
J Eng Math (2017) 103:97–110
DOI 10.1007/s10665-016-9863-9

Directional characteristics of cylindrical radiators
with an arc-shaped acoustic screen

Pouyan Shakeri Mobarakeh · Victor Grinchenko · Babak Soltannia

Received: 20 August 2015 / Accepted: 7 May 2016 / Published online: 6 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Directional sound radiation by a cylinder surrounded with an arc-shaped (open circular) acoustic screen
is examined. The corresponding boundary problem is solved with the partial domain technique. The method of
asymptotic solutions was used to verify the conditions of solving this problem using the method of simple reduction.
As a result of the analysis, the quantitative characteristics of the acoustic field of the cylindrical radiator inside the
arc-shaped screen were evaluated.
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1 Introduction

Directional radiators of sound waves are widely used in various fields, for example, acoustic imaging, biomedical
acoustics, and musical acoustics. The directivity of sound radiation is accomplished in two ways: either by phase
matching of radiators in multicomponent systems (phased arrays) or by using different screens to obtain the desired
directivity characteristics of the individual radiator.

The multifunctionality of modern radiators implies a precise control of parameters, in particular, the directional
properties of their components. The effective method of controlling the directional parameters is radiator shielding.
In this paper the problem of directional sound radiation by a cylinder surrounded by an arc-shaped (open circular)
acoustic screen made of a sound-opaque material is considered. Cylindrical radiators, primarily owing to their
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processability and good strength properties, are widely employed in hydroacoustics in the design of high-power
electroacoustic transducers and antennas, which are used in many applications [1–7].

The solution for the sound field generated by a shielded cylinder is constructed based on particular solutions of
the Helmholtz equation for the velocity potential Φ.

The number of analytical solutions to similar applied problems is quite limited. For this reason, the approaches
that extend the scope of subdomains, for which effective and instrumental solutions can be constructed for the
quantitative assessment of physical field characteristics, have been devised in the last few decades. Such approaches
include the so-called Schwarz algorithm [8–10], the T-matrix method [11], and the Shestopal method of solving the
Riemann–Hilbert problem [12]. They are based on the decomposition of complex domains into relatively simple
subdomains, for which the derived functions can be analytically represented as algebraic equations whose properties
allow the method of simple reduction to be applied. In some cases, for example, the application of the T-matrix
method, the derived solutions are valid only within a limited range of the domain geometry variation. This study
presents a problem solution that illustrates the potentials of the new method of partial domains [13] for constructing
analytical solutions for complex domains. Application of the alternative concept of the general solution opens new
horizons for using the proposed approach to a wide range of problems of mathematical physics.

2 Problem statement

We examine the characteristics of sound radiation with a cylinder surrounded by an arc-shaped circular opaque
layer with an acoustically soft surface (Fig. 1).

The harmonic wave field is described by the Helmholtz equation for the velocity potential [3,14]:

ΔΦ + k2Φ = 0, (1)

where k = ω/c, ω is the angular frequency of harmonic waves, and c is the sound velocity. The following boundary
conditions are evident from the assumption of physical layer properties:

Φ = 0; r0 ≤ r ≤ r1, |ϕ| = ϕ0;
Φ = 0; r = r1, ϕ0 ≤ |ϕ| ≤ π.

(2)

Fig. 1 Cylinder surrounded
by an arc-shaped circular
layer
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Directional characteristics of cylindrical radiators 99

Let a certain vibration velocity distribution υ0 f (ϕ) be set on the open portion of the radiator surface. This
distribution is assumed to be symmetric about the Oy axis to keep the problem from becoming too involved. Then
the condition on the radiant surface takes on the following form:

− ∂Φ

∂(kr)
= υ0 f (ϕ); r = r0, 0 ≤ |ϕ| ≤ ϕ0. (3)

For the conceptual construction of the velocity potential over the domain of field existence, take the two partial
domains (subdomains): r0 ≤ r ≤ r1, |ϕ| ≤ ϕ0 (subdomain I ) and r ≥ r1, 0 ≤ |ϕ| ≤ π (subdomain I I ).

3 Problem solution

With the preceding boundary conditions, represent the field over each of the subdomains as

Φ1 =
∞∑

q=0

[
Aq Jνq (kr) + Bq Nνq (kr)

]
cos νqϕ;

(4)

Φ2 =
∞∑

n=0

SnH
(1)
n (kr) cos nϕ.

