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Abstract Ageneralized analytical solution towave interactionwithmulti-layer submerged horizontal porous plate
breakwaters has been derived in the context of linear potential theory. A two-dimensional problemwith N horizontal
porous plate layers in a finite water depth has been formulated, and the viscous effects of the porous plates are
considered using Darcy’s law. In solving the spatial velocity potentials using the matched eigenfunction expansion
method, techniques based on artificial potential splitting are employed to avoid complex dispersion relations. The
developed analytical solution is verified by comparison with results of previous research on single- and double-layer
cases and validated with the results of physical model tests. The analytical solution gives scientific insights into
wave interaction with the breakwater and provides an effective and practical tool for designing its parameters. The
velocity fields are computed and the way the horizontal porous plates play their role in attenuating fluid motion
is illustrated. The effects of various parameters (i.e., plate submergence, width, porosity, layer number, and wave
parameter) on the overall hydrodynamic and wave dissipation performance are discussed. The results indicate that
a breakwater with multi-layer horizontal porous plates exhibits improved performance.

Keywords Analytical solution · Energy dissipation · Horizontal porous plate · Matched eigenfunction expansion
method · Transmission coefficient

1 Introduction

Submerged breakwaters with horizontal porous plates have proved efficient at dissipating wave energy and thus
protecting coastlines and harbour structures [1]. Compared with a solid plate, a porous plate can significantly reduce
the wave forces acting or even impacting on it. Additionally, horizontal plate breakwaters are less dependent on
the geological condition of the local seabed and relatively insensitive to the water depth, thus being economical in
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practice. Because of these advantages, the hydrodynamic performance of horizontal porous plate breakwaters has
aroused considerable interest among researchers and designers in this field.

Research on the performance of horizontal porous plates began with the studies by Yu and Chwang [2] on wave
interaction with a submerged porous plate using the boundary element method (BEM). The boundary condition of a
porous plate was proposed based on the assumption that the flow passing through a porous medium satisfied Darcy’s
law [3,4] (i.e., a linear relation between the normal seepage velocity and the corresponding pressure difference).
Related studies undertaken using the matched eigenfunction expansion method on different porous plate structures
were performed by Chwang and Wu [5] and Yu [6]. Darcy’s law describes the characteristic of water flow passing
through a porous medium in a linearized formula and has been applied in a large number of studies of water
wave interaction with porous structures (see [7]). Also, many researchers have investigated wave interaction with
various types of horizontal plate breakwaters and the performance of combined structures of a horizontal plate
and a vertical wall based on the linear potential theory. Numerical methods, such as the BEM, were applied in
some of these studies (e.g., [8–10]); however, the matched eigenfunction expansion method has been used more
frequently (e.g., [9–18]). The monochromatic incident wave interaction with a horizontal porous flexible plate was
investigated by Cho and Kim [9] and Behera and Sahoo [18], and the hydrodynamic characteristics of a vertical
porous flexible barrier (bottom-touching or surface-piercing) near the end of a semi-infinitely long channel of finite
water depth was discussed by Yip et al. [14]. The flexibility and motion-induced waves may have significant effect
on the wave-dissipating performance of the plate. In [9], the results derived by the matched eigenfunction expansion
method were verified by those obtained by the multi-domain BEM and also validated by a series of experiments.
The performance of inclined perforated plates was studied and discussed by Cho and Kim [10], and the results
showed that a proper inclination angle of the plate positioned near to the free surface could improve its wave-
absorbing efficiency. Liu et al. [15] derived an analytical solution for a modified Jarlan-type breakwater with an
internal submerged horizontal porous plate, and the results suggested that the breakwater could achieve satisfactory
performance with the appropriate geometric porosity of both the vertical and the horizontal plates. Liu et al. [16]
examined the hydrodynamic performance of a breakwater with two layers of submerged horizontal plates, in which
the upper plate was permeable while the lower plate was solid, and the results suggested that the breakwater might
experience enhanced performance if the lower plate were also perforated. Furthermore, a quadratic relation between
the traversing velocity and the pressure loss was considered in [19,20], and the situation of wave scattering by a
submerged plate with finite thickness was investigated in [21,22].

When constructing the eigenfunction expansions in the cases of breakwaters with horizontal porous plates, the
conventional method combines the boundary conditions on the free surface, the rigid seabed and the porous plate(s)
to form the complex dispersion relations which are complete over the whole depth in order to obtain the eigenvalues
(e.g., [5,9,12,15]). Because the complex dispersion relation is too complicated to be formulated mathematically
in the multi-layer case, the standard matched eigenfunction expansion method can hardly be applied directly to
multi-layer horizontal porous-plate breakwaters. In order to overcome this limitation, Liu and Li [23] proposed an
alternative analytical solution without complex wave dispersion relations by introducing artificial potentials. Based
on this methodology, Cho et al. [24] derived an analytical solution to a breakwater with double-layer submerged
horizontal porous plates, which was verified through results obtained from both BEM and experiments. In addition,
some further verifications and discussions of this analytical solution can also be found in [25].

All of the solutions cited above only considered the problems of single- or double-layer horizontal porous plates.
For solid plates, Wang and Shen [26] analytically investigated the case of wave reflection and transmission over a
group of submerged horizontal solid plates. In the case of perforated wall breakwaters, Liu et al. [27] developed
an analytical solution to multi-chamber perforated caissons, and indicated that double- or three-chamber caissons
are favorable to wave absorbing performance. However, few research papers have referred to breakwaters with
multi-layer of horizontal porous plates.

