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Abstract Convective instability in a thin layer of a magnetic nanofluid heated from below is examined within
the framework of linear stability theory. Recent results, in particular those of Blums et al. (J Phys 20:1–5, 2008),
have shown the importance of the dependence of the thermophysical properties of magnetic nanofluids on an
externally applied magnetic field while studying thermomagnetic convection in a magnetic nanofluid. The model
used incorporates the effect of Brownian diffusion, thermophoresis, and magnetophoresis. In addition, we assume
that the viscosity of the magnetic nanofluid is a function of the externally applied magnetic field. The resulting
eigenvalue problem from the linear stability analysis is solved by employing the Chebyshev pseudospectral method,
and the results are discussed for water- and ester-based magnetic nanofluids. A “tight coupling” between buoyancy
and magnetic forces has been observed in magnetic nanofluids. The effects of the important parameters of the
problem are examined at the onset of convection.
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Mathematics Subject Classification 76E06 · 76W99 · 80A20

1 Introduction

Nanofluids are usually defined as fluids in which large numbers of small ferromagnetic particles having dimension
of the order of 10−9m are dispersed. These particles are known as nanoparticles, and the fluid in which the particles
are dispersed is called the base fluid. The term nanofluid in its present usage was apparently coined by Choi [1].
Water or any other organic solvent can be used as a base fluid [2]. The particles used in nanofluids are usually
made up of metals, oxides, or carbon nanotubes. Recently, the interest in nanofluids has been revived for two
reasons: first, they have become sufficiently cheap; second, large numbers of potential practical applications of
nanofluids have been discovered [3]. Nanofluids possess a large number of interesting characteristic properties, and
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principal among them are an increase in the effective thermal conductivity and heat transfer enhancement. In [4]
Eastman et al. reported a 40% increase in the effective thermal conductivity in ethylene-glycol-based nanofluids.
In alumina-water-based nanofluids, an enhancement of 10–30% effective thermal conductivity was reported in [5].

Heat transfer enhancement by nanofluids, as expected, has attracted the attention of many researchers. Motivated
to find an explanation for the anomalous heat transfer enhancement observed in nanofluids, Buongiorno [3] proposed
amodel taking into account the effects ofBrownian diffusion (randomdiffusion of nanoparticles in the base fluid) and
thermophoresis (motion of nanoparticles induced by a temperature gradient). He then observed that the anomalous
heat transfer enhancement could not be attributed solely to nanoparticle dispersion and turbulent intensity. An
alternative explanation for the increase of the heat transfer coefficient proposed by Buongiorno was that a significant
decrease in the viscosity results within the boundary layer owing to the temperature gradient and thermophoresis,
which leads to heat transfer enhancement. The sameproblem for the laminar free convection ofNewtonian nanofluids
was studied by Polidori et al. [6]. The Nusselt number (a dimensionless heat transfer coefficient) remains higher in
the turbulent regime than in the laminar regime. Thus one is led to conclude that an increase in the Nusselt number
in the turbulent regime could be one possible source of heat transfer enhancement. Another possible reason for
anomalous heat transfer could be that Brownian motion and thermophoresis are considered to be two fundamental
reasons for the free movement of nanoparticles in the base fluid. Natural convection, therefore, seems to be another
possible source of enhancement of effective thermal conductivity because of the free movement of nanoparticles in
base fluid [3,7].

