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Abstract High-frequency asymptotics is now a standard tool for analyzing localized hydrodynamic instabilities
in many physical situations: flows with high Reynolds number, stratification, and rotation, to name a few. In general,
the method gives an approximation which is first-order accurate in the asymptotic parameter. Here, a second-order
accurate WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) approximation is derived and its numerical properties are
reported when applied to incompressible viscous flows. Numerical experiments compare the first- and second-order
WKBJ approximations with direct numerical simulation (DNS) when computing the evolution of wave packet
disturbances superimposed on a base flow. We analyze WKBJ’s convergence rate, time transient properties, and
long-time behavior for eigenvalue calculations. Numerical experiments are performed with two base flows: Taylor–
Green vortex, which is symmetric, and another vortex where the symmetry is broken. We find that the second-order
WKBJ is excellent for approximating the transient features of wave packets in both base flows including the peaks
of velocity related to the Orr mechanism of transient growth. Despite its success with transients, the second-order
WKBJ remains accurate until some instant of timewhen, usually, it diverges from theDNSsolution. Scale separation,
essential for WKBJ, breaks down at this moment. We have identified a particular feature in the Lagrangian map of
particles that explains, and predicts, where and when WKBJ and DNS diverge significantly. Because WKBJ may
become imprecise when applied for long-time integration of viscous flows, it may yield incorrect approximation for
eigenvalue calculations. Understanding its limitations is the key for successful application ofWKBJ approximation.

Keywords High-frequency asymptotics · Hydrodynamic stability · Inertial waves

1 Introduction

The aim of this article is to explore the accuracy of WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) approximations
for computing the time evolution of localized high-frequency disturbance in incompressible viscous flows. This
method is often used in the literature but studies of its validity are sparse. Here, a new approximation is derivedwhich
is second-order accurate in theWKBJparameter ε, the parameter controlling fast spatial oscillation, and its numerical
accuracy is explored in comparison with direct numerical simulation (DNS). From a computational point of view,
capturing short-wave dynamics with WKBJ is much faster than using a fine-grid discretization of PDEs. Notably,
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2 S. B. Rodrigues

WKBJ becomes more accurate as oscillations increase and this property complements grid-based discretization
methods like finite differences and finite elements. Unfortunately, in the long run, WKBJ approximation may
become inaccurate. Understanding when WKBJ approximation can be trusted is important for applications.

The linearized Navier–Stokes equation (LNSE) is obtained by the linearization of the Navier–Stokes equation of
a given base flow; its time-evolving solutions are called disturbances and its eigenfunctions are called modes. The
WKBJmethod can be used to approximate either fast oscillating disturbances or fast oscillatingmodes. In the context
of hydrodynamic stability of localized disturbances, the WKBJ method acquired its modern form following the
work of Lifschitz andHameiri [1]. Before their work, albeit not using theWKBJ formalism, there weremany studies
on constant-gradient base flows describing either plane-wave disturbances [2] or modes which are constructed as
a superposition of such waves [3]. The studies with constant-gradient base flows have a long history which can
be traced back to Kelvin waves in circular vortices. Interest in the field intensified when the elliptical instability
of inviscid vortices, identified in a seminal paper by Pierrehumbert [4], was mathematically explained by Bayly
[5,6] as being a parametric instability of these plane-wave disturbances. The presence of viscosity can stabilize the
elliptical instability, and thus a critical viscosity can be calculated [7].

Since then,WKBJ has been extensively applied inmany scientific fields by the inclusion of other physical effects,
for example, flowswith time dependence [8], stratification [9], rotation [10],magnetism [11], among others. Further-
more, there was theoretical progress which produced generalizations [12] of the well-known Rayleigh circulation
criterion for the stability of rotating flows [13]. Also, work clarifying the use of WKBJ for the approximation of
large-axial-wavenumber Kelvin modes in vortices has advanced [14]. Despite the large number of studies in this
field, only a fraction of them addressed the validity of the WKBJ method in comparison to numerical calculations.
The studies of Lundgren and Mansour [15] and Sipp and Jacquin [16] have computational confirmation about the
quality of WKBJ for predicting the modal growth rate of the elliptical instability that occurs at the center of the
Taylor–Green (TG) vortex. Also concerning modal growth rates, but with other base flows, some authors report
quantitative agreement between WKBJ and numerical experiment [17–19], while some authors report qualitative
agreement only [8,20].

In the present article, we are mainly concerned with the approximation of transients in viscous flows.We perform
numerical experiments with 3D perturbations superimposed on 2D base flows and discuss the possible reasons
behindWKBJ’s successful, or unsuccessful, results. Transients are intensely researched because of their connection
with bypass transition to turbulence, a phenomenon commonly observed in shear flows [21]. The term “bypass”
indicates that linear modal growth is not important in this transition scenario. In the case of shear flows, there are
two types of linear mechanisms that promote strong transient growth of disturbances: the Orr mechanism [22], also
known as tilted-wave, and the streak formation mechanism [23] also known as lift-up effect. Both mechanisms are
present in plane-wave disturbances of constant-gradient flows and their nonlinear interactions were studied [24] in
connection with self-sustaining processes [25]. The extension of these mechanisms, from plane-wave disturbances
to wave packet disturbances, may depend on the validity of WKBJ on suitable time scales.

The structure of the paper is as follows. In Sect. 2, the second-order accurate time-dependent WKBJ approxima-
tion is derived yielding a set of ODEs which is called the second-order WKBJ system. In some cases, for example at
the center point of TG base flow, the first-order WKBJ approximation can be automatically second-order accurate;
this is called superconvergence. The theoretical aspects of superconvergence are discussed in Sect. 3. Model base
flows such as TG and the recirculation flow (RF) are defined in Sect. 4 along with details about initial wave packet
disturbance and scalings. The numerical comparison between the WKBJ approximations and DNS for wave packet
disturbances in both TG and RF base flows is addressed in Sects. 5.1 and 5.2. Conclusions and discussions are made
in Sect. 6. A summary of equations is found in Appendix.

2 The second-order WKBJ asymptotic

This section brings the derivation of the second-order WKBJ approximation for the linearized Navier–Stokes
equation (LNSE). In essence, WKBJ method approximates the original PDE by an advection-like PDE that can
be solved using ODE integration along characteristics (unlike Schrödinger equation or optics, caustics are absent
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Second-order high-frequency approximation of inertial waves... 3

in incompressible fluid because characteristics coincide with particle paths). The quality of this approximation
depends on the scale separation between the fast oscillating solution and the slowly varying coefficients of the PDE.

The notation used is as follows. Boldface symbols are used to denote a three-component vector, for example,
x := (x1, x2, x3) denotes the spatial coordinates, while u(x, t) := (u1(x, t), u2(x, t), u3(x, t)) denotes the velocity
field. The notation “:=” stands for “defined as.” A base flow is denoted by U(x, t) and a disturbance by u(x, t).
The LNSE is written in tensorial notation:

∂t u j +Us∂su j + us∂sUj = −∂ j p + Re−1∂2s u j , (1)

∂sus = 0, (2)

where repeated indices denote the summation ranging from 1 to 3; for instance, ∂sus denotes the divergence of the
velocity field and, for example, the expression k2s denotes k

2
1 + k22 + k23. The compact notation U := (u, εp) denotes

the joint 4-component vector with velocity and pressure where the pressure is scaled by ε. An approximate solution
Uε := (uε, εpε) is sought with highly oscillatory behavior using the following WKBJ ansatz:

Uε := Uampeiφ(x,t)/ε + cc, (3)

where cc denotes the complex conjugate; φ(x, t) ∈ R is the phase; Uamp := (uamp, εpamp), where uamp(x, t) ∈ C
3

is the velocity amplitude and pamp(x, t) ∈ C is the pressure amplitude. There are several ways to expand Uamp in
powers of ε; the following three possibilities are usually considered:

