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Abstract This study aims to investigate the nonlinear forced vibration of functionally graded (FG) nanobeams.
It is assumed that material properties are gradually graded in the direction of thickness. Nonlocal nonlinear Euler–
Bernoulli beam theory is used to derive nonlocal governing equations of motion. The linear eigenmodes of FG
nanobeams are used to transform a partial differential equation of motion into a system of ordinary differential
equations via the Galerkin method. The multiple scale method is used to find the governing equations of the steady-
state responses of FG nanobeams excited by a distributed harmonic force with constant intensity. It is also assumed
that the working frequency is close to three times greater than the lowest natural frequency. Based on the equation
governing the linear natural frequencies of FG nanobeams, the influence of the small scale parameter, material
composition, and stiffness of the foundation on the linear relationship among natural frequencies is studied. Results
show that superharmonic response or a combination of resonances may occur as well as a subharmonic response
depending on the power-law index and stiffness of the foundation. Then the governing equations of a steady-state
response of FG nanobeams for four possible solutions are obtained depending on the value of the small scale
parameter. It is shown that the simplest response of FG nanobeams is a subharmonic response or superharmonic
response. The equations governing the frequency–response curves are obtained and the effects of the power-law
index and small scale parameter on them are discussed.

Keywords Euler–Bernoulli beam theory · FG nanobeam · Multiple scale method · Nonlocal nonlinear ·
Subharmonic response

1 Introduction

Functionally graded materials (FGMs) are advanced composite materials in which material properties change
continuously and smoothly over a certain direction from one material to another. Because of gradual changes
in material properties, not only is stress distribution in FGMs improved, but FGMs also exhibit higher fracture
toughness and enhanced thermal resistance [1]. These unique characteristics of FGMs have made them exceptional
materials that can be used in many engineering application fields [2], such as micro/nanoelectromechanical systems
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[3]. Therefore, the study of the mechanical behavior of FG micro-/nanostructures has been highly regarded by
researchers recently.

It is well known that classical continuum theories are not able to correctly predict the mechanical behavior of
micro- or nanoscale devices because they do not take the size effect into account. To incorporate the size effect
into continuum mechanics, higher-order continuum theories that contain additional material constants have been
developed [4,5]. Strain gradient theory [6–8], modified strain gradient theory [7], couple stress theory [8], and
modified couple stress theory [6,7,9,10] are some of the well-known higher-order theories used to incorporate the
size effect into classical continuum theories.

Among the higher-order theories whose constitutive equations contain one new length scale as well as Lame
constants, Eringen nonlocal elasticity is widely used to simulate static and instability behavior [3,11,12], linear free
vibration [13–17], linear forced vibration [18], and nonlinear free vibration [19,20] of functionally graded (FG)
nanobeams. The effect of in-plane thermal loading on the vibrational behavior of FG nanobeams has also been
studied via nonlocal beam theories [21–24].

Eringen’s theory relates to integral-type nonlocalities, where volume averages of state variables are computed [5],
although Eringen formulated another theory of nonlocal elasticity in which the integrals are replaced by gradients.
In the earlier theory, there is only one length-scale parameter (e0a), including a material constant and internal
characteristic length, and the constitutive equation of this theory is expressed based on the nonlocal stress tensor
and Laplacian stress tensor [5].

It is abundantly clear that the selection of proper values of the nonlocal parameter guarantees the accuracy of the
mechanical response simulation of micro-/nanostructures. Researchers who have studied the mechanical behavior
of carbon nanostructures via both nonlocal continuum elasticity and the molecular dynamics method have shown
that the value of the small scale parameter depends not only on the material but also on the boundary condition,
chirality, aspect ratio, and the nature of the motion [19,25–33]. Zhang et al. [25] found a value of 0.82nm for a
nonlocal parameter when they compared the vibrational results of simply supported single-walled carbon nanotubes
with molecular dynamics simulations. Based on a similar method, Hu et al. [26] reported nonlocal parameter
values of 0.6nm for the dispersion of transverse waves and 0.2–0.23nm for the dispersion of torsional waves.
Khademolhosseini et al. [27] presented nonlocal parameters of 0.85–0.86nm for torsional buckling of armchair and
zigzag single-walled carbon nanotubes. Ansari et al. [28] showed that the values of nonlocal parameters for axial
buckling of single-walled carbon nanotubes changewith the boundary conditions. They obtained nonlocal parameter
values of 0.54nm for simply supported boundary conditions, 0.531nm for clamped–clamped boundary conditions,
0.55nm for clamped–simply supported boundary conditions, and 0.722nm for clamped–free boundary conditions
[28]. Duan et al. [29] used molecular dynamic simulation results to estimate small scale parameters in nonlocal
Timoshenko beam theory used to predict the natural frequencies of fully clamped and cantilever single-layered
carbon nanotubes with different length/diameter ratios (L/d). Their results clearly show the significant effect of
the boundary condition, aspect ratio, and mode shape on the value of small scale parameters. They reported that the
small scale value can vary from 0 to 2.66nm. The small scale parameters proposed by Ansari et al. [30] to model
the lateral vibration of single graphene sheets are completely dependent on boundary conditions (1.41 and 0.87nm
for simply supported and fully fixed zigzag graphene sheets, respectively), are slightly affected by chirality (1.34
and 0.71nm for simply supported and fully fixed armchair graphene sheets, respectively), and are independent of
the nanoplate size, while Shen et al.’s study [31] shows that the size of the nanoplate as well as chirality impact
the small scale parameter. Their results demonstrate that the small scale value varies from 0.22 to 0.67nm for
single-layer graphene sheets because of the different values of the aspect ratio and different chiral angles [31].
Ansari and Sahmani [32] predicted the appropriate value of nonlocal parameters to simulate the biaxial buckling
of single-layer graphene sheets. Their results clearly reveal that, in contrast to the type of nonlocal plate used to
simulate the biaxial buckling of a graphene sheet that can impact the value of the small scale parameter, chirality is
not a parameter that affect the small scale value [32]. Miandoab et al. [33] estimated the nonlocal parameter value
to be 8µm to study the vibration of polysilicon microbeams.

