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Abstract Awell-developedmethod to inducemixing onmicroscopic scales is to exploit flows generated by steady
streaming. Steady streaming is a classical fluid dynamics phenomenon whereby a time-periodic forcing in the bulk
or along a boundary is enhanced by inertia to induce a non-zero net flow. Building on classical work for simple
geometrical forcing and motivated by the complex-shaped oscillations of elastic capsules and bubbles, we develop
the mathematical framework to quantify the steady streaming of a spherical body with arbitrary axisymmetric
time-periodic boundary conditions. We compute the flow asymptotically for small-amplitude oscillations of the
boundary in the limit where the viscous penetration length scale is much smaller than the body. In that case, the
flow has a boundary layer structure, and the fluid motion is solved by asymptotic matching. Our results, presented
in the case of no-slip boundary conditions and extended to include the motion of vibrating free surfaces, recover
classical work as particular cases. We illustrate the flow structure given by our solution and propose one application
of our results for small-scale force generation and synthetic locomotion.

Keywords Bubbles · Capsules · Oscillations · Streaming · Squirmer

Mathematics Subject Classification 76M45 · 76Z10 · 76D99

1 Introduction

Flow mixing and transport on small scales have been widely studied [1]. These processes can be non-trivial as
small-scale flows often occur at low Reynolds number and as such are laminar and time-reversible. Achieving
precise flow and mixing control is however critical experimentally in a range of medical and chemical applications
[2]. Applying pressure differences and inducing electrokinetic flows are the two most common methods used to
drive flows on small scales [1], and mixing has often been achieved by encouraging chaotic particle paths, e.g. by
designing a device with complex geometries [2,3].

As an alternative, one can look at the biological world for inspiration in design since mixing and transport occur
on cellular length scales [4]. Individual microorganisms are known to generate a net dipolar flow in the surrounding
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fluid when they self-propel [5,6]. A population of swimmers generate larger and more varied flows, which can
aid mixing, through a variety of processes including bioconvection [7] and purely collective effects [8,9]. More
subtly, their presence may affect the diffusive transport of passive tracers which develops non-Gaussian tails in the
presence of biological activity [10–12].

From a modelling standpoint, analytical studies of flows induced by swimmers is older than experimental
observations due to previous limitations of imaging techniques. Many approximately spherical microorganisms
(e.g. the multicellular alga Volvox or the protozoon Opalina) move by waving slender appendages called cilia.
A standard modelling approach consists in considering the dynamics of the enclosing envelope of the cilia, thus
reducing the problem to that of a spherical body inducing a surface wave of deformation [13,14]. The first of such
analytic models was proposed by Lighthill [15] and later corrected by Blake [13], who calculated the net flow
generated by small-amplitude axisymmetric oscillations of a spherical surface in a Stokes flow. This model is now
refereed to as the “squirmer” model. More recent studies have extended this model to include non-axisymmetric
motion [16], the presence of nearby boundaries [17,18] and large-amplitude oscillations [19].

Recently the importance of inertia to the swimming of microorganisms was recognised. Unsteady inertial effects
are particularly influential over short time scales [20] but not on longer time scales [21]. A theoretical extension of
Lighthill’s original model to include unsteady inertia was carried out by Rao [22]. Convective inertia, in contrast,
is important for larger microorganisms, typically of radius close to one millimetre. Using a squirmer model with
tangential forcing on the fluid only, three recent studies considered how convective inertia impacted the swimming
kinematics and efficiency, emphasising in particular the relationship between the direction of the far-field flow and
the inertial effects [23,24] as well as structure and stability of the wake [25].

In the lab, a variety of synthetic drivers and mixers at the micron-scale have been designed and experimentally
tested [26,27]. The simplest devices are time-periodic and exploit the inertia in the fluid to generate net motion. This
motion is the classical phenomenon of steady (or acoustic) streaming, whereby a time-periodic forcing is nonlinearly
rectified by inertia to induce a non-zero net flow [28]. One method to obtain this time-periodic forcing is to use
microbubbles whose surfaces oscillate when forced with ultrasound, allowing the transformation of a macroscopic
piezoelectric forcing into oscillations at the micrometre scale, with a range of potentially important biomedical
applications [29]. Studies of the streaming generated by oscillating microbubbles started with Elder’s experiments
in 1958 [30]. Microbubbles are able to transport particles either in their streaming flow when the microbubble is
held stationary [31,32] or where the microbubble itself carries the particle [29,33]. Interactions between multiple
oscillating bubbles may be used to increase mixing flows [34–36].

Theoretical studies of the steady streaming flows have focused on shape oscillations in simple geometries,
including a translating sphere [37], a translating bubble [38,39], a bubble both translating and pulsating [39],
and more recently a bubble both pulsating and oscillating with one higher-order Legendre mode [40]. For free
microbubbles, the external acoustic energy is focused into the first few surface modes of oscillation hence these
classical studies are sufficient to model streaming. However, as setups become more complicated, for example in
the case of solid capsules partially enclosing three-dimensional bubbles [33,41,42], it is important to be able to
model the complex shape dynamics and accurately compute the resulting streaming flows and forces.

In this paper, we develop the mathematical framework to quantify the steady streaming of a spherical body with
arbitrary axisymmetric time-periodic boundary conditions (see Fig. 1 for setup).We compute the flowasymptotically
under two assumptions: (1) the amplitude of the surface oscillation is small relative to the size of the body (ratio
of amplitude ε � 1); and (2) the acoustic frequency is large such that the viscous penetration length scale is small
compared to the body size (ratio penetration length to body size δ � 1). Mathematically, we solve the problem
as a regular perturbation expansion in ε, with each term expanded in turn in powers of δ. We thus focus implicitly
on the limit ε � δ � 1, which is the relevant one for micron-sized bubbles forced by ultrasound (frequencies
in the hundreds of kHz range) and millimetre-sized organisms. Similarly to classical work, the flow is shown to
have a boundary layer structure and the problem is solved by asymptotic matching. Our results, which assume that
the body is fixed in space, are presented in the case of no-slip boundary conditions and extended to include the
motion of vibrating free surfaces, also recover classical work as particular cases.We then illustrate the flow structure
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Fig. 1 A sphere of rest radius a (left) undergoes arbitrary axisymmetric vibrations of amplitude εa, with ε � 1 (right). Spherical
coordinates are usedwith radial distance r and polar angle θ . The surrounding fluid isNewtonianwith kinematic viscosity ν and densityρ

given by our solution and propose one application of our results, discussing the adaptation for a force-free body, on
small-scale force generation and synthetic locomotion.

Our paper is organised as follows. In Sect. 2, we set up the problem of the fluid flow generated by arbitrary
surface motion of a no-slip spherical body. In Sect. 3, we derive the first-order solution. The second-order Eulerian
steady streaming is derived in Sect. 4 which is extended to give the Lagrangian steady streaming in Sect. 5. The
special case of a squirming microorganism is then discussed in Sect. 6. This no-slip general model can be extended
to incorporate other surface motion such as a no tangential stress boundary as shown in Sect. 7. The special case
of a bubble is then considered in Sect. 8. In Sect. 9, our general solution is validated against classical results for
spheres and bubbles. In Sect. 10, we illustrate examples of streaming flows. In all previous sections, the body was
assumed to be held stationary at the origin. In Sect. 11, the time-averaged force induced by the flow on the fixed
body is calculated, along with the translational velocity of the spherical body if it was instead free to move.

2 Axisymmetric steady streaming: setup

In this first section, we present the general setup for our calculation. The body is taken to be spherical with an
imposed axisymmetric, radial and tangential time-periodic deformation of its surface. In the following sections, we
will use asymptotic matching to first characterise the flow in the case of no-slip between the fluid and the surface, and
then we generalise to allow the formulation to be adapted to other boundary conditions, in particular no tangential
stress for a clean bubble.

2.1 Statement of the mathematical problem

The sphere has mean radius a and is contained within an unbounded Newtonian fluid of constant kinematic viscosity
ν and uniform density ρ (Fig. 1).Working in a spherical coordinate system centred on the sphere, with radial distance
r and polar angle θ , the axis θ = 0 is the axis of rotational symmetry. The surface of the body is assumed to oscillate
at angular frequency ω with small amplitude εa, where ε � 1 is formally specified below. Defining μ ≡ cos θ and
since the flow is axisymmetric, a stream function ψ can be introduced to give radial ur and angular uθ velocities as

ur = − 1

r2
∂ψ

∂μ
, (1)

uθ = −1

r(1 − μ2)
1
2

∂ψ

∂r
· (2)
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The governing equation is then given by the vorticity equation [43]

∂(D2ψ)

∂t
+ 1

r2

[
∂(ψ, D2ψ)

∂(r, μ)
+ 2D2ψLψ

]
= νD2(D2ψ), (3)

where we have defined the operators

D2 ≡ ∂2

∂r2
+ (1 − μ2)

r2
∂2

∂μ2 , (4)

L ≡ μ

(1 − μ2)

∂

∂r
+ 1

r

∂

∂μ
· (5)

In order to non-dimensionalise the problem, we take the relevant time scale to be ω−1 and the relevant length
scale to be a, so that the sphere now has a rest radius of 1. The stream function thus has dimensions a3ω and the
vorticity equation becomes

∂(D2ψ)

∂t
+ 1

r2

[
∂(ψ, D2ψ)

∂(r, μ)
+ 2D2ψLψ

]
=
( ν

ωa2

)
D2(D2ψ). (6)

Equation (6) introduces a non-dimensional quantity: the ratio of the viscous penetration length scale, ∼ (ν/ω)1/2,
to the radius of the body, a. Specifically, we define a dimensionless number δ as

δ ≡ (2ν/ω)
1
2

a
, (7)

thus reducing the governing equation to

∂(D2ψ)

∂t
+ 1

r2

[
∂(ψ, D2ψ)

∂(r, μ)
+ 2D2ψLψ

]
=
(

δ2

2

)
D2(D2ψ). (8)

The second dimensionless quantity in this problem is the ratio ε between the amplitude of oscillation and the
body radius. To use notations similar to those in classical steady streaming calculations, we use U to denote the
maximum velocity at the surface of the oscillating body, such that ε can be defined as

ε = U

aω
· (9)

We will look to solve this problem as a regular expansion in ε for small values of δ, and then take a regular
expansion in δ. We will thus assume the asymptotic limit ε � δ � 1. Importantly, this assumption is sufficient
for our asymptotic solution to be valid. As explained below, we will solve this problem using asymptotic matching
between an inner solution (boundary layer of size δ) and an outer solution. For the inner asymptotic solution, ψ i,
where we require at least one more term than in the outer solution, we will have an expansion of the form

ψ i = ε
(
ψ

i(0)
1 + δψ

i(1)
1 + · · · + δnψ

i(n)
1

)
+ ε2

(
ψ

i(0)
2 + δψ

i(1)
2

)
+ O

(
εδn+1, ε2δ2, ε3

)
, (10)

with n ≥ 2. The solution in (10) is a valid approximation provided the errors are smaller than the order of our
solution O(ε2δ). So we require δ � 1, ε � δ and δn � ε. However, n can be chosen to be as large as required, thus
reducing down to the condition ε � δ � 1 only. We note that we can easily obtain the O(ε) solution up to order
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n in δ since ε is introduced into our equations only through assuming ψ is a power series in ε, so mathematically
higher orders of ε cannot affect lower orders in ε.

Physically, a small value of ε indicates small-amplitude motion while a small value of δ means that the viscous
penetration length is small compared to the rest size of the body. For which practical situations will these limits
be relevant? To fix ideas, let us take a value for the relative amplitude of ε ∼ 10−2. A ciliated microorganism in
water (ν = 10−6 m2/s) would have intrinsic frequencies of about 50 Hz, so ω ≈ 300 rad/s, leading to a penetration

length of (2ν/ω)
1
2 ≈ 80 μm. In order to satisfy the limit ε � δ � 1, the organism size would need to be just

below 1 mm, which is achieved for the largest ciliated organisms such as Spirostomum which can grow up to 4 mm
in length [44]. For a microbubble actuated by ultrasound, the frequency is about ω ∼ 106 rad/s, so the penetration

length is (2ν/ω)
1
2 ≈ 1 μm and thus the bubble would have to be about 10 μm in diameter.