Uamp
F (x, t) := U0(x, t), (4)

Uamp
S (x, t) := U0(x, t) + εU1(x, t), (5)

Uamp
T (x, t; τ) := U0(x, t; τ) + εU1(x, t). (6)

The first-order WKBJ approximation is defined by Eq. (4). The second-order WKBJ approximation is defined by
either Eq. (5) or (6), where Uamp

S is a single-time-scale expansion, while Uamp
T is a two-time-scale expansion. The

term εU1 in Eq. (5) is called second-order correction. The difference between (5) and (6) is the presence of the
slow-time parameter τ = εt ; this scale can be used to eliminate resonances when approximating a neutrally stable
solution. In computational experiments, only Eqs. (4) and (5) will be used because we are mainly concerned with
transient behavior rather than neutrally stable solutions. Thus, for brevity, we do not include here the formulas for
Eq. (6) but we mention that the derivation presented here can be extended to include both two-time scales and
superpositions of wave packets. We also mention that two-time scales have been used, albeit with plane waves
rather than wave packets, to show that localized elliptical instability is supercritical [26].

The small asymptotic parameter ε > 0 is related to the large Reynolds number by

Re−1 = νε2, (7)

where ν ∈ R.
Henceforth, the material derivative with respect to the base flow is denoted by the operator Dt

Dt := ∂t +Uj∂ j .

The local wavevector is defined as

k j := ∂ jφ (8)

for j = 1, 2, 3, and it is also denoted by k := (k1, k2, k3). The notation ξ j (t; x0) stands for the particle path starting
at x0 when t = 0 that is transported by the base flow according to the equation:
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4 S. B. Rodrigues

dξ j
dt

= Uj (ξ(t), t). (9)

The derivative along a particle path of a function f (x, t) is denoted by ḟ , where ḟ := d f (ξ(t), t)/dt .
When substituting ansatz (3) into Eqs. (1, 2), and collecting terms with equal powers of ε, the following three

equations for orders O(ε−1), O(ε0), and O(ε1) are obtained. The equation at O(ε−1) is the transport of the phase

Dtφ = 0. (10)

At order O(ε0), the system of equations is

Dtu
0
j + u0s ∂sUj + ik j p

0 + νk2s u
0
j = 0, (11)

iksu
0
s = 0, (12)

which represents the transport of the velocity amplitude. Eq. (12) imposes the orthogonality between wavevector k
and amplitude vector (u01, u

0
2, u

0
3). Finally, at order O(ε1), the system of equations is

Dtu
1
j + u1s∂sUj + ik j p

1 + νk2s u
1
j = ν(2iks∂su

0
j + i∂sksu

0
j ) − ∂ j p

0, (13)

iksu
1
s + ∂su

0
s = 0. (14)

The initial conditions of Eqs. (10)–(14) are obtained from the initial disturbance amplitude Uε(x, 0) = Uamp
S (x, 0)

in Eqs. (3) and (5). For the initial value problem, the initial condition UampS(x, 0) is represented by U0(x, 0) while
U1(x, 0) = 0.

The precision of the WKBJ approximation in Eq. (3) is analyzed after solving Eqs. (10)–(14). The use of
characteristic variables simplifies the computation of these equations; the remainder of this section is dedicated to
rewriting these equations as an ODE system. This task starts by eliminating the pressure variable using Eqs. (12)
and (14). Also, the material derivative of every function appearing in Eqs. (10)–(14) is given. Namely, the material
derivatives of k j and ∂sk j are obtained by repeated differentiation of Eq. (10), while ∂su0j is obtained by the

differentiation of Eq. (11); in this process, ∂ j p0 is also obtained.
By repeated differentiation of Eq. (10), it follows that

Dtk j = −∂ jUsks, (15)

Dt∂l k j = −∂l∂ jUsks − ∂ jUs∂l ks − ∂lUs∂sk j . (16)

To eliminate the pressure in Eq. (11), the material derivative of (12) is taken and (15) is used to obtain

0 = Dt (ksu
0
s ) = ksDtu

0
s − ∂sUlklu

0
s . (17)

Also, the scalar product of Eq. (11) with k j yields, by using (12) and (17), an expression for i p0:

i p0 = −2
u0s ∂sUlkl

k2j
. (18)

In order to keep expressions compact, Eqs. (11) and (18) are written separately, but notice that the substitution of
(18) into (11) yields the well-known equation [1,2,5,7]:

Dtu
0
j +

(
δ jl − 2

k j kl
k2m

)
∂sUlu

0
s + νk2mu

0
j = 0. (19)
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Second-order high-frequency approximation of inertial waves... 5

This equation can be rewritten in a compact form as follows:

Dtu
0
j + L js(t; x0,k0, ν)u0s = 0, (20)

where L(t; x0,k0, ν) is a 3-by-3 time-dependent real matrix which depends on the parameters listed after the
semicolon. The set of Eqs. (9,15,19) is henceforth called the first-order WKBJ system. The first-order WKBJ
system can be derived without the WKBJ formalism by assuming that the base flow has constant gradient in the
space variables.

Proceeding with the derivation of the second-order WKBJ system, it is necessary to find expressions for ∂ j p0

and ∂su0j in Eqs. (13)–(14). These are obtained by differentiating (18) and (11):

i∂ j p
0 = − 2

k2m

(
∂ j u

0
s ∂sUlkl + u0s ∂

2
s jUlkl + u0s ∂sUl∂ j kl − 2

u0s ∂sUlklkn∂ j kn
k2m

)
, (21)

Dt∂su
0
j = −

(
∂sUl∂lu

0
j + ∂su

0
l ∂lU j + u0l ∂

2
lsU j + i∂sk j p

0 + ik j∂ j p
0
)

− ν
(
2km∂skmu

0
j + k2m∂su

0
j

)
, (22)

where (16), (18), and (21) are needed in (22). These expressions depend on the Hessians of the base flow ∂2s jUl ,
l = 1, 2, 3.

In order to compute p1 in Eq. (13), an expression for k j Dtu1j is sought. By taking the scalar product of k j with
Eq. (13) and the material derivative of Eq. (14), the following identity is found:

Dt (iksu
1
s + ∂su

0
s ) = i Dtksu

1
s + iksDtu

1
s + d0 = 0, (23)

where

d0 := Dt∂su
0
s (24)

which is the trace of the right-hand side (r.h.s.) of Eq. (22). Next, Eq. (15) can be used to replace Dtks in order to
find

ksDtu
1
s = u1s∂sUlkl + id0. (25)

Proceeding with the scalar product k j with Eq. (13), p1 is found

i p1 = −2
u1s∂sUlkl

k2j
+ g0, (26)

g0 := 1

k2j

[
−id0 − k j∂ j p

0 + ν
(
−ik2m∂su

0
s + 2ikm∂mu

0
s ks

)]
. (27)

Now, Eq. (13) can be rewritten as a linear ODE with a forcing term:

u̇1j + L js (t; x0,k0, ν) u1s = −∂ j p
0 − k j g

0 + ν
(
2iks∂su

0
j + i∂mkmu

0
j

)
, (28)

where L js is the same matrix as in Eq. (20).
In summary, the second-order WKBJ system is defined as the set of ODEs governing the evolution of ξ , k j , ∂sk j ,

u0j , ∂su
0
j , and u

1
j ; these are written in Eqs. (9), (15), (16), (19), (22), and (28) which depend on the auxiliary quantities

p0, ∂ j p0, d0, and g0 given in (18), (21), (24), and (27), respectively. When the base flow is 2D, U(x1, x2, t), the
second-order WKBJ system consists of 18 scalar equations (∂sk j is symmetric). For a 3D base flow, there are 27
scalar equations. The system can be solved in a sequence, for example, beginning with ξ followed by k j , u0j , ∂sk j ,

∂su0j , and u1j . These equations are organized in a single list in Appendix, Eqs. (40)–(50).
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6 S. B. Rodrigues

3 Special superconvergence of first-order WKBJ approximation

This section addresses the interesting situations where the first-order WKBJ approximation behaves like a second-
order approximation. This can occur either because the second-order correction vanishes or because it does not
contribute to the quantity of interest. The first-order WKBJ approximation is indeed shown to be second-order
accurate when applied to flows with a special symmetry which include the classical case of elliptical instability.
Moreover, for general flows, there are particle paths where the first-order approximation becomes second-order
accurate due to a symmetry in the disturbance’s amplitude; numerical examples are given in Sect. 5.1.

