) now read

∂2Φ(ρ, z > H)

∂z2
− ρ2Φ(ρ, z > H) = 0, (3a)

Φ(ρ, z → ∞) → 0, (3b)

Φ(ρ, H) = ΦH (ρ) (3c)

and

∂2Φ(ρ, z < 0)

∂z2
− ρ2Φ(ρ, z < 0) = 0, (4a)

Φ(ρ, z → −∞) → 0, (4b)

Φ(ρ, 0) = Φ0(ρ), (4c)

where Φ0(ρ) and ΦH (ρ) are the Hankel transform of the functions φ0(r) and φH (r), respectively. For the middle
domain (0 < z < H), since it contains a singularity (point charge q), we first separate out the singular part of the
electric potential φA(r, 0 < z < H) = q/4πε0ε1

√
r2 + (z − d)2, which is the potential due to q in the absence

of the interfaces, i.e., if the upper and lower domains had the same dielectric property as the middle domain. This
gives the correct singularity at the location of the point charge and allows the BC (2a) to be satisfied. The second
part of the electric potential, denoted as φB , is nonsingular everywhere and is the difference between φA and the
total electric potential in the middle domain. Applying Hankel transform to φB leads to the following BVP:

∂2ΦB(ρ, 0 < z < H)

∂z2
− ρ2ΦB(ρ, 0 < z < H) = 0, (5a)

ΦB(ρ, 0) = Φ0(ρ) − ΦA0(ρ), (5b)

ΦB(ρ, H) = ΦH (ρ) − ΦAH (ρ). (5c)

Here ΦA0(ρ) is the Hankel transform of φA0(r) ≡ φA(r, 0) = q/4πε0ε1
√
r2 + d2, which can be analytically eval-

uated to be ΦA0(ρ) = qe−ρd/4πε0ε1ρ [20]. Similarly, ΦAH (ρ) = qe−ρ(H−d)/4πε0ε1ρ is the Hankel transform
of φAH (r) ≡ φA(r, H) = q/4πε0ε1

√
r2 + (H − d)2.

So far, we have constructed separate Dirichlet BVP for each domain, and each BVP can be solved individually
to obtain Φ(ρ, z) in terms of the unknown functions ΦH (ρ) and Φ0(ρ) . We have also made use of all BCs except
(2c) and (2e), which will be used later to determine these two unknown functions.
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It is straightforward to solve Eqs. (3a)–(3c) and (4a)–(4c) to obtain the transformed electric potential in the upper
and lower domains:

Φ(ρ, z > H) = ΦH (ρ)eρ(H−z), (6)

Φ(ρ, z < 0) = Φ0(ρ)eρz . (7)

Taking the inverse Hankel transform in Eqs. (6) and (7), we obtain the expressions of electric potentials

φ(r, z > H) =
∫ ∞

0
ρΦH (ρ)eρ(H−z) J0(ρr)dρ, (8)

φ(r, z < 0) =
∫ ∞

0
ρΦ0(ρ)eρz J0(ρr)dρ. (9)

Similarly, solving Eq. (5a) using the BCs (5b) and (5c) yields

ΦB(ρ, 0 < z < H) = [ΦH (ρ) − ΦAH (ρ)] sinh(ρz) + [Φ0(ρ) − ΦA0(ρ)] sinh[ρ(H − z)]
sinh(ρH)

(10)

which, after the inverse Hankel transform, leads to

φB(r, 0 < z < H) =
∫ ∞

0
ρ

ΦH (ρ) sinh(ρz) + Φ0(ρ) sinh[ρ(H − z)]
sinh(ρH)

J0(ρr)dρ

+ q

4πε0ε1

∫ ∞

0

e−ρ(H−d) sinh(ρz) − e−ρd sinh[ρ(H − z)]
sinh(ρH)

J0(ρr)dρ.

