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Abstract We consider a bi-dimensional sheet consisting of two orthogonal families of inextensible fibres. Using
the representation due to Rivlin and Pipkin for admissible placements, i.e. placements preserving the lengths of
the inextensible fibres, we numerically simulate a standard bias extension test on the sheet, solving a non-linear
constrained optimization problem. Several first and second gradient deformation energy models are considered,
depending on the shear angle between the fibres and on its gradient, and the results obtained are compared. The
proposed numerical simulations will be helpful in designing a systematic experimental campaign aimed at charac-
terizing the internal energy for physical realizations of the ideal pantographic structure presented in this paper.

Keywords Bias extension test · Constrained optimization · Inextensible fibre network · Pantographic sheet ·
Second gradient theory
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1 Introduction

The objective of this work is the analysis of a rectangular sheet composed of two orthogonal families of inextensible
fibres with low bending stiffness. The two families intersect the sides of the rectangle at an angle of ±45◦ in the
initial configuration; we refer to this model as a 2D-continuum pantographic model. Mechanical systems of this
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kind are of great practical relevance in engineering applications. Indeed, the forming procedure of woven fabric
represents the initial step in the production of many composite materials in both the aerospace and automotive
industries. Hence, simulations dealing with the formation of woven fabrics (impregnated with polymer or dry) are
very useful for pattern designing in the aforementioned context (e.g. [1–5]).

A bias extension test, in which a displacement at 45◦ with the fibres is imposed, is widely used to characterize the
mechanical behaviour of a woven fabric under large shear deformations, the curve force–displacement (along the
bias direction) presenting the typical hardening effect due to geometric effects. Most commonly used fibres have
a low (but non-zero) bending stiffness. In this work we analyse the bias extension test considering both first and
second gradient deformation energy densities, continuing in the line of investigation introduced in [6–9] or, with
the same topology but considering extensible beams instead of inextensible fibres, in [10,11].

In this work, a new numerical scheme is implemented. Two main novelties characterize the present work. The
first consists of a change in variables which reduces the order of differentiation of the problem formulation, making
it a first gradient (rather than a second gradient) problem. Specifically, we adopt the rotations of the two fibres as
degrees of freedom and assume for each rotation field a particular structure conforming with the Pipkin–Rivlin
representation. The inextensibility constraint is therefore automatically satisfied. The displacement is successively
evaluated by means of numerical integration of the two rotation fields. This new formulation of the problem leads
clearly to an improved convergence as the computational cost is reduced with respect to a displacement-based
formulation with Lagrangian multipliers accounting for the inextensibility constraint. The second novelty is the
simulation of new energy models involving the shear angle and its gradient in the form g2,1 (see subsequent section
on numerical results).

The shape ratio of the specimen is 3:1, i.e. the short clamped side is one-third of the long side. The standard
boundary conditions of the bias extension test are considered, i.e. the long sides of the rectangle are free, one of the
short sides is fixed and on the other a prescribed displacement, parallel to the long sides, is imposed.

The paper is structured as follows. In the second section we give a brief description of the model, which is
basically the one set in [6,12], showing that by means of geometry and symmetry considerations, the kinematics
of the system can be described in terms of one scalar field (representing the value of the shear deformation angle).
In the third section a numerical formulation of the problem is developed, and a certain set of possible energies is
given, with some heuristic considerations on our choices. In the fourth section the numerical results are presented
and discussed.

1.1 Theoretical and technological contextualization of proposed line of investigation

The growing importance of the type of systems considered here arises both from their high strength-to-weight ratio
and from their peculiarly safe behaviour under fracture. In fact, some theoretical and experimental results show that
fracture can be forecast rather accurately, and it is also worth noting that from the start of the fracture to the complete
split of the sample, the system is still able to store a considerable amount of deformation energy. Moreover, the
development of 3D printing and other computer-aided manufacturing techniques allows for a physical realization
of the most exotic geometries (see [13] for recent applications of advanced manufacturing). Therefore, a thorough
understanding of the mechanical behaviour of the simple geometry proposed is a necessary first step towards the
development of increasingly complex mechanical systems. The considered structure, because of its characteristics,
can be indeed considered as a basic case of metamaterial, which can be enriched in different ways by generalizing
its geometry, its mechanical properties or its kinematics (for a recent review on metamaterials, see [14]).

The theoretical framework in which it is natural, in the opinion of the authors, to study the behaviour of the
considered system (and in general that of systems displaying complex microstructures) is the variational approach
(see [15] for a general discussion), which of course is also the most suitable for the numerical formulation of the
problem. The theoretical tools used for analysing the test are those set out in the works of Rivlin and Pipkin (see
[16,17] and [18–21]). On the basis of the principle of stationary action, some suitable forms of energy, depending
only on shear deformations, have been postulated, considering both first and second gradient energy models. The
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problem lies in the field of non-linear constrained optimization in which the objective function is represented by the
energy functional subjected to impenetrability and kinematical compatibility constraints. We formulate the problem
directly considering Pipkin’s representation.

It is clear nowadays that a suitable homogenization (see [22–30] for some relevant examples) of such systems
leads to models that can be properly contextualized in the field of micromorphic continua (see [31,32]). A reader
interested in the theory of micromorphic continua can see the classical references [33–36] and more recent ones
[37–42], while for applications the following references are relevant: [43–51].

