
J Eng Math (2018) 109:47–61
https://doi.org/10.1007/s10665-017-9905-y

Equilibrium of elastic lattice shells

D. J. Steigmann

Received: 24 January 2017 / Accepted: 2 May 2017 / Published online: 13 May 2017
© Springer Science+Business Media Dordrecht 2017

Abstract A model for shells consisting of a continuous distribution of embedded rods is developed in the frame-
work of the direct theory of second-gradient elastic surfaces. The shell is constitutively sensitive to a convenient
measure of the gradient of strain in addition to the metric and curvature of standard shell theory.
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1 Introduction

Grid-shells have long been treated as shells that are orthotropic but otherwise conventional, in the sense that the
relevant response functions are sensitive to changes in the metric, or strain, of the shell surface and to changes in its
embedding geometry, or curvature; orthotropy is conferred by a lattice of densely distributed orthogonal thin rods
forming the shell surface. The standard theory [1] accounts for those aspects of fiber bending and twist induced
by curvature of the surface in which the lattice is embedded, but does not account for the geodesic bending of the
lattice in the tangent plane of the surface. Wang and Pipkin [2,3] developed a theory of plates that accounts for the
effects of surface bending and geodesic bending in networks consisting of two families of inextensible fibers, but
their model does not accommodate a constitutive sensitivity to fiber twist.

Steigmann and dell’Isola [4] recently developed a model for woven fabric sheets regarded as orthotropic plates.
This theory treats the fibers of the sheet as embedded spatial Kirchhoff rods [5]. By constraining the fibers to pivot
about the evolving surface normal while remaining congruent to the deformed sheet, it is found that the twist of
the fibers may be described entirely by the deformation of the underlying surface. In this way the mechanics of the
sheet may be modeled using a single position field. The relevant response functions are sensitive to the first and
second surface derivatives of this field: the former yielding a surface strain and the latter including both surface and
geodesic curvatures and additional strain-gradient effects. This generalizes a simpler model of elastic networks [6]
that accounts only for the stretching elasticity of the constituent fibers. The more general model was used to predict
certain unusual deformation patterns observed in experiments on 3D-printed pantographic lattices [7,8].

Theories of this kind fall in the category of second-gradient elasticity, in which the response functions depend
explicitly on the first and second derivatives of the deformation with respect to material coordinates [9–13]. This
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48 D. J. Steigmann

framework was extended to elastic surfaces by Cohen and DeSilva [14,15] and Balaban et al. [16]. The work of
Cohen andDeSilva begins at a level of generality comparable to that discussed here; but, to achieve a bending theory
of the conventional type, suppresses effects—such as geodesic bending—associated with the gradient of strain. The
work of Balaban et al. is closer to our present perspective, but its development is confined to special cases that lead
to certain force and couple densities being constitutively indeterminate. In contrast, no such indeterminacies arise
in the present approach. This is due to our a priori restriction to response functions deduced on the basis of the
order-of-differentiation symmetry [17] reflected in the second (covariant) derivatives of the deformed position field.
This symmetry has important implications for the field equations and the boundary conditions [17–19]. Further, we
take geodesic bending resistance into account in a general manner.

Our purpose in the present paper is to outline a complete development of the general theory of second-gradient
elasticity for surfaces in equilibrium. Specifically, we consider shells of arbitrary geometry and cast the model in a
variational setting, obtaining a concise set of equilibrium conditions and associated boundary conditions. We also
adapt a general treatment of material symmetry for elastic surfaces due to Murdoch and Cohen [20] and use it to
place our earlier model in the general setting.

We work in the framework of the direct theory of elastic surfaces. Thus, we do not explicitly model the three-
dimensional aspects of lattice shells associated with thickness. This is due to the difficulty in identifying a three-
dimensional structure that reflects the main features of the two-dimensional lattice comprising the shell. Thus in
general, there is no three-dimensional parent model that can be used to effect a dimension reduction procedure
leading to a two-dimensional model of the kind envisaged.