The present paper is concerned with the feasibility and efficiency of a breakwater with multi-layer submerged
horizontal porous plates. A generalized analytical solution, which is expected to give scientific insights into the
problem and to serve as an effective tool for breakwater design, has been derived by means of the two-dimensional
linearized potential theory and the matched eigenfunction expansion method. The present solution was verified
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Fig. 1 Sketch of a
two-dimensional model of a
breakwater with N layers of
submerged horizontal
porous plates

through comparisons with previous results and validated against physical model tests. Subsequently, taking a
three-layer breakwater as an example, the velocity fields were computed, and the effects of different parameters
of horizontal plates on the hydrodynamic performance of the breakwater were examined. Additionally, a simple
procedure for its optimization design based on reducing the wave transmission coefficient was discussed.

2 Analytical solutions

2.1 Mathematical formulation

Considering the interaction ofmonochromatic normally incidentwaveswith stationary submerged porous horizontal
plates, the problem can be idealized in two dimensions. A sketch of Cartesian coordinate system of a submerged
multi-layer horizontal porous-plate breakwater is given in Fig. 1. There are in total N layers of porous plates located
in water of constant depth H . The width of the plates is 2L , and the thickness of each is assumed to be zero owing
to its relatively small value in comparison with the incident wavelength and the water depth. The submerged depth
of plate j is d j , and the spacing between plates j − 1 and j is h j = d j − d j−1 ( j ≥ 2). In particular, h1 = d1 and
dN+1 = H . All these plates of N layers divide the entire fluid domain into N +3 subregions, as numbered in Fig. 1.

Assuming that the fluid is inviscid and incompressible and the flow is irrotational, a velocity potential Φ(x, z, t)
can be used to describe the fluid motion, where t is time. Considering a linear incident wave of frequency
ω, the velocity potential can be written as Φ(x, z, t) = Re

[
φ(x, z)e−iωt

]
, thereby separating the spatial part

from Φ, where Re[ ] denotes the real part of the argument, φ denotes the spatial velocity potential, and i = √−1.
The spatial velocity potential φ j in the subregion j satisfies the Laplace equation:

∂2φ j

∂x2
+ ∂2φ j

∂z2
= 0, j = 0, 1, . . . , N+2, (1)

and relevant boundary conditions on the free surface, seabed, far field, and at the plate tips, which are written,
respectively, as:

∂φ j

∂z
= ω2

g
φ j , z = 0, j = 0, 1, N+2, (2)

∂φ j

∂z
= 0, z = −H, j = 0, N+1, N+2, (3)

lim
x→−∞

(
∂

∂x
+ ik

)
φR = 0, (4)

lim
x→+∞

(
∂

∂x
− ik

)
φN+2 = 0, (5)

|∇φ| = O(r±−1/2
) as r± =

(
(x ∓ L)2 + (z + d j

)2)1/2 → 0, j = 1, 2, . . . , N , (6)
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where g denotes the gravitational acceleration, k denotes the incident wave number, and φR represents the reflected
velocity potential. Equation (6) represents the square-root type singularity in the velocity field at the plate tips (see
[28, p. 40]).

In addition, the matching conditions between different subregions must also be satisfied:

∂φ j

∂z
= ∂φ j+1

∂z
= ikG j

(
φ j+1 − φ j

)
, z = −d j , j = 1, 2, . . . , N , (7)

φ0 = φ j , x = −L , j = 1, 2, . . . , N+1, (8)
∂φ0

∂x
= ∂φ j

∂x
, x = −L , j = 1, 2, . . . , N+1, (9)

φN+2 = φ j , x = L , j = 1, 2, . . . , N+1, (10)
∂φN+2

∂x
= ∂φ j

∂x
, x = L , j = 1, 2, . . . , N+1. (11)

Equation (7) is the porous boundary condition for a thin, but rigid permeable plate based on the assumption that
the plate is made of material with very fine pores. The complex number G j ( j = 1, 2, . . . , N ) is the dimensionless
porous effect parameter of each horizontal porous plate, depending on the porosity, linearized resistance coefficient,
and added mass coefficient (see [6,29]). The real part of G j relates to the resistance of the porous plate against the
seepage flow, while the imaginary part denotes the inertial effect (or phase-shift effect) (see [9,30,31]). When the
plate is solid or the resistance coefficient tends to be infinity, G j = 0. A larger |G j | means that the plate is more
transparent. In the present study, G j is considered as a real number because the phase lag of G j is negligibly small
for a thin porous plate with small to moderate porosity (see [1,9]), and then the porous plate boundary condition is
reduced to Darcy’s law, which was applied in [2,4,5].

It is noted that thematching conditions on x = ±L (i.e., (8)–(11)) represent, physically, the continuity of the fluid
pressure and mass flux. Mathematically, these conditions imply that the potentials φ0 and φN+2 are the harmonic
continuations of φ j ( j = 1, 2, . . . , N ) (see [32, Chapter X, §5, Theorem VI]).

2.2 Decomposition of velocity potentials

Because of the symmetry of the fluid domain and the breakwater structure, φ can be split into a symmetric part (φS)
and an anti-symmetric part (φA):

φ = 1

2

(
φS + φA

)
, (12)

φS(−x, z) = φS(x, z), (13)

φA(−x, z) = −φA(x, z). (14)

Thus, only the left half region x < 0 needs to be taken into consideration when solving this problem.
Themajor difficulty in solving the boundary value problem (Eqs. (1)–(11)) refers to the non-homogeneous porous

plate boundary condition (see Eq. (7)). The normal velocities through the plates are initially unknown, and complex
dispersion equations need to be solved in the conventional solution. The present approach linearly decomposes the
potentials inside the breakwater into two parts, one with vertically homogeneous boundary conditions and the other
with horizontally homogeneous boundary conditions:φS

j = φS
j,v+φS

j,h andφA
j = φA

j,v+φA
j,h ( j = 1, 2, . . . , N+1).