The expression for Φ1 obeys the Helmholtz equation at an arbitrary νq value. The boundary conditions can be
partially met over subdomain I by the proper choice of this value. Thus, assuming

νq = (2q + 1)π

2ϕ0
, (5)

the first condition in (2) is satisfied at the layer edges ϕ = ±ϕ0. With such a νq choice, the solution for subdomain I
involves two arbitrary functions on the surfaces r = r0 and r = r1, with |ϕ| ≤ ϕ0 as the Fourier series with
undetermined coefficients. The Φ2 solution for exterior subdomain I I , r ≥ r1, satisfies the Sommerfeld condition
[15] and bears a sufficient degree of functional arbitrariness to satisfy the boundary conditions on the surface
r = r1, 0 ≤ ϕ ≤ 2π . These properties of the Φ1 and Φ2 expressions create the prerequisites for fulfilling boundary
conditions (2) and (3) by the appropriate choice of their arbitrary constants.

Condition (3) allows the values of the Aq and Bq coefficients to be related. Substituting the expression for Φ1

into (3), we can easily establish that

Bq = Lq − Aq J ′
νq

(kr0)

N ′
νq

(kr0)
, (6)

where

Lq = −2υ0
kϕ0

ϕ0∫

0

f (ϕ) cos νqϕ dϕ.

With (6), the expression for Φ1 is transformed into

Φ1 =
∞∑

q=0

[
AqΔq(kr) + Lq

Nνq (kr)

N ′
νq

(kr0)

]
cos νqϕ, (7)

where

Δq(kr) = Jνq (kr) − J ′
νq

(kr0)Nνq (kr)/N
′
νq

(kr0).

To determine the remaining unknowns in (4), the functional equations that combine the sound field continuity
condition at the subdomain boundary and the boundary condition on the surface r = r1 should be applied:

Φ2 =
{

Φ1 0 ≤ |ϕ| ≤ ϕ0,

0 ϕ0 ≤ |ϕ| ≤ π,
(8)

∂Φ2

∂r
= ∂Φ1

∂r
0 ≤ |ϕ| ≤ ϕ0.

123



100 P. Shakeri Mobarakeh et al.

Algebraization of functional equations (8) based on the properties of complete and orthogonal functions on the
corresponding intervals leads to the following infinite system of linear algebraic equations of the second kind:

SnH
(1)
n (kr1) − 1

δn

∞∑

q=0

AqΔq(kr1)anq = 1

δn

∞∑

q=0

anq Lq Nνq (kr1)/N
′
νq

(kr0),

AqΔ
′
q(kr1) − 1

ϕ0

∞∑

n=0

SnH
′(1)
n (kr1)anq = −Lq N

′
νq

(kr1)/N
′
νq

(kr0), (9)

where

δn =
{
2π n = 0,
π n �= 0,

anq =
⎧
⎨

⎩

2νq(−1)q+1 cos nϕ0

n2 − ν2q
n �= νq ,

ϕ0 n = νq ,

Δ′
q(kr1) is the derivative of Δq(kr) with respect to kr at r = r1.
Thus, we must seek the values of arbitrary constants from infinite system (9) entering into Eq. (4). In this

connection, the existence of the boundary problem solution is reduced to the existence proof of such a solution for
system (9), which provides the convergence of infinite series for the field components everywhere over an examined
domain.

The commonly used approach to studying the solvability of such systems is to prove their regularity [16].
Embarking on a study of the regularity of system (9), enter the new unknowns:

S̃n = SnH
′(1)
n (kr1), Ãq = AqΔq(kr1). (10)

With this, initial system (9) is transformed into

S̃n
H (1)
n (kr1)

H ′(1)
n (kr1)

− 1

δn

∞∑

q=0

Ãqanq = 1

δn

∞∑

q=0

Lqanq Nνq (kr1)/N
′
νq

(kr0),

Ãq
Δ′

q(kr1)

Δq(kr1)
− 1

ϕ0

∞∑

n=0

S̃nanq = −Lq N
′
νq

(kr1)/N
′
νq

(kr0). (11)

The complex functional dependence of the coefficients on their number in system (11) makes the analysis of its
regularity more difficult. We now need to focus on the proof of the system’s quasi-regularity. In this case, it is
permissible to simplify the matrix elements of the latter through the use of known asymptotic representations of the
Bessel, Neumann, and Hankel functions taken as the functions of orders n and νq . Based on those representations
[17], we get