2 Geometry of surface deformation

2.1 Surface geometry

We use convected coordinates θα to label material points of the shell, regarded as a two-dimensional manifold.
The function x(θα) is an embedding of this manifold into 3-space, and serves to define position of a material point
on a fixed reference surface �. Position of the same material point on a typical deformed surface ω is denoted by
r(θα). The latter parametrization induces the associated basis elements aα = r,α ∈ Tω, the tangent plane to ω at the
point with coordinates θα; the metric aαβ = aα · aβ; the dual metric (aαβ) = (aαβ)−1; and the dual tangent basis
aα = aαβaβ. These in turn yield the local orientation of ω in terms of its unit normal n, defined by εαβn = aα ×aβ,

where εαβ is the covariant permutation tensor (ε12 = √
a = −ε21, ε11 = ε22 = 0), with a = det(aαβ). The

contravariant permutation tensor is εαβ, with ε12 = 1/
√
a = −ε21 and ε11 = ε22 = 0.

The Gauss and Weingarten equations play a central role in the development of the theory. These are

r,αβ = �λ
αβaα + bαβn and n,α = −bαβaβ, (1)

where �λ
αβ are the Levi-Civita connection coefficients induced by the coordinates on ω and bαβ is the covariant

curvature tensor (the coefficients of the second fundamental form). Their counterparts on � are

eα,β = �λ
(�)αβeλ + BαβN and N,α = −Bαβeβ, (2)

where N is the unit normal to �; eα are the duals on T� of the basis elements eα induced by the coordinates via
eα = x,α; and Bαβ and �λ

(�)αβ , respectively are the associated curvature and connection coefficients.
The deformation gradient F = ∇r is given by

F = aα ⊗ eα, (3)
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Equilibrium of elastic lattice shells 49

and the Cauchy–Green deformation tensor is

C = FtF = aαβeα ⊗ eβ. (4)

The areal dilation induced by the deformation is

J = √
detC = √

a/e, (5)

where e = det(eαβ) and eαβ(= eα · eβ) is the metric on �, and the dual metric eαβ is defined in the usual way.

2.2 Deformation measures

We assume the existence of a strain-energy density W, per unit area of �, that depends on the pointwise values of
the first and second derivatives of the deformation given, respectively, by (3) and by r|(�)αβ ⊗ eα ⊗ eβ, where

r|(�)αβ = r,αβ − �λ
(�)αβr,λ, (6)

is the second covariant derivative of the deformation with respect to the metric of �. The Gauss equation furnishes

r|(�)αβ = Sλ
αβr,λ + bαβn, (7)

where

Sλ
αβ = �λ

αβ − �λ
(�)αβ, (8)

in which �λ
αβ and �λ

(�)αβ , respectively, are the Levi-Civita connection coefficients on ω and �. Thus,

r|(�)αβ ⊗ eα ⊗ eβ = aμ ⊗ Sμ − n ⊗ κ, (9)

where

Sμ = Sμ
αβe

α ⊗ eβ and κ = −bαβeα ⊗ eβ. (10)

The sign in the second equation conforms to a widely used convention in the literature on shell theory [21].
We observe that although the connection coefficients do not possess tensor character, the difference of two sets of

connection coefficients induced by a given (convected) coordinate system is a (third-order) tensor [22]. This result
is due to Palatini. Further, as is well known, the �λ

αβ and �λ
(�)αβ are determined entirely by the metrics induced by

the coordinates on ω and �, respectively. The relevant formulas are

�λ
αβ = 1

2
aλμ(aαμ,β + aβμ,α − aαβ,μ) and �λ

(�)αβ = 1

2
eλμ(eαμ,β + eβμ,α − eαβ,μ). (11)

Accordingly, the coefficients Sλ
αβ account for strain-gradient effects. These, and the bαβ, are easily seen to be

Galilean invariant; that is, they are insensitive to rigid-body motions superposed on the given deformation.
Our constitutive assumption implies that the strain energy depends on the list of deformation variables