(11)

Thus, the total electric potential in the middle domain is the sum of φA(r, 0 < z < H) and φB(r, 0 < z < H):

φ(r, 0 < z < H) = q

4πε0ε1
√
r2 + (z − d)2

+ φB(r, 0 < z < H). (12)

We can see from Eqs. (8), (9), and (12) that the solutions for all three domains are in terms of ΦH (ρ) and Φ0(ρ),
which can be determined from the BCs (2c) and (2e). Specifically, substituting Eqs. (8), (9), and (12) into Eqs. (2c)
and (2e), after some algebra ΦH (ρ) and Φ0(ρ) are found to be

ΦH (ρ) = q

4πε0ρ

2 sinh[ρ(H − d)] + 2
[
cosh(ρH) + ε2

ε1
sinh(ρH)

]
sinh(ρd)

sinh2(ρH)
[
(ε2 + ε3) coth(ρH) +

(
ε2ε3
ε1

+ ε1

)] , (13)

Φ0(ρ) = q

4πε0ρ

2 sinh(ρd) + 2
[
cosh(ρH) + ε3

ε1
sinh(ρH)

]
sinh[ρ(H − d)]

sinh2(ρH))
[
(ε2 + ε3) coth(ρH) +

(
ε2ε3
ε1

+ ε1

)] . (14)

With Eqs. (13) and (14), the solutions for the electric potential (Eqs. 8, 9, 12) are complete in all three domains, as
they satisfy the governing equation and all BCs in the system.

3 Results and discussion

The electric potential formulated in the previous section will be numerically evaluated and presented below. To
reduce the number of independent variables and allow broader application of the results, the following normalization
is introduced:

φ̄ = 4πε0ε1H

q
φ, r̄ = r

H
, z̄ = z

H
, ρ̄ = ρH, d̄ = d

H
, ε21 = ε2

ε1
, ε31 = ε3

ε1
. (15)
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The normalized electric potential for the upper, lower, and middle domains are, respectively, given by

φ̄(r̄ , z̄ > 1) = 2
∫ ∞

0

sinh[ρ̄(1 − d̄)] + [cosh(ρ̄) + ε21 sinh(ρ̄)] sinh(ρ̄d̄)

sinh2(ρ̄)[(ε21 + ε31) coth(ρ̄) + (ε21ε31 + 1)] eρ̄(1−z̄) J0(ρ̄r̄)dρ̄, (16a)

φ̄(r̄ , z̄ < 0) = 2
∫ ∞

0

sinh(ρ̄d̄) + [cosh(ρ̄) + ε31 sinh(ρ̄)] sinh[ρ̄(1 − d̄)]
sinh2(ρ̄)[(ε21 + ε31) coth(ρ̄) + (ε21ε31 + 1)] eρ̄ z̄ J0(ρ̄r̄)dρ̄, (16b)

φ̄(r̄ , 0 < z̄ < 1) = 1√
r̄2 + (z̄ − d̄)2

+ 2
∫ ∞

0

sinh[ρ̄(1 − d̄)] + [cosh(ρ̄) + ε21 sinh(ρ̄)] sinh(ρ̄d̄)

sinh3(ρ̄)[(ε21 + ε31) coth(ρ̄) + (ε21ε31 + 1)] sinh (ρ̄ z̄)J0(ρ̄r̄)dρ̄

+ 2
∫ ∞

0

sinh(ρ̄d̄) + [cosh(ρ̄) + ε31 sinh(ρ̄)] sinh[ρ̄(1 − d̄)]
sinh3(ρ̄)[(ε21 + ε31) coth(ρ̄) + (ε21ε31 + 1)] sinh[ρ̄(1 − z̄)]J0(ρ̄r̄)dρ̄

−
∫ ∞

0

e−ρ̄(1−d̄) sinh(ρ̄ z̄) + e−ρ̄d̄ sinh[ρ̄(1 − z̄)]
sinh(ρ̄)

J0(ρ̄r̄)dρ̄, (16c)

where ε21 and ε31, the ratios between dielectric constants that describe the relative permittivity of the three domains,
and d̄, the normalized location of the point charge, are the only three independent parameters.

Let us first consider a few special cases where the general solution given by Eqs. (16a)–(16c) can be reduced
into analytical form. The first special case is where ε21 = ε31 = 1, i.e., the three domains contain exactly the same
dielectric material. It is expected that the electric potential in this case should simply be that of a point charge in a
uniform dielectric, i.e.,

φ̄(r̄ , z̄) = 1√
r̄2 + (z̄ − d̄)2

. (17)

Now, substituting ε21 = ε31 = 1 into Eq. (16a) and expanding the hyperbolic functions into exponentials gives

φ̄(r̄ , z̄ > 1) =
∫ ∞

0
e−ρ̄(z̄−d̄) J0(ρ̄r̄)dρ̄ (18)

with z̄ − d̄ > 0. Similarly, for the lower domain, the electric potential from Eq. (16b) is simplified to

φ̄(r̄ , z̄ < 0) =
∫ ∞

0
e−ρ̄(d̄−z̄) J0(ρ̄r̄)dρ̄ (19)

with d̄ − z̄ > 0. Both integrals in Eqs. (18) and (19) can be analytically evaluated to [20]