Most nanofluid properties are volume-fraction dependent (e.g., thermal conductivity). In [7] Tzou studied the
critical Rayleigh number, which separates the laminar regime from the turbulent regime, for the onset of Rayleigh–
Bénard instability in nanofluids, assuming the nanofluid properties are not dependent on the volume fraction of
nanoparticles. In the absence of such a dependence, he reported a significant reduction in the critical Rayleigh
number and thus the “dominance of turbulence.” The collective effect of Brownian motion and thermophoresis was
shown to advance the onset of convection. Since the Nusselt number can be higher than that in laminar flows, the
overall heat transfer rate can be higher in a turbulent regime than that in a regular laminar fluid. Using a Galerkin
method, Dhananjay et al. [8] studied Rayleigh–Bénard convection in nanofluidswhen both boundaries are free. They
also addressed the oscillatory case that had beenmissed earlier by Tzou [7,9]. The onset of convection in a horizontal
nanofluid layer of finite depth was studied by Nield and Kuznetsov [2]. They observed that the critical Rayleigh
number decreased by a substantial amount if the basic nanoparticle distribution was top-heavy, and increased if the
basic nanoparticle distribution was bottom-heavy, by the presence of nanoparticles. In the case where nanoparticles
amass near the bottom of the nanofluid layer, oscillatory instability was observed to be possible. The instability of
nanofluids in a shallow cavity heated from below was studied by Alloui et al. [10]. Both analytical and numerical
studies were conducted. Among other things, they observed that heat transfer enhancement in nanofluids depended
on the Rayleigh number and the volume fraction of the nanofluid.

Magnetic nanofluids (MNFs) are nanofluids placed in an ambient magnetic field. MNFs comprise a distinctive
class of nanofluids that display both magnetic and fluid properties. This dual character of MNFs offers the prospect
of controlling their flow and heat transfer properties via an externally applied magnetic field [11]. MNFs find
applications in fields such as liquid seals in rotatory shafts for vacuum systems, hard-disk devices of personal
computers, and the cooling and damping of loudspeakers, to name few.

The magnetic susceptibility of MNFs is a function of temperature; thus, the temperature gradient induces spatial
gradients in magnetic susceptibility. Convection induced by these two gradients is known as thermomagnetic
convection [11]. Finlayson [12] studied the instability in a ferrofluid layer heated from below. The linear stability
problem was solved for shear–free and rigid–rigid boundaries. The results predicted that convection could also
be driven by the magnetic forces alone, in the absence of gravity. Using a Galerkin method Gotoh and Yamada
[13] investigated the linear instability in a horizontal magnetic fluid layer confined between two ferromagnetic
boundaries and heated from below in an ambient vertical magnetic field. They obtained a relation between the
critical Rayleigh number Rac and magnetic number N , from which they deduced that Rac decreases as N increases.
They further concluded that the effects of magnetic force and buoyancy compensate each other. For more on the
convective instability problem and related heat transfer aspects, see [14–16] and references therein.
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Effects of magnetic field dependent viscosity 203

The problem of analyzing the instability ofMNFs has been studied less extensively than the analogous problem of
nanofluid convection. Using nonlinear stability analysis, Sunil and Mahajan [17] analyzed instability in a ferrofluid
layer heated from below. Mahajan and Arora [18] investigated the effects of rotation at the onset of convection in a
thin layer of a MNF using linear theory. The model used by them incorporated the effects of Brownian diffusion,
thermophoresis, and magnetophoresis. They observed that magnetic forces dominate the buoyancy force in 1mm
thick fluid layers. For more studies related to thermomagnetic convection in MNF, the reader is referred to [19–22].

The heat transfer intensity of MNFs is characterized by the Rayleigh number Ra, which is the sum of thermo-
magnetic and thermogravitational parts, Ra = Ram + RaT. Thus the intensity of thermomagnetic convection in
general and the efficiency of devices made from MNFs in particular depend not only on magnetic and temperature
field distributions but also on the thermophysical properties of MNFs and the extent of the dependence of magne-
tization on temperature [11]. Some previous works ignored the effects of a magnetic field on the thermophysical
properties of MNFs. Recent studies have highlighted this dependence. The results of the study by Blum et al. [19]
have confirmed the so-called additive action of thermogravitation and thermomagnetic forces on the heat transfer
capacity of ferrofluids. Thus it is important to take into account the dependence of thermophysical properties of
MNFs on externally applied magnetic fields while studying thermomagnetic convection in MNFs.

In this work, the effects of magnetic-field-dependent (MFD) viscosity on the onset of convection in MNFs are
studied using linear stability theory. The Chebyshev pseudospectral method is used to solve the eigenvalue problem
in gravity as well as in a microgravity environment for water- and ester-based MNFs.