This technique was first advanced by Lee [33], and then was employed in [23,24,34]. The horizontal expansions
φS
j,h and φA

j,h , which are constructed using either homogeneous Dirichlet or Neumann conditions on x = −L and
x = 0, are the particular solutions that account for the normal velocities on the plates. In each subregion, because the
horizontal expansions are subtracted from the full solution, the remainder must satisfy the homogeneous Neumann
conditions on the plates. These conditions are then the basis of the vertical expansions φS

j,v and φA
j,v . Therefore, the

boundary conditions can be rewritten as follows:
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∂φ
S(A)
0

∂z
= ω2

g
φ
S(A)
0 , z = 0, (15)

∂φ
S(A)
0

∂z
= 0, z = −H, (16)

lim
x→−∞

(
∂

∂x
+ ik

)
φ
S(A)
R = 0, (17)

∂φ
S(A)
1,v

∂z
= ω2

g
φ
S(A)
1,v , z = 0, (18)

∂φ
S(A)
j,v

∂z
= 0, z = −d j , j = 1, 2, . . . , N+1, (19)

∂φ
S(A)
j,v

∂z
= 0, z = −d j−1, j = 2, 3, . . . , N+1, (20)

∂φS
j,v

∂x
= 0, φA

j,v = 0, x = 0, j = 1, 2, . . . , N+1, (21)

∂φ
S(A)
1,h

∂z
= ω2

g
φ
S(A)
1,h , z = 0, (22)

∂φ
S(A)
N+1,h
∂z

= 0, z = −H, (23)

φS
j,h = 0,

∂φA
j,h

∂x
= 0, x = −L , j = 1, 2, . . . , N+1, (24)

∂φS
j,h

∂x
= 0, φA

j,h = 0, x = 0, j = 1, 2, . . . , N+1, (25)

and the matching conditions:

∂φ
S(A)
j,h

∂z
= ∂φ

S(A)
j+1,h

∂z
= ikG j

(
φ
S(A)
j+1 − φ

S(A)
j

)
, z = −d j , j = 1, 2, . . . , N , (26)

φS
0 = φS

j,v, φS
0 = φA

j,v + φA
j,h, x = −L , j = 1, 2, . . . , N+1, (27)

∂φS
0

∂x
= ∂φS

j,v

∂x
+ ∂φS

j,h

∂x
,

∂φA
0

∂x
= ∂φA

j,v

∂x
, x = −L , j = 1, 2, . . . , N+1. (28)

Accordingly, the eigenfunction expansion form of potentials in each subregion along with the eigenvalues can
be obtained without solving any complex dispersion equation, thus parrying the considerable difficulty in solving
the complex dispersion equations. Thereafter, applying the non-homogeneous matching conditions, i.e., the porous
plate conditions on z = −d j (Eq. (26)) and the flex and pressure continuity conditions on x = −L (Eqs. (27)
and (28), respectively), the unknown coefficients in the eigenfunction expansions can be determined. Because of
the linearity of both the Laplace equation and the boundary conditions, the problem written as φ0 = (φS

0 + φA
0 )/2

and φ j = (φS
j,v + φS

j,h + φA
j,v + φA

j,h)/2 ( j = 1, 2, . . . , N + 1) is equivalent to the original system (1)–(11) and,
therefore, yields the same solution.

2.3 Matched eigenfunction expansion method

By the method of separation of variables according to the boundary conditions in Eqs. (15)–(25), the velocity
potentials in eigenfunction expansion form can be obtained. In constructing the expansions in Eqs. (31) and (35),
the first equality in Eq. (7), which represents the continuity of mass flux at the horizontal plates, has been satisfied.
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The symmetrical and anti-symmetrical potentials in the subregion N + 2 are obtained based on the potentials in
the subregion 0 according to Eqs. (13) and (14), respectively. The symmetrical velocity potential in each subregion
can be written as:

φS
0 = − igζ0

2ω

[(
ek0(x+L) + a0e

−k0(x+L)
)
Z0(z) +

∞∑

m=1

ame
km (x+L)Zm(z)

]

, (29)

φS
j,v =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− igζ0
2ω

[ ∞∑

m = 0

b1m
cosh(λmx)

cosh(λmL)
f1,m(z)

]

, j = 1,

− igζ0
2ω

⎡

⎣b j
0 +

∞∑

m=1

b j
m

cosh
(
κ
j
mx
)

cosh
(
κ
j
m L
) f j,m(z)

⎤

⎦ , j = 2, 3, . . . , N+1,

(30)

φS
j,h =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− igζ0
2ω

{ ∞∑

m′=0

1

μm′
c1m′gm′(x)

[
ηm′ coshμm′(z + d1) + sinhμm′(z + d1)

]
}

, j = 1,

− igζ0
2ω

[ ∞∑

m′=0

gm′(x)
c j−1
m′ coshμm′(z + d j ) − c jm′ coshμm′(z + d j−1)

μm′ sinh(μm′h j )

]

, j = 2, 3, . . . , N ,

− igζ0
2ω

[ ∞∑

m′=0

gm′(x)
cNm′ coshμm′(z + H)

μm′ sinh(μm′hN+1)

]

, j = N+1,

(31)

φS
N+2 = φS

0 (−x, z), (32)

and the anti-symmetrical parts can be written as:

φA
0 = − igζ0

2ω

[(
ek0(x+L) + ā0e

−k0(x+L)
)
Z0(z) +

∞∑

m=1

āme
km (x+L)Zm(z)

]

, (33)