In the interesting case of elliptical instability, which includes the TG base flow, the first-order WKBJ approx-
imation can be more accurate than expected. A serendipitous superconvergence due to symmetries occurs if two
special features are present: the Hessians of (U1,U2) vanish along a particle path, and the wave packet disturbance
is locally a plane wave. In this case, the second-orderWKBJ correction vanishes. The result is stated in the following
proposition:

Proposition 1 (i) If the base flowU(x, t) satisfies ∂l∂ jUs(ξ(t), t) = 0 for all index 1 ≤ i, j, l ≤ 3, where ξ(t) is the
streamline governed by Eq. (9) with initial condition ξ j (0; x0) = x0, and (ii) if ∂lu0j (x0, 0) = 0 and ∂l ks(x0, 0) = 0

in the initial condition of Eqs. (16) and (22), then the solution u1j (ξ(t), t) of Eq. (28) is identically zero if initially

u1j (x0, 0) = 0.

Proof First, Eq. (16) is trivially satisfied because its initial condition is zero and the forcing term is identically zero
from the hypothesis ∂l∂ jUs(ξ(t), t) = 0. Second, every nonhomogeneous term on the r.h.s. of Eqs. (21) and (22)
contains one null factor: it contains either ∂l∂ jUs or ∂l ks or ∂lu0j . As a consequence, ∂lu0j and ∂l p0 remain zero

along the characteristic. This implies that the expressions for both d0 in Eq. (24) and g0 in Eq. (27) are zero. Then,
from Eq. (28), all the nonhomogeneous terms in this equation vanish and, therefore, u1j is zero along the streamline
ξ(t; x0). ��

A numerical experiment illustrating this proposition is presented in Sect. 5.1, cf. line marked with (∗) in Fig. 3.
Hypothesis (i) is valid at the stagnation point of vortices with reflexion symmetry along its principal axis, e.g., if the
stagnation point is at the origin of a 2D flow where the stream function is an even function of the spatial variables
(x1, x2). Hypothesis (ii) is met by wave packet disturbances when the point x0 is exactly at a maximum of the wave
packet envelope. Both hypotheses are met when placing the wave packet center at the stagnation point of an elliptic
vortex. There is a well-known corollary of Proposition 1: plane-wave perturbations are exact solutions of constant-
gradient flows. Using Proposition 1, this assertion translates into the special case where u1j (x, t) vanishes identically
over the domain because ∂l∂ jUs(x, t) = 0 and ∂l ks(x, t) = 0 everywhere. In this corollary, the plane-waves are
solution of the fully nonlinear NSE [2].

The next proposition shows that, without any symmetry hypothesis on the base flow, superconvergence can
occur along a decreasing sequence of ε when the wave packet amplitude takes a special form. Recall that initially
uamp(x0, 0) ∈ C

3 in Eq. (3) and that each component can be written in polar form uamp
j = |uamp

j | exp(iα j ), where α j

is real. The wave packet amplitude is defined as coherent at x0 with argument α when there are k j ∈ Z, j = 1, 2, 3,
such that α j = α + k jπ . For example, a coherent wave packet has “purely real” velocity amplitude uamp when
α = 0. With respect to the pressure, the argument of p0 is shifted by π/2 because of Eq. (18).

Proposition 2 If thewave packet amplitudeuamp(x0, 0) ∈ C
3 is coherent atx0 with argumentα and if ε−1φ(x0, 0)+

α = nπ for a certain n ∈ Z, then uε(x(t), t) in Eq. (3) is independent of u1(x(t), t) (i.e., knowledge of u0(x(t), t)
is sufficient to compute uε(x(t), t) up to second order).

Proof Initially, the argument of u0j in Eq. (20) is α+k jπ ; the argument remains unchanged in time becauseL is real.

By tracking the argument of subsequent expressions until Eq. (28), the argument of u1j is found to be α+k jπ ±π/2.
From the expression in Eqs. (3) and (6), the j-th velocity component of Uε is found:(
|u0j |eiα+k jπ + ε|u1j |ei(α+k jπ±π/2)

)
eiε

−1φ + cc.
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Second-order high-frequency approximation of inertial waves... 7

Because φ is constant along particle paths, the hypothesis ε−1φ(x0, 0) + α = nπ implies

|u1j | exp
(
i
(
α + k jπ ± π/2 + ε−1φ

))

to be imaginary. Thus, u1j does not contribute to the second-order approximation due to cancelation with its complex
conjugate. ��

Proposition 2 should not be regarded as a method for reaching second-order accuracy; nevertheless, it explains
numerical features which, otherwise, could be mistaken as an “unexpected precision.” A computational instance of
Proposition 2 is found in Sect. 5.1 following the discussion of Fig. 3.

4 Base flows, initial disturbance, and scaling

Numerical experiments are performedwith two base flows: a flattened Taylor–Green (TG) vortex and a recirculation
flow (RF) vortex. The TG vortex is a well-studied model for elliptical instability [16]. The stagnation point of the
TG vortex is surrounded by approximately elliptic streamlines and Proposition 1 can be applied. The streamlines
of the RF flow are far from elliptical and symmetries are absent. Both base flows are solutions of the forced NSE
but, in particular, the TG flow is a solution of Euler’s equation. These base flows facilitate numerical simulations
because they are composed of few Fourier modes. The Taylor–Green (TG) vortex is frequently used to benchmark
numerical simulations because its simple geometry allows accurate spectral methods to be used. The RF is chosen
because (i) its Fourier coefficients are similar to those of TG, and (ii) its streamlines are visibly different from a
symmetric vortex. The similarity of RF with TG is chosen in order to conduct numerical experiments on WKBJ
precision with analogous scale separation, avoiding the spatial symmetries of the TG base flow. We emphasize that
RF is not connected to a “physically motivated” meaning but it is a random mathematical choice satisfying these
two criteria.

The base flows UTG and URF are defined in the whole plane U(x1, x2) : R2 → R
2. Let ψTG and ψRF denote the

stream functions of TG and RF flows, respectively. These stream functions are given as a series of sine functions
with the form:

ψ(x1, x2) = 1

π

⎛
⎝ Np∑

p=1

cp sin (πpx1/L1)

⎞
⎠

⎛
⎝ Nq∑

q=1

dq sin (πqx2/L2)

⎞
⎠ , (29)

which is an odd periodic function in each coordinate. The stream function ψTG is defined with Np = Nq = 1
and c1 = d1 = 1. The stream function ψRF is defined with Np = Nq = 4, where c1 = d1 = 0.8; cp = (5p)−1

for p = 2, 3, 4; and d2 = 1/15, d3 = 1/35, d4 = 1/35. Contour lines of ψTG and ψRF are shown in further
sections: Figs. 2 and 9a, respectively. These figures have L1 = 2 and L2 = 1 and these values are maintained in all
numerical computations. The maximum speed is 1 for TG and 0.83 for RF; both flows attain their maximum speed
at a boundary point.