H (1)
n (kr1)

H ′(1)
n (kr1)

= kr1
n

,
Δ′

q(kr1)

Δq(kr1)
= νq

kr1
,

N ′
νq

(kr1)

N ′
νq

(kr0)
=

(
r0
r1

)νq+1

, n, νq � 1. (12)

With (12), the following infinite system is found, which is equivalent to initial system (11) in terms of its solvability:

S̃(1)
n − 2n cos2 nϕ0

π

∞∑

q=0

A(1)
q

1

n2 − ν2q
= 2n cos2 nϕ0

πkr1

∞∑

q=0

Lqanq Nνq (kr1)/N
′
νq

(kr0),

Ã(1)
q − 2νq

ϕ0

∞∑

n=0

S̃(1)
n

1

n2 − ν2q
= −Lq

(
r0
r1

)νq+1

, (13)

where

Ã(1)
q = Ãq

(−1)q+1νq

kr1
, S̃(1)

n = S̃n cos nϕ0.
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Directional characteristics of cylindrical radiators 101

Since the coefficients 1/(n2 − ν2q ) change their sign in each line of system (13), further analysis of the latter is

quite difficult. Therefore, we proceed as follows: substitute the Ã(1)
q value obtained from the second equation of

system (13) into the first one and determine S̃(1)
n ,

S̃(1)
n = 4n cos2 nϕ0

π

∞∑

g=1

S̃(1)
g ang + bn , (14)

where

ang = 1

ϕ0

∞∑

q=0

νq(
n2 − ν2q

)(
g2 − ν2q

) .

The direct verification of fulfilling the quasi-regularity conditions of system (14) for arbitrary ϕ0 values seems
difficult. Therefore, we shall restrict our consideration to the specific, most unfavorable case, where ϕ0 = π . Then
the coefficients ang take on the form

ang = 1

π

∞∑

q=0

q + 1/2[
(q + 1/2)2 − n2

][
(q + 1/2)2 − g2

] . (15)

The general term of infinite series (15) can be represented by the following integral:

q + 1/2[
(q + 1/2)2 − n2

][
(q + 1/2)2 − g2

] = 1

n2 − g2

∞∫

0

[cosh(nt) − cosh(gt)]e−(q+1/2)tdt . (16)

Thus, we succeed in convolving the infinite series in the expression for ang and represent the coefficients of infinite
system (14) as

ang = 1

π(n2 − g2)

∞∫

0

[cosh(nt) − cosh(gt)]
∞∑

q=0

e−(q+1/2)tdt

= 1

2π(n2 − g2)

∞∫

0

sinh−1(t/2)[cosh(nt) − cosh(gt)]dt. (17)

In accordance with known relations [18], the improper integrals in this expressionmay be represented via the special
functions. Then we get

ang = 1

π(n2 − g2)
[ψ(n + 1/2) − ψ(g + 1/2)], (18)

where ψ(n + 1/2) and ψ(g + 1/2) are the psi functions.
The psi functions [18,19] were established to bear a constant sign. This significantly simplifies the computation

of the sum of coefficient modules in system (14). With studies on quasi-regularity, for ang the following asymptotic
equation may be applied:

ang = 1

π

[
ln(n/g)

n2 − g2
− B2

4n2g2

]
, g ≥ G, (19)

which renders their value negligible as 1/n4 approaches unity. Here, B2 is the Bernoulli number. G is a value of g
beginning from which the asymptotic expressions may be already used for the system coefficients. To derive (19),
the duplication formula and the asymptotic expansion for the psi function [19] were used.

With regard to (19), to study the quasi-regularity of (14) we have the following estimate:

Fn = 4n

π2

∞∑

g=G

ang ≤ 4n

π2

∞∑

g=G

[
ln(n/g)

n2 − g2
− B2

4n2g2

]
+ O

(
1

n4

)
. (20)
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For large n values, the sum of series (20) can be calculated using the methods of summability [20]. With this

∞∑

g=G

ln(n/g)

n2 − g2
< −1

n

∞∫

0

ln(n/g)

1 − (n/g)2
d(n/g)

for large g values, the following estimate is assumed:

Fn ≤ 1 − 1

36n
= 1 − Q(n). (21)

Thus, system (14) is quasi-regular. The existence of the bounded solution is now reduced to a comparison of
descending orders of the function Q(n) and free terms in (14). Behavioral analysis of the free terms in (14) shows
that they decrease as 1/n2, i.e., more rapidly than the function Q(n) in (21). It is indicative of the possibility of
applying the method of simple reduction for finding the approximate solution of (14) and, thus, system (11).