{aα,Sα,n, κ}. In a superposed rigid-body motion, this lists is transformed to {Qaα,Sα,Qn, κ}, wherein Q is
an arbitrary rotation. Consider, for example, a rotation with axis n, i.e., Qn = n. For these, the list transforms to
{Qaα,Sα,n, κ}. As usual, we suppose the strain energy to be invariant under all superposed rotations, and hence
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50 D. J. Steigmann

under these in particular, and thus conclude that it depends on the aα through the metric aαβ. Returning to the
general case, we then have that the energy remains invariant under n → Qn for any rotation, and hence that it
depends on n through |n|(= 1). The energy is thus determined by the list

{C,S, κ}, (12)

of deformation invariants, where

S = eμ ⊗ Sμ. (13)

2.3 Change of reference surface

In preparation for the discussion of material symmetry to follow, we inquire into the manner in which the variables
in the list (12) are altered by a change of reference surface. Thus, consider an alternative reference surface, �̄,

described parametrically by the function x̄(θα). Using this as reference, the relevant version of (7) is

r|(�̄)αβ = S̄λ
αβr,λ + bαβn, (14)

where

S̄λ
αβ = �λ

αβ − �λ
(�̄)αβ

. (15)

Evidently,

S̄λ
αβ = Sλ

αβ + 
λ
αβ, where 
λ

αβ = �λ
(�)αβ − �λ

(�̄)αβ
(16)

is the induced change in the referential Levi-Civita connection. Consequently,

r|(�̄)αβ = r|(�)αβ + 
λ
αβaλ. (17)

Let ēα = x̄,α be the natural basis on the tangent plane T�̄ at the point with coordinates θα, and let ēα be the dual
basis. Using these, we construct the tensors

R = eμ ⊗ ēμ and H = eμ ⊗ ēμ, (18)

so that eα = Rēα and eα = Hēα. Then

r|(�)αβ ⊗ eα ⊗ eβ = aμ ⊗ R(S̄μ − �̄
μ
)Rt − n ⊗ Rκ̄Rt , (19)

where

S̄μ = S̄μ
αβ ē

α ⊗ ēβ, �̄
μ = 


μ
αβ ē

α ⊗ ēβ, and κ̄ = −bαβ ēα ⊗ ēβ. (20)

Comparison with (9) delivers

Sμ = R(S̄μ − �̄
μ
)Rt and κ = Rκ̄Rt . (21)
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Equilibrium of elastic lattice shells 51

The more familiar formula

C = RC̄Rt , (22)

with

C̄ = aαβ ēα ⊗ ēβ, (23)

follows directly from (4).
In the event that the tangent planes T� and T�̄ coincide at the point in question, we have

R = R·α
μ ēμ ⊗ ēα and H = Hα·μēα ⊗ ēμ, with Hα·μR

·μ
β = δα

β , (24)

where δα
β is the Kronecker delta, yielding

H = R−t . (25)

In this case the determinants of R and H are well defined and we have N = ±N̄ according as detR (or detH) is
positive or negative, respectively.

3 Immersions and material symmetry

3.1 Immersions in 3-space

Murdoch and Cohen [20] extended to material surfaces Noll’s concept of material symmetry as a local change of
reference configuration that leaves constitutive response unaltered in a given experiment. This differs in principle
from the notion of form invariance under distinguished coordinate transformations adopted in many prior works.
The two concepts yield the same mathematical consequences for first-gradient models of elasticity, but not for
theories in which higher-order gradients figure in the constitutive response. The Murdoch–Cohen conception of
material symmetry was used by Steigmann and Ogden [23] and Steigmann [24] to derive the canonical forms of
the strain-energy functions for thin solid films and fluid films with bending resistance. We cast the present work in
the same setting.

Briefly, in the work of Murdoch and Cohen, an experiment on a material surface � is viewed as an immersion
χ(X) of the surface in 3-space. This is defined in the space containing �, and its restriction to the latter furnishes
the surface deformation r; thus,

r = χ(x). (26)