φA
j,v =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− igζ0
2ω

[

−
∞∑

m=0

b̄1m
sinh (λmx)

sinh (λmL)
f1,m(z)

]

, j = 1,

− igζ0
2ω

[

−b̄ j
0
x

L
−

∞∑

m=1

b̄ j
m
sinh(κ j

mx)

sinh(κ j
m L)

f j,m(z)

]

, j = 2, 3, . . . , N+1,

(34)

φA
j,h =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− igζ0
2ω

{ ∞∑

m′=0

1

μm′
c̄ 1m′ ḡm′(x)

[
ηm′ coshμm′(z + d1) + sinhμm′(z + d1)

]
}

, j = 1,

− igζ0
2ω

[ ∞∑

m′=0

ḡm′(x)
c̄ j−1
m′ coshμm′(z + d j ) − c̄ j

m′ coshμm′(z + d j−1)

μm′ sinh(μm′h j )

]

, j = 2, 3, . . . , N ,

− igζ0
2ω

[ ∞∑

m′=0

ḡm′(x)
c̄Nm coshμm′(z + H)

μm′ sinh(μm′hN+1)

]

, j = N+1,

(35)

φA
N+2 = −φA

0 (−x, z), (36)

where ζ0 is the incident wave height,

ηm′ = ω2 tanh(μm′d1) − gμm′

gμm′ tanh(μm′d1) − ω2 ,

and am , ām , b
j
m , b̄

j
m , and c j

m′ , c̄
j
m′ are the undetermined complex expansion coefficients. Here, the superscript j in

b j
m , b̄

j
m , c

j
m′ , c̄

j
m′ , and κ

j
m denotes the j-th subregion, instead of the exponent. The eigenfunctions Zm(z), f j,m(z),

gm′(x) and ḡm′(x) are given by:
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Zm(z) = cos km(z + H)

cos(kmH)
, m = 0, 1, . . . , (37)

f j,m(z) =

⎧
⎪⎨

⎪⎩

cos λm(z + d1)

cos(λmd1)
, j = 1, m = 0, 1, . . . ,

cos κ
j
m(z + d j ), j = 2, 3, . . . , N+1, m = 0, 1, . . . ,

(38)

gm′(x) = cos(μm′x), m′ = 0, 1, . . . , (39)

ḡm′(x) = sin(μm′x), m′ = 0, 1, . . . , (40)

in which the eigenvalues κ
j
m and μm′ are written as:

κ
j
m = mπ

d j − d j−1
= mπ

h j
, j = 2, 3, . . . , N+1, m = 0, 1, . . . , (41)

μm′ = m′π
L

+ π

2L
, m′ = 0, 1, . . . , (42)

and the eigenvalues km and λm are the roots of the following characteristic equations:

ω2 = −gkm tan(kmH), m = 0, 1, . . . , (43)

ω2 = −gλm tan(λmd1), m = 0, 1, . . . , (44)

where k0 = ik, λ0 = iλ. Here, k0 and λ0 represent the propagating modes of the corresponding potentials.
It is to be noted that the eigenfunctions have the following orthogonality:

∫ 0

−H
Zm(z)Zn(z) dz = kmH sec2(kmH) + tan(kmH)

2km
δmn, (45)

∫ 0

−d1
f1,m(z) f1,n(z) dz = λmd1 sec2(λmd1) + tan(λmd1)

2λm
δmn, (46)

∫ −d j−1

−d j

f j,m(z) f j,n(z) dz =
⎧
⎨

⎩

h jδ0n, m = 0,

1

2
h jδmn, m = 1, 2, . . .

j = 2, 3, . . . , N+1, (47)

∫ 0

−L
gm′(x)gn′(x) dx =

∫ 0

−L
ḡm′(x)ḡn′(x) dx = 1

2
Lδm′n′ , (48)

where δmn is the Kronecker delta defined as δmn =
{
1, if m = n,

0, if m 	= n.

Substituting Eqs. (29)–(31) and (33)–(35) into the matching conditions (26)–(28), applying the above orthogo-
nality of the eigenfunctions, and truncating m (m′) at M (M ′), the algebraic equation sets for symmetrical and anti-
symmetrical potentials can be derived, as listed in Appendix 1 and 2, respectively. The (N +2)(M+1)+N (M ′ +1)
unknowns in each algebraic equation set can be obtained thereafter.

The convergence of the systems (57)–(61) and (75)–(79) is slightly slow asM increases because of the singularity
at the plate tips revealed by (6). Although the residue calculus technique, which was applied by [35] can obtain a
better convergence in solving wave reflection by a finite submerged porous plate, the complex dispersion relation
is required. In the present solution, as will be mentioned in Sect. 4.1, the convergence is still reasonably good and
could be qualified in engineering practice.

Consequently, the wave reflection coefficient CR, the transmission coefficient CT and the energy dissipation
coefficient CD are given as follows:

CR = |a0 + ā0|
2

, (49)

CT = |a0 − ā0|
2

, (50)

CD = 1 − C2
R − C2

T. (51)
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In addition, the vertical hydrodynamic force acting on each plate Fj and the corresponding non-dimensional
total vertical force coefficient CF are given by the following equations:

Fj = iρω

∫ L

−L

(
φ j+1 − φ j

)∣∣∣
z=−d j

dx = iρω

∫ 0

−L

(
φS
j+1 − φS

j

)∣∣∣∣
z=−d j

dx

= − iρgζ0
2kG j

M ′∑

m′=0

c jm′
sin(μm′L)

μm′
, j = 1, 2, . . . , N , (52)

CF = |∑N
j=1 Fj |

2ρgζ0L
= 1

4kL

∣∣∣∣∣∣

N∑

j=1

M ′∑

m′=0

c jm′
G j

sin(μm′L)

μm′

∣∣∣∣∣∣
, (53)

where ρ is the density of water.