Based on the existence of the bounded solution for system (11), it can be demonstrated that the infinite series in
(4) and corresponding series for the vibration velocity converge in all the points of partial domains. This suggests
the existence of the boundary problem solution in the adopted form. Nevertheless, in terms of actually finding the
solution and further interpreting quantitatively the general formulas for the physical values that characterize the
field, the regularity of the infinite system practically has little to offer. More comprehensive information on the
potentials of the approach to the solution of boundary problems in complex domains can be gained from an analysis
of the examined physical fields. In this connection, we analyze briefly the stages of solving the problem of cylinder
sound radiation through an arc-shaped layer that preceded the derivation of infinite system (11).

To arrive at an unambiguous solution of the examined problem, the following conditions should be fulfilled: (1)
boundary conditions on the cylinder and layer surfaces, (2) continuity conditions for the field components at the
interface of partial domains, (3) radiation conditions at infinity, and (4) quite specific type of the vibration velocity
in approaching the angular points (edges).

With respect to meeting the boundary conditions, νq can be uniquely determined and Aq and Bq values be
related. The requirement of satisfying the radiation condition at infinity specified the form of radial functions in the
expression for Φ2. The satisfaction of mean-square continuity conditions resulted in an infinite system of algebraic
equations for the coefficients of infinite series in Φ1 and Φ2.

This analysis makes it clear that the fourth condition has not been explicitly applied anywhere.
With the preceding method of representing the sound field, the existence of solutions with different vibration

velocity singularities in the angular points may lead to the existence of several solutions for infinite system (11). In
this case, the algorithm for reducing the infinite system to a finite one should offer the finding of a desired solution,
i.e., one that is consistent with physically valid velocity field characteristics in the angular points.

A knowledge of the sound field characteristics near the angular points allows us to apply a theorem known in
Fourier series theory [21]: if f (x) = ∑∞

n=0 an cos nx and f (x) ∼ 1/xα(x → 0), then an ∼ 1/n1−α(n → ∞).
Just this allows for significant improvement in the procedure for solving infinite systems.

In the vicinity of the right angle formed by the surface r = r1 and plane ϕ = ϕ0, the vibration velocity exhibits
a singularity of the 1/r̃1/3 type, where r̃ is the distance from the angle vertex. In this connection, the distribution of
the radial vibration velocity component over the surface r = r1 can be given as

υr (ϕ) =

⎧
⎪⎨

⎪⎩

−ks

(cosϕ − cosϕ0)1/3
+ υ1(ϕ) 0 ≤ ϕ ≤ ϕ0,

− ks

(cosϕ0 − cosϕ)1/3
+ υ2(ϕ) ϕ0 ≤ ϕ ≤ π,

(22)

where s is a certain constant, and υ1(ϕ) and υ2(ϕ) are regular functions. The principal terms in (22) examined on
the complete interval 0 ≤ ϕ ≤ π can be expressed as the Fourier series

υr (ϕ) =
∞∑

n=0

an cos nϕ. (23)
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Directional characteristics of cylindrical radiators 103

Thus, the principal, slowest decreasing part of the coefficients an is defined as

ãn = 2

π

ϕ0∫

0

ks cos nϕ

(cosϕ − cosϕ0)
1/3 dϕ + 2

π

π∫

ϕ0

ks cos nϕ

(cosϕ0 − cosϕ)1/3
dϕ. (24)

With the integral representations for the Legendre functions of the first and second kinds [22], it is easy to show
that

ãn = ks

[
P−1/6
n−1/2(cosϕ0) + 2

π

(n + 1/3)

(n + 2/3)
Q1/6

n−1/2(cosϕ0)

]
. (25)

The asymptotic representations of the Legendre functions for large indices [17,22] allow us to obtain the following
asymptotic estimates for the coefficients of series (23):

ãn = A
cos nϕ0

n2/3
, n � 1. (26)