The chain rule provides

r,α = A(x)eα (27)

and

r,αβ = G(x)[eα ⊗ eβ ] + A(x)eα,β, (28)
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52 D. J. Steigmann

where

A(X) = ∇χ and G(X) = ∇∇χ (29)

are the first and second gradients ofχ(X).Herewe adopt the notation defined by a ⊗ b ⊗ c[d ⊗ e] = (b · d)(c · e)a.
From (2)1, (6), and (27), it follows that

r|(�)αβ = G(x)[eα ⊗ eβ ] + BαβA(x)N (30)

and

r|(�)αβ ⊗ eα ⊗ eβ = G(x)[eα ⊗ eβ ] ⊗ eα ⊗ eβ + A(x)N ⊗ B, (31)

where

B = Bαβeα ⊗ eβ. (32)

Some latitude exists in the construction of the function χ . Consider the normal-coordinate parametrizations

X(θα, ς) = x(θα) + ςN(θα) and χ(X) = r(θα) + ςn(θα) (33)

of 3-space in the vicinities of a fixed material point on � and ω, respectively. This provides an extension of (26)
from � to the surrounding 3-space. It is straightforward to compute the gradient ∇χ and to show that its restriction
to � is

A(x) = F + n ⊗ N, (34)

where F is given by (3).
We have

r|(�)αβ ⊗ eα ⊗ eβ = G(x)[eα ⊗ eβ ] ⊗ eα ⊗ eβ + n ⊗ B. (35)

Comparison with (9) yields

Sμ = {A(x)−teμ · G(x)[eα ⊗ eβ ]}eα ⊗ eβ (36)

and

−κ = {A(x)−tN · G(x)[eα ⊗ eβ ]}eα ⊗ eβ + B, (37)

where use has been made of the fact that

A(x)−t = aμ ⊗ eμ + n ⊗ N. (38)

From (4), we also have

C = {eα · A(x)tA(x)eβ}eα ⊗ eβ. (39)
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Equations (36), (37), and (39) furnish the values of the constitutive variables, listed in (12), generated by a given
experiment, i.e., by a given function χ(·).

3.2 Symmetry transformations

In the Noll–Murdoch–Cohen framework, symmetry transformations are those local changes of reference surface
for which the constitutive response to an experiment remains invariant. Here, a local change of reference refers
to a map of a neighborhood N of a material point on � to a corresponding neighborhood N̄ on �̄. We suppose
this map to be arranged such that x and x̄ coincide at the material point in question. This is a pivot point of the
local transformation. The two neighborhoods N and N̄ are connected by a symmetry transformation provided
that their constitutive responses to an experiment—regarded as a given orientation preserving immersion of each
neighborhood into 3-space—are identical. Here constitutive response is measured by the value of a state variable
such as the strain energy per unit mass or the strain energy per unit area of ω.

Murdoch and Cohen [20] noticed, in the setting of material surfaces, that a simplification is possible due to the
presumedGalilean invariance of the constitutive functions. This implies, as far as constitutive response is concerned,
that the local tangent planes Tω and T� may be assumed to coincide and be similarly oriented at the material point
in question. This amounts to imposing A(x)−tN = N and hence to the replacement of (37) with

−κ = {N · G(x)[eα ⊗ eβ ]}eα ⊗ eβ + B, (40)

in the constitutive function.
In the same way, we may identify Tω with T�̄, and hence T� with T�̄, at the pivot point. Using obvious notation,

the relative curvature of �̄ at the pivot point, induced by the same experiment, is found to be

−κ̄ = {N̄ · G(x)[ēα ⊗ ēβ ]}ēα ⊗ ēβ + B̄. (41)

Moreover, (24) is operative and yields

−κ̄ = {N̄ · G(x)[eα ⊗ eβ ]}eα ⊗ eβ + B̄, (42)

with N̄ = ±N according as detR in (24) is positive or negative, respectively. Thus,

κ̄ = κ + B − B̄, (43)

if T� and T�̄ have the same orientation, whereas

κ̄ = −(κ + B + B̄), (44)

if T� and T�̄ have opposite orientations. Of course B and B̄ need not be related as these reflect the generally distinct
local embedding geometries of N and N̄ .