2.2 Boundary conditions

We apply, in this first part of the paper, the no-slip boundary condition. Thus, the fluid velocity has to match the
velocity of the material points on the surface of the body, which is arbitrary and decomposed along an infinite
sum of surface modes. Using a Lagrangian formulation, the motion of the boundary can be described by its radial
position, R, and angular position measured from the axis of axisymmetry, Θ , which are functions of time t and the
rest angular position θ (through μ) as

R = 1 − ε

∞∑
n=0

Vn Pn(μ)ei
(
t+ π

2

)
+ O(ε2), (11)

Θ = θ + ε

∞∑
n=1

Wn

(∫ 1
μ
Pn(x)dx

(1 − μ2)
1
2

)
ei
(
t+ π

2

)
+ O(ε2), (12)

where Vn and Wn are arbitrary complex constants determined by the surface motion of the spherical body and Pn(x)
is the Legendre Polynomial of degree n. Throughout the paper, complex notation will be used and it will always be
implied that only the real part is taken; when an explicit real part appears we will denote it Re.

The μ-dependence was chosen in order to match the form of the first-order solution, as seen below. Through the
many possible choices for constants Vn andWn , a wide range of boundary motions can be studied. At leading order,
R(θ) is equivalent to the radial position of the surface at an angle θ from the axis of symmetry. As such, Vn will
be determined by the shape of the surface oscillation. At leading order, Θ(θ) captures the tangential motion at an
angle θ from the axis of symmetry, and thus Wn will be determined by the appropriate in-surface motion. We note
that the use of Legendre polynomials as a basis for μ was expected due to the problem’s axisymmetry, and such
a basis has appeared in other work based in similar regimes [13]. As the Legendre polynomials form a complete
orthogonal basis, they allow for an arbitrary solution to be written in this form.

At O(ε2) only terms in R and Θ which time average to a non-zero value would contribute to the streaming.
However, such terms would indicate that the body was slowly growing or shrinking over time, and would also
stretch or contract tangentially, violating the small-amplitude assumption on long time scales. We therefore do not
allow for steady Lagrangian terms at order O(ε2). The boundary condition can thus be written in a Lagrangian
form as

ur = ∂R

∂t
= ε

∞∑
n=0

Vn Pn(μ)eit + O(ε3), (13)

uθ = R
∂Θ

∂t
= Re

[
−ε

∞∑
n=1

Wn

(∫ 1
μ
Pn(x)dx

(1 − μ2)
1
2

)
eit
]
Re

[
1 − εi

∞∑
n=0

Vn Pn(μ)eit
]

+ O(ε3), (14)

and both of which have to be evaluated at (r, θ) = (R(μ, t),Θ(μ, t)).
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Finally, we require that the flow decay to zero from the body and thus ur,θ → 0 as r → ∞.
We note here that we are assuming the spherical body is fixed in space and as such is not force-free. A force-free

condition may be incorporated with the same setup in a suitable reference frame, whereby it limits the possible
surface shape oscillations through restrictions on the choice of constants Vn and Wn . This is discussed in detail in
Sect. 11.

2.3 Rearranging the surface boundary conditions

The current Lagrangian form of the body’s surface conditions (13)–(14) needs to be transformed into Eulerian
boundary conditions of the fluid motion. This is achieved by Taylor expanding them about the average oscillation
position (1, θ) which in spherical coordinates gives

ur |r=R = ur |r=1 + Re [(R − 1)]Re

[
∂ur
∂r

∣∣∣∣
r=1

]
+ Re[(Θ − θ)]Re

[(
∂ur
∂θ0

− uθ

) ∣∣∣∣
r=1

]
+ O(ε3), (15)

and

uθ |r=R = uθ |r=1+Re [(R − 1)]Re

[
∂uθ

∂r

∣∣∣∣
r=1

]
+ Re[(Θ − θ)]Re

[(
∂uθ

∂θ0
+ ur

) ∣∣∣∣
r=1

]
+ O(ε3). (16)

Looking for the dimensionless velocities and stream function as power series in ε as

ur = εu(1)
r + ε2u(2)

r + O(ε3), (17)

uθ = εu(1)
θ + ε2u(2)

θ + O(ε3), (18)

ψ = εψ1 + ε2ψ2 + O(ε2), (19)

then at leading order (15) and (16) gives

u(1)
r =

∞∑
n=0

Vn Pn(μ)eit , (20)

u(1)
θ = −

∞∑
n=1

Wn

(∫ 1
μ
Pn(x)dx

(1 − μ2)
1
2

)
eit , (21)

at r = 1 and for all values of θ . Similarly from (15) and (16) the O(ε2) boundary condition can be calculated.
However, due to the nonlinear terms arising from theTaylor expansions, the first-order flowneeds to be first evaluated
in order to determine the O(ε2) boundary conditions explicitly. This will be discussed in Sect. 4.1.

3 First-order asymptotic solution

3.1 General solution

Based on the oscillatory nature of the boundary condition at first order, (20)–(21), we look for a solution ψ1 ∝ eit .
At leading order, the governing equation reduces to

(
∂

∂t
− δ2

2
D2
) (

D2ψ1
) = 0. (22)
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This is easily solved using separation of variables D2ψ1 = f (r)g(μ)eit to find D2ψ1 as

D2ψ1 = eit
[ ∞∑
n=1

(∫ 1

μ

Pn(x)dx

)(
Bn

√
r Kn+ 1

2
(αr)

)]
. (23)

where Ka(x) is the modified Bessel function of the second kind of order a.
We then use separation of variables with the definition of the operator (4) to solve Eq. (23) for ψ1 noting that

(23) gives the particular solution of ψ1. Hence we finally obtain

ψ1 = eit
[(

A0

√
r

α2 I 1
2
(αr) + B0

√
r

α2 K 1
2
(αr) + C0r + D0

)(∫ 1

μ

P0(x)dx + e0

)

+
∞∑
n=1

(
An

√
r

α2 In+ 1
2
(αr) + Bn

√
r

α2 Kn+ 1
2
(αr) + Cnr

n+1 + Dnr
−n
)(∫ 1

μ

Pn(x)dx

)]
, (24)

where α = (1 + i)δ−1, Ia(x) is the modified Bessel function of the first kind of order a, and An , Bn , Cn , Dn are
constants to be determined using the boundary conditions.

3.2 Enforcing the boundary conditions

Since In(αr) increases to infinity exponentially as r → ∞, we first see that the boundary conditions at infinity
impose that An = 0 for all n and similarly Cn = 0 for n > 0.

Secondly, singularities in the velocity profile should be removed. This is not a problem for ur but it is for uθ .

Indeed, we have the scaling uθ ∼ (1− μ2)− 1
2

(∫ 1
μ
Pn(x)dx

)
, which has formal singularities at μ = ±1. Using the

identity
∫ 1

μ

Pn(x)dx = (1 − μ2)P
′
n(μ)

n(n + 1)
for n �= 0, (25)

we see that the singularities are removable for n > 0 but not for n = 0. Since e0 provides only one degree of
freedom, it can be used to remove at most one singularity. Therefore, in order to prevent any singularity in uθ at
μ = ±1, it is required that C0 = B0 = 0. The only term remaining in ψ1 containing e0 is proportional to e0D0,
which is an arbitrary constant and hence e0 can be set to 0.

With these results, ψ1 is reduced to

ψ1 = eit
[(

D0

∫ 1

μ

P0(x)dx

)
+

∞∑
n=1

(
Bn

√
r

α2 Kn+ 1
2
(αr) + Dnr

−n
)(∫ 1

μ

Pn(x)dx

)]
. (26)

Applying the two first-order boundary conditions, (20) and (21), finally allows the determination of the remaining
constants Bn , Dn and D0. For ease of expansion later, a Bessel function factor evaluated at α has been left formally
in the definition of the constants giving us

Bn = −1

Kn+ 1
2
(α)

(
1

δ
(1 + i) + n + δ

(i − 1)n2

4

)
(Wn + nVn) + O

(
δ2

Kn+ 1
2
(α)

)
for n ≥ 1, (27)

Dn = Vn + δ
(1 − i)

2
(Wn + nVn) − δ2

in

2
(Wn + nVn) + O(δ3) for n ≥ 1, (28)

D0 = V0. (29)

For simplicity of notation in what follows, we defineW0 = 0 so that (27) and similarly (28) remain valid for n = 0.
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4 Second-order asymptotic solution

At O(ε2), a net fluid motion will arise and from this we will obtain the streaming flow. The first-order solution
determines the explicit second-order boundary conditions (Sect. 4.1) and provides a non-zero forcing term (Sect.
4.2) at O(ε2). Unfortunately, the governing equation with this volume forcing is too complex to solve explicitly
analytically. We will thus employ asymptotic matching in order to solve for the flow inside the boundary layer of
size r = 1+ δη (Sect. 4.3) and for the flow in the far field (Sect. 4.4) where exponential decay of this forcing leads
to a Stokes flow. Upon matching these two solutions (Sect. 4.5) the outer solution will give access to the Eulerian
streaming flow around the body.

4.1 Second-order boundary conditions

Equations (26)–(29) give the full solution for ψ1. Using (15) and (16) we can now time average the boundary
conditions at order ε2. Note that the product of two terms of the form f eit and geit time average to f g/2 or f g/2
where the real part is assumed and overbars denote complex conjugates. Simplifying the μ dependence of the result

to a sum over the appropriate basis functions, i.e. (1 − μ2)− 1
2
∫ 1
μ
Pn(x)dx for uθ and Pn(μ) for ur and using the

classical identities

x P ′
n(x) = P ′

n+1(x) − (n + 1)Pn(x), (30)

P ′
n+1(x) = P ′

n−1(x) + (2n + 1)Pn(x), (31)

we explicitly obtain time-averaged boundary conditions

〈u(2)
r 〉
∣∣∣∣
r=1

=
∞∑
k=1

{
i

2

[
2V0V̄k −

∞∑
n=0

∞∑
m=1

gknm V̄n (Wm − 2Vm)

+
∞∑
n=1

∞∑
m=1

fknm
(
V̄nn(n + 1) − W̄n

)
Wm

1

n(n + 1)m(m + 1)

]}
Pk(μ), (32)

and

〈u(2)
θ 〉
∣∣∣∣
r=1

=
∞∑
k=1

{ ∞∑
n=0

∞∑
m=1

aknm
i

2

[
2VnW̄m − 1

δ
V̄n(Wm + mVm)(1 + i) + V̄nVmm

− V̄nWm(m + 1) − WnW̄m +
∞∑
j=1

Cnj

j ( j + 1)
W̄mWj

]}(∫ 1
μ
Pk(x)dx

(1 − μ2)
1
2

)
, (33)

where we have used triangular brackets to indicate time averaging.
In these equations, the series of coefficients Cnj , aknm , fknm and gknm are defined by

Cnj =

⎧⎪⎨
⎪⎩
0 if ( j < n) or (n and j have different parity),

n if j = n,

(2n + 1) otherwise,

(34)

and

Pn(μ)

(∫ 1

μ

Pm(x)dx

)
=

∞∑
k=1

aknm

(∫ 1

μ

Pk(x)dx

)
, (35)
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P1
n (μ)P1

m(μ) =
∞∑
k=0

fknm Pk(μ), (36)

Pn(μ)Pm(μ) =
∞∑
k=0

gknm Pk(μ), (37)

and where P1
n (μ) is the associated Legendre polynomial of degree n and order 1. Recall that associated Legendre

polynomials of degree n and order m are defined by

Pm
n (x) = (1 − x2)

m
2
dm Pn(x)

dxm
, (38)

and have the useful orthogonality property

∫ 1

−1
Pm
n (x)Pm′

n′ (x)dx = 2

(2n + 1)

(n + m)!
(n − m)!δnn′δmm′ . (39)

Using the orthogonality property together with (25), the formulae for aknm (35), fknm (36) and gknm , (37) can be
rearranged into a more useful form to calculate their numerical value

aknm = k(k + 1)

m(m + 1)

∫ 1
−1 Pn(x)P

1
m(x)P1

k (x)dx∫ 1
−1 P

1
k (x)P1

k (x)dx
= (2k + 1)

2m(m + 1)

∫ 1

−1
Pn(x)P

1
m(x)P1

k (x)dx, (40)

fknm = (2k + 1)

2

∫ 1

−1
P1
n (x)P1

m(x)Pk(x)dx, (41)

gknm = (2k + 1)

2

∫ 1

−1
Pk(x)Pn(x)Pm(x)dx . (42)

In Eqs. (40)–(42), aknm , fknm and gknm are Gaunt Coefficients, which have been extensively studied due to their
appearance in theoretical physics. Gaunt’s formula [45] for the triple product integral and fast numerical algorithms
[46] exist to evaluate such coefficients.