φ̄(r̄ , z̄) =
∫ ∞

0
e−ρ̄

∣∣z̄−d̄
∣∣
J0(ρ̄r̄)dρ̄ = 1√

r̄2 + (z̄ − d̄)2
. (20)

For the middle domain, considering again the expansion of hyperbolic functions, all the terms in Eq. (16c) cancel
except the first one which is 1/

√
r̄2 + (z̄ − d̄)2. Clearly, these results are the same as Eq. (17), the potential of a

point charge in a uniform dielectric.
The second special case to be considered is where ε21 �= 1 but ε31 = 1. This corresponds to a system where the

space is separated by one interface into two dielectric domains with the point charge located in the upper domain.
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Analytical solution for the electric potential in this case is also available [21], which in the normalized form is

φ̄(r̄ , z̄ > 0) = 1√
r̄2 + (z̄ − d̄)2

−
(

ε21 − 1

ε21 + 1

)
1√

r̄2 + (z̄ + d̄)2
(21)

applicable to domains I and III here, and

φ̄(r̄ , z̄ < 0) =
(

2

ε21 + 1

)
1√

r̄2 + (z̄ − d̄)2
(22)

applicable to domain II. Considering ε31 = 1 and simplifying Eqs. (16a) and (16c) result in the following two
expressions for domains III and I, respectively:

φ̄(r̄ , z̄ > 1) =
∫ ∞

0
e−ρ̄(z̄−d̄) J0(ρ̄r̄)dρ̄ −

(
ε21 − 1

ε21 + 1

)∫ ∞

0
e−ρ̄(z̄+d̄) J0(ρ̄r̄)dρ̄, (23)

φ̄(r̄ , 0 < z̄ < 1) = 1√
r̄2 + (z̄ − d̄)2

−
(

ε21 − 1

ε21 + 1

) ∫ ∞

0
e−ρ̄(z̄+d̄) J0(ρ̄r̄)dρ̄. (24)

Similar to Eq. (20), the integrals in Eqs. (23) and (24) can be analytically evaluated to [20]
∫ ∞
0 e−ρ̄(z̄−d̄) J0(ρ̄r̄)dρ̄ =[

r̄2 + (z̄ − d̄)2
]−1/2

and
∫ ∞
0 e−ρ̄(z̄+d̄) J0(ρ̄r̄)dρ̄ = [

r̄2 + (z̄ + d̄)2
]−1/2

, which reduce both Eqs. (23) and (24) to

φ̄(r̄ , z̄ > 1) = φ̄(r̄ , 0 < z̄ < 1) = 1√
r̄2 + (z̄ − d̄)2

−
(

ε21 − 1

ε21 + 1

)
1√

r̄2 + (z̄ + d̄)2
. (25)

Equation (25) is exactly the same as Eq. (21). Thus, our solutions for domains I and III agree with the known results
under the condition of ε21 �= 1 and ε31 = 1. Now, the simplified form of Eq. (16b) yields, for the normalized
potential in domain II:

φ̄(r̄ , z̄ < 0) = 2

ε21 + 1

∫ ∞

0
e−ρ̄(d̄−z̄) J0(ρ̄r̄)dρ̄. (26)

Evaluating the integral analytically as in Eqs. (20), (26) instantly reduces to Eq. (22). Thus, the solution in domain
II is also verified by comparing it to the established solution.

Now we consider more general situations and investigate the effect of the three dimensionless parameters (d̄,
ε21 and ε31) in detail. The integrals in the normalized electric potential (Eqs. 16a–16c) were evaluated numerically
using recursive adaptive Lobatto quadrature, with the introduction of a finite upper bound ρ̄max (i.e., cutoff) to
replace infinity in the original expressions. A convergence test was conducted for this cutoff and it was found that
increasing ρ̄max beyond 50 did not introduce changes in the integrals greater than a small tolerance. Therefore, 50
was used as the cutoff for the numerical evaluation of the electric potential hereafter. Figure 2 shows the contour
plots of electric potential due to a charge located at d̄ = 0.5. For Fig. 2a, the dielectric constants of the materials in
the upper and lower domains are considered equal and much higher than that of the middle layer (ε21 = ε31 >> 1).
It can be seen that the electric potential retains spherical symmetry near the point charge while it becomes distorted
gradually at larger distance from the point charge where the effect of the different dielectrics becomes significant.
For the configuration of the system considered in this figure, the electric potential is symmetric in both vertical
and horizontal directions. The potential also decays at an equal rate in the upward and downward directions, but
the decay is faster in the vertical direction than in the horizontal direction, which is due to the higher dielectric
constant in the upper and lower domains. If ε21 and ε31 are further increased, we can expect that the system will
approach the case where a uniform dielectric is sandwiched between two identical conductors. The electric field of
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Fig. 2 Normalized electric potential of a single point charge in
the middle layer of a three-layered dielectric system. The upper
and lower interfaces are at the positions of z/H = 1 and z/H = 0,
and marked by orange and blue lines, respectively. a ε21 = 10
and ε31 = 10, b ε21 = 0.1 and ε31 = 10. For all cases, d̄ = 0.5