Using (36) and (39) and proceeding similarly, we conclude that

C̄ = C, (45)

and that

R·μ
λ S̄λ= Sμ; hence, S̄ = S. (46)
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Let ψ be the strain energy per unit mass, and let � and �̄, respectively, be the constitutive functions for this
energy based on the use of the reference surfaces � and �̄. Then, because the state of the shell is not sensitive to
the choice of reference,

�̄(C̄, S̄, κ̄) = �(C,S, κ) = �(RC̄Rt , eμ ⊗ R(S̄μ − �̄
μ
)Rt ,Rκ̄Rt ), (47)

where use has been made of (21) and (22).
Recall that N and N̄ are related by a symmetry transformation if their constitutive responses to a given experiment

coincide. In view of (43)–(45), this entails the restrictions

�(C, eμ ⊗ Sμ, κ) = �(RCRt , eμ ⊗ R(S̄μ − �̄
μ
)Rt ,R(κ + B − B̄)Rt ) if detR > 0 (48)

and

�(C, eμ ⊗ Sμ, κ) = �(RCRt , eμ ⊗ R(S̄μ − �̄
μ
)Rt ,−R(κ + B + B̄)Rt ) if detR < 0, (49)

where

S̄μ = Hμ·αSα. (50)

Remark In an addendum to their work [20], Murdoch and Cohen observed that considerable simplification is
achieved in their treatment by using a representation equivalent to (34) above for the restriction to � of the gradient
of the immersion χ . To justify this simplification, they observed that the derivative of χ in the direction normal to
� may be specified arbitrarily because only the tangential surface derivatives of χ are involved in the constitutive
theory. In [20] and [23], it was shown that any alternative immersion yields the non-physical conclusion that the
energy takes the same value at infinitely many values of the relative curvature tensor.

4 Example: plane orthogonal lattice

In [4] we proposed the strain-energy function

W = w(λ,μ, J ) + 1

2
Ag

(
|gL |2 + |gM |2

)
+ 1

2
A�|�|2 + 1

2
k
(
K 2

L + K 2
M

)
+ 1

2
k̄T 2, (51)

for a plate consisting of extensible crossed elasticae, initially arranged in a uniform orthogonal grid characterized
by fixed orthonormal vectors L andM lying on a plane. We identify � with a portion of this plane. The energy per
unit mass is � = ρ−1

� W, where ρ�, the mass density on �, is assumed to be constant. Here

λ = √
L · CL, μ = √

M · CM and J = √
detC, (52)

respectively, are the fiber stretches and the areal stretch, and the remaining terms are associated with the orthogonal
decomposition

r|αβ = LαLβ(gL + KLn) + MαMβ(gM + KMn) + (LαMβ + MαLβ)(� + Tn), (53)

of the second gradient of position. In particular,

KL = −L · κL, KM = −M · κM and T = −L · κM, (54)
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represent bending and twist of the fibers embedded in the surface, and

gL = LαLβ Sμ
αβaμ, gM = MαMβ Sμ

αβaμ and � = LαMβ Sμ
αβaμ = MαLβ Sμ

αβaμ (55)

represent the combined effects of the gradients of fiber stretch and geodesic bending.
The quadratic dependence of the energy on r|αβ may be understood in terms of a local length scale, which may

be the sheet thickness, the mesh spacing of the lattice, or the diameters of the constituent fibers. If any of these is
used as the unit of length, then the norms of the non-dimensionalized vectors gL , gM , and � are typically so small
that their contributions to the energy may be approximated by quadratic functions; linear terms vanish if the couple
stresses and bending/twisting moments are zero when the fibers are straight and untwisted.

The coefficients Ag, A�, k, and k̄ may be functions of λ, μ, and J ; here, for simplicity, we take them to be
constants. Other forms are possible. For example, we could separate out the effects of geodesic curvature and
tangential stretch gradient in gL or gM and assign different elastic moduli to each.

The energy W is easily shown to exhibit orthotropic symmetry in the sense that (48) and (49) are satisfied with

R ∈ {±L ⊗ L ± M ⊗ M}, (56)

at all points of� andwith any combination of signs, withB = 0, B̄ = 0, and �̄
μ = 0.Here both� and �̄ occupy the

same plane, whileR is uniform and orthogonal (R−1 = Rt ); the metrics eαβ and ēαβ therefore coincide identically,
implying (cf. (16)2) that all 


μ
αβ vanish.