4.2 Nonlinear forcing

The governing equation at order ε2 is given by

δ2

2

(
D4ψ2

)
− ∂(D2ψ2)

∂t
= 1

r2

(
∂(ψ1, D2ψ1)

∂(r, μ)
+ 2Lψ1Dψ1

)
. (43)

Time averaging equation (43) leads to

δ2

2
D4〈ψ2〉 = 1

r2

〈
∂(ψ1, D2ψ1)

∂(r, μ)
+ 2Lψ1Dψ1

〉
. (44)

A general second-order solution that is valid throughout the domain cannot be found due to the complexity of
the right-hand side of Eq. (44). However, for small values of δ, solutions can be found separately within the viscous
boundary layer and in the far field, and they can be asymptotically matched to provide a full outer solution. This
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is the method we will be using in this paper. In either case, an indication of the form of the nonlinear forcing is
required. The term D2ψ1 is given in Eq. (23). We also have

Lψ1 = eit
[ ∞∑
n=1

(
Bn

2α2
√
r
Kn+ 1

2
(αr) + Bn

√
r

α
K

′
n+ 1

2
(αr) − Dnnr

−(n+1)
)(

μP
′
n(μ)

n(n + 1)

)

− D0

r
P0(μ) −

∞∑
n=1

(
Bn√
rα2

Kn+ 1
2
(αr) + Dnr

−(n+1)
)
Pn(μ)

]
, (45)

and

〈
∂(ψ1, D2ψ1)

∂(r, μ)

〉
= −1

2

∞∑
n=0

∞∑
m=1

(
B̄n Bm

α2 K̄n+ 1
2
(αr)Km+ 1

2
(αr)

+ 2
B̄n Bmr

α
K̄n+ 1

2
(αr)K

′
m+ 1

2
(αr) − B̄n DmmK̄n+ 1

2
(αr)r−(m+ 1

2 )

− D̄n Bm

2
r−(n+ 1

2 )Km+ 1
2
(αr) − D̄n Bmαr−(n− 1

2 )K
′
m+ 1

2
(αr)

)
Pn(μ)

(∫ 1

μ

Pm(x)dx

)
. (46)

Using the coefficient aknm defined in (35), Eq. (46) can then be transformed to the appropriate (integral poly-
nomial) basis. Similarly the quantity given by 2 × (45) × (23) can have its basis transformed using aknm and Cnj

defined in (34). These two quantities can then be added which gives the total nonlinear forcing as

〈
2Lψ1D

2ψ1 + ∂(ψ1, D2ψ1)

∂(r, μ)

〉

=
∞∑
k=1

[ ∞∑
n=0

∞∑
m=1

aknm

(
B̄n Bm

1

2α2 K̄n+ 1
2
(αr)Km+ 1

2
(αr)

− 3

4
D̄n Bmr

−
(
n+ 1

2

)
Km+ 1

2
(αr) − B̄n Bm

r

α
K̄n+ 1

2
(αr)K

′
m+ 1

2
(αr) + 1

2
B̄n DmmK̄n+ 1

2
(αr)r−

(
m+ 1

2

)

+ 1

2
D̄n Bmαr−

(
n− 1

2

)
K

′
m+ 1

2
(αr) +

∞∑
j=1

(
Cnj

j ( j + 1)

)(
−Bm B̄ j

1

2α2 Km+ 1
2
(αr)K̄ j+ 1

2
(αr)

+ Bm B̄ j
r

ᾱ
Km+ 1

2
(αr)K̄ ′

j+ 1
2
(αr) − Bm D̄ j j Km+ 1

2
(αr)r−

(
j+ 1

2

)))](∫ 1

μ

Pk(x)dx

)
. (47)

4.3 Solution inside the boundary layer

The rest boundary is located at r = 1 with a boundary layer of size δ. We thus define an inner variable η related
to r by r = 1 + δη. The boundary layer is small, δ � 1, and within the boundary layer the inner variable η varies
from 0 to 1. We now write the second-order equation in terms of η and expand in ascending powers of δ.

First consider expanding the right-hand side of Eq. (44), i.e. Eq. (47) divided by r2.When the first-order boundary
conditions were applied above, we obtained in Eqs. (27)–(29) Taylor expansions of the coefficients Dk and Bk in
terms of δ. The powers of r can also be Taylor expanded about r = 1 to also obtain a powers series in δ.

However, the Taylor expansions of the Bessel functions have to be done more carefully. A useful identity [47]
for expanding the Bessel function is that, for non-negative integer n we have

Kn+ 1
2
(z) =

√
π

2

e−z

√
z

n∑
j=0

( j + n)!
(n − j)! j ! (2z)

− j . (48)
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Next, notice that when the expansions for Dk and Bk are substituted into (44), the Bessel functions always appear
in ratios of the form

K̂n+ 1
2
(αr)

Kn+ 1
2
(α)

, (49)

where K̂ represents a derivative or complex conjugate of the Bessel function. As such, taking f (r) as the appropriate
power series in r gives

K̂ j+ 1
2
(αr)

K j+ 1
2
(α)

= e−α̃(r−1) f (r) = e−(1±i)η f (1 + δη), (50)

where α̃ can be α or its complex conjugate. The exponential part of the Bessel function can clearly not be Taylor
expanded in powers of δ. Hence to obtain the correct expansion, the power series part of the Bessel function should
be Taylor expanded in powers of δ and the negative exponential part should only have the appropriate η substitution
carried out.

Upon completion of the substitution and expansion in δ, we obtain inside the boundary layer
1

r2

〈
2Lψ1D

2ψ1 + ∂(ψ1, D2ψ1)

∂(r, μ)

〉

=
∞∑
k=1

∞∑
n=0

∞∑
m=1

aknm

{
3

4

1

δ
V̄n(Wm + mVm)(1 + i)e−(1+i)η + 1

δ
(W̄n + nV̄n)(Wm + mVm)(1 − i)e−2η

− 1

2

1

δ
(W̄n + nV̄n)Vm(1 − i)me−(1−i)η

+ 1

2

[
2

δ2
V̄n i + 1

δ

(
− 2Vn inη + V̄nm(1 + i) − (W̄n + nV̄n)(1 − i) + 1

2
V̄n(1 + i) − 4Vn iη

)]

× (Wm + mVm)e−(1+i)η +
∞∑
j=1

(
Cnj

j ( j + 1)

)[
− 1

δ
(Wm + mVm)(W̄ j + j V̄ j )(1 + i)e−2η

+ 1

δ
(Wm + mVm)V̄ j j (1 + i)e−(1+i)η

]
+ O(1)

}(∫ 1

μ

Pk(x)dx

)
. (51)

Inside the boundary layer, the D4 operator on the left hand side of (44) is asymptotically given by

D4 = 1

δ4

∂4

∂η4
+ O(δ−2), (52)

and therefore (44) finally simplifies to

〈
∂4ψ i

2

∂η4

〉
=

∞∑
k=1

∞∑
n=0

∞∑
m=1

aknm

({
3

2
δV̄n(Wm + mVm)(1 + i)e−(1+i)η

+ 2δ(W̄n + nV̄n)(Wm + mVm)(1 − i)e−2η − δ(W̄n + nV̄n)Vmm(1 − i)e−(1−i)η

+
[
δ

(
− 2V̄n inη + V̄nm(1 + i) − (W̄n + nV̄n)(1 − i) + 1

2
V̄n(1 + i) − 4V̄n iη

)
+ 2V̄n i

]
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×(Wm + mVm)e−(1+i)η +
∞∑
j=1

(
Cnj

j ( j + 1)

)[
− 2δ(Wm + mVm)(W̄ j + j V̄ j )(1 + i)e−2η

+ 2δ(Wm + mVm)V̄ j j (1 + i)e−(1+i)η
]}

+ O(1)

)(∫ 1

μ

Pk(x)dx

)
. (53)

where ψ i
2 is the second-order stream function inside the boundary layer.

Using the elementary indefinite integrals (where c is the constant of integration)∫
y

∫
˜̃̃y

∫
˜̃y

∫
ỹ
eaxdx d ỹ d ˜̃y d ˜̃̃y = eay

a4
+ c, (54)

∫
y

∫
˜̃̃y

∫
˜̃y

∫
ỹ
xeaxdx d ỹ d ˜̃y d ˜̃̃y = yeay

a4
− 4eay

a5
+ c, (55)

allows us to integrate Eq. (53) explicitly, leading to the general inner solution

〈
ψ i
2

〉
=

∞∑
k=1

{ ∞∑
n=0

∞∑
m=1

aknm

[
−3

8
δV̄n(Wm + mVm)(1 + i)e−(1+i)η

+ 1

8
δ(W̄n + nV̄n)(Wm + mVm)(1 − i)e−2η + 1

4
δ(W̄n + nV̄n)Vmm(1 − i)e−(1−i)η

−
{
δ

[
−1

2
V̄n i(n + 2) (η + 2(1 − i)) + 1

4
V̄nm(1 + i) − 1

4
(W̄n + nV̄n)(1 − i) + 1

8
V̄n(1 + i)

]

+ 1

2
V̄n i

}
(Wm + mVm)e−(1+i)η +

∞∑
j=1

(
Cnj

j ( j + 1)

)(
−1

8
δ(Wm + mVm)(W̄ j + j V̄ j )(1 + i)e−2η

− 1

2
δ(Wm + mVm)V̄ j j (1 + i)e−(1+i)η

)
+ O(δ2)

]
+ (Lk + Mkη + Nkη

2 + Qkη
3)

}(∫ 1

μ

Pk(x)dx

)
,

(56)

where Lk , Mk , Nk and Qk are constants of integration to be determined. Of those, two will be determined by
enforcing the two second-order boundary conditions (32) and (33), namely Lk and Mk . Since these boundary
conditions must hold for all −1 ≤ μ ≤ 1, the coefficient of each basis function (i.e. Pn(μ) or

∫ 1
μ
Pn(x)dx) must

obey these boundary conditions term by term, giving a countably infinite number of equations with solution

Lk =
[ ∞∑
n=0

∞∑
m=1

aknm V̄n(Wm + mVm) + 2V0V̄k −
∞∑
n=0

∞∑
m=1

gknm V̄n (Wm − 2Vm)

+
∞∑
n=1

∞∑
m=1

fknm
(
V̄nn(n + 1) − W̄n

)
Wm

1

mn(n + 1)(m + 1)

]
i

2
+ O(δ), k > 0, (57)

Mk = δ

( ∞∑
n=0

∞∑
m=1

aknm

{
−1

2
(W̄n + nV̄n)Vm im + 1

2
V̄n(Wm + mVm)i(4 + 3n − m)

+ 1

4
(W̄n + nV̄n)(Wm + mVm)(3 − i) + 1

2
V̄nWm(m + 3)i − 1

2
V̄nVmmi

+ 1

2
WnW̄m i −

∞∑
j=1

(
Cnj

j ( j + 1)

)[
1

4
(Wm + mVm)(W̄ j + j V̄ j )(1 + i)

+ (Wm + mVm)V̄ j i j + 1

2
W̄mWj i

]})
+ O(δ2), k > 0. (58)

Asymptotic matching will then determine the values of the remaining coefficients.
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4.4 Solution outside the boundary layer

Looking at Eq. (47), we see that all the terms in the nonlinear forcing are multiples of modified Bessel functions
of the second kind or their derivatives. As such, this forcing decays away exponentially fast as r → ∞ and can
be neglected outside the boundary layer. In the outer region, we have therefore an unforced Stokes flow, and the
governing equation for the outer stream function, ψo