2 Formulation

We consider an infinite horizontal layer of an incompressible MNF having a variable viscosity μ1 = μ(1 + δ · B)

and heated from below. Here μ1 is the MFD viscosity, μ is the viscosity of the fluid in the absence of an applied
magnetic field, B is the magnetic induction, and δ = δ1i+ δ2j+ δ3k is the variation coefficient of viscosity, which
we assume to be isotropic, i.e., δ1 = δ2 = δ3 = δ. The fluid is assumed to occupy the layer z ∈ [0, d], with gravity,
g, acting in the negative z-direction. The magnetic field H = H ext

0 k acts outside the layer (Fig. 1).
The MNF is assumed to be incompressible, so the equation of continuity gives

∇ · u = 0, (1)

where u is the MNF velocity.

Fig. 1 Geometric configuration of problem
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Following [3,12], the equation of momentum, under the Boussinesq approximation, is given by the following
equation

ρ f

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ1∇2u + μ0(M · ∇)H − ρgk, (2)

where ρ f , t, p,M, μ0, and φ are the fluid density, time, pressure, magnetization, magnetic permeability of the
vacuum, and nanoparticle volume fraction, respectively. Here ρ is the total density of the nanofluid, which we
assume to be given by

ρ = ρpφ + ρ f (1 − φ){1 − α(T − Tc)},
where ρp is the nanoparticle density, T − Tc is the temperature difference, and α is the coefficient of thermal
expansion.

When thermophoresis is taken into account, the conservation equation for the MNF, in the absence of chemical
reactions, takes the form [3,23]

∂φ

∂t
+ u · ∇φ = − 1

ρp
∇ · j p, (3)

where j p is the mass flux for theMNF, given by the sum of “diffusiophoresis,” thermophoresis, and “magnetophore-
sis” as

j p = j pB + j pT + j pM = −ρpDB∇φ − ρpDT
∇T

T
+ ρpDH∇H, (4)

where DB is the Brownian diffusion coefficient, DT is the thermophoretic diffusion coefficient, and DH is the
magnetophoretic diffusion coefficient. Using Eq. (4), the conservation equation for MNF (3) becomes

∂φ

∂t
+ u · ∇φ = ∇ ·

(
DB∇φ + DT

∇T

T
− DH∇H

)
. (5)

The thermal energy equation for the MNF can be written

(ρc) f

(
∂T

∂t
+ u · ∇T

)
= −∇ · V + h p∇ · j p, (6)

where cf is the MNF specific heat, T is the MNF temperature, h p is the specific enthalpy of the MNF material, and
V is the energy flux with respect to a frame moving with the MNF velocity u, is given by the following equation

V = −k1∇T + h pj p.

Here k1 is the MNF thermal conductivity. Substituting the preceding expression for V into Eq. (6) and using the
vector identity ∇h p = cp∇T , we get

(ρc) f

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k1∇T ) + ρpcp

(
DB∇T · ∇φ + DT

∇T · ∇T

T
− DH∇T · ∇H

)
, (7)

where cp is the specific heat of the nanoparticle material.
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Maxwell’s equations in the magnetostatic limit are

∇ · B = 0, ∇ × H = 0, B = μ0(M + H). (8)

In general, magnetization is a function of the magnetic field, particle concentration, and temperature. At equi-
librium, it is aligned with the stationary magnetic field. It is assumed to be governed by Langevin’s formula [24]:

Meq = H
H

MsφL(αL) = H
H

Meq(H, φ, T ), (9)

where

L(αL) = coth(αL) − 1

αL
, αL = mH

kBT
,

where kB is Boltzmann’s constant and Ms is the magnetic saturation.
To obtain the steady-state solution, following [12], we first linearize the magnetization equation Meq as follows:

Meq(H, φ, T ) = M0 + χ(H − H0) − Km(T − Th) + Kp(φ − φ0),

where χ is the tangent magnetic susceptibility, and Km and Kp are the magnetic coefficients. The tangent and chord
magnetic susceptibility χ, χ2 can be estimated by Langevin’s formula (9) for a different Langevin parameter αL

[25]:

αL = mH0

kBTh
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� 1, χ = MSm
3kBTh

, χ2 = χ,

� 1, χ = MSm
kBTh

L ′(αL), χ2 = MS
Th

L(αL),

� 1, χ = MSkBTh
mH2

0
, χ2 = MS

H0

(
1 − 1

αL

)
.