For example, let I = |gL |2; then

I = (L · SαL)(L · SβL)eα · Ceβ. (57)

Replacing C by RCRt and Sα by RS̄αRt in accordance with (48) and (49), we compute

Ī = (RtL · S̄αRtL)(RtL · S̄βRtL)Rteα · CRteβ

= (L · S̄αL)(L · S̄βL)ēα · Cēβ, (58)

where use has been made of (24) and (56). Using (24) in the form ēα = R·μ
α eμ, we reduce this to

Ī = R·μ
α R·λ

β (L · S̄αL)(L · S̄βL)eμ · Ceλ, (59)

and (46)1 finally yields Ī = I. Thus, |gL |2 satisfies the symmetry conditions (48) and (49), for R as in (56).
Similarly, each term in (51) may be shown to satisfy the same symmetry condition.

The strain-energy function based on the use of an arbitrary reference surface �̄, say, may be derived from the
representation (51). This is W̄ = W

√
e/ē, where e and ē, respectively, are the determinants of the metrics induced

by the convected coordinates on� and �̄. This may be obtained as an explicit function of the deformation measures
based on the use of �̄ as reference by substituting (18)–(22) into (51), (52), (54), and (55).

5 Virtual work principle

The derivation of the Euler equations and boundary conditions in second-gradient elasticity is well known [9–13].
We present a version appropriate for surfaces, and use it to establish the constitutive connection between the loads
and the deformation. The relevant virtual work statement is

Ė = P, (60)
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56 D. J. Steigmann

where the superposed dot refers to the variational derivative,

E =
∫

�

Wda (61)

is the strain energy, and P is the virtual power of the edge loads, the form of which is made explicit in the sequel.
Here and henceforth, � may be replaced by any subregion � ⊂ � without affecting the argument. In different

contexts, this fact was already known to Piola and Hellinger. We refer to [25] for historical perspective.

5.1 Variational derivatives and response functions

We have

Ė =
∫

�

Ẇda, (62)

where Ẇ is given by

Ẇ = ∂W

∂aαβ

ȧαβ + ∂W

∂Sλ
αβ

Ṡλ
αβ + ∂W

∂bαβ

ḃαβ. (63)

It is necessary to express this in terms of the variation u = ṙ of the position field. To this end, we use

ȧαβ = aα · u,β + aβ · u,α, (64)

together with

u;αβ = u,αβ − �λ
αβu,λ, (65)

in which subscripts preceded by semicolons identify covariant derivatives on the equilibrium surface ω. This is
reduced to

u;αβ = Ṡλ
αβaλ + bαβ ṅ + ḃαβn, (66)

by using the variational derivative of the Gauss equation (1)1. Thus,

ḃαβ = n · u;αβ. (67)

To compute Ṡλ
αβ , we use (66) to derive

aμ · u;αβ = Ṡμ
αβ + bαβa

μλaλ · ṅ, (68)

together with aλ · ṅ = −n · u,λ (derived by differentiating aλ · n = 0), obtaining

Ṡμ
αβ = aμ · u;αβ + bαβa

μλn · u,λ. (69)

123



Equilibrium of elastic lattice shells 57

To express ḃαβ and Ṡμ
αβ in terms of u,α and u|αβ , we use

u|αβ = u,αβ − �λ
(�)αβu,λ, (70)

solve for u,αβ, and substitute into (65), obtaining

u;αβ = u|αβ − Sμ
αβu,μ. (71)

Accordingly,

ḃαβ = n ·
(
u|αβ − Sλ

αβu,λ

)
(72)

and

Ṡλ
αβ = aλ · u|αβ +

(
bαβa

μλn − Sμ
αβa

λ
)

· u,μ. (73)

Altogether,

Ẇ = Nα · u,α + Mαβ · u|αβ, (74)

withMαβ = Mβα (the order-of-differentiation symmetry identified in Sect. 1) and

Nα = Nβαaβ + Nαn, Mαβ = Mλαβaλ + Mαβn, (75)

in which

Mλαβ = 1

2

(
∂W

∂Sμ
αβ

+ ∂W

∂Sμ
βα

)

aμλ, Mαβ = 1

2

(
∂W

∂bαβ

+ ∂W

∂bβα

)
,

Nβα = σβα − MβγμSα
γμ, Nα = Mαμγ bμγ − MβλSα

βλ, (76)
and

σβα = ∂W

∂aαβ

+ ∂W

∂aβα

. (77)