On the other hand, Peddieson et al.’s study [34] on micro-/nanocantilever actuators reveals that the magnitude of
the beam length can change the importance of the small scale parameter in the prediction of mechanical responses
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of micro-/nanostructures. They demonstrated that, in contrast to nanoscale devices, microscale devices might not
exhibit nonlocal effects [34]. Nevertheless, a thorough study has not yet been undertaken to estimate the value of
the small scale parameter corresponding to mechanical response of FG micro-/nanobeams [19].

Based on the author’s knowledge, there are no experimental studies or molecular simulations of the mechanical
behavior of FG nanostructures to clarify how to use the small scale parameter in the governing equations of FG
nanostructures. Whether the small scale parameter must be gradually graded through the volume as is done for other
material properties or whether it can be used as a corrective factor of classical theory is a question that remains
unanswered. It must be noted that, contrary to other mechanical properties, the value of small scale parameter not
only depends on the material but also varies according to the boundary conditions and the nature of the motion. It
is also worth mentioning that Shen et al. [35] used a single value of small scale parameter when they studied the
nonlinear vibration of bilayered graphene sheets composed of armchair and zigzag layers by matching nonlocal
numerical results with molecular dynamics results, while their previous work [31] had clearly shown an effect of
chirality on small scale values.

To show the important role of small scale parameter in the mechanical behavior simulation of nanostructures,
the variation of the small scale value is a popular procedure that has been employed in many studies. For instance,
Yang and Ke [36] and Ke et al. [37] used nonlinear nonlocal Timoshenko beam theory to show the importance
of the small scale value to estimate the nonlinear free vibration of single- and double-walled carbon nanotubes
with different boundary conditions, respectively. Karaoglu and Aydogdu [38] used nonlocal Euler–Bernoulli beam
theory to study the effect of the small scale value on the linear force vibration of single- and double-walled carbon
nanotubes. Finally, Sudak [39] showed the dramatic influence of the small scale value on the critical axial strain of
double-walled carbon nanotubes.

Hence, all researchers who have used nonlocal continuum theories to simulate the size-dependent mechanical
behavior of FG nanobeams have investigated the effects of the small scale parameter on the mechanical behavior of
FG nanobeams by changing the value of the small scale parameter [13–15,18,19]. Eltaher et al. [14] changed the
value of the square of the small scale parameter ((e0a)2) from zero to 5× 10−12 m2 when they studied the effect of
the neutral axis location on the linear natural frequencies of FG nanobeams, while Uymaz [18] and Nazemnezhad
and Hosseini-Hashemi [19] used values from 0 to 4 × 10−18 m2 owing to a lack of information. These researchers
implicitly showed that the influence of the small scale parameter on the mechanical behavior of FG nanobeams
would be noticeable if the small scale parameter/thickness ratio was equal to or greater than 1 (i.e., e0a/h ≥ 1) .
Then, in the parametric studies of this work, owing to a lack of information, the small scale (e0a) is varied from 0
to 2nm to show the importance of the small scale value on the nonlinear vibration behavior of FG nanobeams.

The selection of a nonlocal continuummechanics theory, onwhich are based simulations of themechanical behav-
ior of nanostructures, is an important factor affecting the accuracy of predictions. Nonlocal Euler–Bernoulli beam
theory, the nonlocal parabolic shear deformation beam theory of Reddy, the nonlocal first-order shear deformation
beam theory of Timoshenko, and the nonlocal general exponential shear deformation beam theory of Aydogdu are
some of the nonlocal beam theories that Aydogdu used to study the static and dynamic responses of homogeneous
nanobeams [40]. According to Aydogdu’s study [40], one may conclude that the nonlocal Euler–Bernoulli beam
theory can predict the mechanical behavior of nanobeams accurately with an increase in the length/thickness ratio
(L/h) of nanobeams (L/h > 20). Therefore, in the present study, nonlocal nonlinear Euler–Bernoulli beam theory
is used to simulate the nonlinear forced vibration of long and narrow (L/h > 20) nanobeams.

Another parameter that could significantly affect the accuracy of the predicted mechanical behavior of FG
nanobeams is the real position of the neutral axis, which would then be used to derive the governing equations.
Eltaher et al. [14] determined the position of the neutral surface of FG micro-/nanobeams based on the concept
of neutral surface. In their simulation, the material properties varied continuously through the thickness of the
size-dependent beam according to a simple power-law form. Eltaher et al.’s study [14] clearly revealed that with
an increase in the difference between the material properties of basic materials of FGMs, such as Young’s modulus
and mass density, the computational error caused by the elimination of the effect of the exact location of the neutral
axis rises. Eltaher et al. [15] also studied the effect of neutral axis position on the dynamic characteristic of thin to
moderately thick nanobeams via nonlocal Timoshenko beam modeling. They used a similar concept to obtain the
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position of the neutral axis. In the present study, the governing equation is also obtained on the basis of the real
position of the neutral axis, which varies with the material composition owing to the importance of the real position
of the natural axis in studying the mechanical behavior of FG micro-/nanobeams [14,15].

The study of free and forced vibrations of micro-/nanobeams used in micro- and nanoscale devices that may
experience vibration is of great importance. Based on the author’s knowledge, there are no notable studies showing
the effect of a nonlocal parameter on the mechanical response of FG nanobeams to subharmonic excitation. Thus,
the investigation of the effects of the small scale parameter on the steady-state response of FG nanobeams resting on
a viscous foundation to subharmonic excitation is the main object of this article. A simple power-law distribution is
used to model the variation in the material property graded in the thickness direction. A partial differential equation
of motion is derived based on Euler–Bernoulli beam theory, von Karman geometric nonlinearity, and Eringen’s
nonlocal elasticity theory. To increase the accuracy of the simulation, the real position of the neutral axis, which
does not necessarily coincide with the geometric midplane in nonhomogeneous nanobeams, is considered in the
derivation of the governing formula as well. The multiple scale method is used to find the governing equations of
the steady-state response of FG nanobeams excited by a distributed harmonic force. In the parametric studies of
this work, owing to a lack of information, the small scale (e0a) is varied from 0 to 2 to investigate the effects of the
small scale on the steady-state response of excited FG nanobeams.