We assume that the temperature and the volumetric fraction of the particles are constant at the boundaries. Thus
the boundary conditions are

w = 0, T = Th, φ = φ0 at z = 0,
w = 0, T = Tc, φ = φ1 at z = d,

}
(10)

with ∂w/∂z = 0 on a rigid surface and ∂2w/∂z2 = 0 on a stress-free surface. We also assume that the normal
component of magnetic induction and the tangential component of the magnetic field are continuous across the
boundary.

Equations (1)–(9) are made dimensionless by scaling all lengths with d, time with d2/κ , pressure with μκ/d2,
velocity with κ/d, temperature with Th − Tc, concentration with φ0 − φ1, H with H0, and M with M0. Here,
κ = k1/(ρC) f . Then Eqs. (1)–(9) take the form

∇ · u = 0, (11)
1

Pr

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u + {c1(δ · M) + c2(δ · H)}∇2u + c3(M · ∇)H − Rn φk

+ Ra T k − RaNNφTφk − ρ1k + ρ2φk, (12)

∂φ

∂t
+ u · ∇φ = 1

Le
∇2φ + NA

Le
∇2T − N ′

A

Le
∇2H, (13)

∂T

∂t
+ u · ∇T = ∇2T + NB

Le
(∇φ · ∇T ) + NANB

Le
(∇T · ∇T ) − N ′

ANB

Le
(∇H · ∇T ), (14)

χ2∇ · M + ∇ · H = 0, (15)

M = H
H

(1 + χ)

χ2

{
χ

1 + χ
H − M1

M3
T + M ′

1

M ′
3
φ + c4

}
, (16)
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where

c1 = μ0M0, c2 = μ0H0, c3 = μ0M0H0d2

κμ
, ρ1 = d3ρ f

κμ
(1 + αTc)g,

χ2 = M0

H0
, c4 = M0 − χH0 + KmTh − Kpφ0

H0(1 + χ)
, ρ2 = d3ρ f

κμ
(φ0 − φ1)αTcg.

Km = χH0/Th is in general a function of the magnetic field and temperature and Kp = χH0/φ0 is a function of
the magnetic field and particle concentration. Here, the following are the nondimensional parameters:

Le = κ

DB
, Ra = ρ f gαd3(Th − Tc)

μκ
, NA = DT (Th − Tc)

DBTc(φ0 − φ1)
, Pr = μ

ρ f κ
,

N ′
A = DHH0

DB(φ0 − φ1)
, NB = (ρC)p(φ0 − φ1)

(ρC)f
, Rn = (ρp − ρf )(φ0 − φ1)gd3

μκ
,

RaN = (1 − φ0)Ra, Nφ = φ0 − φ1

1 − φ0
, M1 = μ0χ

2H2
0 (Th − Tc)

ρ f gαd(1 + χ)T 2
h

,

M3 = μ0χH2
0

ρ f gαdTh
, M ′

3 = μ0χH2
0

ρ f gαdφ0
, M ′

1 = μ0χ
2H2

0 (φ0 − φ1)

ρ f gαd(1 + χ)φ2
0

,

where Le is the Lewis number, Ra is the thermal Rayleigh number, NA and N ′
A are the modified diffusivity ratios,

Pr is the Prandtl number, NB is a modified particle-density increment, Rn is the nanoparticle Rayleigh number, and
M1,M ′

1,M3, and M′
3 are the magnetic parameters. The boundary conditions now become

w = 0, T = Th
Th − Tc

, φ = φ0

φ0 − φ1
at z = 0

w = 0, T = Tc
Th − Tc

, φ = φ1

φ0 − φ1
at z = 1

⎫⎪⎪⎬
⎪⎪⎭

. (17)

3 Steady-state solution

Equations (11)–(16) possess a steady-state solution in which

ub = 0, p = pb(z), T = Tb(z),

M = Mb(z), φ = φb(z), H = Hb(z). (18)