We propose in this paper some types of energy depending on the second gradient of displacement, embedding our
model in the mathematical framework of generalized continua, and in particular of higher gradient continua theory,
which by now relies on a solid theoretical and experimental background. For more on this topic, the interested
reader may consult [52,53] as standard references and [54–61] for more recent results in the field.

2 Theoretical model and set-up for bias extension test

In this section we consider a continuous model at every point of which two fibres (belonging to two orthogonal
families) intersect. The fibres are assumed to be inextensible. It should be remarked that, in general, difficult
theoretical and numerical problems can arise from constraints of this kind (for related problems, see for instance
[62–64]). As we will see, indeed, the inextensibility condition is naturally expressed by means of integral terms,
which are in general more difficult to handle than differential ones. The motion is described in a set of coordinates
ξ1, ξ2 which have the same directions as fibres.

2.1 Rivlin–Pipkin decomposition theorem

Let D1 and D2 be the unit tangent vectors along the fibres in the reference configuration (Fig. 2a), and let

d1 = R1(θ1)D1, d2 = R2(θ2)D2 (1)

be the in-plane rotated vectors by means of two independent rotation operators indicated by R1(θ1) and R2(θ2).
Since we consider only plane motion, the axial vector of the rotation operators is simply characterized by the
rotation angles θ1, θ2. Notice that the rotations θ1, θ2 are considered positive if the angle between the directions
D1, D2 decreases. Because of the inextensibility constraints, the deformation tensor is then given by

F = (R1D1) ⊗ D1 + (R2D2) ⊗ D2. (2)

Rivlin (in [16]) proved that, in our assumptions, the placement splits into the sum of two vector functions as

r′(ξ1, ξ2) = r′
1(ξ

1) + r′
2(ξ

2). (3)

Therefore, we have that θ1 = θ1(ξ
1) and θ2 = θ2(ξ

2).
The displacement field can be expressed in integral form observing that

di = Di + ∂u
∂ξ i

(4)

and, using Eqs. (1) and (3), we obtain by integration the relative displacement between two points P, Q of the
specimen:
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uQ
x =

(∫ ξ1Q

ξ1P

(cos(θ1) − 1) dξ1 +
∫ ξ2Q

ξ2P

sin(θ2)dξ
2

)
D1 · ex

+
(∫ ξ1Q

ξ1P

sin(θ1)dξ
1 +

∫ ξ2Q

ξ2P

(cos(θ2) − 1) dξ2
)

D2 · ex + uP
x ,

uQ
y =

(∫ ξ1Q

ξ1P

(cos(θ1) − 1) dξ1 +
∫ ξ2Q

ξ2P

sin(θ2)dξ
2

)
D1 · ey

+
∫ ξ1Q

ξ1P

(
sin(θ1)dξ

1 +
∫ ξ2Q

ξ2P

) cos(θ2) − 1)dξ2
)

D2 · ey + uP
y ,

(5)

where ex , ey are the unit vectors of the external reference frame.

2.2 Energy functional

We proceed now to the identification of a suitable energy functional for the considered structure.
Let γ = d1 · d2 = sin(ϑ1 + ϑ2) be the shear between the fibre directions. In order for the transformation to be

monodrome (single-valued), the shear must belong to the interval

θ1 + θ2 ∈
(
−π

2
,
π

2

)
⇒ γ ∈ (−1, 1). (6)

The Cauchy deformation tensor is then

C = D1 ⊗ D1 + γ (D1 ⊗ D2 + D2 ⊗ D1) + D2 ⊗ D2. (7)

The Green’s strain tensor is

E = γ

2
(D1 ⊗ D2 + D2 ⊗ D1) . (8)

Here we consider also the contribution of the second gradient of the displacements to the deformation. Since the
basis vectors Di are constant, the only non-zero terms of the gradient of the strain tensor E are

∇E121 = ∇E211 = 1

2
cos(θ1 + θ2)

∂θ1

∂ξ1
, ∇E122 = ∇E212 = 1

2
cos(θ1 + θ2)

∂θ2

∂ξ2
. (9)

The elements of the gradient of the strain tensor can be given a very useful interpretation. Indeed, it can be easily
shown that ∂θi

∂ξ i
is the in-plane curvature of i-family fibres. The elements of∇E are the projection of these curvatures

on the deformed directors and can be interpreted as

∇E121 = d1 × d2 · ez
∂θ1

∂ξ1
, (10)

that is, the curvatures multiplied by the area of the deformed element, so that the second gradient deformation
vanishes as the shear tends to 1, i.e. when the fibres tend to overlap. This interpretation will be useful for the choice
of the second gradient energy.

Any isotropic first gradient energy functional must then be a function of γ 2:

F1 =
∫
B
g1

(
γ 2

)
dB. (11)
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We also include in the energy functional a contribution of the strain gradient, given by the norm of ∇E,

‖∇E‖2 = 1

2
‖∇γ ‖2, (12)

so that, also accounting for the impenetrability constraints (6), the energy functional F becomes

F =
∫
B

[(
αg1

(
γ 2

)
+ βg2

(
‖∇γ ‖2

))]
dB +UK (γ ), (13)

in which we have introduced two constitutive parameters α and β, and UK is the indicator function of the set

K =
{
(θ1, θ2) : γ

(
ξ1, ξ2

)
∈ (−1, 1),∀(ξ1, ξ2)

}
, UK =

{
0, (θ1, θ2) ∈ K ,

+∞, otherwise.
(14)

The latter condition implies a constraint on the optimization problem that can be included in various ways (e.g.
penalty, Lagrangian multipliers).