2 Equation of motion

The dimensionless partial differential equation of motion of a simply supported FG nanobeam resting on a viscous
foundation with length L , width b, and thickness h and immovable ends can be derived based on Euler–Bernoulli
beam theory, vonKarmangeometric nonlinearity, andEringen’s nonlocal elasticity theory as follows (seeAppendix 1
for details):
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whereW = W (x, t) is the transverse displacement of any point on the geometricmidplane of the beamelement,ρ(z)
and E(z) are the mass density and Young’s modulus, respectively, which are functionally graded in the thickness
direction, r is the gyration radius of the cross section of the beam, z0 is the distance of the neutral surface of the
FG nanobeam from the geometric midplane of the FG nanobeam, t is time, and A0 denotes the area of the beam
cross section. The stiffness and damping coefficient of the foundation are denoted by k and c, respectively. The
transverse loading is given by F .

If the small scale parameter (e0a) and the power-law index (n) in Eq. (1) are taken as being equal to zero, then
Eq. (1) tends to the well-known local equation of nonlinear lateral vibration of beams obtained and used in some
papers [41].

The mode shapes of the linear vibration of nanobeams are used to estimate the transverse displacement of simply
supported FG nanobeams:
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W =
N∑

s=1

qs
(
t
)
sin (sπx) . (4)

Substituting Eq. (4) into Eq. (1) and using Galerkin’s method, one can change the partial differential equation into
a system of ordinary differential equations:
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and s is the half-wavelength number. ωs is also the sth dimensionless linear natural frequency of FG nanobeams,
which can be obtained by omitting the nonlinear terms and external load from Eq. (1); � is the dimensionless
working frequency.

3 Solution methodology

The multiple scale method is used to solve the system of ordinary differential equations shown by Eq. ( 5). Based
on the framework of the multiple scale method, qs is defined as

qs = εqs1 (T0, T2) + ε3qs3 (T0, T2) , (7)

where ε is a small dimensionless parameter, T0 = t , and T2 = ε2t . As is seen, both the slow scale T1 = εt and the
term ε2qs2 are eliminated from Eq. (7) because the nonlinear terms in Eq. (5) are cubic [42]. It is necessary to show
the damping terms and the nonlinear terms in the same perturbation equations to study the sub- or superharmonic
response of vibrating FG nanobeams, while the excitation termsmust be shown in equations resulting from equating
the coefficient of ε1. Hence, the damping coefficients (Cs) must be set to 2ε2Ĉs , and the excitation is not changed.
The following equations are obtained by inserting Eq. (7) into Eq. (5) and equating the coefficients of ε1 and ε3 on
both sides:
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Fig. 1 Effect of a
power-law index (e0a = 0);
b small scale parameter on
possibility of occurrence of
sub- and superharmonic
responses simultaneously
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in which CC stands for the complex conjugate of the preceding terms and
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As seen, if � ≈ 3ωn when ωk ≈ 9ωn , a combination of subharmonic and superharmonic responses may occur
simultaneously. The possibility of the occurrence of combination resonances (ωp + ωq ≈ 2�) must be considered
as well.

A case study on the natural frequencies of FG nanobeams made of silicon nitride (Si3N4) and stainless-steel
grade 304 (SUS304) showed that the stiffness of the foundation, material composition, and small scale value affect
the response of an excited FG nanobeam. In this study, it is assumed that the working frequency is almost three
times as great as the first natural frequency (i.e., � ≈ 3ω1). It is also assumed that the nanobeam is constructed
of pure metal when the power-law index (n) is zero. On the basis of Fig. 1a, as reported by Nayfeh and Mook
[42], if the stiffness of the foundation approaches zero, the third natural frequency (ω3) will be close to nine times
as much as the first frequency (ω1) (i.e., ω3 ≈ 9ω1). This means that sub- and superharmonic responses occur
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Table 1 Effects of small
scale parameter on
possibility of closeness of
ωk to 9ω1 and occurrence of
combination resonances

k (nN/nm2) n (case study) e0a (nm) ωk ωp + ωq ≈ 6ω1

0.01 0.1 0–0.4 ω4 ≈ 9ω1 No

0.01 0.1 1.7–2 ω5 ≈ 9ω1 ω2 + ω3 ≈ 6ω1

0.03 0.1 0–0.3 ω5 ≈ 9ω1 No

0.03 0.1 1.4 ω6 ≈ 9ω1 No

0.03 0.1 1.9–2 ω7 ≈ 9ω1 ω2 + ω4 ≈ 6ω1

Table 2 Effects of stiffness
of foundation and material
composition on possibility
of simultaneous occurrence
of sub- and superharmonic
responses with combination
resonances. (e0a = 0)

k (nN/nm2) n (case study) The possibility of occurrence of
a combination of sub- and
superharmonic resonances

Possibility of occurrence
of combination resonances

0.01 0–0.2 Yes ω4 ≈ 9ω1 No

0.01 10 No No

0.03 0–0.1 Yes ω5 ≈ 9ω1 No

0.03 9.7–10 No Yes ω2 + ω3 ≈ 6ω1

0.05 9–10 Yes ω5 ≈ 9ω1 No

0.05 0–0.2 No Yesω2 + ω4 ≈ 6ω1

0.1 8.8–10 Yes ω6 ≈ 9ω1 No

0.1 0–1 No Yesω3 + ω4 ≈ 6ω1

0.2 10 Yes ω7 ≈ 9ω1 No

simultaneously. Examination of FG nanobeams reveals that the material composition makes no difference in this
ratio (Fig. 1a). In this case, combination resonances may not occur. Figure 1b clearly reveals that at a fixed value of
the power-law index, an increase in the small scale parameter increases the difference between ωk , which is close to
9ω1 at e0a = 0 and 9ω1, while it decreases the difference between ωk , which is far from 9ω1 at e0 a = 0, and 9ω1

(Table 1). On the other hand, the simultaneous occurrence of sub- and superharmonic responses with combination
resonances depends on the material compositions and the stiffness of the foundation (Table 2).

It is worthmentioning that other linear combinations of frequencies appearing in Eq. (11)maymake secular terms
of particular solutions to Eq. (10) depending on the stiffness of the foundation and the material compositions. For
example, a FG nanobeam (n = 0.1) resting on a foundation whose stiffness coefficient is 0.03nN/nm2 is considered.
In that case, not only ω5 ≈ 9ω1 but also ω3 + ω5 − � ≈ ω5; while ω2 + ω3 ≈ 2� as well as ω4 ≈ 9ω1 can only
be seen if the stiffness of the foundation decreases to 0.01 nN/nm2.