The wave packet disturbances u(x, t) considered in Eqs. (1, 2) are constructed so that ∂ j u j = 0, where u: � ×
[0,+∞) → R

3, and where

� = {(x1, x2, x3), 0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2, 0 ≤ x3 ≤ L3} .

Disturbances can be extended to u: R
3 × [0,+∞) → R

3 by appropriate even/odd parity properties, namely
(i) the components u = (u1, u2, u3) are periodic functions of the variables (x1, x2, x3) with periods: 2L1, 2L2,

and L3 in each variable, respectively; (ii) (u1, u2, u3) have the parity properties according to Table 1; and (iii)
u(x, t) is initially tangential to the planes x1 = 0, x2 = 0, x1 = L1, and x2 = L2. It is well known that
if the initial disturbance u(x, 0) : R

3 → R
3 verifies properties (i)–(iii), then the evolution of u(x, t) by the

NSE in the whole space R
3 maintains these properties. Thus, the flow can be regarded as being confined to a

rectangular cavity, which extends periodically in x3, with slip velocity boundary conditions on the walls [15].
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8 S. B. Rodrigues

Table 1 Parity of each
component of u as a
function of variables
x1 and x2

Coordinate\component u1 u2 u3

x1 Odd Even Even

x2 Even Odd Even

Moreover, condition (ii) precludes hyperbolic instability of short wave associated with the hyperbolic stagnation
points (0, 0, 0), (0, L2, 0), (L1, 0, 0), (L1, L2, 0); this means that linear instability occurs at a higher Reynolds
number than the usual TG base flow without these symmetries. Computational experiments presented in further
sections use an initial disturbance in the form of Eq. (3) which obeys conditions (i)–(iii). This allows numerical
methods to speed up the fast Fourier transforms (FFTs) by the use of these symmetries or, even better, to use discrete
sine and cosine transforms.

An example of wave packet initial condition is shown in Fig. 1 and explored in detail in Sect. 5. A formula
for constructing initial wave packets that are localized in the (x1, x2) plane and periodic in x3 is given below. Let
η(x1, x2) : [0, L1]×[0, L2] → R be a smooth envelope function with support inside the rectangle [0, L1]×[0, L2];
let A0 ∈ C

3 be the amplitude vector and let k0 ∈ R
3 be a wavevector such that k0 · A0 = 0. Denote the center of

the envelope η by the point y := (y1, y2, 0) ∈ �. The initial disturbance in (3) is chosen as

uamp(x, 0) = ∇α0(x) ∧ ∇φ0(x), (30)

where φ0 : � → R is given by φ0 = k0 · (x − y) and α0 : � → C is given by

α0(x) = η(x)
(
b − b3

k3
k0

)
· (x − y)

with b = k0 ∧A0/‖k0‖2. With the above formulas, the initial disturbance has the same support in the (x1, x2) plane
as the envelope η, it is divergence free, and it is periodic in x3 with period

L3 = 2πε

k3
, (31)

which is consistent with the definition of �, moreover uamp(y, 0) = η(y)A0.
In computational experiments, η is always chosen as η(x1, x2) = g1(x1 − y1)g2(x2 − y2), where g1 and g2

are Gaussian functions that are slightly modified to vanish smoothly before the boundary. η is normalized so that
0 ≤ η ≤ 1 and η(y) = 1 with y = (Lx/2, Ly/2). The values of A0, k0, and ν are chosen so that the WKBJ system
has a periodic orbit when applied to the TG base flow with ξ(0; y) = y; in our case, the period is 4 time units. The
numerical values of A0, k0, and ν are given in Appendix; notice that A0 has real components only.

Scale separation is a key feature that influences the properties of WKBJ approximations. The highly oscillatory
part of exp(iε−1φ) should oscillate faster than the base flow U and other quantities like u0 and k. In essence,
scale separation means that these functions, and all other functions in the WKBJ system, should have O(1) spatial
derivatives when compared to O(ε−1) spatial derivatives occurring in fast oscillations. Henceforth, let Lh express
the diameter of a disk D containing approximately Np periods of fast oscillations exp(iε−1φ), and let η̃(x) be
a smooth wave packet envelope that vanishes outside D. A localized disturbance with envelope η̃ will have a
recognizable “wave packet shape” if, for example, Np ≥ 2.5. These numbers, Np, ε, and Lh , are connected by the
equation:

Lh(x) = 2πNpε
/√

k21 + k22, (32)

where (k1, k2) = (∂1φ, ∂2φ) denotes the 2D gradient of the phase at (x1, x2). The definition of the derivative
strength of k is given as
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Second-order high-frequency approximation of inertial waves... 9

Fig. 1 Speed ‖u(x1, x2, 0, 0)‖2 in the plane x3 = 0 of awave packet disturbance constructedwith ε = 1.34× 10−2. a Initial disturbance
superimposed on the Taylor–Green base flow and b the disturbance at t = 1 computed by DNS

Sk(x, t) := Lh‖∇k‖A

2‖k‖B , (33)

where ‖ · ‖A and ‖ · ‖B are semi-norms defined inside a disk D. Clearly, smaller values of Sk are better for scale
separation. In numerical experiments, we find that WKBJ shows poor results in regions where ‖k‖ is small and
‖∇k‖ is large; we obtain this information from the Lagrangian map of particles. In practice, one should use any
information available, including physical arguments, to find if Sk 
 1 anywhere in the domain because this is a
warning for low precision. Analogous to Eq. (33), equivalent definitions can be given for SU, Su0 , etc. Because the
envelope η̃ must vanish before the boundary, Lh/2 also defines a minimum distance from the center of D to the
boundary.

Finally, from Lh and∇U, a local Reynolds number Rel can be defined by considering Lh/2 to be the length scale
and ‖∇U‖2Lh/2 to be the velocity scale (difference of velocity at the center of D and at its edge). The viscosity is
Re−1 given in Eq. (1) and Rel is defined as

Rel(x1, x2) := ‖∇U‖2L2
h Re

4
= π2N 2

p‖∇U‖2
ν

(
k21 + k22

) , (34)

where the expression on the right follows from Eqs. (7) and (32). Rel depends on the scale separation Np but it
does not depend on ε.
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Fig. 2 Streamlines of the Taylor–Green base flow and three
particle paths denoted by x( j)(t) = (x ( j)(t), y( j)(t), 0), where
j = 1, 2, 3 is the superscript that distinguishes the paths. Each
initial point for a particle path is marked. The center point
x(1)(0) = (1.0, 0.5, 0) is marked with (asterisk), the point
x(2)(0) = (1.0, 0.75, 0) is marked with (open circle), and the
point x(3)(0) = (1.5, 0.5, 0) is marked with (open square). Lines
are drawn starting at t = 0 and finishing at t = 1

Fig. 3 Difference between the DNS and the first-order WKBJ
approximation. The data pointsmarkedwith (asterisk) refer to the
particle path x(1)(t). The data points marked with (open circle)
refer to the particle path x(2)(t). They show the pointwise error
at time t = 1 as a function of ε. The pointwise error is the
Euclidean norm of the difference of the vector uε(x( j)(1), 1),
calculated by the WKBJ ansatz Eq. (3), and the corresponding
vector udns(x( j)(1), 1; ε) obtained by the DNS of Eq. (1, 2) at the
same space-time coordinates. The reference solid line has slope
2; this shows quadratic convergence rates. This is an example of
superconvergence as predicted by Propositions 1 and 2

5 Comparison between DNS and WKBJ

In this section, the WKBJ approximation is compared with DNS simulations and the numerical errors are analyzed.
For either of the base flows, i.e., TG or RF, the initial disturbance is chosen as the wave packet in Sect. 4. The DNS
method uses FFTs to compute derivatives with spectral precision. Computational costs are alleviated by employing
the parity conditions of Table 1; time integration uses Matlab’s function ode45. Because the DNS method uses a
base-flow-plus-disturbance formulation, the disturbance is transformed to physical space prior to multiplication by
the base flow. Aliasing errors are very small because the base flows under consideration have short bandwidth in
Fourier space, cf. Eq. (29). The domain � is discretized with N × M × 2 points. The x3 direction is special because
the base flow does not depend on x3 and the initial condition has a single Fourier mode in this direction; thus, the
first Fourier mode in the x3 direction is enough to represent solutions exactly. Both the first- and the second-order
WKBJ systems are time integrated using Matlab’s function ode45, and the equations are summarized in Appendix.