Based on the foregoing reasoning, one notices that relation (26) defines behavior with growth in a number of the
unknowns S̃n in system (11). If one makes use of only the first part of the expression (which corresponds to
0 ≤ ϕ ≤ ϕ0) for υr (ϕ) in (22) and develops it as series in the complete system of the functions cos νqϕ on the
interval 0 ≤ ϕ ≤ ϕ0, then the estimate of the asymptotic behavior of the unknowns Ãq in system (11) can be
obtained:

Ã(0)
q = B

(−1)q+1

ν
5/3
q

, q � 1. (27)

Relations (26) and (27) define the assumed asymptotic properties of the unknowns in system (11), which were
obtained from the analysis of the edge conditions necessary for the existence of the unique solution to the boundary
problem. To support the existence of such a solution of infinite system (11), the consistency of asymptotic estimates
(26) and (27) can be verified with the same relations of the infinite system.

From the properties of the unknowns Ãq , determine the asymptotic properties S̃n . At large n indices from the
first equation of system (11), the following representation takes place:

S̃(0)
n

kr1
n

= 1

π

∞∑

q=0

Ãqanq + O(n−2), n � 1. (28)

Estimate the sum in the latter expression,

J = 1

π

∞∑

q=0

Ãqanq = 1

π

∞∑

q=0

Ã(0)
q anq + 1

π

⎡

⎣
Q−1∑

q=0

Ãqanq −
Q−1∑

q=0

Ã(0)
q anq

⎤

⎦

= 1

π

∞∑

q=0

Ã(0)
q anq + O(n−2), (29)

where Q is the minimum value of index q, for which the substitution of the Bessel and Neumann functions with
their asymptotic representations is held valid, and Ã(0)

q is the asymptotic value of the coefficients Ãq at q � 1.
With (27), we get

J = B cos nϕ0

∞∑

q=0

1

ν
2/3
q

(
n2 − ν2q

) . (30)

The sum in this expression can easily be estimated with the method of summability of infinite series [20]:

∞∑

q=0

1

ν
2/3
q (n2 − ν2q )

≤ ϕ0

πn5/3

∞∫

0

dx

x2/3(1 − x2)
= ϕ0

πn5/3
· π

2
cot

π

6
= ϕ0

√
3

2n5/3
. (31)
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Thus, with an accuracy to O(n−5/3), we have

J = B
ϕ0

√
3

2

cos nϕ0

n5/3
. (32)

With estimates (32) from (28), we finally obtain

S̃(0)
n = B

ϕ0
√
3

2kr1

cos nϕ0

n2/3
. (33)

The second relation in system (11) used for similar calculations permits of establishing the total consistency of
estimates (26) and (27), derived from general considerations, with the properties of the coefficients in system (11).

The solution algorithm for system (11) should ensure such a solution whose asymptotic properties are determined
by relations (26) and (27). In this connection, for the finite system with the N and Q unknowns, we assume

S̃n = S̃N
cos nϕ0

cos Nϕ0
, n � N ,

Ãq = ÃN

(
νQ

νq

)5/3

(−1)q−Q, q � Q. (34)

With relations (34), system (11) can be put in the form

S̃n
H (1)
n (kr1)

H̃ ′(1)
n (kr1)

− 1

δn

Q−1∑

q=0

Ãqanq − ÃQ

δn

∞∑

q=Q

(
νQ

νq

)5/3

anq = 1

δn

∞∑

q=0

Lqanq
Nνq (kr1)

N ′
νq

(kr1)
,

Ãq
Δ′

q(kr1)

Δq(kr1)
− 1

ϕ0

N−1∑

n=0

S̃nanq − S̃N
ϕ0

∞∑

n=N

(
N

n

)2/3
cos nϕ0

cos Nϕ0
anq = Lq

N ′
νq

(kr1)

N ′
νq

(kr0)
. (35)

The foregoing data on a decrease in the coefficients of infinite series, which represent the sound fields in the partial
domains, can be used to estimate the rates of their convergence. Thus, to study the characteristics of the far-zone
field, one should apparently proceed from the following representation:

Φ2 ≈ Φ0

∞∑

n=0

S̄n cos nϕ Φ0 =
(

2

πkr1

)1/2

ei(kr−π/4). (36)

With (26), we find for S̄n

S̄n ≈ const
(kr1)n cos nϕ0einπ/2

n2/3(n − 1)! , n � 1. (37)