3 Experiments

To validate the analytical solutions derived above, a series of experiments were conducted in a two-dimensional
wave flume located at State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, China. The
wave flume is 14m long, 1m wide, and 1.2m deep, with a flap-type wave maker equipped at the one end and a
slope wave absorber installed at the other end (as shown in Fig. 2). The horizontal porous plates were mounted on
an aluminium frame, which was then fixed to a support beam on the top of the flume through four three-component
force transducers. These horizontal plates were 2.0mm thick, and their stiffness was reinforced by four slender
columns in the middle. Applying the three-point method developed by Mansard and Funke [36] to discriminate
the incident, reflected and transmitted components, six wave probes were used in the test, with three in front of
the model and the others downstream. The spacing between adjacent wave probes was set at 0.15 and 0.22m,
respectively, to eliminate singularities.

In the tests, the water depth H was 0.8m, and the wave periods T ranged from 0.6 to 1.5 s (the corresponding
dimensionless wave numbers kH ranged between 8.95 and 1.56). An incident wave height of 2cm was applied in
the tests. The full width of the breakwater 2L was 0.45m. Models with four and eight layers were tested. The plate
porosity P was 0.125, of which the corresponding porosity parameter G was approximately 0.992 according to the
empirical formula G = (57.63P − 0.9717)/(2π) (see [10]). The submerged depth of each horizontal plate is listed
in Table 1.

The frequency of each regular wave and the relative phase differences at wave probes were estimated by the FFT
(Fast Fourier Transform) technique with Hann window and an interpolation algorithm by Andria et al. [37]. Higher
harmonics induced by the submerged horizontal plates were not considered in the data analysis and were filtered
out. Then the least squares method by Mansard and Funke [36] was applied to evaluate the incident wave height
ζI, reflected wave height ζR, and transmitted wave height ζT. The amplitude of total vertical wave force FZ can be

(a)

(b)

Fig. 2 Sketch of the experimental setup: a side view and b top view
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Table 1 Submerged depths
of the horizontal plates

Model no. N di (cm)

1 4 4, 10, 20, 32

2 8 4, 8, 12, 16, 20, 24, 28, 32
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Fig. 3 Convergence of CR and CT with increasing values of truncated numbers M and M ′, respectively, as the function of non-
dimensional wave number kH (at 2L/H = 1, d j/H = 0.08, 0.16, 0.24, 0.32, G j = 1.0, 0.8, 0.6, 0.4). a Increasing M (given
M ′ = 10). b Increasing M ′ (given M = 40)

obtained using the four three-component force transducers and the FFT technique. Thereafter, the hydrodynamic
coefficients of the breakwater (i.e., CR, CT, and CF) can be given as follows:

CR = ζR

ζI
, (54)

CT = ζT

ζI
, (55)

CF = FZ
2ρgζI LW

, (56)

in which W is the flume width.

4 Results and discussions

4.1 Validation of present solution

The convergence of the solutions with different truncated numbers M and M ′ was examined first, and the results
of the reflection and transmission coefficients are shown in Fig. 3. It can be seen that the convergence is acceptable
and that values of M = 40 and M ′ = 10 should be sufficient for engineering purposes. Therefore, the values of
M = 40 and M ′ = 10 were adopted in the present study.

The generalized analytical solution to multi-layer horizontal porous plates was consistent with the results of
special cases such as the single layer case [23] and the double layer case [24] because of the similar solution technique.
In addition, the present solution was validated by comparing the calculation results of cases corresponding with the
measured values of the physical model tests described in Sect. 3. The transmission coefficient CT, the reflection
coefficient CR and the total vertical force coefficient CF of the four-layer breakwater are shown in Fig. 4a–c,
respectively. Furthermore, Fig. 4d–f show those of the eight-layer case. The predicted hydrodynamic performance
of the breakwater is in reasonable concordance with that obtained from the experiment, though there exist slight
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Fig. 4 Comparison between the analytical results and experimental values: a–c CT, CR and CF of the four-layer case (Model No. 1);
d–f CT, CR and CF of the eight-layer case (Model No. 2)

discrepancies between the results. The discrepancies are mainly resulted by the nonlinear effects of free surface
and porous plates, which were not taken into consideration in the analytical solution based on the linear potential
theory. The small fluctuation of measured values of CR and CT around the predicted curve can be attributed to the
nonlinearity of the free surface and the shoaling effect of the upper plate. In addition, the slight discrepancy of CR

and CF under long incident wave periods (i.e., kH around 2) is probably brought on by the turbulence issued from
the porous plates.

4.2 Computed velocity fields

Based on the generalized analytical solution, the velocity fields were computed. The potential theory can provide
reasonable description of the velocity fields away from the plate tips where the flow separation and vortex shedding
might have notable influences. Figure 5 shows an example of the velocity fields of the three-layer horizontal porous
plate breakwater for d j/H = 0.05, 0.15, 0.3, G j = 1.2, 0.8, 0.5, 2L/H = 1, and kH = 2. The time t0 is chosen
at the beginning of a wave cycle, and T denotes the incident wave period. The velocities are nondimensionalized
by gkζ0/(2ω). As comparison, Fig. 6 shows the cases of breakwaters with only one or two layer(s) at t = t0 + T/4.