5.1 Convergence rates: numerical experiments with Taylor–Green vortex

To obtain numerical convergence rates, time integration is carried out in a unit time interval using TG as the base
flow. Figure 1 shows an example of the evolution of speed of the fluid in this interval. The oscillations increase
if ε decreases but the wave packet envelope changes slightly. Several DNS simulations are performed by varying
the parameter ε while setting L3 = 2πε/k3, cf. Eq. (31). The initial condition for the DNS simulation is obtained
from Eq. (3) where the velocity amplitude is given by Eq. (30). In this section, all DNS simulations are carried
out with the domain � discretized by 1024 × 1024 × 2 points; in all ode45 calls, RelTol and AbsTol are set equal
to 10−7, which guarantees small time-stepping errors. The initialization of ∂su0j in the WKBJ system is obtained
by numerical differentiation of the envelope (30) with highly accurate eighth-order finite differences. The initial
conditions for ∂sk j and u1j are simply zero.
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Fig. 4 Pointwise error between the DNS andWKBJ approxima-
tion as a function of ε when t = 1 for the particle path x(3)(t)
[(marked (open square) in Fig. 2]. Data points are marked with
squares (open square). Data points computed with the first-order
WKBJ approximation are joined by dashed lines, and data points
computed with second-order WKBJ approximation are joined by
solid lines. The dashed line without marks has slope 1 and the
solid line without marks has slope 2. The pointwise error shows
an irregular convergence rate

Fig. 5 The envelope error E(x(3)(1), 1) of the first- and the
second-order WKBJ approximation is shown as a function of ε

for the particle path marked with (open square) in Fig. 2 at t = 1.
Dashed lines and solid lines connect data points marked with
(open square) for the first- and the second-order WKBJ approxi-
mation, respectively; dashed and solid lines without marks indi-
cate slopes 1 and 2, respectively. The envelope error E clearly
exhibits the theoretical convergence rates

Comparisons between DNS simulation and WKBJ approximation are made for the three particle paths shown in
Fig. 2. The pointwise error is shown in Figs. 3 and 4. Remarkably, Fig. 3 shows quadratic convergence rates even
though the approximation uses first-order WKBJ, Eq. (4). These quadratic convergence rates are clear illustrations
of Propositions 1 and 2. In fact, for the center point (∗), the term u1 in Eq. (5) is identically zero because the base
flow satisfies the hypothesis of Proposition 1. For the particle marked with (◦), the phase φ(x(1)(0), 0) is zero and
the hypotheses of Proposition 2 are satisfied because the velocity has a coherent phase with α = 0 (A0 is real).
When φ(x(1)(0), 0) = 0, Proposition 2 does not depend on ε. Notice that the error at the center point (∗) is slightly
larger in absolute value because the initial envelope has a maximum at the center of the vortex. We remark that
trigonometric interpolation is used to obtain udns(x( j)(1), 1; ε) because usually x( j)(1) is not a DNS grid point.
The interpolation uses FFT from the frequency-space data. Albeit computationally demanding, this interpolation
recovers exactly the spatial velocity field used by the DNS.

Figure 4 shows the pointwise error of the particle path marked with (�) in Fig. 2. By looking at the segments
between data points, the convergence rates seem to be irregular. For example, the second-order approximationmixes
slopes greater than 2 with one slope smaller than 1. These sharp changes in slopes occur because φ(x(3)(0), 0) �= 0
and thus the term cos(φ/ε) in the initial condition, Eq. (3), varies in magnitude as ε is reduced. This causes the
absolute value of the initial velocity to change with ε.

In order to obtain a clear numerical convergence rate for the data in Fig. 4, the envelope error is defined next. Two
DNS simulations are initialized to compute the error: the first simulation is initialized with a vector amplitude Uamp

and the second simulation is initialized with a vector amplitude iUamp, with both simulations having the same phase
φ. Without loss of generality, consider Uamp = (uamp, εpamp), where uamp is a purely real vector, while pamp is a
purely imaginary constant; then, for each DNS simulation, the initial velocity field oscillates spatially either with
cos(φ/ε) or with sin(φ/ε). Denote each of these DNS simulations by ucosdns(x, t) or u

sin
dns(x, t), respectively; also,

denote their WKBJ approximate solutions by ucosε (x, t) and usinε (x, t) (it can be either the first- or the second-order
WKBJ approximation). The envelope error associated with these two simulations is defined as

E(x, t) := 1

2

√
‖ucosdns(x, t) − ucosε (x, t)‖2 + ‖usindns(x, t) − usinε (x, t)‖2. (35)
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12 S. B. Rodrigues

This quantity is an upper bound for the pointwise error of either individual simulation; moreover, it does not have
strong spatial oscillations as the pointwise error. Intuitively, sine and cosine are phase shifted so that their square
sum is constant; thus, E measures the error by the oscillation’s peak value. By analogy, the relative envelope error
is defined as

R(x, t) := E(x, t)/A(x, t), (36)

where A(x, t) :=
√

‖ucosdns(x, t)‖2 + ‖usindns(x, t)‖2.
Clear convergence rates can be obtained by employing the envelope error. To see this, consider again the particle

path marked with (�) in Fig. 2. The envelope error E is shown in Fig. 5 as a function of ε. The envelope error clearly
exhibits the theoretical convergence rates. In contrast, it is difficult to establish these convergence rates directly
from the pointwise errors in Fig. 4.

The spatial distribution of the relative envelope error R(x, 1) is shown in Fig. 6 where at each particle position
the value

F(x) := − log10 R(x, 1) (37)

is given in a color scale. The contour lines ofF shown in this figure are obtained from the bulk of the computational
data, which is then smoothed by an average-of-neighbors filter in order to help visualization (this procedure avoids
the inconvenience of drawing and labeling many small contour “islands”).

Comparing both parts of Fig. 6, the second-order WKBJ is found to be more accurate than the first-order one
everywhere except, perhaps, in regions close to the boundary. In part (b),F in the inner region of the flow is always
larger than 1. Also in part (b), the maximum valueF = 3.2 is attained slightly above and below the center point. As
a consequence of Proposition 1, both the first- and second-order approximations coincide at the center point; at this
point F = 2.3 in both parts (a) and (b). This is the best precision attained by the first-order WKBJ approximation.

High relative errors close to the boundaries are found in both parts of Fig. 6, but velocities have small absolute
value because the wave packet envelope decreases rapidly toward the boundaries. Notice that a localized wave
packet could not be placed at a boundary point because the symmetries of Table 1 would not always hold for such
disturbance. For disturbances at boundaries, the general approach to satisfy boundary conditions is to superimpose
a linear boundary layer correction to the solution but this subject will not be addressed here [27].