Equations (11)–(16) then reduce to

−dpb
dz

+ c3Mb
dHb

dz
− Rn φb + Ra Tb − RaN NφTbφb − ρ1 + ρ2φb = 0, (19)

d2φb

dz2
+ NA

d2Tb
dz2

− N′
A
d2Hb

dz2
= 0, (20)

d2Tb
dz2

+ dTb
dz

{
NB

Le

dφb

dz
+ NANB

Le

dTb
dz

− N′
ANB

Le

dHb

dz

}
= 0, (21)

χ2
dMb

dz
+ dHb

dz
= 0, (22)

Mb = 1 + χ

χ2

{
χ

1 + χ
Hb − M1

M3
Tb + M′

1

M′
3
φb + c4

}
. (23)
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Using the boundary conditions (17) and Eqs. (22), (23), Eq. (20) may be integrated to give

(
1 + N′

A
M′

1

M′
3

)
φb +

(
NA − N′

A
M1

M3

)
Tb

= −
{(

1 + N′
A
M′

1

M′
3

)
+

(
NA − N′

A
M1

M3

)}
z

(
1 + N′

A
M′

1

M′
3

)(
φ0

φ0 − φ1

)
+

(
NA − N′

A
M1

M3

)(
Th

Th − Tc

)
. (24)

Substituting the preceding value of φb into Eq. (21) and again making use of Eqs. (22) and (23) gives

d2Tb
dz2

+ NB

Le

{
N′
A
M1

M3
−

(
1 + NA + N′

A
M′

1

M′
3

)}
dTb
dz

= 0. (25)

The solution of Eq. (25) satisfying Eq. (17) is

Tb = Th
Th − Tc

−
{
1 − e−Pz

1 − e−P

}
, (26)

where

P = NB

Le

{
N′
A
M1

M3
−

(
1 + NA + N′

A
M′

1

M′
3

)}
.

According to Buongiorno [3], for a typical nanofluid, 102 ≤ Le ≤ 106, while 1 ≤ NA ≤ 10,N′
A ≈ 102 and

NB ≈ 10−3. The ratios M1/M3 and M′
1/M

′
3 are ≈ 10−2 and ≈ 10−3, respectively. If one takes the preceding

approximations, then the exponents in Eq. (26) are small, so following [2], to a good approximation one has

Tb = Th
Th − Tc

− z.

Using this we obtain the steady-state solution of Eqs. (19)–(23):

ub = 0, p = pb(z), Tb = Th
Th − Tc

− z, (27)

φb = φ0

φ0 − φ1
− z, Hb = 1 − M1

M3
z + M ′

1

M ′
3
z, (28)

Mb = 1 + 1

χ2

(
M1

M3

)
z − 1

χ2

(
M′

1

M′
3

)
z. (29)

4 Linear stability problem

We consider a small perturbation of amplitude ε′ (0 < ε′ � 1) to the steady-state equation (18), so that

u = ub + ε′u′, p = pb + ε′ p′, T = Tb + ε′θ ′,
M = Mb + ε′M′, φ = φb + ε′φ′, H = Hb + ε′H′. (30)

Substituting the perturbed variables into Eqs. (11)–(16) and linearizing about the steady state by collecting the
O(ε′) terms and dropping the primes gives
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1

Pr

∂∇2w

∂t
=∇4w + δ∗∇4w − {RaM3 − RasM

′
3}(∂∇2

Hψ/∂z)

+
{
RaM1 − Ra

M3M ′
1

M′
3

+ RaN (1 + Nφz)

}
∇2
H θ

−
{
Ra

M3M ′
1

M′
3

− RasM
′
1 + Rn + RaNNφ(1 − z)

}
∇2
Hφ, (31)

∂θ

∂t
= ∇2θ + w − NB

Le

∂φ

∂z
+ NBN ′

A

Le

∂2ψ

∂z2
−

{
NB

Le
+ 2NANB

Le
− NBN ′

AM1

LeM3
+NBN ′

AM
′
1

LeM ′
3

}
∂θ

∂z
, (32)

∂φ

∂t
= w + 1

Le
∇2φ + NA

Le
∇2θ − N ′

A

Le

∇2∂ψ

∂z
, (33)

∂2ψ

∂z2
= − (1 + χ2)

(1 + χ)
∇2
Hψ + M1

M3

∂θ

∂z
− M ′

1

M ′
3

∂φ

∂z
, (34)

where

∇2
H = ∂2

∂x2
+ ∂2

∂y2
, δ∗ = μ0δH0(1 + χ2), Ng = M1Ra, Ras = ρ f gαd

3(φ0 − φ1)

μκ
.