2 , is

D2D2〈ψo
2 〉 = 0, (59)

with exponentially small errors.
Given the form of the inner solution (56), and anticipating the asymptotic matching, we can look for the outer

solution with a known μ dependence as

〈ψo
2 〉 =

∞∑
n=1

fn(r)

(∫ 1

μ

Pn(x)dx

)
+ f0(r)

(∫ 1

μ

P0(x)dx + e0

)
. (60)

The value of 〈D2ψo
2 〉 can be found by differentiating (60) but also by solving (59) for 〈D2ψo

2 〉 using separation of
variables. Equating these gives a second-order differential equation for f with power-law solutions. The general
outer solution is thus given by

〈ψo
2 〉 =

(
R0 + T0r + Y0r

2 + S0r
3
)(∫ 1

μ

P0(x)dx + e0

)

+
∞∑
n=1

(
Rnr

n+3 + Tnr
−n + Ynr

n+1 + Snr
−(n−2)

)(∫ 1

μ

Pn(x)dx

)
. (61)

Applying the boundary condition at infinity gives Rn = Yn = 0 and S0 = Y0 = 0. Furthermore, in order to avoid a
singularity in uθ at μ = ±1 it is required T0 = 0, and as 〈ψo

2 〉 is a stream function it can be set that e0 = 0 without
affecting ur or uθ . Hence, we obtain the outer solution as

〈ψo
2 〉 = R0

(∫ 1

μ

P0(x)dx

)
+

∞∑
n=1

(
Tnr

−n + Snr
−(n−2)

)(∫ 1

μ

Pn(x)dx

)
. (62)

4.5 Matching

The final part of determining the solution for the flow consists of carrying out the asymptotic matching between
the inner (56) and outer solutions (62). We first need to evaluate the inner solution, (56), in the limit η � 1 which,
because of the negative exponentials, simplifies to

〈
ψ i
2

〉
=

∞∑
k=1

(
Lk + Mkη + Nkη

2 + Qkη
3
)(∫ 1

μ

Pk(x)dx

)
. (63)

The outer solution, (62), then needs to be evaluated in the limit r → 1. Writing the outer solution in terms of the
inner variable η and Taylor expanding the expression about η = 0 then gives
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〈
ψo
2

〉
= R0

(∫ 1

μ

P0(x)dx

)
+

∞∑
n=1

[
(Tn + Sn) − δ(nTn + (n − 2)Sn)η

+ δ2
(
n(n + 1)

2
Tn + (n − 2)(n − 1)

2
Sn

)
η2

− δ3
(
n(n + 1)(n + 2)

6
Tn + n(n − 1)(n − 2)

6
Sn

)
η3 + O(η4)

](∫ 1

μ

Pn(x)dx

)
. (64)

Equating the two highest orders of η gives

Lk = Tk + Sk (k ≥ 1), (65)

Mk = −δ [kTk + (k − 2)Sk] (k ≥ 1), (66)

R0 = 0. (67)

If we use M (δ)
k to denote the O(δ) term of Mk , the outer constants are thus given by

Tk = (2 − k)

2
L(1)
k − 1

2

1

δ
M (δ)

k + O(δ) (k ≥ 1), (68)

Sk = k

2
L(1)
k + 1

2

1

δ
M (δ)

k + O(δ) (k ≥ 1). (69)

Notice that Tk and Sk are now known so they can be used to determine Nk and Qk by matching to the third and the
fourth orders; if one carries out this matching, one obtains that Nk and Qk are O(δ2) and O(δ3), respectively.

5 Lagrangian streaming

The solution derived so far has focused on the Eulerian streaming, i.e. the time-averaged Eulerian velocity field at a
fixed position in the laboratory frame of reference. In order to compare with future experimental results tracking the
motion of passive tracers in the flow, it is necessary to calculate the Lagrangian streaming instead. The difference
between the Eulerian and the Lagrangian streaming is the so-called Stokes drift which arises because the Lagrangian
particles are advected by the Eulerian velocities at all the positions the particles move through, and not just fixed
positions in the laboratory frame, and thus velocity gradients need to be accounted for.

Longuet-Higgins [39,48] showed that the stream function for the non-dimensional time averaged Stokes drift
ϕ̄S at O(ε2) is given by

〈ϕS〉 = 1

r2

∫
∂ψ1

∂r
dt

∂ψ1

∂μ
· (70)

Ignoring exponentially decaying terms, the outer solution for the Stokes drift is thus

〈ϕS〉 = −ε2
i

2

∞∑
k=1

( ∞∑
n=0

∞∑
m=1

aknm V̄nVmmr−(n+m+3)

)(∫ 1

μ

Pk(x)dx

)
+ O(δ). (71)

Adding this expression to the outer time-averaged Eulerian solution ψo
2 from Eq. (62) leads to the final expression

for the outer leading-order time-averaged Lagrangian streaming as

〈ψL 〉 =
∞∑
k=1

(
Tkr

−k + Skr
−(k−2) −

∞∑
n=0

∞∑
m=1

Yknmr
−(n+m+3)

)(∫ 1

μ

Pk(x)dx

)
, (72)
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where

Yknm = Re

(
1

2
aknm V̄nVm im

)
, (73)

and the coefficients Sk and Tk are given by

Sk = Re

{ ∞∑
n=0

∞∑
m=1

(
aknm

{
1

4
V̄n(Wm + mVm)ik

− 1

4
(W̄n + nV̄n)Vm im + 1

4
V̄n(Wm + mVm)(4 + 3n − m)i

+ 1

8
(W̄n + nV̄n)(Wm + mVm)(3 − i) + 1

4
V̄nWm(m + 3)i − 1

4
V̄nVmmi

+ 1

4
WnW̄m i −

∞∑
j=1

(
Cnj

j ( j + 1)

)[
1

8
(Wm + mVm)(W̄ j + j V̄ j ) (1 + i)

+ 1

2
(Wm + mVm)V̄ j i j + 1

4
W̄mWj i

]}
− 1

4
gknm V̄n (Wm − 2Vm) ik

)

+
∞∑
n=1

∞∑
m=1

[
1

4
fknm

(
V̄nn(n + 1) − W̄n

)
Wm

ik

mn(n + 1)(m + 1)

]
+ 1

2
V0V̄kki

}
+ O(δ), (74)

and

Tk = Re

{ ∞∑
n=0

∞∑
m=1

(
aknm

{
1

4
V̄n(Wm + mVm)i(2 − k)

+ 1

4
(W̄n + nV̄n)Vm im − 1

4
V̄n(Wm + mVm)(4 + 3n − m)i

− 1

8
(W̄n + nV̄n)(Wm + mVm)(3 − i) − 1

4
V̄nWm(m + 3)i + 1

4
V̄nVm im

− 1

4
WnW̄m i +

∞∑
j=1

(
Cnj

j ( j + 1)

)[
1

8
(Wm + mVm)(W̄ j + j V̄ j ) (1 + i)

+ 1

2
(Wm + mVm)V̄ j i j + 1

4
W̄mWj i

]}
− 1

4
gknm V̄n (Wm − 2Vm) (2 − k)i

)

+
∞∑
n=1

∞∑
m=1

[
1

4
fknm

(
V̄nn(n + 1) − W̄n

)
Wm

i(2 − k)

mn(n + 1)(m + 1)

]
+ 1

2
V0V̄k(2 − k)i

}
+ O(δ), (75)

Since the inner solutions is only valid in a δ-sized region about the spherical body this gives the Lagrangian
solution in the bulk of the fluid.

We note that in the far field, the flow will be dominated by the slowest spatially decaying term. In the stream
function (72), this is the 〈ψL〉 ∼ S1r term. The velocities associated with this term decay as ∼ 1/r and are
associated with a net force acting on the fluid (stokeslet). This will be further discussed Sect. 11 in the context of
force generation and propulsion.

6 Special case: squirming

As discussed in the introduction, the squirmer model of low-Reynolds number swimming is a popular mathematical
model to address the motion of nearly spherical ciliated cells (e.g. Opalina, Volvox) [13,15]. The array of deforming
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cilia is modelled as a continuous envelope where the effective tangential component is deemed far more significant
than the radial component of motion. As such, the position of the surface can be modelled as fixed at its average
position, and imposing steady velocities along it. Models of this form have been used to study nutrient uptake
by microorganisms [49], hydrodynamic interactions [50], optimal locomotion [51] and were recently generalised
[16,19]. Some versions of the squirming model do also allow a radial velocity to be applied through the fixed
boundary as a model for a porous surface with normal jets of fluid through it [52].

The squirming approximation significantly increases the ease of theoretical calculations. However, and as
expected, it has its limitations. A prescribed forcing through the boundary cannot be used to accurately model
a moving boundary. If there is a non-zero radial velocity at the fixed boundary, the streaming flow will become
one order of magnitude larger since the boundary conditions are no longer cancelling the leading-order term. In
the very specific case of solely radial motion where all the radial modes are exactly π/4 out of phase with each
other, the solution will be at the right order, but other important terms will still be missing from the streaming. This
demonstrates that the physical movement of the boundary, and hence the physical displacement of the fluid in that
region, is as important as the prescribed velocities it is imparting to the fluid around it.

For angular motion alone, however, the squirmer streaming is identical to the full solution, demonstrating that
such an approximation is valid. Furthermore, in that situation the Lagrangian and Eulerian streamings are the same
since the Stokes drift depends only on the radial motion of the surface. We thus focus on the standard tangential
squirmer model where there is no radial motion at leading order and Vn = 0 for all n. In that setup, the generated
streaming is of the same form as has already been derived, (72), but the constants are much simpler with Yknm = 0
and

Sk = Re

⎧⎨
⎩

∞∑
n=0

∞∑
m=1

aknm

⎡
⎣3

8
W̄nWm(1 − i) −

∞∑
j=1

(
Cnj

j ( j + 1)

)
1

8
W̄ jWm (1 − i)

⎤
⎦

+
∞∑
n=1

∞∑
m=1

[
−1

4
fknmW̄nWm

ik

mn(n + 1)(m + 1)

]}
+ O(δ), (76)

and

Tk = Re

⎧⎨
⎩

∞∑
n=0

∞∑
m=1

aknm

⎡
⎣−3

8
W̄nWm(1 − i) +

∞∑
j=1

(
Cnj

j ( j + 1)

)
1

8
WmW̄ j (1 − i)

⎤
⎦

+
∞∑
n=1

∞∑
m=1

[
−1

4
fknmW̄nWm

(2 − k)i

mn(n + 1)(m + 1)

]}
+ O(δ). (77)

7 Allowing slip on the boundary

In previous sections, we assumed that the fluid satisfied the no-slip boundary condition and thus exactly matched the
motion of our deforming body. Slip can, however, be systematically incorporated into this model through a small
change of boundary conditions. The general form of the solution remains the same, but the constants of integration
gain an extra contribution. This will then extend the model to include other spherical bodies, in particular bubbles.

In the case of no-slip, the motion of the boundary was described by its radial position, R, and angular position,Θ .
However, instead R and Θ can be interpreted as describing the motion of the fluid on the boundary of the spherical
body. If we allow streaming at the second order on the boundary, we can then write

R = 1 − ε

∞∑
n=0

Vn Pn(μ)ei(t+
π
2 ) + ε2

∞∑
n=0

GnPn(μ)g(t) + O(ε3), (78)
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Θ = θ + ε

∞∑
n=1

Wn

(∫ 1
μ
Pn(x)dx

(1 − μ2)
1
2

)
ei(t+

π
2 ) + ε2

∞∑
n=0

Fn

(∫ 1
μ
Pn(x)dx

(1 − μ2)
1
2

)
f (t) + O(ε3), (79)

which now has the extra second-order contributions where Fn and Gn are known constants determined by the
motion of the spherical body and f (t) and g(t) are unknown functions of time.

The new definition of R is equivalent to the previous one since the fluid and spherical body cannot encompass the
same space. Therefore, Vn is still determined by the shape of the surface oscillation and there is still no net motion
of the boundary, we thus have Gn = 0 for all n. The new definition of Θ does, however, allow for net motion of
the fluid along the body’s surface, and the coefficients Wn are then chosen so that the appropriate surface boundary
condition is obeyed at the first order. Similarly the value of Fn is determined by ensuring that this same surface
boundary condition is obeyed at the second order. As such, Fn may be nonzero and without loss of generality we
assume that ∂ f /∂t time averages to one.