For the special strain-energy function (51), the foregoing equations furnish [4]

Nα = wλL
αl + wμM

αm + JwJaα + {[(Ag − k)(KLgL + KMgM ) + (A� − k̄)T�] · aα}n (78)

and

Mαβ = LαLβ(AggL + kKLn) + MαMβ(AggM + kKMn) + 1

2
(LαMβ + MαLβ)(A�� + k̄Tn), (79)

where l andm are the unit tangents to the deformed fibers, i.e., λl = FL and μm = FM. The tangential and normal
components in (75), if needed, can be read off from these.
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5.2 Reduction

Proceeding with the reduction of (60), as in [4], we define

ϕα = Tα · u + Mαβ · u,β (80)

with

Tα = Nα − Mαβ
|β (81)

and

Mαβ
|β = Mβα

,β + Mβα�λ
(�)λβ + Mβλ�α

(�)λβ. (82)

With this, we have

Ẇ = ϕα|α − u · Tα|α (83)

and Stokes’ theorem may then be used to reduce (62) to

Ė =
∫

∂�

ϕαναds −
∫

�

u · Tα|αda, (84)

wherein ν = ναeα is the rightward unit normal to ∂�.

A distributed load g, per unit area of �, contributes
∫
�
g · uda to the virtual work of the loads. It follows

immediately from (60) that the relevant Euler–Lagrange equation, holding in �, is

Tα|α + g = 0. (85)

It is conventional to record the tangential and normal equations of equilibrium but we refrain from doing so here
as these are greatly complicated, relative to those of standard shell theory, by the presence of strain-gradient effects.

Turning to the boundary terms, a standard integration-by-parts procedure [4] may be used to recast the first
integral in (84) as

∫

∂�

ϕαναds =
∫

∂�

{(
Tανα − (Mαβνατβ)′

) · u + Mαβνανβ · uν

}
ds −

∑[
Mαβνατβ

]
i · ui , (86)

where τ = ταeα = N × ν is the unit tangent to ∂�; uν = ναu,α is the normal derivative of u, (·)′ = d(·)/ds; and
the square bracket refers to the forward jump as a corner of the boundary is traversed. Thus, [·] = (·)+ − (·)−,

where the subscripts ± identify the limits as a corner located at arc length station s is approached through larger
and smaller values of arc length, respectively. The sum accounts for the contributions from all corners. Here we
assume the boundary to be piecewise smooth in the sense that its tangent τ is piecewise continuous.

From (60), it follows that admissible powers have the form

P =
∫

�

g · uda +
∫

∂�t

t · uds +
∫

∂�m

μ · uνds +
∑

∗
fi · ui , (87)
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where

t = Tανα − (
Mαβνατβ

)′
, μ = Mαβνανβ and fi = −[

Mαβνατβ

]
i (88)

are the edge traction, edge double force, and the corner force at the i th corner, respectively. Here, ∂�t and ∂�m ,
respectively, are parts of ∂� where r and rν are not assigned, and the starred sum includes only the corners where
position is not assigned. We suppose that r and rν are assigned on ∂�\∂�t and ∂�\∂�m, respectively, and that
position is assigned at the corners not included in the starred sum.