2.3 First and second gradient energy models

For a first gradient deformation problem, a sufficient condition for the existence of a solution of the BVP (Boundary
value problem) is that the energy functional is a convex function of the strain tensor. Therefore, only convex
functionals F1 are considered in this work. The following four forms of g1(γ ) are used in the numerical analyses:

– First gradient shear energy model:

g1,1(γ ) = 1

2
γ 2 = 1

2
sin2(θ1 + θ2); (15)

– First gradient quadratic energy model:

g1,2(γ ) = 1

2
arcsin2(γ ) = 1

2
(θ1 + θ2)

2; (16)

– First gradient quartic energy model:

g1,3(γ ) = 1

4
arcsin4(γ ) = 1

4
(θ1 + θ2)

4; (17)

– First gradient quadratic and quartic energy model, [α = 1 in (13)]:

g1,4(γ ) = α1 arcsin
2(γ ) + α2 arcsin

4(γ ) = α1(θ1 + θ2)
2 + α2(θ1 + θ2)

4. (18)

Figure 1a shows a sketch of the four energy models considered over the existence interval for the variable γ .
Note that the functions g1,2 and g1,4 can be considered as series expansions of g1,1, so that for small shears they
coincide. However, the function g1,3 is quite different, as is evidenced from the plot of the conjugated internal stress
reproduced in Fig. 1b, showing that the stress remains very small for small values of the shear, then rapidly grows.
This function can simulate the effect of the densification of the fibres as the shear grows.

Two energy functionals accounting for the second gradient deformation are considered; the first, as stated, is the
L2 norm of the second gradient strain tensor, and the other is a truncated expansion of it:
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Fig. 1 First gradient energy models: a first gradient energy functions, b conjugated shear stress

– Second gradient shear energy model:

g2,1(∇γ ) = ‖∇γ ‖2 = 1

2
cos2(θ1 + θ2)

[(
∂θ1

∂ξ1

)2

+
(

∂θ2

∂ξ2

)2
]

; (19)

– Second gradient quadratic energy model:

g2,2(γ ) = 1

2

[(
∂θ1

∂ξ1

)2

+
(

∂θ2

∂ξ2

)2
]

. (20)

The existence and uniqueness of the minimum for the given energy functional is in general a non-trivial issue and is
linked to the properties of the convexity, coercivity and lower semi-continuity of the functional. We conjecture that
in our case there are no local minima in symmetric extensions, but this point, as well as a rigorous mathematical
characterization of the proposed models, deserve future investigations in specific works.

The dual stresses, for the functional (13), are given by

σ 1
j = α ∂θ1(g1, j ), σ 2

j = α ∂θ2(g1, j ), j = 1, . . . , 4,

τ 1i = β ∂θ1(g2,i ), τ 2i = β ∂θ2(g2,i ), i = 1, 2, (21)

where the definitions of the first gradient energies, g1, j , are given in (15), (16), (17) and (18), while the second
gradient energies, g2,i , are given in (19) and (20). In what follows, we limit ourselves to boundary conditions
involving free normal derivatives of the kinematical descriptors and, therefore, null double forces.

2.4 Geometry of the problem

A quadrilateral specimen with a ratio of 1:3 of the sides subjected to a bias extension test is considered, as indicated
in the introduction. Figure 2 shows the geometry of the sample and the intrinsic coordinate system considered. The
x-axis coincides with the longitudinal direction of the specimen.

Under our assumptions the displacement field of the specimen can be divided into seven subregions, Δ00, Δ01,
Δ10, Δ23, Δ32, Δ33 and Δ = Δ11 ∪ Δ12 ∪ Δ21 ∪ Δ22 (Figs. 2a and 3c), in each of which the displacement field
obtained by integration of the strain field attains a specific functional form. In regions Δ00 and Δ33 the deformation
vanishes. This is experimentally verified by the simple extension test on a 3D-printed polymeric specimen (Fig. 3).

A limit condition exists corresponding to the situation where, in the central region, the relative rotation between
the fibres becomes π/2. No further deformation is allowed beyond this point since the fibres overlap and cannot
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Fig. 2 Set-up of bias extension test: a geometry and subregions, b mesh (for ne = 6)

stretch. The displacement that corresponds to this limit condition can be evaluated through the first equation, Eq. (5),
setting θ1 = θ2 = π/4, and is found to be ulim = 2

√
2(

√
2 − 1) = 0.82

√
2.

2.5 Boundary conditions

Indicating by u the imposed displacement along the free short side of the specimen, and by ux = u · e′
x and

uy = u · e′
y its components, the bias extension test corresponds to the case ux = u, uy = 0. Using the first of

expressions (5) the boundary condition becomes (Fig. 2a)

∫ 3

1
cos(θ1(ξ1))dξ1 +

∫ 3

1
sin(θ2(ξ2))dξ2 − 2 = u√

2
,

∫ 3

1
cos(θ2(ξ2))dξ2 +

∫ 3

1
sin(θ1(ξ1))dξ1 − 2 = u√

2
, (22)

which represents two line integrals along the line defined by the two points {1, 1} and {3, 3} (the internal vertexes
of the two rigid triangles Δ00 and Δ33). Concerning higher-order boundary conditions, on the short side on which
the displacement is imposed, no condition is imposed on the normal derivative of the field θ1 and θ2, and therefore,
according to the weak formulation of the problem, the corresponding double forces (i.e. the dual quantities of the
normal derivative in the energy) are zero. For the same reason, on the free sides of the specimen, both the force and
double force are assumed to be zero.