The addition of the coefficients Fn is a second-order contribution so ψ1 is unchanged from (26). The form of the
second-order inner solution (56) is unchanged with Lk as in (57), but Mk now has an extra Fk contribution so we
obtain the revised equation

Mk = δ

( ∞∑
n=0

∞∑
m=1

aknm

{
−1

2
(W̄n + nV̄n)Vmmi + 1

2
V̄n(Wm + mVm)(4 + 3n − m)i

+ 1

4
(W̄n + nV̄n)(Wm + mVm)(3 − i) + 1

2
V̄nWm(m + 3)i − 1

2
V̄nVm im

+ 1

2
WnW̄m i −

∞∑
j=1

(
Cnj

j ( j + 1)

)[
1

4
(Wm + mVm)(W̄ j + j V̄ j ) (1 + i)

+ (Wm + mVm)V̄ j i j + 1

2
W̄mWj i

]}
− Fk

)
+ O(δ2) for k > 0. (80)

The new boundary condition considered, such as that of no angular stress along the surface of a bubble, would now
be applied to this new second-order inner solution allowing us to determine the value of the coefficients Fk .

Similarly, the form of the outer solution (72) remains the same, but through the asymptotic matching there is an
extra contribution to its constants of integration so that the revised formulae for the Sk and Tk coefficients are now

Sk = Re

{ ∞∑
n=0

∞∑
m=1

[
aknm

{
1

4
V̄n(Wm + mVm)ik

− 1

4
(W̄n + nV̄n)Vm im + 1

4
V̄n(Wm + mVm)(4 + 3n − m)i

+ 1

8
(W̄n + nV̄n)(Wm + mVm)(3 − i) + 1

4
V̄nWm(m + 3)i − 1

4
V̄nVmmi

+ 1

4
WnW̄m i −

∞∑
j=1

Cnj

j ( j + 1)

[
1

8
(Wm + mVm)(W̄ j + j V̄ j ) (1 + i)

+ 1

2
(Wm + mVm)V̄ j i j + 1

4
W̄mWj i

]}
− 1

4
gknm V̄n (Wm − 2Vm) ik

]

+
∞∑
n=1

∞∑
m=1

[
1

4
fknm

(
V̄nn(n + 1) − W̄n

)
Wm

ik

mn(n + 1)(m + 1)

]
+ 1

2
V0V̄kki − 1

2
Fk

}
+ O(δ), (81)

and

123



48 T. A. Spelman, E. Lauga

Tk = Re

{ ∞∑
n=0

∞∑
m=1

[
aknm

{
1

4
V̄n(Wm + mVm)(2 − k)i

+ 1

4
(W̄n + nV̄n)Vm im − 1

4
Vn(Wm + mV̄m)(4 + 3n − m)i

− 1

8
(W̄n + nV̄n)(Wm + mVm)(3 − i) − 1

4
V̄nWm(m + 3)i + 1

4
V̄nVmmi

− 1

4
WnW̄m i +

∞∑
j=1

Cnj

j ( j + 1)

[
1

8
(Wm + mVm)(W̄ j + j V̄ j ) (1 + i)

+ 1

2
(Wm + mVm)V̄ j i j + 1

4
W̄mWj i

]}
− 1

4
gknm V̄n (Wm − 2Vm) i(2 − k)

]

+
∞∑
n=1

∞∑
m=1

[
1

4
fknm

(
V̄nn(n + 1) − W̄n

)
Wm

(2 − k)i

n(n + 1)m(m + 1)

]
+ 1

2
V0V̄k(2 − k)i + 1

2
Fk

}
+ O(δ), (82)

with the coefficients Yknm remaining the same as in (73). Naturally, through the asymptotic matching outlined above,
as Tk and Sk have an extra contribution, the inner constants Nk and Qk will also include a contribution proportional
to the constants Fk .

8 Special case: free surfaces

In the case of an oscillating bubble, the extra boundary condition is that of no tangential stress on the bubble surface

n · σ · t = 0, at r = R, θ = Θ, (83)

where t is the tangent vector in the plane through the axis of axisymmetry, n is the normal vector and σ is the
Newtonian stress tensor. There is still no penetration on the bubble surface and the shape of the bubble oscillation
(via the coefficients Vn) is prescribed. Ensuring that the no-tangential stress conditions holds at the first order and
at the second order (when time averaged) determines the values of Wn and Fn . This calculation is quite involved
and its details are given in Appendices 1 and 2 with the main results quoted in what follows.

8.1 General case

In this subsection, we calculate the leading-order streaming provided the result is non-zero (see below). The
generated streaming is of the same form as the one already derived, (72), with Yknm defined as in (73) and R0 = 0,
with the difference that the constants Tk and Sk now take new values

Tk = Re

{
V0V̄k

(1 − k2)i

(2k + 1)
+

∞∑
n=1

∞∑
m=1

fknm V̄nVm
(k2 − k − 1)(n + 2)i

2(2k + 1)(n + 1)(m + 1)

+
∞∑
n=0

∞∑
m=1

gknm V̄nVm
3(1 − k2)i

2(2k + 1)
+

∞∑
n=0

∞∑
m=1

aknm
2(2k + 1)

(84)

×
[
V̄nVmmi(n2 − 4nm − 4n + m2 − m − 3) +

∞∑
j=1

(
Cnj

j + 1

)
VmV̄jm(3m + 5)i

]}
+ O(δ),

and

123



Arbitrary axisymmetric steady streaming: flow, force and propulsion 49

Sk = Re

{
V0V̄k

ik(k + 2)

(2k + 1)
−

∞∑
n=1

∞∑
m=1

fknm V̄nVm
ik(n + 2)(2k + 4)

4(n + 1)(m + 1)(2k + 1)

+
∞∑
n=0

∞∑
m=1

gknm V̄nVm
3k(k + 2)i

2(2k + 1)
−

∞∑
n=0

∞∑
m=1

aknm
2(2k + 1)

×
[
V̄nVmmi(n2 − 4nm − 4n + m2 − m − 3) +

∞∑
j=1

(
Cnj

j + 1

)
VmV̄jm(3m + 5)i

]}
+ O(δ). (85)

This solution is derived in detail in Appendix 1.

8.2 Special case: in-phase motion

If the Vn coefficients are chosen such that the real part of iVnV̄m = 0 for all valued of n and m (i.e. all modes are in
phase or π out-of-phase with each other) then Tk = Sk = Yknm = 0 and the steady streaming is identically zero at
O(1). This of course includes the case where only one mode is being forced. The net streaming in that case occurs
at O(δ). In order to determine this streaming, the solution derived in Sect. 2 needs to be taken to the third order, to
give one more power of δ, and then have the no-stress condition applied to it. The details for this calculation are
given in Appendix 2. The generated streaming is still of the same form as has already been derived (72), but with
Yknm = 0, R0 = 0 and with the constants Tk and Sk now taking new values as

Tk = δRe

{ ∞∑
n=1

∞∑
m=1

fknm V̄nVm
(1 − k2)(n + 2)

2(2k + 1)(n + 1)
−

∞∑
n=0

∞∑
m=0

gknm V̄nVm
(1 − k2)m(m + 2)

2(2k + 1)

+
∞∑
n=0

∞∑
m=1

aknm

[
V̄nVm

(
n2

4
+ 9n

4
− 5m2

4
− 5m

4
+ 1 + 1

2
k2 + 3

2
k

)
m(m + 2)

2(2k + 1)

− V̄nVm
nm(n + 2)(2m + 1)

2(2k + 1)
−

∞∑
j=1

Cnj

j ( j + 1)

(
VmV̄j

m j (2m + j + 6)

2(2k + 1)

)]}
, (86)

and

Sk = δRe

{ ∞∑
n=1

∞∑
m=1

fknm V̄nVm
k(k + 2)(n + 2)

2(n + 1)(2k + 1)
−

∞∑
n=0

∞∑
m=0

gknm V̄nVm
k(k + 2)m(m + 2)

2(2k + 1)

+
∞∑
n=0

∞∑
m=1

aknm

[
− V̄nVm

(
n2

4
+ 9n

4
− 5m2

4
− 5m

4
+ 1

2
k(k − 1)

)
m(m + 2)

2(2k + 1)

+ V̄nVm
nm(n + 2)(2m + 1)

2(2k + 1)
+

∞∑
j=1

Cnj

j ( j + 1)

(
VmV̄j

m j (2m + j + 6)

2(2k + 1)

)]}
. (87)

8.3 Discussion

Our results show thus that a bubble, for any in-phase oscillation of its shape, generates a streaming of O(δ) or lower,
and therefore at least one order of magnitude weaker than that of a deformable no-slip surface (such as an elastic
membrane) undergoing the same sequence of shape change. Thus the net flows generated by the angular velocities
are of similar magnitude to those induced by the radial velocities and they cancel at leading order.
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Longuet-Higgins observed that a bubble undergoing translational oscillation produced a force of O(δ), one order
of magnitude less than the out-of-phase translational and pulsating oscillations which is O(1) [39]. Our calculations
allow us to generalise this result to all shape changes, and thus suggests that ensuring there are at least two modes
of oscillation out of phase leads to stronger streaming flows.

For bubbles forced by external fields, this raises an interesting question ofwhether a resonancemodeof oscillation,
which is solely at onemode,would produce aweaker streamingflow thanout-of-phase forcingwhich excitesmultiple
modes. From a practical standpoint, microbubbles are often fixed to a wall, which enforces that the centre of the
bubble has to move and as such is naturally excited at a second mode.

9 Comparison with past work

Our calculations have allowed us to compute the streaming generated by any specified, fixed, oscillating spherical
object (and in particular we solved for a bubble). Past work has characterized the streaming flow for simple shape
oscillations of bubbles and rigid spheres, to which we can compare our model in order to validate it.

9.1 Translating bubble

In the case of a bubble undergoing translational oscillations, we have V1 = 1 and Vn = 0 for n �= 1, The angular
boundary conditions Wn and Fn are determined by the no-stress boundary condition. This case was studied by
Longuet-Higgins [39] and the solution we obtain here is identical to his, namely

〈ψL 〉 = δ
27

20

(
1

r2
− 1

)∫ 1

μ

P2(x)dx, (88)

as further illustrated in Fig. 2. This streaming flow is a stresslet with fluid pulled in along the axis of oscillation and
pushed out along the equator.

9.2 Translating sphere

In the case of a solid sphere undergoing translational oscillations, we have V1 = 1, Vn = 0 for n �= 1, W1 = 2,
Wn = 0 for n �= 1, and Fn = 0. This case was studied by Riley [37] and the streaming we obtain is identical to his

−4 −2 0 2 4
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4
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4

−4 −2 0 2 4

(a) (b)

Fig. 2 Streaming, in the form of a stresslet, generated by the translational oscillations of a bubble: a Streaming from current model;
b Longuet-Higgins’s streaming, reproduced from [39], by permission of the Royal Society
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Fig. 3 Streaming, in the form of a stresslet, generated by the translational oscillations of a sphere: a Streaming from current model;
b Riley’s streaming, reproduced from [37], by permission of Oxford University Press

solution, namely

〈ψo
2 〉 = −45

16

(
1

r2
− 1

)∫ 1

μ

P2(x), (89)

as further illustrated in Fig. 3. Similarly to the oscillating bubble, this streaming flow is a stresslet but with opposite
direction.

9.3 Bubble translating and radially oscillating

Finally, in the case of a bubble undergoing radial and lateral oscillations only V0 and V1 can be non-zero. Then the
pairs Wn and Fn are determined by the no-stress boundary condition. We obtain W1 = −V1, Wn = 0 for n �= 1,
F1 = 4iV̄0V1 and Fn = 0 for n �= 1. In this case, there is a contribution from the Stokes drift with one non-zero
component of Y , Y101 = iV̄0V1/2 leading to the final Lagrangian streaming as

〈ψL 〉 = Re
(
V̄0V1i

) (− 1

4r
+ r

2
− 1

4r4

)
(1 − μ2), (90)

which matches the result of Longuet-Higgins [39] (note that in Ref. [39], Re
(
iV̄0V1

)
is written as sin(φ) with

φ denoting the phase difference between modes 0 and 1). At leading order, this streaming flow is a stokeslet,
with direction parallel to the axis of axisymmetry, and with a sign determined by the phase difference between V0
and V1.