It is observed in Fig. 5 that the horizontal porous plates change the original velocity fields significantly and the
vertical motion of fluid particles is obstructed. Large amplitudes of fluid motion near the free surface are attenuated.
The flow beneath the lower plate is almost horizontal. The downstream flow is weak except in the vicinity of
the breakwater where the influence of the evanescent waves is significant. Since the amplitude of fluid velocity
in the region above the upper plate is notably larger than that in the regions below it, a substantial proportion
of wave energy propagates through the region above the upper plate. Therefore, the upper plate is expected to
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Fig. 5 Velocityfields of the three-layer submergedhorizontal porous plate breakwater, ford j /H = 0.05, 0.15, 0.3,G j = 1.2, 0.8, 0.5,
2L/H = 1, and kH = 2
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Fig. 6 Velocity fields of the a one- and b two-layer submerged horizontal porous plate breakwater at kH = 2 and t = t0 + T/4, for
a d/H = 0.05,G = 1.2, 2L/H = 1, and b d j/H = 0.05, 0.15,G j = 1.2, 0.8, 2L/H = 1

play a more important role in wave dissipation than any other plates, and changes in its submergence or porosity
might significantly affect the breakwater’s performance. In the region between the upper and the second plates, the
direction of the flow is changed and becomes more horizontal, in comparison with that in the case of only one layer
(shown in Fig. 6a). Comparing to the two-layer case shown in Fig. 6b, the lower plate in the three-layer case can
reinforce the obstruction of the vertical fluid motion, but its porosity might have minimal effect on the performance
because the seepage flow is relatively small.

4.3 Effects of submerged depth and porous parameter

To illustrate the effect of different submerged depths and porous parameters on the wave-blocking performance of
the horizontal plates, a three-layer breakwater was taken as an example.

123



128 Z. Fang et al.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1(a) (b)

Fig. 7 CT of three-layer submerged horizontal porous-plate breakwaters, as a function of the non-dimensional wave number kH , for
2L/H = 1,G2 = 0.8,G3 = 0.5, (d2 − d1)/H = 0.1, (d3 − d2)/H = 0.15 with a varying values of d1 and with fixed G1 = 1.2 and
b varying values of G1 and with fixed d1/H = 0.05
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Fig. 8 CT of three-layer submerged horizontal porous-plate breakwaters, as a function of the non-dimensional wave number kH , for
2L/H = 1, G1 = 1.2, G3 = 0.5, d1/H = 0.05, (d3 − d2)/H = 0.15 with a varying values of d2 and with fixed G2 = 0.8 and b
varying values of G2 and with fixed d2/H = 0.15
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Fig. 9 CT of three-layer submerged horizontal porous plates breakwaters, as a function of the non-dimensional wave number kH for
2L/H = 1, G1 = 1.2, G2 = 0.8, d1/H = 0.05, d2/H = 0.15 with a varying values of d3 and with fixed G3 = 0.5 and b varying
values G3 and with fixed d3/H = 0.3
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Fig. 10 CT, CR, CD, and CF of breakwaters with one to four layers of horizontal porous plates, as a function of non-dimensional
wave number kH at 2L/H = 1. For the single layer case, d/H = 0.1 and G = 0.8; for the double layer case, d j/H =
0.05, 0.2,G j = 1.2, 0.6; for the three-layer case, d j/H = 0.05, 0.15, 0.3,G j = 1.2, 0.8, 0.5; for the four-layer case, d j/H =
0.05, 0.13, 0.25, 0.40,G j = 1.2, 0.8, 0.6, 0.3. a wave transmission coefficient CT. b wave reflection coefficient CR. c wave energy
dissipation coefficient CD. d total wave force coefficient CF

Figure 7 individually compares the effect on the wave-blocking efficiency of different submerged depths and
porous parameters of the upper plate, for 2L/H = 1,G2 = 0.8,G3 = 0.5, (d2−d1)/H = 0.1, (d3−d2)/H = 0.15.
In Fig. 7a, G1 is provisionally set at 1.2, and in Fig. 7b d1/H is set at 0.05. The significant effect of the upper
plate submergence on the overall wave-blocking efficiency of the breakwater is observed as expected. A relatively
large d1 may weaken the wave-blocking effect, especially for moderate and short incident wave lengths (kH > 3),
because this allows more wave energy to propagate above the upper plate. For the porous parameter of the upper
plate, a large value may worsen the performance under kH > 4, which might relate to the energy-attenuating effect
of porosity on the seepage flow through the plate. Generally, values of d1/H = 0.05 and G1 = 1.2 provide optimal
performance.

The individual effects of the varying submerged depth and porous parameter of the middle plate, are shown in
Fig. 8, for 2L/H = 1, d1/H = 0.05, (d3 − d2)/H = 0.15,G1 = 1.2,G3 = 0.5. In Fig. 8a, G2 is set at 0.8 while
d2/H varies from 0.1 to 0.25. In Fig. 8b, d2/H is set at 0.1 while G2 varies from 0.6 to 1.0. A smaller spacing
between the upper and middle plates reduces the wave transmission under kH ≤ 2, but worsens the wave-blocking
efficiency under moderate incident wave lengths (2 ≤ kH ≤ 4). For the middle plate, the effect of its porous
parameter is less significant than that of the submerged depth. A smaller G2 helps reduce the wave transmission
under kH ≤ 2, but it has an opposite effect under kH ≥ 2.5. It can be seen in Fig. 8 that values of d2 = 0.15 and
G2 = 0.8 should produce generally good wave-blocking performance.
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Fig. 11 CT, CR, CD, and CF of breakwaters with different plate widths at kH = 2.0, as a function of the non-dimensional plate
width 2L/λ, for cases of one to four layers. For the single-layer breakwater, d/H = 0.1, G = 0.8. For the double-layer breakwater,
d j/H = 0.05, 0.2, G j = 1.2, 0.6. For the three-layer breakwater, d j/H = 0.05, 0.15, 0.3, G j = 1.2, 0.8, 0.5. For the four-layer
breakwater, d j/H = 0.05, 0.13, 0.25, 0.4, G j = 1.2, 0.8, 0.6, 0.3. a wave transmission coefficient CT. b wave reflection coefficient
CR. c wave energy dissipation coefficient CD. d total wave force coefficient CF