3 Numerical formulation

In this work we approach the problem as a constrained minimization in which the objective functional is expressed
in terms of two discretized rotation fields, ϑ1(ξ1) and ϑ2(ξ2), characterizing the unit tangent vectors to the fibres. A
quadrilateral mesh consistent with the ratio 1:3 of the geometry of the specimen is introduced. We consider a piece-
wise constant (P0-)interpolation for the two rotation fields ϑ1(ξ1) and ϑ2(ξ2) on the uniform quadrilateral mesh.
The discretized values of the rotations are denoted by ϑ1,i j and ϑ2,i j , with i = 1, . . . , ne−1 and j = 1, . . . , 3ne−1
and ne the number of elements along the short side of the specimen. According to Rivlin’s representation, all the
elements having the same value ξ1 (resp. ξ2) of the centroid coordinate have the same value for ϑ2 (resp. ϑ1), as
represented in Fig. 3, where the element with zero rotation according to the boundary conditions is also shown.
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(a) (b) (c)

Fig. 3 Assumed piece-wise constant interpolations of rotation fields according to Rivlin–Pipkin constraint: a θ1,i j , b θ2,i j , c Θi j =
θ1,i j + θ2,i j

3.1 Gradients of rotations

Since a piece-wise constant interpolation (or P0-interpolation) has been used, the gradients of the rotations cannot
be directly evaluated. They have therefore been collocated in the vertices of the mesh, and we evaluate for each
node i, j the gradients of the two scalar rotation fields as

123



Bias extension test for pantographic sheets 135

(
∂S1ϑ1

)
i, j = ϑ1,i j+1 − ϑ1,i+1 j√

2he
,

(
∂S2ϑ2

)
i, j = ϑ2,i+1 j+1 − ϑ2,i j√

2he
, (23)

with he = L/ne the element side length, while the second gradient deformation was calculated as

∇E121 = cos
(
ϑm
1,i j + ϑm

2,i j

) (
∂S1ϑ1

)
i, j , (24)

in which ϑm
1,i j and ϑm

2,i j are mean values evaluated by averaging the rotations in the four elements connected at the
selected node, and S1 is the arclength corresponding to the parametric abscissa ξ1.

3.2 Constrained minimization problem

The discrete problem reduces to a constrained optimization in which the energy functional, which depends only
on the angle of rotation fields, represents the objective function, with inequality constraints on the angle fields (the
incompressibility conditions) and equality constraints for the imposition of the displacement at the free edge in
terms of the rotation:

min
(ϑ1,ϑ2)

F
(
ϑ1, ϑ2,

∂ϑ1
∂ξ1

, ∂ϑ2
∂ξ2

)

subject to :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 < ϑ1,i j + ϑ2,i j < 1, (Inequality Constraint)

le
de∑
h=1

(cos(ϑ1h) + sin(ϑ2h)) − 2 = u/
√
2, (Equality Constraint)

le
de∑
h=1

(cos(ϑ2h) + sin(ϑ1h)) − 2 = u/
√
2, (Equality Constraint)

(25)

A Newton method with an interior point constraint was used to solve the constrained minimization problem. The
objective function is given by one of the expressions (15), (16), (17), (18) for the first gradient energy models
and (19) or (20) for the second gradient energy models previously considered.

4 Numerical results

In this section we present and compare the results obtained with the energy models considered. The distribution of
the rotation angles as well as the deformation of the specimen will be analysed. The deformation of the specimen
undergoing a bias extension test reproduces the regions indicated in Fig. 2a. In the central part of the specimen, the
rotations show a continuous variation, either increasing or decreasing, going from the centre of the specimen towards
its fixed part. It will be shown that this variation characterizes the influence of the second gradient deformation on
the solution; therefore, an indicator parameter is introduced (Fig. 4).

With reference to Fig. 5, we measure the variation in the angle between the fibre directions at points p and c
located at the vertex of the fixed region Δ00 and at the centre of the specimen, Δϑp = π

2 − (ϑ1(p) + ϑ2(p)) and
Δϑc = π

2 − (ϑ1(c) + ϑ2(c)), and we define as the indicator parameter the difference Δϑpc:=Δϑc − Δϑp. It will
be shown that in the case of a first gradient energy model the angle Δϑpc turns out positive, that is the total rotation
at the centre of the specimen is smaller than at the vertex, and the opposite occurs for second gradient dominated
solutions.
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Fig. 4 Photograph of 3D-printed pantographic specimen under bias extension test. The regions Δ00, Δ01, Δ10, Δ23, Δ32 and Δ33 are
highlighted (see also Fig. 2a). It is clear that the regions Δ00 and Δ33 are undeformed

Fig. 5 Indicator angles of
deformation located at
vertex of fixed region and of
centre of specimen p cp c
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Fig. 6 Convergence analysis: square of relative energy error versus mesh size, h, for a quadratric, b quartic and c shear energy first
gradient models

4.1 First gradient energy models

To verify the ability of the numerical model to correctly represent the solution of the problem, a convergence analysis
for the relative energy error was performed (considering an overkill solution as an exact solution), and its results
are presented in Fig. 6, which refers to a value of the displacement u1 = u2 = 0.6 for three different energy cases
specified in Sect. 2.3 (shear, quadratic and quartic energy). The square of the energy error is reported against the
mesh size h in a log-log plot. In any case, the rate of convergence reaches the expected rate of 2, with the same
accuracy for all considered cases.
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4.1.1 Shear energy model