4 Combination of subharmonic and superharmonic responses

It is assumed that� ≈ 3ω1 and ωk , which is close to 9ω1, occurs. The detuning parameters σ and σ1 are introduced
to define � = 3ω1 + ε2σ and 3� = ωk + ε2σ1, respectively. It is also assumed that linear combinations of
frequencies that appear in Eq. (11) are far from ω1 and ωk .

The steady-state motion can be expressed as follows (for details and definitions of parameters, see Appendix 2):

(
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According to Eqs. (12) and (13), these two solutions are possible: either α1 = 0, and αk �= 0, or α1 �= 0, and
αk �= 0.

The following equation expresses the time-dependent lateral deflection of a vibrating FG nanobeam:

W
(
x, t

) = εα1 cos

(
1

3
�t − 1

3
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)
sin (πx) + εαk cos

(
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+ 2ε
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)
sin (nπx) + O

(
ε3

)
. (14)

5 Combination resonances

It is also assumed that there are two frequencies that satisfy ωp + ωq ≈ 2� as well as � ≈ 3ω1, and ωk , which is
close to 9ω1, occurs. It is also supposed that linear combinations of frequencies that appear in Eq. (11) are far from
ω1, ωk, ωp andωq . The detuning parameters σ, σ1 and σ2 are introduced to define� = 3ω1+ε2σ, 3� = ωk +ε2σ1
and 2� = ωp + ωq + ε2σ2, respectively.

In this case, the possible solutions are as follows (for details and definitions of parameters, see Appendix 3):

(a) α1 = αp = αq = 0, and αk �= 0;
(b) α1 �= 0,andαk �= 0, but αp = αq = 0;
(c) α1 = 0, and αk �= 0, αp �= 0, and αq �= 0;
(d) α1 �= 0, αk �= 0, αp �= 0, and αq �= 0.

The lateral deflection of a vibrating FG nanobeam can be represented by the following equation:
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. (15)

It can be concluded that the formulas governing cases (a) and (b) are in accordance with those governing the possible
solutions mentioned in Sect. 4.

6 Validation

Nayfeh and Mook [42] used the multiple scale method to study the steady-state motion of a simply supported beam
with subharmonic excitation. They used linear mode shapes of simply supported beams expressed as

√
2 sin (sπx).

The solutions proposed by Nayfeh and Mook [42] were used to verify the presented equations. For this purpose, the
value of the small scale parameter (e0a), the power-law index (n), and the coefficient of the stiffness of the foundation
(k) in all equations were set to zero. It was also assumed that � = 3ω1 + ε2σ . According to the aforementioned
assumptions, three times the working frequency is close to the third natural frequency (i.e., 3� ≈ ω3). Thus,
Eqs. (6a) and (6b) change to (ωs)

2 = (sπ)4 and as = 1
4 s

2π4, respectively. It must be mentioned that the coefficient
of as is half that used by Nayfeh and Mook [42] because of the difference between the coefficients of the linear
mode shapes that were used.
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The following equations, which are in agreement with those proposed by Nayfeh and Mook [42], are obtained
by substituting the new expression of ωs and as into Eqs. (65)–(68).

Ĉ1α1ω1 + 3

16
π2�1α

2
1 sin γ1 = 0, (16)

−σα1 + 3

4
π2α1

N∑
m=2

m2�2
m + 9

16
π2α2

1�1 cos (γ1) + 27

16
π2α1α

2
3 + 9

4
π2�2

1α1 + 9

32
π2α3

1 = 0, (17)

Ĉ3α3 + π2

4
�k

N∑
m=1

m2�2
m sin γ2 = 0, (18)

−3α3σ + π2

4
�k

N∑
m=1

m2�2
m cos γ2 + 27

32
π2α3

k + π2

16
αkα

2
1 + π2

4
αk

N∑
m=1

m2�2
m + 9π2

2
�2

kαk = 0. (19)

7 Results

In this section, four possible solutions, mentioned in Sect. 5, are discussed analytically and numerically because
they include the possible solutions indicated in Sect. 4. In this section, the stiffness of the foundation is set to
0.01 nN/nm2, and it is assumed that the damping coefficient of the foundation is small. All the numerical data are
obtained based on a continuous harmonic lateral force with constant intensity as well.

7.1 Possible solution (a)

In this case, the following equations, which represent the superharmonic response of a vibrating FG nanobeam,
govern the peak response and corresponding detuning:

αk = ak�k
∑N

m=1m
2�2

m

ωk
�

Ck
, (20)

ωkσ1 = 3

8
k2

a3k�
2
k

(∑N
m=1m

2�2
m

)2

ω2
k

�

C
2
k

+ 2akk
2�2

k + ak

N∑
m=1

m2�2
m . (21)

Based on Table 1, the small scale affects the order of the frequency involved in the steady-state response of the FG
nanobeam. The fourth frequency (ω4) will be expected to be seen in the steady-state response of the FG nanobeam
if the small scale parameter is close to zero. According to Eq. (6d) and the assumptions mentioned earlier, �4 is
zero. Hence, α4 will be zero. Then, the lateral deflection of the FG nanobeam is

W
(
x, t

) = 2ε
N∑

n=1

�n cos
(
�t

)
sin (nπx) + O

(
ε3

)
. (22)

Figure 2 clearly demonstrates that in this situation, the lateral deflection of the FG nanobeam is similar to the first
mode shape of its linear free vibration. It is also seen that with an increase in the small scale value and power-law
index, the deflection of the nanobeam decreases.

On the other hand, the fifth frequency (ω5) of the FG nanobeam can be seen in the steady-state response if the
small scale parameter approaches 2nm. Figure 3 clearly shows that with a rise in the small scale value or a decrease
in the power-law index, the peak response increases. In this situation, the time-dependent lateral deflection of the
FG nanobeam can be represented by
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Fig. 2 a Effect of small scale and power-law index on lateral deflection of vibrating FG nanobeam. b Variation of lateral deflection of
FG nanobeam with time (based on Eq. 22)

Fig. 3 Effect of a small scale parameter and b power-law indexon frequency-response curves

W
(
x, t

) = εα5 cos
(
3�t − γ2

)
sin (5πx) + 2ε

N∑
n=1

�n cos
(
�t

)
sin (nπx) + O

(
ε3

)
, (23)

where sin γ2 = −Ĉ5α5ω5/a5�5
∑N

m=1 m
2�2

m .
Figure 4, which shows the lateral deflection of FG nanobeams at its peak response, reveals that in this case the

effect of the small scale value on the frequency of response is more than that of the power-law index (compare Fig. 4a
with Fig. 4b). The presence of the fifth mode shape in the configuration of the time-dependent lateral deflection of
the nanobeam is observed (Fig. 4c, d). A comparison of Fig. 4c, d with Fig. 2a, b shows how the value of the small
scale can significantly change the response of the FG nanobeam.