The Fourier series (36) with the coefficients S̄n for the cylinder with a surrounding layer of not very large diameter-
to-wavelength ratios converges very fast. This suggests that for a quantitative description of the far-zone field it
would be sufficient to know the values of several first coefficients S̄n . A similar estimation can be performed for
the near-zone field. With Eqs. (7) and (10), the velocity potential over domain I is given by the following series:

Φ1 =
∞∑

q=0

[
Aq

Δq(kr)

Δq(kr1)
+ Lq

Nνq (kr)

N ′
νq

(kr0)

]
cos νqϕ. (38)

Based on the asymptotic properties of the coefficients Ãq (27), we notice that the convergence of series (38) at
r = r0 is the same as that of the Fourier series with the coefficients

2

π

(−1)q+1

ν
5/3
q

(
r0
r1

)νq

+ (−1)q+1kr0
ν2q

. (39)
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Directional characteristics of cylindrical radiators 105

The analysis of convergence of infinite series shows that for quantitative estimation of engineering characteristics
of a sound field, one need only have knowledge of several first coefficients in corresponding series. This is evidence
that in a number of cases, system (11) can be solved with the method of simple reduction. The potentials of
such an approach are corroborated by the additional quantitative data given in what follows. Noteworthy is that the
application of the preceding method is acceptable if the following conditions are fulfilled: (1) with an increase in the
number of unknowns in system (11), its solution would tend to that of a system with required asymptotic properties;
(2) values of the unknowns with small numbers would be determined quite accurately with a comparatively small
number of equations in a system obtained by the reduction of system (11). These conditions can be verified by
comparing the solution results of system (11), gained by simple reduction, and of system (35), constructed with the
asymptotic properties of unknowns (improved reduction method).

4 Results and discussion

4.1 Computational results

Table 1 lists several S̃n values computed at N = 6 and Q = 6 with the assumption of kr0 = 1.6, kr1 = 2.89,
ϕ0 = π/2, and f (ϕ) = 1. The second column of Table 1 corresponds to the method of the simple reduction of
system (11), and the third one contains the result for system (35), obtained using the improved reduction method.

The data in Table 1 are evidence in favor of the following assertions. First, the method of simple reduction used
for finding the unknowns in system (11) actually gives the solution with their asymptotic properties corresponding
to the essentials of the problem. Second, for deriving reliable values of several first unknowns, it suffices to consider
a system holding about twice as many unknowns as those necessary for obtaining quantitative estimates of the field
characteristics. The latter assertion is also corroborated by computational results for different geometric and wave
parameters of a cylindrical radiator with an arc-shaped layer, as well as by data available in the literature [23,24].

Thus, the analysis gives grounds for inferring that the far-zone field and radiation impedance can be evaluated to
a good approximation from the solution results of infinite system (11) obtained by the method of simple reduction.
However, to study the local field characteristics, especially on the surface r = r1, where the series defining pressure
and vibration velocity feature the slowest convergence, system (35) is used, employing knownmethods of improving
the convergence of Fourier series [16].

Table 1 Computed S̃n
values obtained using
simple and improved
reduction methods

n S̃n

Simple reduction Improved reduction

0 −1.397148 × 10−1 + i 4.193470 × 10−2 −1.379932 × 10−1 + i 4.343100 × 10−2

1 −3.615388 × 10−2 + i 2.376839 × 10−1 −3.345683 × 10−2 − i 2.346520 × 10−1

2 −1.397027 × 10−1 − i 3.035603 × 10−2 −1.410888 × 10−1 − i 2.456649 × 10−2

3 −5.670435 × 10−4 + i 2.611376 × 10−2 −5.770254 × 10−4 + i 2.671194 × 10−2

4 −2.328268 × 10−2 + i 4.271593 × 10−3 −2.000019 × 10−2 + i 4.205960 × 10−3

5 −3.206226 × 10−5 − i 3.395070 × 10−3 −3.404527 × 10−6 − i 3.342761 × 10−3

6 −1.540533 × 10−2 + i 3.235455 × 10−3 −1.650261 × 10−2 + i 7.595264 × 10−3

7 −7.250446 × 10−8 + i 7.387453 × 10−4 −6.120918 × 10−7 + i 7.417587 × 10−4

8 −1.115143 × 10−2 − i 6.101197 × 10−3 −6.327824 × 10−3 − i 8.438423 × 10−4

9 −2.862725 × 10−7 − i 1.719243 × 10−4 −1.085472 × 10−6 − i 1.706887 × 10−4

10 −8.814035 × 10−3 + i 7.677106 × 10−3 −1.392445 × 10−2 + i 2.575785 × 10−2

11 −1.021961 × 10−7 + i 4.224494 × 10−5 −5.933418 × 10−8 + i 4.245868 × 10−5
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4.2 Directional characteristics and radiation impedance of a cylinder surrounded by an arc-shaped circular layer