First we analyse the results obtained using the quadratic energy in γ (15). Plots of the relative rotation between the
fibresϑ1+ϑ2 for three different values of the end displacement are shown in Fig. 7. For any value of the displacement
the total rotation exhibits sharp jumps corresponding to the boundaries of the regions represented in Fig. 2. In the
two triangles next to the ends of the specimens, the rotations are zero; then two sets of discontinuity lines are found.
The two fields ϑ1 and ϑ2 and their sum are also represented as contour plots in Fig. 8, in which the same scale is
used for the three values considered for the displacement, i.e. u1 = u2 = 0.6,

√
3 − 1 and 0.8 respectively. As

appears from the plots, the rotation is not constant in the central region, so that the parameter Δϑpc indicating the
difference in the rotation between points p and c (Fig. 5) is non-zero. It is interesting to examine more closely the
results for the relative rotation of the central region of the specimen (given by Δ11 ∪ Δ12 ∪ Δ21 ∪ Δ22; see Fig. 2a)
shown in Fig. 7. From Fig. 7a shows that for small values of the imposed displacement (uy < uc = √

3 − 1), the
relative rotation at the centre of the specimen (point C ; see Fig. 5) is lower than the relative rotation at the boundary
(point P; see Fig. 5). The contour plot of the relative angles is shown in Fig. 8a.

However, there exists a critical value of the end displacement component, u1 = u2 = uc = √
3 − 1, for which

both rotation fields become piece-wise constant. This value corresponds to a change in the sign of Δϑpc (Fig. 7).
For this value of the end displacement we find Δϑpc = 0 (Fig. 7b).

For large values of the imposed displacement the relative rotation at the centre becomes greater than the rotation
at the boundary of the central region of the specimen. The change in the sign of the difference of these relative
rotations is a characteristic trend only for the first gradient shear energy model.

The relative rotations Δϑp at point p, the angle Δϑc at point c and their difference Δϑpc are plotted in Fig. 9
as a function of the imposed end displacement. It can be observed that for values of the displacement u < uc one
has Δϑpc > 0, while for u > uc the indicator Δϑpc becomes negative. At the critical displacement the angle at the
centre is equal to the angle at the vertex, and then Δϑpc = 0. As observed in [12], the configuration corresponding
to the critical displacement value remains stable, but note that, in general, stability issues concerning systems with
a complex microstructure can be difficult. Useful tools for studying such problems can be found, for example, in
[65].

4.1.2 Quadratic energy model

Plots of the relative rotation ϑ1 +ϑ2 between the fibres for the values of the end displacement 0.65,
√
3− 1 and 0.8

are presented in Fig. 10. The plots must be compared with those of Fig. 7. The constitutive parameter α is set at 1.
Also, in this case, the rotation is discontinuous along the diagonals of the specimen. Contrary to the first gradient
shear energy model, in this case there is no change in the sign of the difference between the angles of the fibres at
the centre and at the vertex of the rigid triangle of the specimen.

Indeed, the indicator angle Δϑpc (Fig. 11a) is always positive for every value of the imposed displacement
u ∈ [0, 0.8]. By differentiating the computed energy with respect to the imposed displacement, we obtain the
resulting reaction on the loaded side (Fig. 11b). This curve is characterized by a hardening effect due to the
alignment of the inextensible fibres. As the displacement approaches the limit value 2(

√
2 − 1), the end reaction

tends to diverge.
Finally, in Fig. 12, the deformed configurations for the imposed displacements 0.65, 0.73 and 0.8 are shown. The

central part of the specimen gets thinner and thinner, while its boundaries remain straight.

4.1.3 Quartic energy

The quartic energy density g1,3 is considered next. As was observed at the end of Sect. 2.3, while the quadratic
energy can be viewed as a truncated power series expansion of the energy quadratic on the shear, the quartic energy
simulates a different network behaviour. Despite this, the results of the simulation are very similar to the those in
the previous case, as shown by the plot of the relative rotations presented in Fig. 13.
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Fig. 7 First gradient shear energy model – relative rotation ϑ1,i j + ϑ2,i j for the specimen 1:3 and α = 1 for several imposed
displacements: a u1 = u2 = 0.65 < uc, b u1 = u2 = uc = √

3 − 1, c u1 = u2 = 0.8 > uc

123



Bias extension test for pantographic sheets 139

(a) (b) (c)

Fig. 8 First gradient shear energy model – contour plots of rotations ϑ1,i j , ϑ2,i j and ϑ1,i j + ϑ2,i j (yellow contours represent greater
values than green contours), for the imposed displacements: a u1 = u2 = 0.65 < uc, b u1 = u2 = uc = √

3−1, c u1 = u2 = 0.8 > uc

Fig. 9 First gradient shear
energy model: indicator
angle Δϑpc and rotations
Δϑp , Δϑc for specimen 1:3
with α = 1
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The indicator angle Δϑpc also remains in this case always positive (Fig. 14a). Moreover, Fig. 15 proves that
also for any combination of the quadratic and quartic energy modes, model g1,3, the indicator angle Δϑpc does not
change signs. The black line in the plot corresponds to the values α1 = 1 and α2 = 1.

Figure 14b summarizes the force–displacement curve obtained for the first gradient models examined. Again,
the quartic energy model gives a different response than the other two.

In conclusion, for all the first gradient models considered, the distribution of the rotation is discontinuous. Only
with the shear energy model is a change in the sign of Δϑpc in the deformation for a critical displacement uc
observed.