7.2 Possible solution (b)

Based on the given values of σ1 and σ , one can use the following nonlinear equations to find the amplitude of the
mode shapes involved in the response of the FG nanobeam:

(
Ĉ1ω1

)2 +
(

−1

3
σω1 + a1

N∑
m=1

m2�2
m + 3a1�

2
1

)2

+
(
3

8
a1

)2

α4
1 +

(
1

4
a1k

2
)2

α4
k +

(
3

16
a21k

2
)2

α2
1α

2
k

+
[(

3

4
a1

) (
−1

3
σω1 + a1

N∑
m=1

m2�2
m + 3a1�

2
1

)
−

(
3

4
a1�1

)2
]

α2
1

+
(
a1k2

2

) (
−1

3
σω1 + a1

N∑
m=1

m2�2
m + 3a1�

2
1

)
α2
k +

(
a1k2

4

)2

α4
k = 0, (24)
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Fig. 4 Time-dependent variations of lateral deflection of middle point of FG nanobeam a with different small scale value, b with
different power-law index; c effect of small scale value on lateral deflection of FG nanobeam, d variation of lateral deflection of FG
nanobeam with time (based on Eq. 23)

[(
−ωkσ1 + ak

N∑
m=1

m2�2
m + 2akk

2�2
k

)
αk +

(
3k2ak
8

)
α3
k + ak

4
αkα

2
1

]2

−
(
ak�k

N∑
m=1

m2�2
m

)2

+
(
ωkĈk

)2
α2
k = 0. (25)

Based on the assumptions used in this section, if the small scale value is near zero, the only possible solution of α4

is zero because of the disappearance of �4 from Eq. (25). In this situation, a subharmonic response may be seen.
If there is a subharmonic response, the minimum value of α1 and the corresponding detuning can be found via the
following equations:

α2
1 = 16

(
Ĉ1ω1

)2/
(3a1�1)

2, (26)

σ = 3

ω1

⎛
⎜⎝
8
(
Ĉ1ω1

)2

3a1�2
1

+ a1

N∑
m=2

m2�2
m + 3a1�

2
1

⎞
⎟⎠ . (27)

Figure 5 demonstrates the effect of the power-law index on the frequency response of FG nanobeams in these
conditions. The small scale value does not significantly affect the frequency response owing to the small value of
the small scale parameter. The minimum value of α1 is 62.88 when the small scale is zero and decreases by 0.1%
if the small scale increases to 0.4nm.

According to Table 1, if the small scale value is near 2nm, it will be expected that the first (ω1) and the fifth
(ω5) frequencies of FG nanobeam will be seen in the time-dependent lateral deflection of the FG nanobeam.
Figure 6 demonstrates the effects of the small scale parameter on the frequency response of FG nanobeams. It can
be concluded that the smallest difference between the working frequency (�) and the first natural frequency (ω1)

in which the steady-state response involves the first and fifth frequencies of the FG nanobeam is dependent on the
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Fig. 5 Effect of power-law
index on frequency
response of FG nanobeams
in subharmonic response

Fig. 6 Effects of small scale parameter on frequency response of FG nanobeams (F = 1, n = 0.1)

small scale value. The only possible response will be superharmonic (Fig. 3) if the �/3ω1 ratio is smaller than the
minimum value shown in Fig. 6.

Figure 7 clearly reveals that a rise in the power-law index decreases the amplitude of the involved frequencies.
According to Figs. 6 and 7, the amplitude of the first frequency is dominant.
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Fig. 7 Effects of power-law index on frequency response of FG nanobeams (F = 1, e0a = 2)

7.3 Possible solutions (c) and (d)

By omitting trigonometric functions from Eqs. (78)–(86) and setting the value of α1 to zero, one can obtain the
following compact equations, which are useful for finding the amplitude of themode shapes involved in the response
of FG nanobeams when α1 = 0, αk �= 0, αp �= 0, and αq �= 0:

α2
p = Qα2

q , (28)
{[(

apq2

4ωp
+ 3q2aq

8ωq

)
+ Q

(
aq p2

4ωq
+ 3p2ap

8ωp

)]
α2
q +

(
k2ap
4ωp

+ k2aq
4ωq

)
α2
k

+
[(

ap
ωp

+ aq
ωq

) N∑
m=1

m2�2
m − σ2+2

(
p2ap�

2
p + q2aq�

2
q

)]}2

+
(
Ĉ p + Ĉq

)2 − f = 0, (29)

[(
−ωkσ1 + ak

N∑
m=1

m2�2
m + 2akk

2�2
k

)
αk +

(
3k2ak
8

)
α3
k + ak

4

(
Qp2 + q2

)
αkα

2
q

]2

−
(
ak�k

N∑
m=1

m2�2
m

)2

+
(
ωkĈk

)2
α2
k = 0, (30)

in which

Q = ωqĈqap

ωpĈ paq
, (31)

f =
(
ap�p�q

ωp

)2

Q−1 +
(
aq�p�q

ωq

)2

Q + 2
apaq�2

p�
2
q

ωpωq
. (32)

The second (ω2) and third (ω3) frequencies are involved in the combined response when the small scale is close
to 2nm on the basis of the assumptions mentioned earlier and Table 1. According to Eq. (6d), �2 is zero because
it is assumed that the density of the distributed lateral load is constant. Then one can conclude that α2 and α3

must be zero because of the disappearance of ′ f ′ from Eq. (29). Hence, this case does not occur in FG nanobeams
whose power-law index is 0.1 and that rest on a foundation whose stiffness coefficient is 0.01 nN/nm2. A similar
conclusion can be drawn when it is expected that α1 �= 0.
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8 Conclusions