Fig. 3 Normalized electric potential, plotted against the dielec-
tric constant ratio between the lower andmiddle domains, at three
points P1(1, 0.5), P2(0,−0.5), and P3(0, 1.5), located in themid-
dle, lower, and upper domains, respectively. For all cases, d̄ = 0.5
and ε31 = 10

charges in a dielectric between capacitors has been commonly studied in literatures. In the work of Pumplin [9],
the equipotential surfaces were presented for a system with two grounded parallel plates and a point charge located
midway between the plates. The results resemble the shape of the contours in Fig. 2a although they did not extend
into the upper and lower domains due to the presence of conducting materials.

Figure 2b represents a system with a very high dielectric constant in the upper domain (ε31 � 1) and a much
lower dielectric constant in the lower domain (ε21 	 1) compared to that of the middle layer. Similar to Fig. 2a,
spherical symmetry of the electric potential only retains very close to the point charge. Although the electric potential
is symmetric about a vertical plane, unlike in Fig. 2a its rate of decay is different in the upward and downward
directions, with much faster decay towards the upper interface due to the higher value of ε31. It is interesting to
observe that, although the value of ε31 is the same in both figures, the values of φ̄ near the upper interface in Fig. 2b
are drastically different from those in Fig. 2a. The smaller dielectric constant in the lower domain has caused a
slower decay in both the upward and downward directions in Fig. 2b compared to Fig. 2a, which demonstrates the
strong interactions among the dielectric materials in all three domains.
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Tomore systematically study the effect of dielectric constant ratios, we plot the normalized potential as a function
of ε21 in Fig. 3 while fixing the other dielectric constant ratio ε31, as well as the charge location d̄ . Due to symmetry,
varying ε31 with fixed ε21 would correspond to the same result as if domains II and III were swapped. The electric
potential is evaluated at three spatial points: P1(1, 0.5), P2(0,−0.5), and P3(0, 0.5) in the middle, lower, and
upper domains, respectively. All three points are at equal distance from the point charge. It is clear that the electric
potentials at all three points decrease with the increase of ε21, indicating that the increase of dielectric constant in
a single domain reduces the potential in all three domains, consistent with what was found in Fig. 2. On the other
hand, the rate of decay with ε21 is quite different at the three points. Since the dielectric is being varied in the domain
where P2 is located, the change of ε21 has more direct impact on the potential at this point than at P1 and P3, leading
to the highest rate of decay at P2. The slowest decay is found at P3 as this point is located at the furthest distance
from the domain in which the dielectric constant is being changed. The curves for P2 and P3 intersect at ε21 = 10,
where the materials in the upper and lower domains become identical. Although the materials in the middle and
lower domains become identical at ε21 = 1, the potential at P1 is still lower than that at P2 when ε21 = 1, because
P1 is closer to the upper domain with a higher dielectric constant and hence stronger screening. These two curves
intersect at a ε21 value greater than one.

The distance of the point charge from the interfaces also affects the distribution of electric potential in the system.
In Fig. 4, φ̄ is plotted as a function of d̄ where the location of point charge varies from 0.1 to 0.9 along the z-axis. At
d̄ = 0.1, the point charge is just above the lower interface and at d̄ = 0.9 it is close to the upper interface. The same
three locations P1, P2, and P3 are chosen as before and the electric potential is presented for these points. Figure 4a
represents the system in Fig. 2a which has two identical materials in the upper and lower domains with a higher
dielectric constant (ε21 = ε31 = 10) than the middle one. The electric potential at P3 monotonically increases as
the point charge approaches from the lower to the upper interface, because the distance between the point charge
and P3 decreases. Similarly, at P2, the electric potential decreases monotonically as the point charge moves away
from it. Due to the identical dielectrics in the upper and lower domains, the rates of change of the electric potential
at P2 and P3 have equal magnitude, and the two curves intersect at d̄ = 0.5. The potential at P1 first increases as its
distance from the point charge decreases, reaches the maximum when the point charge is located midway between
the two interfaces (d̄ = 0.5) and then starts decreasing due to the increase in distance from the point charge.