4.2 Pure second gradient energy models

In this section we examine the results for the bias extension test in the case where the energy of the material is
completely governed by the second gradient deformation. Themodel relates to the casewhere no energy is associated
to the shear deformation between fibres, and the internal energy is completely due to the bending deformation that
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Fig. 10 First gradient quadratic energy model – relative rotation ϑ1,i j +ϑ2,i j for specimen 1:3 with α = 1 for imposed displacements:
a u1 = u2 = 0.65, b u1 = u2 = √

3 − 1, c u1 = u2 = 0.8
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Fig. 11 First gradient
quadratic energy model:
a indicator angle Δϑ and
angles Δϑp , Δϑc, b
force–displacement curve
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Fig. 12 First gradient quadratic energy model – deformed configurations for imposed displacement: a u1 = u2 = 0.65, b u1 = u2 =√
3 − 1, c u1 = u2 = 0.8

arises in them. The main effect would be to regularize the discontinuities found in the deformation of the sheet with
the first order energy models.

The rate of convergence of the square of the energy error for the second gradient model is lower than for the first
gradient model (Fig. 16), since a P0-interpolation for the rotations was used, and the second gradient deformations
were obtained using a collocation procedure. As a consequence, the accuracy level obtained in the present case is
also smaller than in the previous first gradient case. As for the two different second gradient energies g2,1 and g2,2,
the accuracy level is the same (Fig. 17).

It is well known that in second gradient models a characteristic length determines the thickness of the boundary
layer. In the presented numerical simulation, we selected a mesh size h fine enough to accurately describe this
phenomenon, i.e. much smaller than the observed boundary layer. As is clear from a comparison between Fig. 18b
and c, a coarse mesh is not able to reproduce the onset of boundary layers without significant jumps. For a detailed
discussion of the theoretical prevision of the thickness of the boundary layer in this type of structure, see [66].

4.2.1 Second gradient shear energy (S-model)

The expression g2,1 of the deformation energy is considered for this model. The plots of the relative rotations Δϑi j

for free end displacements of 0.4, 0.6 and 0.8, presented in Fig. 18a–c respectively, show that in this case the solution
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Fig. 13 First gradient quartic energy model – relative rotation, ϑ1i j + ϑ2,i j , for free end displacement u1 = u2 = 0.8

Fig. 14 First gradient
quartic energy model: a
indicator angle Δϑpc and
angles Δϑp , Δϑc, b
force–displacement curves
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does not present discontinuities in the distribution of the deformation (Fig. 19). The deformation of the long side
is not straight, and smooth transition zones appear between the different regions. A neck clearly appears in the
central part of the specimen. For values of the imposed displacement between 0.6 and 0.8, the relative rotation of
the fibres in the neck reaches a limit value of π/2, so that the width of the specimen cannot be reduced any further.
The phenomenon recalls the familiar necking in ductile plastic materials whose deformation is driven exclusively
by shear.

The latter phenomenon can also be observed from the plot of Fig. 17a, where the results of the model g2,1 are
indicated by solid thick lines. It can be observed that the relative rotation at the centre of the specimen reaches its
limit value for an end displacement around 0.7.
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Fig. 15 Quartic and
quadratic first gradient
energy models – indicator
angle Δϑpc for several
{α1, α2} constitutive
parameters {1;1}
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Fig. 16 Convergence
analysis: square of relative
energy error versus mesh
size, h, for a quadratric and
b shear energy second
gradient models
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4.2.2 Second gradient quadratic energy (Q-model)

The energy functional is given in this case by the expression g2,2. Also, in this case, there are no discontinuities
in the rotation field, but the transition is less smooth than in the previous case, as can be observed from Fig. 20,
where the scalar field Δϑi j for three values of the free end displacement is shown. With respect to the model g2,1,
smaller deformations are obtained, as can be observed in Fig. 17a, where the relative angles at points c and p for
the presented model are indicated by solid thin lines. However, even in this case, in the central part of the specimen,
the limit relative rotation Δθ = π/2 is reached (Fig. 20c), although at a value of the end displacement greater than
in the case of the energy based on the gradient of the shear.

The plot of the reaction vs. the end displacement is presented in Fig. 17b for both second gradient models.
For comparison, the results obtained for the first order models are also reported. The second gradient solution is
characterized by the same initial stiffness as the first gradient solution, but the stiffness of the specimen strongly
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Fig. 17 Pure second
gradient energy models
(with β = 1): a indicator
angles Δϑp , Δϑc and the
difference Δϑpc. (Thick
line: second gradient shear
model, thin line: second
gradient quadratic model);
b force–displacement
curves
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increases for the highest values of the displacement, while in the first gradient solution there is a sharper transition
to the asymptotic value.

4.3 First and second gradient energy models

In this subsection, combinations of the first and second gradient energy models are considered, with the aim of
analysing the influence of the second gradient regularization on the solution of the bias extension test. The following
four cases are examined:

– Model (SS): First gradient shear energy with second gradient shear energy:

FSS =
∫
B
(α g1,1 + β g2,1)dB;

– Model (QQ): First gradient quadratic energy with second gradient quadratic energy:

FQQ =
∫
B
(α g1,2 + β g2,2)dB;

– Model (SQ): First gradient shear energy with second gradient quadratic energy:

FSQ =
∫
B
(α g1,1 + β g2,2)dB;

– Model (QS): First gradient quadratic energy with second gradient shear energy:

FQS =
∫
B
(α g1,2 + β g2,1)dB.