Here Ng is the magnetic thermal Rayleigh number. Since ∇ × H = 0, there exists a potential function ψ such
that H = ∇ψ . Here Eq. (31) was obtained by taking the vertical component of the double curl of the linearized
momentum equation.

Equations (31)–(34) comprise a boundary value problem that will be solved by the Chebyshev pseudospectral–
QZ method. To apply the Chebyshev pseudospectral–QZ method to the preceding boundary value problem, we
transform the present domain from [0, 1] to [−1, 1] with the coordinate transformation z to 2z–1 in the equations.
We assume that the variables w, θ, φ,ψ have the form

[w, θ, φ,ψ] = [w(z), θ(z), φ(z), ψ(z)] exp(σ t + i(kx x + ky y)). (35)

Upon substituting these equations into Eqs. (31)–(34) in the new domain, we obtain

σ

Pr
(4D2 − k2)w = (4D2 − k2)2w + δ∗(4D2 − k2)2w

−
{
RaM1 − Ra

M3M ′
1

M ′
3

+RaN

{
1 + Nφ

(
z + 1

2

)}}
k2θ

+
{
Ra

M3M ′
1

M ′
3

− RasM
′
1 + Rn + RaNNφ ×

(
1 − z

2

)}
k2φ + 2(RaM3 − RasM

′
3)k

2Dψ, (36)

σθ = w + (4D2 − k2)θ − 2

{
NB

Le
+ 2NANB

Le
− NBN ′

AM1

LeM3
+ NBN ′

AM
′
1

LeM ′
3

}
− 2NB

Le
Dφ + 4NBN ′

A

Le
D2ψ, (37)

σφ = w + 1

Le
(4D2 − k2)φ + NA

Le
(4D2 − k2)θ − 2N ′

A

Le
(4D2 − k2)Dψ, (38)

4D2ψ = k2(1 + χ2)

(1 + χ)
ψ + 2M1

M3
Dθ − 2M ′

1

M ′
3
Dφ, (39)

with the boundary conditions

w = 0, θ = 0, φ = 0 at z = ±1
Dw = 0, 2(1 + χ)Dψ − kψ = 0 at z = −1
D2w = 0, 2(1 + χ)Dψ + kψ = 0 at z = 1

⎫⎬
⎭ . (40)
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Table 1 Values of physical quantities used [25,27]

Physical properties of water- and ester-based MNFs (at T = 298 K)

Base fluid Density
ρ f (kg/m3)

Viscosity
μ(kg/ms)

Thermal
conductivity
k1 (W/m K)

Magnetic
saturation
Ms (A/m)

Thermal expansion
coefficient α (K−1)

Heat capacity
(J/kg K)

Water 1180 0.007 0.59 15,900 5.2 × 10−4 3545.76

Ester 1150 0.014 0.31 15,900 8.1 × 10−4 3238.26

(a) (b)

(c) (d)

Fig. 2 a, b Neutral curves for different values of Langevin parameter αL ; c, d neutral curves for different values of volumetric fraction

φ of nanoparticles. Here a and c correspond to water-based MNFs and b and d to ester-based MNFs. The fixed parameter values are
δ = 0.01,
φ = 0.01,NA = 10,Le = 200, and d = 0.001

5 Method of solution

The system of equations (36)–(39) with boundary conditions (40) comprise an eigenvalue problem. The Chebyshev
pseudospectral method [26] is applied to solve this eigenvalue problem. We closely follow the algorithm of Kaloni
and Lou [27]. The algorithm is as follows. For a given temperature gradient β, H0, and other physical parameters,

fix k =
√
k2x + k2y and the initial trial estimates for the Rayleigh number Ra. Then use the QZ -algorithm, EIG

function in MATLAB, to find the leading eigenvalue σ = σr + iσi for k. Here we recall that the leading eigenvalue
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210 M. Arora et al.