Scale separation for the TG flow is now analyzed using the parameters in Fig. 6. At the center point, the values
of ε, Np, Sk, Rel , and Re are 6.6× 10−3, 3.78, 1.60, 2.2703× 10−3 and 7.347× 10−4, respectively. These values
are obtained assuming Lh = 0.2 and vref = 0.5 which is the largest velocity at a distance Lh from the center

point; the 2D wavevector is
√
k21 + k22 = 0.7845. Moreover, using the largest values of ε shown in Fig. 3, namely

ε = 2.66× 10−2, the accompanying value of Re is 4523; this is the lowest Re where WKBJ has shown relative
error below 10%.

In summary, the first- and the second-order WKBJ approximations were shown to converge numerically at t = 1
with the expected convergence rates as predicted by Propositions 1 and 2. With the value of ε used in Fig. 6, the
second-order WKBJ approximation gives good results everywhere in the inner part of the flow. In the next section,
we consider WKBJ approximations of transient dynamics in the time interval t ∈ [0, 16].

5.2 WKBJ precision for transient and asymptotic time scales

In this section, we use numerical experiments to show that the second-order WKBJ approximation is generally
better than the first-order one on time intervals where linear transient features of the LNSE develop. We also discuss
how to identify points with loss of precision using the Lagrangian map of particles. The value of ε = 6.6× 10−3

is held fixed.
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Fig. 6 The spatial distribution of the relative envelope error R(x, 1) (cf. Eq. (36)) is shown as scatter plots for a the first- and b the
second-order WKBJ approximation with ε = 6.6 × 10−3 and t = 1 (cf. Fig. 1 for the disturbance shape). Each point in these scatter
plots marks the position at t = 1 of a particle initially placed on a coarse regular Cartesian grid at t = 0 (a coarser grid than the
computational one). At each particle position, the value of F(x) = − log10 R(x, 1) is given in a color scale; contour lines of F with
values 1, 2, and 2.7 are also shown. The function F can be interpreted as the number of correct digits in the WKBJ approximation. The
second-order WKBJ approximation shows better accuracy. (Color figure online)

Before presenting numerical experiments, we explain two physical processes that aid in the understanding of the
local dynamics: theOrr mechanism (OM) [22] and the accelerated diffusion (AD) [28]. In the following, we provide
an analytical example to clarify how they appear in base flows with local shear and explain a connection between
transient growth and WKBJ precision. For this example, assume that the base flow is, at least locally, a linear shear,
U(x) = (x2, 0, 0), and that the initial conditions for the first-order WKBJ system are as follows: ξ(0) = (0, 0, 0),
k(0) = (1, 0, 0), and u0(0) = (0, 1, 0). Then the solution of the WKBJ system yields

k(t) = (1, t, 0), (38)

‖u(t)‖22 = 1

1 + t2
e−ν(t+t3/3). (39)

Notice that large linear transient growth occurs if ν is small. Indeed, by computing ‖u(·)‖2 at two different time
instants, tini < tend, the amplification factor ‖u(tend)‖2/‖u(tini)‖2 can be maximized by selecting suitable tini and
tend. For small ν, the maximum amplification factor is of the order ν−2/3 and the time interval tend − tini is of
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the order ν−1/3. The amplification of ‖u(t)‖2 between tini and tend is known as the OM and the super-exponential
decay is known as AD. We remark that AD occurs because of the presence of both diffusion and shear [29]. In
the inviscid case, ν = 0, the shear produces a slower algebraic damping, the so-called inviscid damping [22] also
known as Landau damping [30] (named after a similar phenomenon in plasma). We also remark that the size of
ν, which influences the amount of transient growth, is influenced by the quality of WKBJ approximation because
smaller values of ν imply both larger values for ε, Eq. (7), and larger transient amplification. Thus, there is a delicate
balance between maintaining sufficient WKBJ precision and obtaining larger transients. In particular, ‖k‖2 attains
its minimum at t = 0 which is close to the instant where ‖u‖2 attains its peak value; in view of Eqs. (32) and (33),
special attention should be paid to precision. For AD, on the other hand, scale separation tends to improve because
Lh shrinks. Both the first- and second-order WKBJ approximations coincide for this example if the disturbance is
locally a plane wave.

5.2.1 TG base flow

For the first numerical experiment, we consider the TG base flow with the same initial disturbance and the same
ε used in Fig. 6 but now we extend the time to t = 16. In Fig. 7, the first- and second-order WKBJ approxi-
mations are compared to DNS along three different particle paths. The DNS data have error bars around them.
Henceforth, we use the term quantitatively correct when the approximation is within the error bars and the term
qualitatively correct if it is outside the error bars but still with the same dynamic behavior as the DNS solution. Even
though Fig. 7 shows only the u3 velocity component, the other two velocity components have similar precision
quality.

Figure 7a shows the approximation at the center point of TG vortex; this point is marked with (∗) in Fig. 7d. At
this particle, WKBJ approximation is quantitatively correct in the whole interval t ∈ [0, 16]. Only the solid line
is shown in Fig. 7a because the first- and second-order WKBJ approximations coincide at (∗), cf. Proposition 1.
The approximation is very accurate up to t = 8 and then slight deviations start to be visible at the peaks. The good
quality of WKBJ approximation at the center of the TG vortex extends beyond the [0, 16] time interval; at the end
of this section, we discuss how the growth rate of WKBJ system approximates the leading eigenvalue of the LNSE.

Figure 7b shows the approximations for the particle marked with (×) in Fig. 7d; in part (b), it is visible that
the second-order WKBJ approximation is quantitatively correct up to t = 8.7 and it is qualitatively correct until
t = 16. The second-order WKBJ approximation shows better results than the first-order one both with respect to
quantitative and qualitative approximations. We remark that, in the neighborhood of (×), the disturbance maintains
a wave packet shape during the whole interval t ∈ [0, 16]. Because the intensity of the u3 velocity at the point
(×) varies within this time interval, the instant of time used in Fig. 7d is chosen in order to provide a good visual
representation of wave packet oscillations in the neighborhood of (×).

Figure 7c shows the approximation for the particle marked with (+) in Fig. 7d. The first-order approximation
is quantitatively correct up to t = 1.7. In contrast, the second-order WKBJ approximation remains quantitatively
correct up to t = 8.7. Up to this moment, the second-order approximation captures correctly subtle undulations
of DNS solution that the first-order approximation misses. The second-order approximation remains qualitatively
correct up to t = 10 and, after this moment, it breaks down completely. A possible explanation for this break-
down can be seen in Fig. 7d: the particle marked with (+) no longer belongs to the main body of the wave
packet.

From the data shown here, we can say that the second-order approximation is better than the first-order one;
it is always more accurate, it is quantitatively correct for longer time, and it captures better oscillations in the
DNS solution; nevertheless, it can break down. We conjecture that a WKBJ approximation remains qualitatively
correct (both the first and the second order) as long as the disturbance maintains its wave packet shape because, in
this case, the disturbance still “fits” in the WKBJ ansatz even though its amplitude and wavevector have deviated
slightly. Later, when the initial wave packet loses its shape, the original wave packet ansatz no longer holds true
and qualitative agreement is lost.
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Fig. 7 The u3 velocity component is computed using the first-order WKBJ approximation (dashed blue line), the second-order one
(continuous red line), and DNS (bullet points). For visualization of approximation errors, the DNS data are plotted with error bars
around the exact value. The size of the error bars follows the formula: max{0.15|u3|, 0.03}, i.e., either 15% relative error of |u3| (as
computed by DNS) or an absolute error of 0.03, whichever is larger. a–c show u3 as a function of time along three different particle
paths. The position of each particle at time t = 13.75 in the (x1, x2, 0) plane is shown in d which also shows the spatial distribution of
u3 in this plane (the domain is partially shown). a–c correspond to the particles marked with (asterisk), (times), and (plus), respectively.
(Color figure online)

In the following, we use the Lagrangian map to help identify regions where WKBJ may become inaccurate.
The idea is to find regions where scale separation may be lost either because |k(t, x)| becomes small or because
its derivative ∇k(t, x) becomes large, cf. Eq. (33). Consider a particle at (x, t), and the Lagrangian map L(x, t) :
R
2×[0, T ] → R

2 yields the position of this particle at t = 0, i.e.,L(ξ(t; x0), t) = x0. Then the solution of Eq. (10)
is φ(x, t) = φ0(L(x, t)). For the disturbance used in numerical experiments, as defined in Sect. 4, it is sufficient to
plot the contour lines of the first component L1(x, t) of L(x, t) because φ(x, t) is proportional to L1(x, t). From the
contour lines of L1(x, t), both the direction of k(x, t) and the norm |k(x, t)| can be inferred by visual inspection.