The computational results from the previous section allow us to proceed with a study of the quantitative character-
istics of the sound field of a cylindrical radiator surrounded by an arc-shaped circular layer. Our prime interest is
with the far-zone field of the radiator, which is conveniently characterized by the directional pattern and directivity
[25]. The normalized directional pattern R(ϕ) can easily be plotted on the basis of relation (4) defining the external
field of the radiator, applying the asymptotic representation of the Hankel function for the large argument values:

R(ϕ) =
∑N

n=0 Sne
inπ/2 cos nϕ

∑N
n=0 Sne

inπ/2 cos nϕ1
, (40)

where N is dependent on the order of an actually solved finite system, and ϕ1 is the direction relative to which
normalization is done (hereinafter ϕ1 = 0).

In the strict sense, the directivity for the plane problem cannot be determined. Nevertheless, the value

K = π

⎡

⎣
π∫

0

R2(ϕ)dϕ

⎤

⎦
−1

(41)

can be used; it is treated in [25] as the directivity per unit height of the cylindrical radiator and, in fact, characterizes
the directional action only in the plane normal to its longitudinal axis.

Far- and near-zone field characteristics will be examined with the numerical solution of system (11). The order
of truncation of this system was chosen on the basis of the foregoing analysis of series convergence.

For the data given in what follows, the number of unknowns Sn was 12, and that of the unknowns Aq was defined
from the condition νq ≈ 12. In all the calculations, the vibration velocity was assumed to be uniformly distributed
over the cylinder surface, i.e., f (ϕ) = const.

Giving a general idea of the angular distribution of sound energy radiated by the cylinder in the far-zone field,
one notices that it exhibits a clearly defined nonuniformity. The directional patterns for several angle ϕ0 values are
shown in Fig. 2. As is seen, most of the sound energy is radiated to the front half-space |ϕ| ≤ π/2, while only a
small amount of energy falls on the rear one.

The directional properties of an examined radiator will be further analyzed in more detail. The width of the
main directional lobe ϕ0,7, determined from a 0.7 level, versus the maximum value R(ϕ) and the directivity K
versus angle 2ϕ0 plots are given in Fig. 3. As follows from those data, at a relatively large thickness-to-wavelength
ratio of the layer, there is a certain angle ϕ0 such that the major lobe width is at a minimum, while the directivity
is at its maximum. These patterns are attributable to the following reasons. At sufficiently minor ϕ0, the aperture

Fig. 2 Directional patterns for kr0 = 4.52 and kr1 = 6.9; curves 1, 2, 3, and 4 correspond to ϕ0 = π/6, π/4, π/3, and π/2, respectively
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Fig. 3 Width of major a directional lobe and b directivity versus angle 2ϕ0 for kr0 = 2.26; curves 1, 2, 3, and 4 correspond to
kr1 = 2.89, 4.14, 6.18, and 14.82, respectively; curve 5 corresponds to the case (r1 − r0)/λ ≤ 0.1

Fig. 4 Values a ϕ0.7 and b K versus frequency response curves for r1/r0 = 1.8; curves 1, 2, and 3 correspond to angles ϕ0 = π/4,
π/3, and π/2

diameter-to-wavelength ratio (by aperture is meant the distance between the points r = r1, ϕ = ±ϕ0) is small,
which dictates a high ϕ0.7 value and a low K value.With an increase in ϕ0, the aperture/wavelength ratio and radiator
directionality grow, which appears as a decrease in ϕ0.7 and an increase in K . However, this process continues up to
a certain limit where phase distortions caused by the cylindrical wave front in the aperture reach a significant value.
This process alone retards a further narrowing of the major lobe, and at sufficiently large values even reverses, viz.
the major lobe starts to widen again and, in some cases, bifurcate (e.g., curve 4 in Fig. 2). It may be expected that a
decrease in the layer thickness-to-wavelength ratio (at a fixed kr0 value) should give rise to a certain stabilization
of the radiator directional properties. Actually, the calculations demonstrate that in the (r1 − r0)/λ ≤ 0.1 range,
either the directional pattern or the directivity does not practically change (curve 5 in Fig. 3b).