(a) (b)

(c) (d)

Fig. 3 a, bVariation of critical magnetic thermal Rayleigh number Ngc with
φ; c, d neutral curves for different values of nanoparticle
Rayleigh number Rn. Here a and c correspond to water-based MNFs, b and d to ester-based MNFs. The fixed parameter values are
αL = 2, δ = 0.01,NA = 10,Le = 200, 
φ =0.01, and d = 0.001

σ = σr + iσi is the one for which σr is the largest among the whole set of eigenvalues of the preceding eigenvalue
problem. If necessary, we adjust β by the secant method to obtain β when the real part σr approaches zero, where
σr is the real part of the leading eigenvalue σ = σr + iσi . We repeat the preceding step until the solution with
a predefined accuracy is found. The critical temperature gradient βc with critical wave number kc is defined as
follows:

βc = min
k

β (Pr,Le, . . . . . .) . (41)

The function FMINBND in MATLAB was used to carry out a minimization in Eq. (41). If the imaginary part of
the leading eigenvalue happens to be zero, and if σr approaches zero, then the instability is stationary; otherwise,
it is oscillatory.

To test the accuracy of our method, we solved the Bénard problem for three types of boundary conditions, viz.
rigid–rigid, rigid–free, and free–free in the absence of a magnetic field and particle concentration. The computations
for the considered boundary conditions were benchmarked against Chandrasekhar’s results for the Bénard problem
Table III, pp. 43 [28].
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(a) (b)

(c) (d)

Fig. 4 a, b Variation of critical magnetic thermal Rayleigh number Ngc with nanoparticle Rayleigh number Rn; c, d) neutral curves
for different values of depth of nanofluid layer d. Here a and c correspond to water-based MNFs, b and d to ester-based MNFs. The
fixed parameter values are δ = 0.01, NA =10, Le=200, and d = 0.001

6 Results

The numerical results presented in this section are for water- and ester-based MNFs. The values of the physical
quantities used are taken from the table given in [25,27], which we reproduce here for the sake of completeness
(Table 1).

The numerical results are provided for the nanoparticle concentration near the lower plate for a d = 1 mm thick
layer of nanofluid. The calculations are based on 10nm nanoparticle suspended in carrier fluid.

A neutral curve is defined as the locus of points where Re (σ ) = 0. If in addition Im (σ ) = 0 on such a curve,
then the principle of exchange of instabilities is said to be valid.

6.1 Microgravity environment

A microgravity environment is one in which the value of acceleration due to gravity g is assumed to be negligible.
In a microgravity environment we set the value of g equal to 1 × 10−6 ms−2.

When a nanofluid is placed in an externally applied magnetic field in a microgravity environment, convection
is driven owing to magnetic forces alone independent of the gravitational force. Owing to the temperature depen-
dence of the magnetization of the magnetic fluid, a magnetization gradient will be established across the fluid layer.
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(a) (b)

(c) (d)

Fig. 5 a, b Neutral curves for different values of nanoparticle Rayleigh number Rn; c, d variation of critical thermal Rayleigh number
Rac with nanoparticle Rayleigh number Rn. Here a and c correspond to water-based MNFs, b and d to ester-based MNFs. The fixed
parameter values are αL = 2, δ = 0.01, NA = 10,Le = 200, 
φ =0.01, and d = 0.001

Magnetization of ferrofluids decreases with increasing temperature of the ferrofluid, so the direction of the magne-
tization gradient will be opposite to the direction of the temperature gradient. This will in turn give rise to an inner
magnetic field gradient parallel to temperature gradient. A volume element displaced from the colder region with
large magnetization will replace hotter ferrofluid with lower magnetization, resulting in a flow that will continue as
long as the magnetic field and temperature field gradients are maintained [29].