In accordance with the discussion in Sect. 4.2, varying the submerged depth or the porous parameter of the
lower plate only has a mild effect on the wave-blocking efficiency, as shown in Fig. 9, for 2L/H = 1, G1 = 1.2,
G2 = 0.8, d1/H = 0.05, d2/H = 0.15. In Fig. 9a, d3/H varies from 0.25 to 0.4 with G3 = 0.5, and in Fig. 9b,
d3/H = 0.3 while G3 varies from 0.3 to 1.0. As shown in the results, it is reasonable to take d3/H = 0.3 and
G3 = 0.5 for optimal performance.

4.4 Effects of numbers of layers

A comparison between the performances of breakwaters with one to four layers of horizontal porous plates is
shown in Fig. 10. The submerged depth and porosity parameters for the different cases are determined by a simple
optimization design process that is described below. For the single layer case, d1/H = 0.1 and G1 = 0.8; for the
double layer case, d1/H = 0.05, d2/H = 0.2, G1 = 1.2 and G2 = 0.6; for the three-layer case, d1/H = 0.05,
d2/H = 0.15, d3/H = 0.3, G1 = 1.2, G2 = 0.8 and G3 = 0.5; and for the four-layer case, d1/H = 0.05,
d2/H = 0.13, d3/H = 0.25, d4/H = 0.4, G1 = 1.2, G2 = 0.8, G3 = 0.6 and G4 = 0.3. As can be seen in the
figure, breakwaters with three or four horizontal porous plates have better wave-dissipating efficiency, especially
under longer incident waves. This indicates that the lower plates indeed help obstruct the vertical fluid motion.
However, increasing the layer number also results in a larger total wave force and reflection wave amplitude, and a
more sophisticated optimization design is required.
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In this paper, the optimization design process simply lowers the transmission coefficient, especially under 1.5 ≤
kH ≤ 4. As expounded in Sect. 4.3, each parameter is determined accordingly from a specified range, while other
parameters are fixed, and the crucial parameter, such as the submerged depth of the upper plate, is determined first.
Additionally, a future study is expected to include the application of some advanced optimization algorithms, such as
genetic algorithm, to design the multi-layer horizontal porous plate breakwater while accounting for comprehensive
performance including wave reflection and loads on the plates.

4.5 Effects of plate width

Finally, the effects of different plate widths on the hydrodynamic performance of breakwaters with one to four layers
of horizontal porous plate(s) were examined at a fixed non-dimensional incident wave number kH = 2, as shown
in Fig. 11. For the single-layer breakwater, d1/H = 0.1, G1 = 0.8. For the double-layer breakwater, d1/H = 0.05,
d2/H = 0.2, G1 = 1.2, G2 = 0.6. For the three-layer breakwater, d1/H = 0.05, d2/H = 0.15, d3/H = 0.3,
G1 = 1.2, G2 = 0.8, G3 = 0.5. For the four-layer breakwater, d1/H = 0.05, d2/H = 0.13, d3/H = 0.25,
d4/H = 0.4, G1 = 1.2, G2 = 0.8, G3 = 0.6, G4 = 0.3. It is clear that the breakwater can maintain its efficiency
quite well until the width is smaller than 0.2λ, where λ denotes the incident wave length. This implied that the
breakwater with too large width might be unnecessary under certain prevailing wave climates. For breakwaters
with small width, increasing the layer number and extending the covered water depth help to reflect more incident
waves and reduce the transmission coefficient. However, an unavoidable fact is that the breakwater tends to become
inefficient when its width is smaller than 0.2λ because of the diffraction effect of waves, which may be one of the
main limitations of horizontal porous-plate breakwaters.

5 Conclusions

A generalized analytical solution for wave interaction with multi-layer submerged horizontal porous-plate break-
waters has been derived in the context of linear potential theory with the viscous effect based on Darcy’s law.
A representative two-dimensional model with N layers of horizontal porous plates was considered. The spatial
velocity potentials were solved by means of the matched eigenfunction expansion method, and the parameters of
the performance that are of concern to engineering practice were subsequently obtained. Techniques based on the
geometrical symmetry and on the use of artificial potential splitting were employed to simplify the solution process,
as well as to avoid complex dispersion relations. The analytical solution was validated with reasonable agreement
compared to the measured values of the corresponding physical model tests.

Thereafter, based on the analytical solution, the velocity fields were computed, and effects of the various parame-
ters (i.e., plate submergence, width, porosity, layer number, and wave parameter) on the breakwater’s performance
were examined, taking a three-layer horizontal porous plate breakwater for example. The vertical motion of fluid
particles is significantly obstructed by the horizontal plates. Large amplitudes of fluid motion near the free surface
are attenuated. The flow beneath the lower plate is almost horizontal. The submerged depth of the upper plate has the
most significant influence on the overall performance. The lower plate can reinforce the obstruction of the vertical
fluid motion. Breakwaters with three or more layers of horizontal plates have better wave-blocking performance,
especially under long incident waves. Nevertheless, horizontal porous plate breakwaters may become inefficient if
the plate width is less than 0.2λ.