Here, we dwell on the relations between the major characteristics of a cylindrical radiator with an arc-shaped
circular layer and frequency response. A set of ϕ0.7 and K versus frequency curves at different ϕ0 values is presented
in Fig. 4. These data reveal the existence of angles such thatϕ0.7 and K values are practically frequency-independent.
Thus, an examined radiator with certain geometrical parameters features the retention of the directional lobe position
over a rather wide frequency band.

It is worth noting the limiting case where ϕ0 = π and the circular layer degenerates into a belt whose thickness
tends to zero. In this case, the effective radiation of sound energy occurs over a wide range of angles (approximately
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Fig. 5 Directional patterns for ϕ0 = π and kr1 = 6.18; curves 1, 2, and 3 correspond to kr0 = 1.57, 2.26, and 3.14

from 0◦ to 120◦), and only in the range of larger angles does the field intensity start to decrease rapidly. Several
typical directional patterns are shown in Fig. 5. These data clearly demonstrate the form of the directional pattern
for the aforementioned specific case, as well as the efficiency of the belt shape in the suppression of the rear-side
cylinder radiation (back lobe). In hydroacoustics, radiations with such directional properties are usually termed
radiators with a sector-shaped pattern, which find extensive practical applications [25].

We now turn to the analysis of radiation impedance characteristics of a cylinder in the arc-shaped circular layer.
With the general definition of radiation impedance and the expression for the sound field in subdomain I , the
radiation impedance per unit height of the cylinder can be presented in the following form, conventionally used in
acoustics:

Z = ρcS̄(R + iX), (42)

where S̄ = 2r0ϕ0 is the radiant surface area of the radiator per unit height,

R = 1

πr0

∞∑

q=0

Im(Aq)
Lq

N ′
νq

(kr0)
,

X = − 1

2r0

∞∑

q=0

[
2

π
Re(Aq) + r0Lq Nνq (kr0)

]
Lq

N ′
νq

(kr0)
.

The frequency dependence of radiation impedance components at different ϕ0 angles is plotted in Fig. 6. Ana-
lyzing the frequency-dependent run of the curves, the following effects may be pointed out: with a decrease in
the angle ϕ0, the impedance components reach relatively large values at high kr0 values, while R and X values
within the extreme curve sections increase with a decrease in the ϕ0 angle and growth of r1/r0. The r1/r0 effect
was evaluated by comparing the data (Fig. 6) and calculation results for r1/r0 = 1.1. In this case, the slope of the
curves characterising the R variation with kr0 growth declines with a decrease in the general level of the radiant
system reactivity.

Thus, the cylinder in an arc-shaped circular layer can effectively radiate sound energy only at certain frequencies
depending on the ϕ0 value. Below those frequencies, it quickly decreases in efficiency, with the rate of this decrease
being determined by the r1/r0 ratio.

Assuming r1 → ∞, we arrive at the case [26] of studying the radiation impedance of a cylinder mounted on
an infinite fluid wedge with acoustically soft edges. This is equivalent to the case of the infinite thickness of an
arc-shaped circular layer. Comparing the results [26] and the data (Fig. 6), it may be inferred that R and X values
in both cases coincide within graphical accuracy.
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Fig. 6 Radiation impedance of cylinder within arc-shaped layer for r1/r0 = 2.5; panels a and b show real and imaginary parts,
respectively; curves 1, 2, 3, and 4 correspond to ϕ0 = π/2, π/4, π/6, and π/8, respectively

5 Conclusions

Based on the foregoing analysis, the following conclusions can be drawn.

1. An acoustically soft arc-shaped layer makes it possible to effectively control the directional characteristics of a
cylindrical radiator and its directivity. The proper choice of layer parameters can stabilize the directional pattern
over a certain frequency range, i.e., provide a required frequency response of the radiator. At r1/r0 ≥ 2.5, the
diffraction effects caused by the finite layer thickness do not significantly affect the impedance.

2. The results give insight into the major characteristics of cylindrical radiators with arc-shaped circular screens,
which can be instrumental in the design of sonar antennas and other acoustic equipment.
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