In Fig. 4b, we consider a different dielectric in each layer: the highest dielectric constant is in the upper domain
and the lowest is in the lower domain. As the point charge approaches the upper interface, it comes closer to P3
and hence the electric potential increases at this point. For the same reason, the electric potential at P2 decreases
as the point charge moves away from it. The most interesting phenomena is found at P1. As the charge moves
from the lower to the upper interface, the distance between the point charge and P1 first decreases, and as it passes
the midpoint (d̄ = 0.5), the distance increases. However, the electric potential at P1 is found to monotonically
decrease for the entire range of d̄. To explain, as the charge moves towards the midway between the two interfaces,
without considering the influence of the dielectrics in the upper and lower domains, the electric potential at P1
should increase as the distance between the point charge and P1 decreases. However, at the same time, the charge
is approaching a domain with a higher dielectric constant, which tends to decrease its electric potential. These two
competing effects can cause a complex relation between the charge location and the electric potential at P1. For
ε21 = 0.1 and ε31 = 10, the influence from the high dielectric constant in the upper domain appears to be dominant,
which results in a net decrease in the electric potential at P1. However, the rate of decay is quite small (see Fig. 4b),
as a consequence of the two competing factors. After d̄ = 0.5, the distance between the point charge and P1 starts
to increase and the point charge continues to approach the higher dielectric constant domain. Both tend to introduce
a decay in the electric potential at P1, and hence a faster decrease is observed from Fig. 4b.

To further investigate this interesting phenomenon, the normalized potential φ̄ at P1 is plotted as a function of d̄
in Fig. 5 for several different ε21. The other dielectric constant ratio ε31 remains at 10. The maximum for each curve,
either as a local maximum in the interior of the domain or as a global maximum at the boundaries, is marked with *.
As the charge approaches the upper interface, the change of φ̄ at P1 is found to be quite different for different values
of ε21. For small ε21(< 0.4), φ̄ monotonically decreases for the entire range of d̄ although the distance between
the point charge and P1 decreases till d̄ = 0.5. As discussed earlier, the effect of the high dielectric constant in the
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Fig. 4 Normalized electric potential, plotted against the nor-
malized location d̄, at three points P1(1, 0.5), P2(0,−0.5), and
P3(0, 1.5) located in the upper, lower, and middle layers, respec-
tively (see inset in Fig. 3). a ε21 = 10 and ε31 = 10, b ε21 = 0.1
and ε31 = 10

Fig. 5 Normalized electric potential at P1(1, 0.5), located in the
middle layer, as a function of the normalized location d̄ of the
point charge. For all cases, ε31 = 10

upper domain is dominant in this case, which reduces the net potential at P1 as the point charge moves upwards. For
ε21 > 0.4, φ̄ shows a nonmonotonic change with the charge location and the maximum for each curve is found at
a distance from the boundaries. In addition, as ε21 increases, the local maximum shifts towards the upper interface
due to the increased screening from the lower domain. Finally, for sufficiently large values of ε21(> 10), the curves
exhibit the trend of converging together as the lower domain approaches a conductor-like material.

The results above have demonstrated that the electric potential due to the point charge is strongly influenced by
the dielectric materials used in the different layers, which can provide a means of modulating the electric potential
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in the multilayered system by adjusting material properties. Due to the linear nature of the electrostatic problem, the
current work can be extended to study the electric potential due to a distribution of charges, for example, present in
multilayered microstrips (used in microwave technologies) [22]. The expression for the electric potential can also
be used directly to calculate other physical quantities such as polarization surface charge density (e.g., in Barrera.
[15]) or surface force in contact adhesion.

4 Conclusion

The electric potential due to a point charge in a multilayered dielectric system is obtained in closed form using
the technique of Hankel transform. Nondimensionalization of the solution reveals three dimensionless parameters
that govern the normalized electric potential: d̄ , ε21, and ε31. A parametric study was performed to demonstrate the
influence of these parameters. The results show that the electric potential and hence electric field in the system can
be modulated, both quantitatively and qualitatively, by adjusting the governing parameters.
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