10 Illustration of steady streaming and far-field behaviour

With the calculations above, we can now illustrate the streaming patterns which can be obtained from surface
oscillations. We consider a range of surface boundary conditions (Vn and Wn) and assume for simplicity that the
surface streaming is zero (Fn = 0). The steady streaming flow splits naturally into two regions with different
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Fig. 4 Patterns of steady streaming for the first few surface oscillation modes: a Oscillating with V1 = 1 only; b Oscillating with
V2 = 1 only; c Positive force by oscillating at two modes V1 = 1√

2
, V2 = 1√

2
, W1 = −3√

2
and W2 = 2√

2
.; (d) Negative force by

oscillating at two modes V1 = 1√
2
and V2 = 1√

2

behaviours: the fluid motion close to the spherical body, which often contains recirculation regions, and the far-field
behaviour which is dominated by the slowest decaying term in the velocity.

First we consider the streaming generated by a few simple surface shape oscillations. In Fig. 4a, we illustrate the
streaming when only the mode V1 �= 0 is being forced. In all the cases, the flow being axisymmetric, we only need
to display streamlines in the plane of symmetry to illustrate the whole flow. Here S1 = 0 so the slowest decaying
term is S2/r2 which produces the pattern of flow coming in in the equatorial plane of the spherical body and pushed
away along the vertical axis (stresslet, see below). Furthermore, as there are few higher-order terms, this behaviour
in fact dominates the flow throughout the domain.

Differences between the far-field flow and the fluid motion close to the body can be seen with higher modes.
This is illustrated in Fig. 4b which shows the streaming generated by forcing mode V2 only. On the edge of the
figure the dynamics seen in Fig. 4a is apparent as the term S2/r2 is still dominant in the far field. However, close
to the spherical body, we see circulations zones which extend about one body diameter into the fluid. The number
of these circulations regions increase as higher modes are being forced. A similar pattern is observed when only
oscillating at one angular mode (i.e. Wn �= 0 for one choice of n).
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Let us now consider the behaviour in the far field. Far from the sphere, the steady streaming is dominated by
the slowest decaying term. If S1 �= 0 then the slowest decaying flow is the stokeslet with the velocities decaying
as S1/r . This produces a non-zero force along the axis of rotational symmetry and this gives a clear movement of
flow parallel to this axis - either in the positive (Fig. 4c) or negative direction (Fig. 4d). If S1 = 0 the body has no
force acting on it, as seen in Fig. 4a, b where the symmetry of the system prevents a net force from being induced.
Generally, a net force is created only if two adjacent modes {Vn, Vn+1} or {Wn,Wn+1} are non-zero, as otherwise
aknm , gknm , fknm are all zero and the aknmcnj combinations cancel.

If the stokeslet coefficient, S1, is zero the far-field behaviour is dominated by a slower decaying term. In most
cases, this will be a stresslet with associated velocities decaying as S2/r2. This is the flow seen in Fig. 4a. If in turn
these terms are also zero then the far-field behaviour is dominated by the (Tk + Sk+2)/rk+2 term for the lowest
value of k ≥ 1 which is non-zero.

Close to the spherical body, circulation regions will form. If there is a stokeslet, this term tends to dominate the
flow and even close to the body circulation regions rarely appear. The one exception is close to the axis of symmetry
where a pair of large circulations will sometimes form, either just above or just below the sphere (see Fig. 4d, c).
Since the flow is axisymmetric, this corresponds to a recirculation torus.

Intuitively, one would expect that the shape of the volume physically displaced by the spherical body (set by
the modes Vn) would have a significant effect on the features of the flow field. But as discussed in Sect. 8, the
angular motion on the surface can produce a flow of similar magnitude, and in fact it can change the direction of
the circulations and the streaming flow (and hence the direction of the body force applied to the spherical object) as
demonstrated in Fig. 4d, c. Another example of this, already seen in Sect. 9, displayed the streaming flow difference
between a translating bubble (Fig. 2) and a translating sphere in (Fig. 3).

11 Application: force generation and propulsion

In our current setup, the sphere is held fixed, and the force exerted by the oscillations of the spherical body’s surface
on the fluid is computed. However, by Newton’s law, an equal and opposite force is being applied to the spherical
body from the fluid. If the spherical body is not held in place then this would cause it to move. Mathematically, a
net motion of the body is necessarily a second-order effect as all leading-order effects are oscillatory and produce
no net motion or forces. Hence allowing the body to move will only slightly modify our mathematical approach.
In this section, we characterise the force induced by a fixed body and then show how to carry the calculation in the
case where the body is free to move.

11.1 Force generation

Due to the axisymmetry of the system a net force can only be exerted along the axis of rotational symmetry, taken
to be ez using traditional notation from spherical coordinates. We thus write F = Fez .

The time averaged force on the spherical body is equal to the force across the boundary of our spherical object
at r = R, i.e.

F =
〈∫

(σ · n) |r=R(μ)dS

〉
. (91)

This force must match the force across the boundary “r = ∞” and thus

F = −
〈∫

(σ · n) |r=∞dS

〉
. (92)

Across r = ∞, if the time average is taken then there will only be a contribution from the second-order term as
all first-order terms are oscillatory. Also, the region r = ∞ is now outside the boundary layer, where, due to the
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exponential decay of the nonlinear terms, the time-averaged flow is a Stokes flow. Outside the boundary layer, the
slowest decaying velocity is the 1/r term. This velocity field at leading order in r is

ur = S1
cos θ

r
+ O(r−3), (93)

uθ = −S1
sin θ

2r
+ O(r−3). (94)

This is the stokeslet discussed above. Indeed a non-dimensional stokeslet due to a force F applied at the origin
induces a flow U with components

Uj = Fi
8π

(
δi j

r
+ xix j

r3

)
. (95)

With a force in the ez direction this becomes gives

Ur = F

4πr
cos θ, (96)

Uθ = − F

8πr
sin θ. (97)

Equating these two forms of the stokeslet shows the non-dimensional force exerted on the spherical body by the
fluid is

F = −8πε2
S1
2
ez . (98)

This force is the result of a dominant pressure field, thus the dimensional scaling for the pressure indicates the
scaling for the force. The Navier–Stokes equations indicate that the pressure scales with time varying inertia so
p ∼ ρUaω ∼ ρa2ω2 implying that the dimensional force is

F = −4πε2S1(ρa
4ω2)ez . (99)

11.2 Force-free swimming

If the spherical body is no longer held in place but is free to move, it will translate with an O(ε2) velocity in the
direction of this force. However, the constraint of force-free motion needs to be carefully enforced at both O(ε)

and O(ε2) and being free to move will in general also impact the first-order oscillatory motion.

11.2.1 Force-free motion at O(ε)

At O(ε) the motion of the spherical body is completely determined by the constants Vn and Wn . Up to now these
coefficients could be chosen arbitrarily to represent any surface motion. The extra constraint of force-free motion
will now restrict the allowed motion of the spherical body, therefore restricting choices of Vn and Wn .

Mathematically, force-free motion is written as

F =
∫

(σ · n) |r=R(μ,t)dS = 0. (100)
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The normal vector to the surface of the spherical body is

n̂ = er − ∂R

∂θ
eθ + O(ε2). (101)

Knowing that the direction of F is in the ez direction by symmetry, this becomes

F =
[∫

(σrr cos θ − σθr sin θ) |r=1dS + O(ε2)

]
ez . (102)

This can then be non-dimensionalised and the integral expanded to give

F =
{∫ 2π

0

∫ π

0

[(
−p + δ2

∂ur
∂r

)
cos θ − δ2

2

(
1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r

)
sin θ

]
sin θ dθ dφ + O(ε2)

}
ez . (103)

The first-order pressure can be calculated by substituting the first-order solution forψ1, (26), into the Navier–Stokes
equation to obtain

p = eit
∞∑
n=0

Pn(μ)

(
iDn

(n + 1)rn+1

)
. (104)

Then notice, using integration by parts and Legendre identities, that
∫ π

0
Pn(μ) cos θ sin θdθ = 2

3
δ1n for n ≥ 0, (105)

∫ π

0
(1 − μ2)−

1
2

(∫ 1

μ

Pn(x)dx

)
sin2 θ dθ = 2

3
δ1n for n ≥ 1. (106)

Therefore, the force-free condition will only affect the n = 1 mode. Then as we have the scalings

∂ur
∂r

∼ O(1),
∂ur
∂θ

∼ O(1),
∂uθ

∂r
∼ O(δ−1), uθ ∼ O(1), p ∼ O(1), (107)

at the two leading orders in δ, only pressure and the viscous stress ∼ ∂uθ /∂r will contribute to the force, leading to

F = 4π

3
eit
[
− i

2
V1 + δ

(1 + i)

4
(W1 + V1) + O(δ2)

]
ez . (108)

For the spherical body to be force-free, we thus need V1 = W1 = 0. In other words, if the boundary conditions are
such that V1 �= 0 andW1 �= 0 for a fixed sphere, then the force-free spherewill undergo additional oscillatorymotion
to compensate and lead to V1 = W1 = 0 overall. Physically the V1 mode corresponds to the sphere undergoing
translational oscillations. Therefore, for the body to be force free, the translational oscillations are suppressed. At
O(ε), since the behaviour is linear, for most angular surface boundary conditions, W1 will be directly dependent
on the value of V1, so a condition restricting translational oscillations would be anticipated to affect the angular
motion at this mode too.

11.2.2 Force-free motion at O(ε2)

In order for the motion of the sphere at O(ε) to be force-free, we saw that two of the surface coefficients become
zero. Beyond that, the model has not fundamentally changed. We can thus use our mathematical framework to
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calculate the velocity of translation at O(ε2) in terms of the force generated by the oscillating body which was
force-free at the first order.

We use Ṽ to denote the non-dimensional time-averaged velocity of the body at order ε2. In order to use the same
formulation as above, we move into a frame of where the body undergoes no net motion at O(ε2) in the z direction.
Mathematically, this keeps all the boundary conditions the same as above except now requires in the far field that

ψ ∼ −ε2Ṽ
r2

2
(1 − μ2), r → ∞. (109)

As this is an outer boundary condition, the form of the second-order inner solution remains unchanged. Therefore,
the main change is in the second-order outer solution. The general form of this outer streaming is still given by
(61) (which is still a Stokes approximation since the nonlinear forcing term can be neglected due to its exponential
decay rate). The difference is that applying the new boundary condition (109) allows one more term than before to
be non-zero so we have

〈ψo
2 〉 = R̃0

(∫ 1

μ

P0(x)dx

)
+ (−Ṽ r2 + T̃1r

−1 + S̃1r)

(∫ 1

μ

P1(x)dx

)

+
∞∑
n=2

(
T̃nr

−n + S̃nr
−(n−2)

)(∫ 1

μ

Pn(x)dx

)
. (110)

Then when comparing this outer solution to the inner solution (65), (66) and (67) all still hold for k �= 1 but for
k = 1 we instead have

L1 = T̃1 + S̃1 − Ṽ , (111)
M1

δ
= S̃1 − T̃1 − 2Ṽ . (112)

In order to determine the value of Ṽ , we enforce that the time-averaged second-order solution be force-free so
we have

F =
〈∫

(σ · n) |r=R(μ,t)dS

〉
= 0. (113)

Contributions to this integral will come from linear terms involving the internal second-order solution, ψ i
2, as well

as nonlinear terms involving the first-order solution ψ1.
Since the form of the first-order solution has not changed, the contributions from those nonlinear terms remain

the same when we restrict Ṽ = 0 (i.e. no second-order translation). However, the second-order internal solution
will give a slightly different contribution as the values of the constants of integration Nk and Qk have changed.