This article examined the effects of a small scale parameter on the steady-state response of FG nanobeams resting on
a viscous foundation to subharmonic excitation. Euler–Bernoulli beam theory, von Karman geometric nonlinearity,
and Eringen’s nonlocal elasticity theory were used to derive the partial differential equation of motion of FG
nanobeamswhosematerial propertywas graded in the thickness direction. Itwas assumed that theworking frequency
was almost three times as great as the first natural frequency of a FG nanobeam (i.e., � ≈ 3ω1). The study was
conducted in two stages. First, the relationship among natural frequencies was examined, and then the equation
governing the general response of excited FG nanobeams was derived via the multiple scale method. The results
clearly revealed that the relationship among the natural frequencies was completely dependent on the small scale
parameter, material composition, and foundation stiffness. Although the simplest response of a FG nanobeam is
only a subharmonic response or superharmonic response, there is the possibility of occurrence of a superharmonic
or combination resonances as well as a subharmonic response in some combinations of small scale values, power-
law index, and foundation stiffness. It is also worth mentioning that with fixed values of the power-law index and
foundation stiffness, the number of frequencies involved in a superharmonic response and combination resonances
may vary with the small scale value. According to the results, in a superharmonic response, the peak response
increases as the small scale value increases or the power-law index decreases, while in a subharmonic response,
the effect of the small scale parameter on the frequency response is negligible. It was also seen that in cases where
subharmonic and superharmonic responses are combined, the amplitude of the subharmonic response is dominant.

Acknowledgements The author gratefully acknowledges the support of Yasouj University under grant Gryu-89111109.

Appendix 1

The equations ofmotion of a simply supported FG nanobeamwith length L , width b, and thickness h and immovable
ends can be derived using Hamilton’s principle. In this study, based on previous research [19,21], it is assumed that
the in-plane inertia and rotary inertia are negligible:

∂ N̂

∂x
= 0, (33)

F − kW − c
∂W

∂t
− ∂2M̂

∂x2
+ N̂

∂2W

∂x2
=

⎛
⎜⎝

∫

A0

ρ (z) dA0

⎞
⎟⎠ ∂2W

∂t2
, (34)

where W = W (x, t) is the transverse displacement of any point on the geometric midplane of the FG nanobeam
element, ρ(z) is the mass density, which is functionally graded in the thickness direction, N̂ is the axial normal
force, M̂ is the bending moment, k is the stiffness of the foundation, c is the damping coefficient of the foundation,
and F = F (x) cos (�t) is the transverse loading. A0 denotes the area of the FG nanobeam cross section.

According to the Euler–Bernoulli hypothesis and von Karman type geometrical nonlinearity, the strain displace-
ment relationship is as follows [19,21]:

εx = ∂u1
∂x

+ 1

2

(
∂W

∂x

)2

, (35)

where u1 is the total displacement along the x-direction given by Eq. (36):

u1 (x, z, t) = u0 (x, t) − (z − z0)
∂W

∂x
, (36)

where u0 (x, t) is an axial displacement of any point on the geometric midplane of the FG nanobeam element, and
z0 is the distance between the neutral surface and the geometric midplane of the FG nanobeam (Fig. 8) [14].

123



Steady-state response of FG nanobeams 33

Fig. 8 Cross section of
functionally graded beam
showing distance of neutral
surface from geometric
midplane

According to the physical concept of a neutral surface, z0 can be written as follows [14] (details can be found in
Ref. [14]):

z0 =
∫

A0

zE (z) dA0

/∫

A0

E (z) dA0. (37)

Based on Eringen’s nonlocal elasticity, the stress–strain relationship is

σx − (e0a)2 ∇2σx = Eεx , (38)

where e0a is a material length scale parameter that contains a material constant and internal characteristic length.
On the other hand, the resultant axial force and resultant bending moment are (N̂ and M̂)

N̂ =
∫

A0

σxdA0, M̂ = −
∫

A0

σx (z − z0) dA0. (39)

The stress resultants on a beam element can be obtained by substituting Eqs. (35) and (38) into Eq. (39):

N̂ − (e0a)2 ∇2 N̂ =
(∫

A0

E (z) dA0

) [
∂u

∂x
+ 1

2

(
∂W

∂x

)2
]

, (40a)

M̂ − (e0a)2 ∇2M̂ =
(∫

A0

(z − z0)
2 E (z) dA0

)
∂2W

∂x2
, (40b)

where E(z) and ρ(z) defined by Eq. (41) are the Young’s modulus and specific mass density of the FG beam
material, respectively.

E (z) = E1 + (E2 − E1)

(
2z + h

2h

)n

, (41a)

ρ (z) = ρ1 + (ρ2 − ρ1)

(
2z + h

2h

)n

, (41b)

where Ei and ρi (i = 1, 2) are the Young’s modulus and the specific mass density of the two materials used in the
construction of the FG beam, respectively.

The partial differential equation of the transversemotion of FGnanobeams can be derived by combining Eq. (40b)
and Eq. (34) and making some simplifications:

(e0a)2 H + N̂
∂2W

∂x2
− kW − c

∂W

∂t
+ F (x, t) =

⎛
⎜⎝

∫

A0

(z − z0)
2 E (z) dA0

⎞
⎟⎠ ∂4W

∂x4
+

⎛
⎜⎝

∫

A0

ρ (z) dA0

⎞
⎟⎠ ∂2W

∂t2
,

(42)

where H is defined by Eq. (43):

H = c
∂3W

∂x2∂t
+ k

∂2W

∂x2
− ∂2F

∂x2
− N̂

∂4W

∂x4
+

⎛
⎜⎝

∫

A0

ρ (z) dA0

⎞
⎟⎠ ∂4W

∂x2∂t2
. (43)
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On the basis of Eq. (33), one can conclude that ∇2 N̂ is zero. Therefore, Eq. (40a) is simplified to the relationship
between the axial force N̂ and displacement components of the midplane of the FG beam (W and u0) as follows
[19,21]:

N̂ =
⎛
⎜⎝

∫

A0

E (z) dA0

⎞
⎟⎠

[
∂u0
∂x

+ 1

2

(
∂W

∂x

)2
]

. (44a)

Integrating Eq. (44a) yields [19,21]