The parameters α and β are used as weights. Notice that changing the weights but leaving their ratio constant
does not modify the deformation of the sheet for a given end displacement, only the reaction changes. Therefore,
in what follows, only the deformation obtained with the four models is investigated, while the force–displacement
relation is not reported.

The deformation of the specimen relative to the free end displacement u1 = u2 = 0.6 for model SS are shown
in Fig. 21. In each figure, six cases are considered, namely the first gradient energy model, the combinations
(α = 50, β = 1), (α = 25, β = 1), (α = 5, β = 1), (α = 1, β = 1), and the pure second gradient energy model.
In the case of model QQ the deformed configurations are qualitatively the same but for the same values of the
considered weights present a smaller necking effect with respect to model SS.
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Fig. 18 Pure second gradient shear energy model (with β = 1): relative rotations ϑ1,i j + ϑ2,i j for several imposed displacements: a
u1 = u2 = 0.4, b u1 = u2 = 0.6, c u1 = u2 = 0.8

The transition from the second gradien–dominated deformation, with a smooth continuous variation of the
rotations between the parts of the specimen characterized by different regimes, to the first gradient–dominated
deformation, with sharp discontinuities along the borders of the different regions of the specimen, is apparent in
both cases. It can be observed that the second gradient has a strong regularizing effect, the first order solution with
sharp transitions being recovered only when the weight α is at least one order of magnitude greater than β.
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Fig. 19 Pure second gradient shear energy model (with β = 1) – reference and deformed configurations for several imposed displace-
ments: a u1 = u2 = 0.4, b u1 = u2 = 0.6, c u1 = u2 = 0.8

In the following paragraphs, for the four cases considered, the rotation fields ϑ1,i j + ϑ2,i j are reported. They
are calculated for the end displacement u1 = u2 = 0.6 and for three values of the weights. The differences among
the energy models are better understood by examining the indicator angles Δϑc,Δϑp and their differences, which
relate to the deformation of the central section of the specimen, i.e. the one that presents greater differences in the
numerical experiments performed.

4.3.1 First and second gradient quadratic energy: QQ-model

Figure 22 shows the relative angle of rotation for the cases (α = 5, β = 1) and (α = 50, β = 1), enlightening the
existence of boundary layers among the regions of the specimen, whose width reduces as the weight of the first
gradient energy increases.

It is interesting to examine the plots of the indicator angles, reported in Fig. 23 grouped in three ranges: the second
gradient–dominated range, the transition range and the first gradient–dominated range. In the second gradient–
dominated range, characterized by the weights β  α, the second gradient energy predominates, so that smooth
boundary layers are observed, and the angleΔϑp at the corner of the fixed zone of the specimen is always grater than
the angleΔϑc at the centre of the specimen, that is, the centre of the specimen deforms more than the extremities, so
that the difference Δϑpc is always negative (Fig. 23a). In the transition range, the weights have comparable values
(actually α is one order of magnitude greater than β),Δθpc ≈ 0, the two angles become comparable, and there is an
inversion in the sign ofΔϑpc (Fig. 23b). In the third first gradient–dominated range, α  β, and the indicator angle
Δθpc becomes positive (Fig. 23c). In no case does the latter angle show a change of sign during the elongation.

4.3.2 First and second gradient shear energy: SS-model

Analogously to the previous case, Fig. 24 shows the rotation field Δϑi j for the same values of α and β and for
the same displacement previously considered. The solution in the proximity of the borders of the regions presents
a more regular character with respect to the previous case. That is, the shear energy appears to have a greater
regularizing effect with respect to the quadratic energy.

The indicator angles are examined in Fig. 25 for the same combination of weights used in the case of model QQ.
In this case for β > α not only is Δϑpc always negative (Fig. 25a), but in addition the angle at the centre of the
specimen Δϑc becomes zero when the end displacement is between 0.6 and 0.7, indicating that the fibres at the
centre are getting aligned. In the transition range Δϑc is still negative, even though the angle at the centre Δϑc does
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Fig. 20 Pure second gradient quadratic energy model (with β = 1) – relative rotation ϑ1,i j + ϑ2,i j for several imposed displacements:
a u1 = u2 = 0.4, b u1 = u2 = 0.6, c u1 = u2 = 0.8
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Fig. 21 Reference and deformed configurations for SS model: transition from second to first gradient energy model for imposed
displacement u1 = u2 = 0.6 for several values of constitutive parameters α and β: a α = 0, β = 1; b α = 1, β = 1; c α = 5, β = 1;
d α = 25, β = 1; e α = 50, β = 1; f α = 1, β = 0

not become zero (Fig. 25b). In the first gradient–dominated range Δϑpc first changes its sign, and then the first
order solution for which Δϑpc goes through the zero is recovered (Fig. 25c).

4.3.3 Shear first gradient energy with quadratic second gradient energy: SQ model

The rotation fields are reported in Fig. 26. The indicator angles Δϑp and Δϑc and their difference are represented
in Fig. 27a–c, analogously to what was done earlier. In this case, either in the second gradient–dominated range and
in the transition range the angle at the centre Δϑc is always smaller than Δϑp, but the difference is smaller than
in the previous case (model SS). In the first gradient–dominated range, the two angles overlap, and the difference
Δϑpc changes its sign during the evolution of the test, as was observed in model S with shear first gradient energy.
In comparison with model SS it appears, then, that the quadratic second gradient energy has less of an ability to
regularize the solution than the second gradient shear energy.