Looking at the second-order internal solution only the constants of integration Lk, Mk, Nk and Qk could be
different. But changes will only occur for k = 1 since for other values of k the outer solution is as before.
Furthermore, the constants L1 and M1 are the same as before since their values were determined by the boundary
conditions on the surface of the body which are the same. We use the asymptotic matching in order to determine
the values of T1 and S1 in terms of the known values L1 and M1 and this is then used to calculate the new values
of N1 and Q1.

In this new system, we have

L1 =
(
T̃1 + Ṽ

2

)
+
(
S̃1 − 3Ṽ

2

)
, (114)

M1

δ
=
(
S̃1 − 3Ṽ

2

)
−
(
T̃1 + Ṽ

2
,

)
, (115)

123



Arbitrary axisymmetric steady streaming: flow, force and propulsion 57

N1

δ2
= T̃1 − Ṽ =

(
T̃1 + Ṽ

2

)
− 3Ṽ

2
, (116)

Q1

δ3
= −T̃1 = −

(
T̃1 + Ṽ

2

)
+ Ṽ

2
· (117)

Compared to S1 and T1 in the first-order force-free case, T1 = T̃1 + Ṽ /2 and S1 = S̃1 − 3Ṽ /2. Therefore, the drag
force on the sphere will be the same as before, −4πμS1ez plus an extra contribution from the −3Ṽ /2 extra term
in N1 and the Ṽ /2 term in Q1.

Knowing n̂ from (101) and that the direction of F is still in the ez direction means we have

F =
〈∫ [(

σrr − ε
∂R

∂θ
σθr

)
cos θ −

(
σθr − ε

∂R

∂θ
σθθ

)
sin θ

]
|r=R(μ,t)dS

〉
ez . (118)

We see that the extra contributions to F can only come from the linear terms evaluated at r = 1 (so η = 0), i.e.

σrr cos θ − σθr sin θ =
[(

−p + δ2
∂ur
∂r

)
cos θ − δ2

2

(
1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r

)
sin θ

]
. (119)

In σθr , there will only be an extra N1 contribution arising from the ∂uθ /∂r term. Any extra contribution from
σrr will come from the pressure term. The non-dimensional second-order equation for the pressure is

ε 〈u · ∇u〉 = −∇ 〈 p〉 + δ2

2
μ∇2 〈u〉 , (120)

where the pressure scales as p ∼ ρaUω. Then 〈u · ∇u〉 gives a contribution in terms of ψ1 only. There is, however,
an extra contribution coming from ∇2 〈u〉. By looking at the θ component of this equation, and noticing that we
are evaluating at r = 1 in the integral, we see we are only interested in terms with no dependence of η. Then it can
be found that the Nk and Qk contribution to p is given by

p = 3

2
δ2
(
Q1

δ3

)
P1(μ). (121)

The extra contribution to F coming from the ∂uθ /∂r term in σθr and from the pressure is

δ2
∫ 2π

0

∫ π

0

[(
− 3Ṽ

4

)
sin3 θ −

(
3Ṽ

4

)
cos2 θ sin θ

]
dθ dφ = −3πδ2V . (122)

Therefore, the total non-dimensional force on the spherical body is

F = ε2(−4π S1 − 3πδ2Ṽ )ez . (123)

For the body to be force-free, its dimensional velocity must therefore be

Ṽ = − 4

3δ2
(aω)S1, (124)

which we can use to calculate a numerical value for Ṽ .
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The relationship between the force on the body and its velocity is given by substituting this value of S1 into (99)
giving

F = 3πε2δ2Ṽ (ρa3ω)ez . (125)

Then substituting the scaling for δ2 given by (7) finally leads to

F = 6πε2Ṽ (aρν) ez . (126)

We recognise the standard result for a solid sphere translating at speed ε2Ṽ in a Stokes flow. Since outside the
boundary layer the flow is a Stokes flow, such a similarity was in fact expected (corrections for non-sphericity are
expected at higher orders in ε).

12 Conclusion

In this paper, we have mathematically derived the steady streaming flow generated by an arbitrary axisymmetric
oscillation of a spherical body. The final solution, and thus the main result of this paper, is quantified in Eqs. (72)–
(75).

Our model, which agrees with classical results, shows that a net force is generated in the far field only when two
adjacent surface modes are excited. If the body is free to move, this force will cause the body to move with a net
velocity, which we derived, given by a balance between that streaming force and the Stokes drag (Eq. 124).

Having kept the boundary forcing arbitrary makes our model applicable to a wide range of microorganisms and
microfluidic devices. Future work could involve determining the impact of inertia on the optimal swimming shape
and associated efficiency of larger microorganisms (such as Spirostomum [44]) which may swim in regimes with
non-negligible convective inertia. In addition, using this framework, the study of active colloids could be extended
to inertial regimes, from the extensively studied low Reynolds number regimes [53].

Recent experimental work has used bubbles embedded in free-moving hollow bodies to generate propulsion [33],
and our formalism will be directly applicable to this new class of synthetic swimmers. In particular, in Ref. [42],
we used our calculations to determine the streaming flow and force generated by such micron-sized “Armoured
Microbubbles”. Our analysis could be extended to a wider range of experimental parameters and could help improve
future designs.

Acknowledgments This work was funded in part by the EPSRC (TS) and the European Union through a Marie Curie CIG Grant
(EL).

Appendix 1: Out-of-phase streaming around a bubble

In order to apply the general steady streaming model (72) specifically to a bubble, the boundary condition of no
tangential stress on the boundary of the spherical body,

n · σ · t = 0 at r = R, θ = Θ, (127)

needs to be applied. This will determine the angular motion on the surface of the bubble Wn and Fn in terms of a
prescribed radial motion Vn .

(a) Boundary condition

We denote the unit tangent vector to the body’s surface in the plane through the axis of axisymmetry t and the
normal vector n. Both can be calculated in terms of er and eθ measured from the centre of the rest position of the
body giving
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t = eθ + ∂R

∂θ
er + O(ε3), (128)

n = er − ∂R

∂θ
eθ + O(ε3). (129)

Using these equations, the no-stress condition can be expanded in terms of ε giving the first two terms as

σθr + ∂R

∂θ0
(σrr − σθθ ) + O(ε3) = 0 at r = R, θ = Θ, (130)

becoming

σθr + (R − 1)
∂σθr

∂r
+ (Θ − θ0)

∂σθr

∂θ
+ (σrr − σθθ )

∂R

∂θ
+ O(ε3) = 0 at r = 1, θ = θ0. (131)

(b) Leading-order solution

At O(ε), Eq. 131 reduces to the non-dimensional equation

(
1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r

)
= 0 at r = 1, θ = θ0. (132)

By substituting in the known first-order solution ψ1, (26), this equation can be used to determine Wn giving

Wn = −nVn + δ
2n(n + 2)

(1 + i)
Vn + δ2in(n + 2)2Vn + O(δ3). (133)

(c) Second-order solution

At O(ε2), after Taylor expansion of σθr , (131) reduces to the non-dimensional equation:

σ
(ε2)
θr = −(R − 1)

∂σ
(ε)
θr

∂R
− (Θ − θ0)

∂σ
(ε)
θr

∂θ
− ∂R

∂θ0

(
σ (ε)
rr − σ

(ε)
θθ

)
at r = R, θ = Θ, (134)

where superscripts indicate the order at which each term is to be taken. Upon substitution of R , Θ and σ , the (134)
becomes

(
(1 − μ2)

∂2ψ i
2

∂μ2 + 2
∂ψ i

2

∂r
− ∂2ψ i

2

∂r2

)

= Re

[
i

∞∑
n=0

Vn Pn(μ)eit
]
Re

[
(1 − μ2)

∂3ψ1

∂μ2∂r
+ 3

∂2ψ1

∂r2
− ∂3ψ1

∂r3
− 3(1 − μ2)

∂2ψ1

∂μ2 − 4
∂ψ1

∂r

]

+ Re

[
εi

∞∑
n=1

Wn

(∫ 1

μ

Pn(x)dx

)
eit
]
Re

[
μ

(1 − μ2)

(
(1 − μ2)

∂2ψ1

∂μ2 + 2
∂ψ1

∂r
− ∂2ψ1

∂r2

)

+ ∂

∂μ

(
(1 − μ2)

∂2ψ1

∂μ2

)
+ 2

∂2ψ1

∂r∂μ
− ∂3ψ1

∂r2∂μ

]
− Re

[
εi

∞∑
n=0

n(n + 1)Vn

(∫ 1

μ

Pn(x)dx

)
eit
]

× Re

[
6
∂ψ1

∂μ
− 4

∂ψ1

∂r∂μ
− 2

μ

(1 − μ2)

∂ψ1

∂r

]
at r = 1, θ = θ0. (135)
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The forcing on the right-hand side of (135) can be calculated explicitly from the derivatives of ψ1, (26), simplifying
the equation to

〈
(1 − μ2)

∂2ψ i
2

∂μ2 + 2
∂ψ i

2

∂r
− ∂2ψ i

2

∂r2

〉
(136)

= i

2

∞∑
k=0

∞∑
n=0

∞∑
m=1

aknm

{
− V̄nVmm(m2 + 2) + V̄nWm(m + 2)2 − 4W̄nVmm(m + 1)

+ V̄n(Wm + mVm)

[
2i

1

δ2
+ 1

δ
(m + 3)(1 + i) + 1

2
m(2m + 3)

]

− 1

δ
(W̄n + nV̄n)Wm(1 − i) + V̄nWmn(n + 2) − W̄nWm(n + 2)

+
∞∑
j=1

Cnj

j ( j + 1)

[
1

δ
Wm(W̄ j + j V̄ j )

(1 − i)

j ( j + 1)
+ Wm(W̄ j − j V̄ j )

( j + 2)

j ( j + 1)

+ 2VmW̄ jm(m + 1)

]} ∫ 1

μ

Pk(x)dx .

The left-hand side of (135) can be evaluated usingψ i
2 from (56), and the value of the three constants of integration,

Lk , Mk and Nk , are needed. Lk and Mk were calculated in (57) and (58). From the asymptotic matching, Lk and
Mk are known in terms of Tk and Sk , (65) and (66). Matching at one higher order determines Nk in terms of Tk and
Sk , then using (65) and (66), Nk can be written in terms of Lk and Mk giving

Nk =
[
(2 − k)k

2
Lk + (1 − 2k)

2

Mk

δ

]
δ2. (137)

Equation (135) leads to an equality for
∑∞

k=1 Fk
(∫ 1

μ
Pk(x)dx

)
at leading order, O(1). As this must hold for all

μ ∈ [−1, 1], the coefficients of
(∫ 1

μ
Pk(x)dx

)
must equate for each k, and thus this will give an equation for every

Fk separately. Upon substitution of (133), the equation for Fk reduces to

1

δ
F (δ)
k = −

∞∑
n=0

∞∑
m=1

aknm

⎡
⎣1

2
V̄nVmm(m + 4 + n)i +

∞∑
j=1

(
Cnj

j + 1

)
1

2
V̄mVjmi

⎤
⎦

− V0V̄k
3ki

(2k + 1)
−

∞∑
n=0

∞∑
m=1

gknm V̄nVm
9ki

2(2k + 1)
+

∞∑
n=1

∞∑
m=1

fknm V̄nVm
3k(n + 2)i

2(2k + 1)(n + 1)(m + 1)

+
∞∑
n=0

∞∑
m=1

aknm
(2k + 1)

⎡
⎣V̄nVm

(
n2 − 4nm − 4n + m2 − m − 3

)
mi

+
∞∑
j=1

(
Cnj

j + 1

)
VmV̄jm(3m + 5)i

⎤
⎦ . (138)

Then substituting F (δ)
k into (74) and (75) finally gives

Tk = Re

{
V0V̄k

(1 − k2)i

(2k + 1)
+

∞∑
n=1

∞∑
m=1

fknm V̄nVm

(
k2 − k − 1

)
(n + 2)i

2(2k + 1)(n + 1)(m + 1)
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+
∞∑
n=0

∞∑
m=1

gknm V̄nVm
3(1 − k2)i

2(2k + 1)
+

∞∑
n=0

∞∑
m=1

aknm
2(2k + 1)

[
V̄nVm(n2 − 4nm − 4n

+ m2 − m − 3)im +
∞∑
j=1

(
Cnj

j + 1

)
VmV̄jm(3m + 5)i

]⎫⎬
⎭+ O(δ) (139)

and

Sk = Re

{
V0V̄k

k(k + 2)i

(2k + 1)
−

∞∑
n=1

∞∑
m=1

fknm V̄nVm
(2k + 4)k(n + 2)i

4(2k + 1)(n + 1)(m + 1)

+
∞∑
n=0

∞∑
m=1

gknm V̄nVm
3k(k + 2)i

2(2k + 1)
−

∞∑
n=0

∞∑
m=1

aknm
2(2k + 1)

[
V̄nVmmi(n2 − 4nm − 4n

+ m2 − m − 3) +
∞∑
j=1

(
Cnj

j + 1

)
VmV̄jm(3m + 5)i

]}
+ O(δ) (140)

which with (73) gives the value of all the constants in the streaming solution (72).