L∫

0

N̂dx =
L∫

0

⎛
⎜⎝

⎛
⎜⎝

∫

A0

E (z) dA0

⎞
⎟⎠

[
∂u0
∂x

+ 1

2

(
∂W

∂x

)2
]⎞
⎟⎠dx (45a)

or

N̂ L =
⎛
⎜⎝

∫

A0

E (z) dA0

⎞
⎟⎠

⎡
⎣u0 (L) − u0 (0) +

L∫

0

1

2

(
∂W

∂x

)2

dx

⎤
⎦ . (45b)

The boundary values of the axial displacement of nanobeams are [19,21]

u0 (0) = 0, u0 (L) = 0. (46)

The relationship between the axial force N̂ and the transverse displacement of the midplane of nanobeams can
be obtained by substituting for boundary conditions from Eq. (46) into Eq. (45b):

N̂ = + 1

2L

⎛
⎜⎝

∫

A0

E (z)dA0

⎞
⎟⎠

L∫

0

(
∂W

∂x

)2

dx . (47)

Substituting the N̂ from Eq. (47) into Eqs. (42) and (43), one can obtain the governing equation of the nonlinear
forced lateral vibration of FG nanobeams as follows:

(e0a)2 H + N̂
∂2W

∂x2
− kW − c

∂W

∂t
+ F (x, t) =

⎛
⎜⎝

∫

A0

(z − z0)
2 E (z) dA0

⎞
⎟⎠ ∂4W

∂x4
+

⎛
⎜⎝

∫

A0

ρ (z) dA0

⎞
⎟⎠ ∂2W

∂t2
,

(48)

where H is defined by Eq. (49):

H = c
∂3W

∂x2∂t
+ k

∂2W

∂x2
− ∂2F

∂x2
− N̂

∂4W

∂x4
+

⎛
⎜⎝

∫

A0

ρ (z) dA0

⎞
⎟⎠ ∂4W

∂x2∂t2
, (49)

and N̂ is

N̂ = + 1

2L

⎛
⎜⎝

∫

A0

E (z)dA0

⎞
⎟⎠

L∫

0

(
∂W

∂x

)2

dx . (50)

The following dimensionless variables are used to simplify the parametric studies:

x = x

L
, W = W

r
, t = t

√
D/ρeL4,

D = b

h
2∫

− h
2

(z − z0)
2 E (z) dz, ρe = b

h
2∫

− h
2

ρ (z) dz, A = b

h
2∫

− h
2

E (z) dz, r =
√
bh3/12(bh). (51)
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Then, the governing partial deferential equation of motion changes to

− L4 (e0a)2

r D
H + ∂2W

∂t2
+ ∂4W

∂x4
+ kL4

D
W + cL2

√
Dρe

∂W

∂t
−

⎛
⎝ Ar2

2D

1∫

0

(
∂W

∂x

)2

dx

⎞
⎠ ∂2W

∂x2
= F

L4

r D
, (52)

where

H = − 1

L2

∂2F

∂x2
+ kr

L2

∂2W

∂x2
+ cr

L2

√
D

ρeL4 −
⎡
⎣ Ar3

2L6

1∫

0

(
∂W

∂x

)2

dx

⎤
⎦ ∂4W

∂x4
+ Dr

L6

∂4W

∂x2∂t2
. (53)

Appendix 2

According to Eq. (10), it can be found that the secular terms are eliminated from q11, qk1, and qn1(n �= 1, k) if

2iω1

(
A′
1 + Ĉ1A1

)
+ 2a1A1

N∑
m=1

m2
(
Am Am + �2

m

)
+ 3a1A

2
1�1 exp (iσT2) + 4a1�

2
1A1 + a1A1A

2
1 = 0, (54)

2iωk

(
A′
k + Ĉk Ak

)
+ 2ak Ak

N∑
m=1

m2
(
Am Am + �2

m

)
+ 3a1A

2
1�1 exp (iσT2) + 4akk

2�2
k Ak + k2ak Ak A

2
k

+ 3ak�k exp (iσ1T2)
N∑

m=1

m2�2
m = 0, (55)

2iωn

(
A′
n + Ĉn An

)
+ 2an An

N∑
m=1

m2
(
Am Am + �2

m

)
+ 4ann

2�2
n An + n2an An A

2
n = 0. (56)

Let

Am = 1

2
αm exp(iβm), (57)

where αm (T2) and βm (T2) are both real. Substituting Eq. (57) into Eq. (54), Eq. (55), and Eq. (56) and separating
the result into real and imaginary parts, one obtains

α′
1 + Ĉ1α1 + 3

4

a1�1α
2
1

ω1
sin γ1 = 0, (58)

−α1β
′
1 + a1α1

N∑
m=2

m2
(

α2
m

4
+ �2

m

)
+ 3

4
a1α

2
1�1 cos (σT2 − 3β1) + 3a1�

2
1α1 + 3

8
a1α

3
1 = 0, (59)

α′
kωk + Ĉkαkωk + 3ak�k

N∑
m=1

m2�2
m sin γ2 = 0, (60)

−αkβ
′
kωk + 3ak�k

N∑
m=1

m2�2
m cos γ2 + akαk

N∑
m=1

m2
(

α2
m

4
+ �m

)
+ 2k2ak�

2
kαk + k2

8
akα

3
k = 0, (61)

ωn

(
α′
n + Ĉnαn

)
= 0, (62)

−ωnαnβ
′
n + anαn

N∑
m=1

m2

4

(
α2
m + 4�2

m

)
+ 2ann

2�2
nαn + 1

8
n2anα

3
n = 0, (63)

where σT2 − 3β1 = γ1, σ1T2 − βk = γ2, and ()′ = d/dT2.
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The solution of Eq. (62) shows that

αn ∝ exp(−ĈnT2). (64)

Equation (64) clearly reveals that all αn(n �= 1, k) decay. Hence, the steady-state motion (α′
1 = 0, α′

k = 0, γ ′
1 =

0, γ ′
k = 0) can be expressed as

Ĉ1α1ω1 + 3

4
a1�1α

2
1 sin γ1 = 0, (65)

−1

3
σα1ω1 + a1α1

N∑
m=2

m2�2
m + 3

4
a1α

2
1�1 cos (γ1) + k2

4
α1a1α

2
k + 3a1�

2
1α1 + 3

8
a1α

3
1 = 0, (66)