Figure 8 shows the contour lines of L1(x, 1) and of L1(x, 13.75) in part (a) and part (b), respectively; the markers
(∗,×,+) correspond to the same particles shown in Fig. 7d. In part (a), all contour lines show small curvature
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Fig. 8 a, b Contour lines of
L1(x, 1) and L1(x, 13.75),
respectively. Initially
L1(x, 0) are vertical lines
with 0.05 spacing in the
x1-direction. Markers
represent the same particles
as Fig. 7d
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regardless of particle position. In part (b), there are strong curvatures in contour lines in the neighborhood of (+);
indeed, k changes the direction abruptly (pointing toward and then away from the center) and the contour lines
have the largest curvature where they are further apart. Thus, in this neighborhood, |k| is small but the derivatives
of k are not. The loss of qualitative agreement at (+) and the increase of Sk occur simultaneously. In contrast, at
the same time t = 13.75, WKBJ approximation is qualitatively correct at (×) where the curvature of the contour
lines in the neighborhood are not so strong. Furthermore, at the center of the vortex, (∗) remains at a point where
the contour line has zero curvature and WKBJ remains accurate beyond t = 16. Notice that at the top and at the
bottom of part (b) there are regions where contour lines are very close together, and because |k| increases, the wave
packet quickly vanishes due to AD. This means that any remaining disturbances of the NLSE in this region are due
to a global dynamics which the initial wave packet has triggered. The global mode shown in Fig. 10a eventually
becomes the dominant disturbance. For the nonlinear NSE, the intensity of the initial wave packet, combined with
transient growth, can trigger transition before the dominant global mode is reached.
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Fig. 9 a Streamlines of the recirculation flow (RF); the central part of the flow has lower speeds. The initial disturbance shown in
Fig. 1 is added to the RF flow. b Time evolution of the u3 velocity component of the disturbance along the trajectory of the particle
marked with (asterisk) in (c, d). In b, this velocity component is computed by the first-order WKBJ approximation (dashed blue line),
the second-orderWKBJ approximation (solid red line), and DNS (bullet points). Error bars around the DNS data represent 15% relative
error or 6 × 10−3 absolute error, whichever is larger. The second-order WKBJ approximation closely follows the transient peak. c u3
velocity component in the (x1, x2, 0) plane at t = 7. d The contour lines of the Lagrangian map of particles, L1, at the same t = 7.
The same three particles are marked in (c) and (d). At particle (asterisk), the wave is tilted along the shear and AD becomes strong. At
particle (plus), the wave packet shape still remains, while at particle (times) the wave packet has lost its shape due to a sharp fold in the
Lagrangian map. (Color figure online)

5.2.2 RF base flow

In the second numerical experiment, we consider the WKBJ precision when applied to RF base flow; the initial
condition is the same as used with TG base flow in the first numerical experiment and ε is also the same. Figure
9a shows RF’s streamlines. Figure 9b shows the DNS data and WKBJ approximations along the particle marked
with (∗) in parts (c) and (d). Clearly, the second-order WKBJ approximation correctly captures a relatively strong
transient that the first-order one misses. The peak in part (b) is an example of OM: at time t = 3.5, the ridges-and-
valleys of the u3 velocity are tilted backward to the local shear, which then moves the fluid above (∗) faster than
the fluid below (∗) and, latter on at t = 7 shown in part (d), the ridges-and-valleys are tilted forward to the local
shear. Furthermore, both WKBJ approximations approach zero for t > 8 and this is due to AD. The DNS data show
that the disturbance has an oscillatory motion which persists for t > 8. This persistent oscillation may be due to
long-time behavior which is better captured by eigenfunctions.

Contour lines of the Lagrangian map and the u3 component of the wave packet disturbance can be compared in
parts (c) and (d) of Fig. 9. This snapshot is close to the instant where, at (∗), the second-order WKBJ goes outside
the error bar in part (b). The marker (+) indicates a point where bothWKBJ approximations, first and second order,
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Fig. 10 a, b The
u3-component of the
leading eigenfunctions of
TG and RF, respectively.
The leading eigenfunction
of TG resembles a localized
wave packet. Because of its
oscillations, the TG
eigenfunction is
computationally more
demanding: a grid
257 × 257 is used in a,
while in b the dimensions
are 129 × 129

yield good results. Both are quantitatively correct up to t = 6.5 and qualitatively correct thereafter (time plot for
this point is not shown for brevity); notice in part (d) that the contour lines have mild curvature and they are not far
apart; also notice in part (c) the local wave packet shape of the disturbance in the neighborhood of (+). In contrast,
at the point marked with (×) in part (d), contour lines indicate that WKBJ should not be trusted: comparison with
part (c) reveals that the disturbance no longer resembles a wave packet in its neighborhood. Indeed, comparison with
DNS reveals that the second-order approximation at the particle (×) is quantitatively correct up to t = 5.5 (time
plot not shown for brevity) but then the DNS solution changes rapidly just before t = 7 and qualitative agreement
is lost thereafter.

The procedure based on Lagrangian map is effective in depicting where and whenWKBJ can be trusted; this pro-
cedure is computationally cost effective and can be supplemented by physical knowledge. Because asymptotic time
dynamics is governed by eigenvalues and eigenfunctions, WKBJ eventually fails unless the leading eigenfunction
has a wave packet shape; this is the next topic.

5.2.3 Eigenfunctions

Figure 10 shows u3 component of the leading eigenfunctions g1(x1, x2) and g2(x1, x2) for TG and RF, respectively.
The important remark is that the largest growth rate of the first-order WKBJ system can be used to approximate the
growth rate of g1 but not of g2. Indeed, for TG, WKBJ yields 0.1071 as the approximate value for the exponential
growth rate, while DNS yields 0.09857, a relative error of 8.7%. On the other hand, for RF, these values are 0.3180
for the WKBJ growth rate and 1.116 for the DNS growth rate, a relative error of 72%. The reason for the success of
TG is the wave packet shape of the eigenfunction g1.We do not extend the discussion into theoretical grounds, which
is vast [6,12,14,31–33], but we comment on the construction of the elliptical unstable mode [31]. The eigenfunction
g1 is special because it can be approximated by a continuous superposition of plane-wave disturbances that are the
solutions of the first-orderWKBJ system; this superposition generates a Bessel-like function with radial oscillations
as observed in part (a). The approximation of the eigenfunction can be further generalized following the theory
presented in [6,32] where the largestWKBJ growth rate occurs along a closed streamline. Unfortunately, for general
base flows, there is no guarantee that the leading eigenfunction is obtainable in this way.