4.4 Quadratic first gradient with shear second gradient energy: QS model

The situation is similar to that of the SS model, for the second gradient–dominated range (see Fig. 28 for the values
of the rotations and Fig. 29a–c for the indicator angles). As for the second gradient shear energy model, the angle
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Fig. 22 First gradient quadratic energy with second gradient quadratic energy (QQ model) – relative rotation ϑ1,i j + ϑ2,i j for fixed
displacement u1 = u2 = 0.6 and β = 1 for the two values of α parameter: a α = 5, b α = 50
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Fig. 23 Indicator angles for QQ model: a second gradient–dominated range α = 1, β = 102; b transition range α = 50, β = 1; c first
gradient–dominated range α = 103, β = 1
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Fig. 24 First gradient shear energy with second gradient shear energy (SS model) – relative rotation ϑ1,i j + ϑ2,i j for the fixed
displacement u1 = u2 = 0.6 and β = 1 for the two values of the α-parameter: a α = 5, b α = 50
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Fig. 25 Indicator angles for SS model: a second gradient–dominated range α = 1, β = 102; b transition range α = 50, β = 1; c first
gradient–dominated range α = 1, β = 103
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Fig. 26 First gradient shear energy and second gradient quadratic energy (SQmodel) – relative rotation ϑ1,i j +ϑ2,i j for fixed displace-
ment u1 = u2 = 0.6 and β = 1 for two values of α-parameter: a α = 5, b α = 50
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Fig. 27 Indicator angles for SQ model: a second gradient–dominated range α = 1, β = 102; b transition range α = 50, β = 1; c first
gradient–dominated range α = 103, β = 1
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Fig. 28 Quadratic first gradient energy and shear second gradient energy (QS model) – relative rotation ϑ1,i j +ϑ2,i j for fixed displace-
ment u1 = u2 = 0.6 and β = 1 for two values of α-parameter: a α = 5, b α = 50

at the centre of the specimen reduces to zero for a value of u1 = u2 between 0.6 and 0.7. In the transition range,
Δϑpc is always negative and changes its sign only for the highest values of α but, contrary to the previous case,
never becomes zero during the elongation.

5 Conclusions

The deformation of a sheet of woven fabrics composed of two sets of orthogonal inextensible fibres was numerically
analysed. To intrinsically enforce the inextensibiity constraint, the rotations of the fibres were used as degrees of
freedom of the model. An intrinsic reference frame was introduced, with the axes running in the directions of
the two families of inextensible fibres. Using Pipkin’s result stating that the deformation field can be decomposed
into the sum of two functions, each one depending only on one of the intrinsic coordinates, an expression for
the boundary conditions in terms of the rotation fields was furnished. The problem was then formulated as a
constrainedminimization, with equality constraints enforcing the considered boundary conditions. A suitable piece-
wise constant interpolation of the two independent rotation fields was used.

Three classes of caseswere analysed, namelymodelswith energy depending only on the first gradient deformation
(which actually reduces to the shear between the fibres), models whose energy depends only on the second gradient
deformation, and mixed models. It was shown that the results obtained with first gradient models reproduce the
theoretical deformation field, which presents lines of discontinuity on the rotations. The energy based on a second
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Fig. 29 Indicator angles for QS model: a second gradient–dominated range α = 1, β = 102; b transition range α = 50, β = 1; c first
gradient–dominated range α = 103, β = 1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 30 Comparison of distribution of ϑi j = ϑ1i j + ϑ2i j for displacement u1 = u2 = 0.6 and β = 1 for several increasing values of
α = 5, 25 and α = 50 for the four first and second gradient energy models – QQ model: a α = 5, b α = 25, c α = 50; SS model: d
α = 5, e α = 25, f α = 50; SQ model: g α = 5, h α = 25, i α = 50; QS model: j α = 5, k α = 25, l α = 50

gradient deformation has the effect of regularizing the solution, spreading the jump in the values of the rotations
over a layer whose width depends on the model used. The regularization can be adjusted using mixed models.

The relative rotation Δϑi j = ϑ1,i j + ϑ2,i j obtained with the mixed models examined in Sect. 4.3 relative to
the free end displacement u1 = u2 = 0.6 and for three values of the weight α are compared in Fig. 30. Two
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Fig. 31 Comparison of indicator angles for several energy models: a second gradient–dominated range, b transition range, c first
gradient–dominated range

observations can be made. The transition between the different zones of the specimen becomes increasingly sharper
as the parameter α grows, that is, as the first gardient energy becomes dominant. For comparison, Fig. 26 relative
to the first gradient shear energy should be examined.

The second observation is that the various models trested mainly differ in the deformation pattern obtained in the
central zone of the specimen. As observed earlier, only in models where the first gradient shear energy dominates
is there a change in the sign of Δθpc in the plot of the rotations in the central region. This can be observed from
Fig. 31, which collects the results for the indicator angles for most of the models examined.

These observations appear to be of great relevance for the experimental characterization of the internal energy
of woven composites with a simple bias extension test. More complex cases, involving more general external
actions, a richer geometry of the reference configuration or the generalization to 3D homogenized continua formed
by inextensible fibres, will probably require suitably refined numerical tools, such as, for instance, isogeometric
analysis or enriched finite-element analysis, such as those used in [67–71] and [67,72,73].

Finally, the systematic experimental study of the considered structures is of course crucial for further progress.
Experimental studies on the subject are carried out in [74], and new comparisons of the obtained numerical results
with experimental ones will be analysed in future works.
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