Ĉkαkωk + ak�k

N∑
m=1

m2�2
m sin γ2 = 0, (67)

−αkσ1ωk + ak�k

N∑
m=1

m2�2
m cos γ2 + 3

8
akk

2α3
k + 1

4
akαkα

2
1 + akαk

N∑
m=1

m2�2
m + 2k2ak�

2
kαk = 0. (68)

Combining Eq. (65) with Eq. (66) leads to

(
3

4
a1�1α

2
1

)2

=
(

−1

3
σα1ω1 + a1α1

N∑
m=2

m2�2
m + k2

4
α1a1α

2
k + 3a1�

2
1α1 + 3

8
a1α

3
1

)2

+
(
Ĉ1α1ω1

)2
. (69)

Eliminating γ2 from Eq. (67) and Eq. (68) yields
(
ak�k

N∑
m=1

m2�2
m

)2

=
(

−αkσ1ωk + 3

8
akk

2α3
k + 1

4
akαkα

2
1 + akαk

N∑
m=1

m2�2
m + 2k2ak�

2
kαk

)2

+
(
Ĉkαkωk

)2
.

(70)

According to Eqs. (69) and (70), these two solutions are possible: either α1 = 0 and αk �= 0 or α1 �= 0 and
αk �= 0.

The following equation expresses the time-dependent lateral deflection of a vibrating FG nanobeam:

W
(
x, t

) = εα1 cos

(
1

3
�t − 1

3
γ1

)
sin (πx) + εαk cos

(
3�t − γ2

)
sin (kπx)

+ 2ε
N∑

n=1

�n cos
(
�t

)
sin (nπx) + O

(
ε3

)
. (71)

Appendix 3

It can be found that Eqs. (58)–(63) govern the conditions in which secular terms are eliminated from q11, qk1 and
qn1(n �= 1, k, p, q).

The following equations must be satisfied to eliminate the secular terms from qp1 and qq1:

2iωp

(
A′
p + Ĉ p Ap

)
+ 2ap Ap

N∑
m=1

m2
(
Am Am + �2

m

)
+ 4ap p

2�2
p Ap + p2ap Ap A

2
p

+ 2ap�q�p Aq exp (σ2T2) = 0, (72)

2iωq

(
A′
q + Ĉq Aq

)
+ 2aq Aq

N∑
m=1

m2
(
Am Am + �2

m

)
+ 4aqq

2�2
q Aq + q2aq Aq A

2
q

+ 2aq�q�p Ap exp (σ2T2) = 0. (73)
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The following equations can be found by introducing the polar notation represented by Eq. (57):

ωp

(
α′
p + Ĉ pαp

)
+ ap�p�qαq sin (γ3) = 0, (74)

−ωpαpβ
′
p + apαp

N∑
m=1

m2

4

(
α2
m + 4�2

m

)
+ 2ap p

2�2
pαp + 1

8
p2apα

3
p + ap�p�qαq cos (γ3) = 0, (75)

ωq

(
α′
q + Ĉqαq

)
+ aq�q�pαp sin (γ3) = 0, (76)

−ωqαqβ
′
q + aqαq

N∑
m=1

m2

4

(
α2
m + 4�2

m

)
+ 2aqq

2�2
qαq + 1

8
q2aqα

3
q + aq�q�pαp cos (γ3) = 0, (77)

in which γ3 = σ2T2 − βp − βq .
As mentioned earlier, except for α1, αk, αp and αq , the remaining αn (n �= 1, k, p, q) decay with time. Thus, the

following equations govern the steady-state response of FG nanobeams:

ωpĈ pαp + ap�p�qαq sin (γ3) = 0, (78)

ωqĈqαq + aq�q�pαp sin (γ3) = 0, (79)

σ2 = β ′
p + β ′

q , (80)

β ′
p = 1

ωpαp

(
apαp

N∑
m=1

m2�2
m
m2

4
+q2

4
apαpα

2
q + 1

4
apαpα

2
1 + k2

4
apαpα

2
k + 2ap p

2�2
pαp

)

+ 1

ωpαp

(
3

8
p2apα

3
p + ap�p�qαq cos (γ3)

)
, (81)

β ′
q = 1

ωqαq

(
aqαq

N∑
m=1

m2�2
m
m2

4
+ p2

4
aqαqα

2
p + 1

4
aqαqα

2
1 + k2

4
aqαqα

2
k + 2q2aq�

2
qαq

)

+ 1

ωqαq

(
3

8
q2aqα

3
q + aq�q�pαp cos (γ3)

)
, (82)

Ĉ1α1ω1 + 3

4
a1�1α

2
1 sin γ1 = 0, (83)

− 1

3
σα1ω1 + a1α1

N∑
m=2

m2�2
m + 3

4
a1α

2
1�1 cos (γ1) + k2

4
α1a1α

2
k + 3a1�

2
1α1 + 3

8
a1α

3
1

+ 3

4
p2α1a1α

2
p + 3

4
q2α1a1α

2
q = 0, (84)

Ĉkαkωk + ak�k

N∑
m=1

m2�2
m sin γ2 = 0, (85)

−αkσ1ωk + ak�k

N∑
m=1

m2�2
m cos γ2 + 3

8
akk

2α3
k + 1

4
akαkα

2
1 + akαk

N∑
m=1

m2�2
m + 2k2ak�

2
kαk

+ p2

4
αkakα

2
p + q2

4
αkakα

2
q = 0. (86)

According to Eqs. (78), (79), and (83), the possible solutions are

(a) α1 = αp = αq = 0, and αk �= 0.
(b) α1 �= 0, and αk �= 0, but αp = αq = 0.
(c) α1 = 0, and αk �= 0, αp �= 0, and αq �= 0.
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(d) α1 �= 0, αk �= 0,αp �= 0, and αq �= 0.

The lateral deflection of vibrating FG nanobeams can be represented by the following equation:

W
(
x, t

) = εα1 cos

(
1

3
�t − 1

3
γ1

)
sin (πx) + εαk cos

(
3�t − γ2

)
sin (kπx) + εαp cos

(
ωpt + βP

)
sin (pπx)

+ εαq cos
(
ωq t + βq

)
sin (qπx) + 2ε

N∑
n=1

�n cos
(
�t

)
sin (nπx) + O

(
ε3

)
. (87)
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