For completion, we summarize the numerical methods used for computing the leading eigenvalue and the largest
growth rate of the first-order WKBJ system. The eigenvalue method is based on Arnoldi’s algorithm [34]: the
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matrix-vector multiplication, Ab, inside this algorithm is computed by time integration of the LNSE over a fixed
time interval (0.5 time units) where the initial condition is b. The dimension of Krylov subspace is 50. Six restarts of
Arnoldi’s algorithm are necessary until the modulus of the leading eigenvalue satisfies the stopping criteria, namely
the relative change of the leading eigenvalue between consecutive restarts is less than 10−7. The procedure for
computing the largest growth rate of the first-order WKBJ system is described in [16] and outlined here as follows.
For each streamline of the base flow, chose any ξ(0) on this streamline, then determine the best k(0) (it can be
shown that the best k(0) yields a time periodic k(t)with the same period as the streamline), and then, using Floquet
theory, determine u0(0) that results in the largest exponential growth rate of u0(t). Finally, the growth rate of u0(t)
is maximized over all streamlines. During this procedure, a few time integrations of the first-order WKBJ system
are necessary per streamline examined in the optimization.

6 Conclusions and discussion

In this article, we study the first- and the second-order WKBJ approximations of wave packet disturbances (inertial
waves) in viscousflows and compare this approximationwith numerical simulations.Wefind that important elements
to consider are as follows: symmetries of the base flow (Sect. 5.1), scale separation (Sect. 4), Lagrangian map of
particles (Sect. 5.2.1), and distance to boundaries (Sect. 5.1).We conclude thatWKBJ is successful in approximating
localized transients but its success in approximating eigenvalues seems to be limited to a specific setting. Numerical
experiments show that the second-order WKBJ approximation gives better results than the first-order one. This
conclusion holds for general base flows because of the local character of the approximation.

Surprisingly, the center of the TG vortex has a symmetry that enhances WKBJ’s precision. We find that the
second-order WKBJ correction vanishes and thus the first-order WKBJ approximation becomes superconvergent
(Sect. 3). This precision enhancing symmetry is present in any vortex with streamlines that have the same symmetry
group of an ellipse. In order to test WKBJ approximation without precision enhancing symmetries, the RF base
flow is defined by disrupting TG’s symmetries.

Generally speaking, the WKBJ approximation is expected to yield good results when there is a wide scale
separation between the base flow and the spatial oscillations of disturbances, i.e., if the gradient of the base flow
varies slowly when compared with the length scale of oscillations. When searching for linear instabilities, or linear
transients, the first step is to find a set of parameters where the WKBJ system has such instabilities/transients. In
inviscid flows, it is safe to say WKBJ approximation works because short-wave oscillations can be made arbitrarily
short to guarantee scale separation. In contrast, for viscous flows, an arbitrary short wave is strongly damped by
viscosity. Thus, the shortness of the wave must scale with viscosity in order to allow interesting dynamics to occur.
The second step is to verify if the interesting solutions of the WKBJ system can attain enough scale separation at
the given Re; this is related to Eq. (7). In Sect. 4, a local length scale is defined based on the disturbance wavelength.
This length scale leads to the definition of local adimensional quantities, for example, the local Reynolds number
Rel and other quantities related to scale separation. Moreover, in order to maintain scale separation for longer time
scales, the gradient of quantities like the wavevector and wave packet envelope should not become large. Finally,
the third step is the validation of the analysis by placing the desired wave packet disturbance in the DNS code and
comparing its time evolution with the WKBJ approximation. It is not always possible to perform this last step due
its cost. In this case, we suggest using the Lagrangian map of particles for further assurance of scale separation.
For the approximation of transients, computational experiments show that the second-order WKBJ approximation
captures the transient dynamics of wave packet disturbances, provided that the level sets of the phase φ(x, t) are
not strongly folded. Folds are revealed by the Lagrangian map of particles (Figs. 8b, 9d). A fold is a potential
source of error for the WKBJ approximation because the local wavevector varies strongly in space in contrast to
the hypothesis of scale separation.

Knowledge about the quality WKBJ approximation can be used, for example, to simplify the calculation of
linear transient growth. The Orr mechanism, commonly present in shear flows, is a source of transient growth for
whichWKBJ approximation can be applied. In computational experiments, we observe that the second-orderWKBJ
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approximation is accurate at the peak intensity of transients (Fig. 9). Capturing transients in a pointwise form (as
opposed to an energy integral form over the domain) is important for analyzing possible nonlinear interactions and
its relation to bypass transition. We mention that there is a recent investigation on linear disturbances with strong
pointwise intensity [35].

At the center point of the TG vortex, the time asymptotic growth rate of the first-order WKBJ approximation
is known to agree with the modal growth rate [15,16]; we confirm this assertion in Sect. 5.2.3. Furthermore, a
computational experiment with a wave packet initial condition shows that the first-order WKBJ yields a good
approximation at this point, Fig. 7. From the results presented in Sect. 3, we can state that this agreement is second-
order accurate in the asymptotic parameter.Wemention that, despite the good agreement with the modal growth rate
of the TG base flow, studies on the accuracy of WKBJ for approximating modal growth rates in other viscous flows
are not unanimous. There is either quantitative agreement [18,19] or qualitative agreement only [8,20]. It is not
yet clear what distinguishes one case from the other, but it seems that quantitative agreement occurs whenever the
leading eigenfunction is localized in the neighborhood of the streamline where WKBJ predicts the highest growth
rate. This statement is supported by the numerical evidence presented in [19] and by theoretical work showing that
the eigenfunction can be reconstructed by superposition [6,31,32]. Although our computational experiments are
not designed to resolve this issue, we mention that they are consistent with the above view.

Acknowledgements I would like to acknowledge the effort of Danillo Cafaldo dos Reis in the initial development of the DNS code
and the support provided by CNPq (Brazil).

Appendix: A second-order WKBJ system

Here is a summary of equations and quantities comprising the second-order WKBJ system as derived in Sect. 2:

dξ j
dt

= Uj (ξ(t), t), (40)

Dtk j + ∂ jUsks = 0, (41)

Dtu
0
j + u0s ∂sUj + ik j p

0 + νk2s u
0
j = 0, (42)

Dt∂l k j + ∂l∂ jUsks + ∂ jUs∂l ks + ∂lUs∂sk j = 0, (43)

Dt∂su
0
j + (∂sUl∂lu

0
j + ∂su

0
l ∂lU j + u0l ∂

2
lsU j + i∂sk j p

0 + ik j∂s p
0) + ν(2km∂skmu

0
j + k2m∂su

0
j ) = 0, (44)

Dtu
1
j + u1s∂sUj + ik j p

1 + νk2s u
1
j − ν(2iks∂su

0
j + i∂sksu

0
j ) + ∂ j p

0 = 0, (45)

with auxiliary quantities

i p0 = −2
u0s ∂sUlkl

k2j
, (46)

i∂ j p
0 = − 2

k2m

(
∂ j u

0
s ∂sUlkl + u0s ∂

2
s jUlkl + u0s ∂sUl∂ j kl − 2

u0s ∂sUlklkn∂ j kn
k2m

)
, (47)

d0 = Dt∂su
0
s , (48)

g0 = 1

k2j

[
−id0 − k j∂ j p

0 + ν(−ik2m∂su
0
s + 2ikm∂mu

0
s ks)

]
, (49)

i p1 = −2
u1s∂sUlkl

k2j
+ g0. (50)

The numerical parameters defining the wave packet initial condition, Sect. 4, are such that the first- and the
second-order WKBJ systems have a periodic solution when x(0) is the center point of TG. The precise numerical
values are as follows:
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k0 = [
0.7844596616145115 0 0.6201798443190862

]
,

A0 = [−0.4864248482200599 −0.6203454662863631 0.6152742230030823
]
,

ν = 0.3124614521468088.
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