5.3 Overall equilibrium

Consider the special case in which no kinematical data are assigned anywhere on ∂�, so that ∂�t = ∂�m = ∂� and
rigid-body deformations are kinematically admissible. The variational derivative of such a deformation is expressible
in the form u = ω × r + c,where c andω are arbitrary spatially uniform vectors. Because the strain-energy function
is invariant under such variations, we have Ė = 0 and (60) reduces to P = 0, i.e.,

c ·
(∫

�

gda +
∫

∂�

tds +
∑

fi

)
+ ω ·

{∫

�

r × gda +
∫

∂�

(r × t + rν × μ)ds +
∑

ri × fi

}
= 0. (89)

We then have

∫

�

gda +
∫

∂�

tds +
∑

fi = 0 and
∫

�

r × gda +
∫

∂�

(r × t + rν × μ)ds +
∑

ri × fi = 0, (90)

and hence the interpretation of rν × μ as a density of edge couples.
Evidently Eqs. (90)1,2 are necessary, but not sufficient, for equilibrium. For, (88)2 involves the entire double

force on ∂�m, whereas in (90)2 only the part of the double force orthogonal to rν is relevant (see [9] for further
discussion). This situation stands in contrast to single-gradient theories that do not involve double forces or corner
forces. There, the global statements (90)1,2 (with double forces and corner forces omitted), when applied to an
arbitrary part � ⊂ �, provide a complete characterization of equilibrium.

5.4 Interpretation of the double force

To better understand the nature of the double force, imagine a thin strip, or seam, riveted to the edge ∂�m of the
shell and extending into � through a small distance h. Imagine a force density −f acting on ∂�m, and a force
density f, per unit length of ∂�m, acting on the opposite edge of the seam. These make no contribution to the net
force and so do not appear in (88)1 or (90)1. Nevertheless, they make a net contribution

−f · u + f · [u + huν + o(h)] = μ · uν + o(h), (91)

to the virtual work density, where μ = hf is the couple of the forces. For small h, this contribution is represented,
at leading order, in (87).

Similarly, the net torque density generated by these forces is

r × (−f) + [r + hrν + o(h)] × f = rν × μ + o(h), (92)

which is represented, again at leading order, in (90)2.
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Thus the double force may be regarded a self-equilibrating pair of force densities acting over a vanishingly
thin strip adjoining the edge of the shell to produce power and torque. This is precisely the mechanism whereby a
bending moment may be generated at the edge of an elementary beam.

6 Example: bending a plane to a cylinder

A simple example is furnished by the bending of a plane to a right circular cylinder of radius r, say. We adopt
(51)–(55), pertaining to a rectangular lattice. Let {θα} be Cartesian coordinates on the initial plane and let {r, θ, z}
be polar coordinates. The considered deformation is then described by

x = θαeα and r = rer (θ) + zk, (93)

with θ1 = rθ and θ2 = z. Here, {er , eθ ,k} is the usual cylindrical polar basis: k(= e2) is aligned with the axis of
the cylinder; er is the exterior unit normal to the cylinder at azimuth θ; and eθ = k × er is tangential to a parallel
of latitude.

This deformation is an isometry; accordingly, the Sμ
αβ vanish and the fiber stretches and areal stretch are equal to

unity. Assuming the derivatives wλ, wμ, and wJ to vanish at such a state, we find, from (78) and (79) that Nα = 0
and

Mαβ = Mαβn, with Mαβ = kKL L
αLβ + kKMMαMβ + 1

2
k̄T

(
LαMβ + MαLβ

)
. (94)

Let γ be the fiber orientation on the initial plane, i.e., L1 = cos γ, L2 = sin γ, M1 = − sin γ , and M2 = cos γ.

Omitting the details of the simple derivation, we find that

KL = −r−1 cos2 γ, KM = −r−1 sin2 γ and, T = r−1 sin γ cos γ (95)

and that

Tα = Mαβbμ
β aμ, (96)

where bμ
β are the mixed components of the curvature (b11 = −r−1; all other components zero). Then

Tα|α = −r−2Mn, (97)

where M = −M11, i.e.,

M = r−1k(cos4 γ + sin4 γ ) + r−1k̄ sin2 γ cos2 γ. (98)

The distributed force required to maintain equilibrium is a pressure g = pJn, where J = 1 and p = r−2M. The
force and torque per unit length of the edge with initial unit normal ν = e1 are f = f eθ , with f = r−1M, and
r,1 × μ = Mk, a pure bending moment directed along the axis of the cylinder. We note that f = rp in accordance
with elementary statics. The edge forces, double forces, and corner forces acting on the boundary of any simply
connected subregion of the shell may be computed using (88).
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