The generalized analytical solution provides an effective tool for predicting and optimizing the performance of the
multi-layer horizontal porous plate breakwater. A simple procedure for the optimization design aiming at reducing
the wave transmission was discussed. Based on the generalized solution, further optimization of its comprehensive
performance using some advanced algorithms, e.g., genetic algorithm, is expected. Methods for improving the
performance under relatively small plate widths warrant further study.
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Appendix 1: Elements in coefficient matrices for symmetrical potentials

The algebraic equation set for the symmetrical potentials is given by:
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A j
nm
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{
b j
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where [·] denotes a matrix and {·} denotes a column vector. The matrix elements are given by
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Appendix 2: Elements in coefficient matrices for anti-symmetrical potentials

The algebraic equation set for the anti-symmetrical potentials is given by

{ān} +
N+1∑

j=1

[
B

j
nm

] {
b̄ j
n

}
+

N∑

j=1

[
C

j
nm′
] {

c̄ j
m′
}

=
{
R
1
n

}
, (75)

[
A
j
nm

]
{ām} +

{
b̄ j
n

}
=
{
R
1+ j
n

}
, j = 1, 2, . . . , N+1, (76)

[
D

1,1
n′m
] {

b̄1m
}

+
[
D

1,2
n′m
] {

b̄2m
}

+
[
E
1,1
n′m′
] {

c̄ 1m′
}

+
[
E
1,2
n′m′
] {

c̄ 2m′
}

= 0, (77)
[
D

j, j
n′m
] {

b̄ j
m

}
+
[
D

j, j+1
n′m

] {
b̄ j+1
m

}
+
[
E

j, j−1
n′m′

] {
c̄ j−1
m′
}

+
[
E

j, j
n′m′
] {

c̄ j
m′
}

+
[
E

j, j+1
n′m′

] {
c̄ j+1
m′
}

= 0

j = 2, 3, . . . , N−1, (78)
[
D

N ,N
n′m

] {
b̄Nm
}

+
[
D

N ,N+1
n′m

] {
b̄N+1
m

}
+
[
E
N ,N−1
n′m′

] {
c̄N−1
m′

}
+
[
E
N ,N
n′m′

] {
c̄Nm′
}

= 0. (79)

The matrix elements in Eqs. (75)–(79) are given by

A
1
nm = k̃m

∫ 0
−d1

Zm(z) f1,n(z) dz

λn coth(λnL)
∫ 0
−d1

(
f1,n(z)

)2 dz
, (80)

A
j
nm =

⎧
⎪⎪⎨

⎪⎪⎩

k̃m L
∫−d j−1
−d j

Zm (z) dz

h j
, n = 0,

2k̃m
∫−d j−1
−d j

Zm (z) f j,n(z) dz

h jκ
j
n coth(κ j

n L)
, n = 1, 2, . . . , M,

j = 2, 3, . . . , N+1, (81)

B
j
nm = −

∫ −d j−1
−d j

Zn(z) f j,m(z) dz
∫ 0
−H (Zn(z))2 dz

, j = 1, 2, . . . , N+1, (82)
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C
j
nm′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sinμm′ L

⎧
⎪⎨

⎪⎩

∫ 0
−d1

Zn(z) (ηm′ coshμm′(z + d1) + sinhμm′(z + d1)) dz

+ ∫ −d1
−d2

Zn(z)
coshμm′ (z+d2)
sinh(μm′h2) dz

⎫
⎪⎬

⎪⎭

μm′
∫ 0
−H (Zn(z))2 dz

, j = 1,

sinμm′ L
[∫−d j

−d j+1
Zn(z)

coshμm′ (z+d j+1)

sinh(μm′ h j+1)
dz−∫−d j−1

−d j
Zn(z)

coshμm′ (z+d j−1)

sinh(μm′ h j ) dz

]

μm′
∫ 0
−H (Zn(z))2 dz

, j = 2, 3, . . . , N ,

(83)

D
1,1
n′m = −k0G1

cos(λmd1)

∫ 0

−L

sinh(λmx)

sinh(λmL)
sin(μn′x) dx, (84)

D
j, j
n′m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− k0G j

∫ 0

−L

x

L
sin(μn′x) dx, m = 0,

− k0G j

∫ 0

−L

sinh(κ j
mx)

sinh(κ j
m L)

sin(μn′x) dx, m = 1, 2, . . . ,

j = 2, 3, . . . , N , (85)

D
j, j+1
n′m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k0G j

∫ 0

−L

x

L
sin(μn′x) dx, m = 0,

k0G j cos(κ
j+1
m h j+1)

∫ 0

−L

sinh(κ j+1
m x)

sinh(κ j+1
m L)

sin(μn′x) dx, m = 1, 2, . . . ,

j = 1, 2, . . . , N , (86)

E
j, j−1
n′m′ = L

2
G jβ

j
n′δn′m′ , j = 2, 3, . . . , N , (87)

E
j, j
n′m′ =

⎧
⎪⎨

⎪⎩

L

2
αn′δn′m′ , j = 1,

L

2
γ

j
n′δn′m′ , j = 2, 3, . . . , N ,

(88)

E
j, j+1
n′m′ = L

2
G jβ

j+1
n′ δn′m′ , j = 1, 2, . . . , N − 1, (89)

R
1
n = −δn0, (90)

R
2
n = −k0

∫ 0
−d1

Z0(z) f1,n(z) dz

λn coth(λnL)
∫ 0
−d1

(
f1,n(z)

)2 dz
, (91)

R
1+ j
n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−k0L
∫ −d j−1
−d j

Z0(z) dz

h j
, n = 0,

−2k0
∫ −d j−1
−d j

Z0(z) f j,n(z) dz

h jκ
j
n coth(κ

j
n L)

, n = 1, 2, . . . , M,

j = 2, 3, . . . , N + 1. (92)
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