Appendix 2: In-phase streaming around a bubble

Notice that, from the solution of the steady streaming around a bubble given in Appendix 1, all terms in (140),
(139) and (73) are multiplies of iVmV̄k for some integers m, k ≥ 0. As such, Appendix 1 only gives the solution
for out-of-phase motion of the bubble, as otherwise that solution is identically zero. Therefore, for these cases, the
steady streaming needs to be calculated to the next order, namely O(δ).

Since here the analysis is to determine one higher order in δ, this could require more stringent conditions than
ε � δ � 1 relationship. However, the order change is due to terms being identically zero which we expect to
continue at higher orders in ε so the same relationship should hold.

(a) Inner solution at the third order in δ

In order to find the steady streaming at O(δ), the asymptotic matching must be carried out at one higher order.
As such, the inner second-order solution must be calculated to an extra order in δ. Therefore, more terms will be
required in the δ expansions, so we first return to the second-order, inner governing equation:

δ2

2
〈D4ψ i

2〉 = 1

r2

〈
∂(ψ1, D2ψ1)

∂(r, μ)
+ 2Lψ1Dψ1

〉
. (141)

When expanding the left-hand side in δ, the O(1) terms in δ now contribute to the streaming as well as the O(δ−2)

term, so we have

δ2

2
〈D4ψ i

2〉 = 1

2δ2
∂4〈ψ i

2〉
∂η4

+ (1 − μ2)
∂4〈ψ i

2〉
∂η2∂μ2 + O(δ). (142)

From (56), the O(1) (leading-order) solution of 〈ψ i
2〉 is known. The second term in (142) will only make an O(1)

or lower contribution from this term so the governing equation for the first three orders of 〈ψ i
2〉 can be simplified to
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∂4〈ψ i
2〉

∂η4
= 2δ2

r2

〈
∂(ψ1, D2ψ1)

∂(r, μ)
+ 2Lψ1Dψ1

〉

+ δ2
∞∑
k=1

∞∑
n=0

∞∑
m=1

aknm
[
2V̄n(Wm + mVm)k(k + 1)e−(1+i)η

](∫ 1

μ

Pk(x)dx

)
+ O(δ3). (143)

Expanding the term
〈
∂(ψ1, D2ψ1)/∂(r, μ) + 2Lψ1Dψ1

〉
to O(δ2) and substituting into (143) then gives an equation

for
〈
∂4ψ i

2/∂η4
〉
which can be integrated twice to find that the O(δ2) (only) term in

〈
∂2ψ i

2/∂η2
〉
is

〈
∂2ψ i

2

∂η2

〉(δ2)

=
∞∑
k=1

∞∑
n=0

∞∑
m=1

aknm

{
− (W̄n + nV̄n)Vmmi

(n
2

− m − 3
)

+ (W̄n + nV̄n)(Wm + mVm)

(
i

2
(1 − m + n) − 2 − n

2

)

+ V̄n (Wm + mVm) i

(
−5n2

4
− 21n

4
+ nm + m + m2

4
− 3 − t2 − t

)

+
∞∑
j=1

(
Cnj

j ( j + 1)

)[
(Wm + mVm)(W̄ j + j V̄ j )

(
1 + i − m

2
− i j

2
+ j

)

+ (Wm + mVm)V̄ j i j (2 j + 6 − m)

]} ∫ 1

μ

Pk(x)dx . (144)

The O(δ2) contribution to 〈ψ i
2〉 can be calculated by integrating twice more but in order to satisfy the no tangential

stress boundary condition only
〈
∂2ψ i

2/∂η2
〉
is required at O(δ2).

Notice that every term in 〈ψ i
2〉 up to and including O(1) is a multiple ofWn +nVn for some n, so every term will

drop an order when the first-order stress condition Wn = −nVn + O(δ) is applied. Similarly, higher-order terms in
〈ψ i

2〉 will also be multiples of Wn + nVn since in
〈
∂(ψ1, D2ψ1)/∂(r, μ) + 2Lψ1Dψ1

〉
every term is a multiple of

Bn ∝ (Wn + nVn) and in 〈D4ψ i
2〉 extra terms in its delta expansion will be in terms of lower orders of 〈ψ i

2〉 which
are also proportional to Wn + nVn . Therefore, even when calculating the streaming to O(δ) for a bubble, only the
first three terms up to O(1) are needed in the equation for the inner streaming.

(b) Constants of integration

The second-order inner solution 〈ψ i
2〉 is of the form

〈ψ i
2〉 =

∞∑
k=1

[
fk(η) + δgk(η) + δ2hk(η) + Lk + Mkη + Nkη

2 + O(δ3)
](∫ 1

μ

Pk(x)dx

)
, (145)

where f and g are known from (56) and h could be found by integrating (144). The no-tangential stress boundary
condition then gives

〈
(1 − μ2)

∂2ψ i
2

∂μ2 + 2
∂ψ i

2

∂r
− ∂2ψ i

2

∂r2

〉
=

∞∑
k=1

{
− 1

δ2

∂2 fk
∂η2

+ 1

δ

(
2
∂ fk
∂η

− ∂2gk
∂η2

)

+
[
−k(k + 1) fk(η) + 2

∂gk
∂η

− ∂2hk
∂η2

+ 2
1

δ
Mk − 2

1

δ2
Nk − k(k + 1)Lk

]}(∫ 1

μ

Pk(x)dx

)
. (146)

The O(δ−2) terms will cancel with the O(δ−2) quantity in (136). The O(δ−1) terms do not cancel exactly but
when taking Wn = −nVn + O(δ) (the first-order bubble condition) they do. Therefore, the O(1) terms will give

123



Arbitrary axisymmetric steady streaming: flow, force and propulsion 63

the leading-order behaviour for which the value of the constants Lk , Mk and Nk are needed. The constants Lk and
Mk were calculated in (57) and (58) and Nk can be written in terms of Lk and Mk , (137).

Equation (146) can then be equated with (136) to give the algebraic condition for no tangential stress. This will
give a condition on Mk and Lk but Lk is uniquely determined by the boundary condition: the radial velocity of the
bubble equals the radial velocity of the fluid adjacent to the bubble. Mk was also determined but is a function of
the unknown Fk which this no tangential stress condition will determine. However, Fk uniquely determines Mk so
this equation can be considered as just determining Mk giving

− 1

δ
Mk(2k + 1) = −3Lkk +

∞∑
n=0

∞∑
m=1

aknm

(
1

δ

{
1

2
(W̄n + nV̄n)(Wm + mVm)(i − 1)

+ 1

2
V̄n(Wm + mVm)(1 − i)(2n + 3) +

∞∑
j=1

Cnj

j ( j + 1)

[
1

2
(Wm + mVm)(W̄ j + j V̄ j )(1 + i)

− (Wm + mVm)V̄ j j (1 − i) − 1

2
Wm

(
W̄ j + j V̄ j

)
(1 + i)

j ( j + 1)

]}

+
{
(W̄n + nV̄n)Vm

(
n

2
− m − 2

)
mi − 1

2
(W̄n + nV̄n)(Wm + mVm)(in − im + n − 1)

−V̄n(Wm + mVm)i

[
− 5n2

4
− 9n

4
+ nm + m2

4
+ 1 − 3

2
k(k + 1) + 1

4
(2m2 + 3m)

]

−1

2
V̄nWmn(n + 2)i + 1

2
W̄nWm(n + 2)i + 1

2
V̄nVmm(m2 + 2)i − 1

2
V̄nWm(m + 2)2i

+2W̄nVmm(m + 1)i +
∞∑
j=1

Cnj

j ( j + 1)

[
− (Wm + mVm)(W̄ j + j V̄ j )

×
(
1

2
(1 + i) − 1

2
(m + i j) + j

)
− (Wm + mVm)V̄ j i j (2 j + 4 − m) − VmW̄ jm(m + 1)i

− 1

2
Wm(W̄ j − j V̄ j )

( j + 2)i

j ( j + 1)

]})
+ O(δ). (147)

When applying the first-order stress boundary condition (133) all terms drop by one order in δ. Then assuming
the O(1) terms cancel (which is required for the result in Appendix 1 not to give the solution) this gives Mk at
O(δ). Then Lk can be calculated at O(δ) by applying (32) at O(δ) to 〈ψ i

2〉 (56). This gives

Lk = δ

{ ∞∑
n=0

∞∑
m=1

1

2
aknm V̄nVmm(m + 2)(1 + i) −

∞∑
n=0

∞∑
m=0

1

2
gknm V̄nVmm(m + 2)(1 + i)

+
∞∑
n=1

∞∑
m=1

1

2
fknm V̄nVm

(n + 2)(m + 2)(1 + i)

(n + 1)(m + 1)
−

∞∑
n=1

∞∑
m=1

1

2
fknm V̄nVm

(n + 2)(1 − i)

(n + 1)(m + 1)

}
, (148)

and the simplified Mk expression

1

δ
Mk = Lk

(
3k

2k + 1

)
− δ

∞∑
n=0

∞∑
m=1

aknm
(2k + 1)

{
− V̄nVmnm(n + 2)(2m + 1)(1 − i)

+ 1

4
V̄nVm(n2 + 9n − 5m2 + 6t (t + 1) − 5m)(1 + i)m(m + 2)

+
∞∑
j=1

(
Cnj

j ( j + 1)

)
VmV̄jm j

[
(m + 1)( j + 2)(1 − i) − (m + 2)( j + 4)(1 + i)

]}
. (149)
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(c) Outer streaming constants

Using the matching conditions (68) and (69) we finally obtain

Tk = δRe

( ∞∑
n=1

∞∑
m=1

fknm V̄nVm
(1 − k2)(n + 2)[(m + 2)(1 + i) − (1 − i)]

2(2k + 1)(n + 1)(m + 1)

−
∞∑
n=0

∞∑
m=0

gknm V̄nVm
(1 − k2)m(m + 2)(1 + i)

2(2k + 1)
+

∞∑
n=0

∞∑
m=1

aknm
2(2k + 1)

{
1

4
V̄nVm(n2 + 9n

− 5m2 − 5m + 4 + 2k2 + 6k)(1 + i)m(m + 2) − V̄nVmn(n + 2)m(2m + 1)(1 − i)

+
∞∑
j=1

(
Cnj

j + 1

)
VmV̄j [m(m + 1)( j + 2)(1 − i) − m(m + 2)( j + 4)(1 + i)]

})
, (150)

and

Sk = δRe

( ∞∑
n=1

∞∑
m=1

fknm V̄nVm
k(k + 2)(n + 2)[(m + 2)(1 + i) − (1 − i)]

2(n + 1)(m + 1)(2k + 1)

−
∞∑
n=0

∞∑
m=0

gknm V̄nVm
m(m + 2)k(k + 2)(1 + i)

2(2k + 1)
+

∞∑
n=0

∞∑
m=1

aknm
2(2k + 1)

{
− 1

4
V̄nVmm(m + 2)[n2 + 9n

− 5m2 − 5m + 2k(k − 1)](1 + i) + V̄nVmn(n + 2)m(2m + 1)(1 − i)

−
∞∑
j=1

(
Cnj

j + 1

)
VmV̄j [m(m + 1)( j + 2)(1 − i) − m(m + 2)( j + 4)(1 + i)]

})
, (151)

which, with Yknm = 0, give the value of all the constants in the Lagrangian streaming solution (72).
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