The effects of the Langevin parameter αL on the neutral curves for water- and ester-based MNFs are shown in
Fig. 2a, b, respectively. The critical magnetic Rayleigh number Ngc is finite for both types of MNF. The neutral
curves show that the increase in the value of the Langevin parameter αL decreases the critical value of the magnetic
thermal Rayleigh number Ngc in the microgravity environment. This is because in the microgravity environment, as
the value of αL increases, the strength of the inner magnetic field gradient ∇H also increases. The volume element
moves in the fluid at greater speed, producing strong disturbances and thus resulting in a lower value of the critical
magnetic thermal Rayleigh number. Since the critical magnetic thermal Rayleigh number separates the turbulent
regime from the laminar regime, the heat transfer coefficient remains higher in the turbulent regime than in the
laminar regime [7]. Thus the effect of increase in the magnetic field strength in the microgravity environment is to
enhance the heat transfer in thewater- and ester-basedMNFs. Figure 2c, d shows the effects of the volumetric fraction

φ of the nanoparticles on the neutral curves for both types ofMNF. The critical magnetic thermal Rayleigh number
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(a) (b)

(c) (d)

Fig. 6 a, b Neutral curves for different values of Langevin parameter αL ; c, d neutral curves for different values of modified particle
density increment NB. Here a and c correspond to water-based MNFs, b and d to ester-based MNFs. The fixed parameter values are
αL = 2, δ = 0.01, NA = 10,Le = 200, 
φ =0.01, and d = 0.001

Ngc increases as the value of
φ increases. The temperature gradient produces an unstable, top-heavy configuration.
As the particle concentration near the bottom of the fluid layer increases, the density distribution decreases with
height; this has a stabilizing effect for natural convection in MNFs, which results in higher values of the critical
magnetic thermal Rayleigh number. Thus increasing the value of the volumetric fraction 
φ of nanoparticles has
a stabilizing effect on the system.

Figure 3a, b shows the variation of the critical magnetic thermal Rayleigh number Ngc with 
φ at different
values of the parameter δ. The figure clearly shows that Ngc increases as 
φ increases.

Figure 3c, d shows that the critical magnetic thermal Rayleigh number decreases as the value of the nanoparticle
Rayleigh number Rn increases. Therefore, Rn has a destabilizing effect on the system. This is because as the value
of Rn increases, the Brownian motion of the nanoparticles is promoted, which in turn facilitates the development
of turbulence, leading to a lower value of Ngc. It is also worth noting that water-based MNFs are more resilient to
convection than ester-based MNFs.

Figure 4a, b shows the variation of the critical magnetic thermal Rayleigh number Ngc with the nanoparticle
Rayleigh number Rn; as mentioned earlier, both of these panels clearly show that Ngc decreases as the value of Rn
increases. Since μ1 = μ(1 + δ · B), at the higher value of δ, the nanoparticles in the fluid slow down owing to the
high viscosity. This is manifested in the higher value of the critical magnetic thermal Rayleigh number Ngc.
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(a) (b)

(c) (d)

Fig. 7 a, bVariation of critical thermal Rayleigh number Rac for different values of modified particle density incrementNB; c, d neutral
curves for different values of 
φ. Here a and c correspond to water-based MNFs, b and d to ester-based MNFs. The fixed parameter
values are αL = 2, δ = 0.01,NA = 10,Le = 200,
φ = 0.01, and d = 0.001

6.2 Gravity environment

The neutral curves associated with different values of d, the depth of the nanofluid layer, in a gravitational envi-
ronment are plotted in Fig. 4c, d. The figure shows that the critical thermal Rayleigh number Rac increases as the
value of d increases for both types of MNF. Since now both gravitational and magnetic forces are operational, as
the depth of the nanofluid layer increases, the buoyancy force dominates the magnetic forces, which results in a
higher value of Rac.

Figure 5a, b shows the effects of the nanoparticle Rayleigh number Rn on both types ofMNF. The critical thermal
Rayleigh number Rac decreases with an increasing value of Rn in water- and ester-based MNFs. Thus increasing
the depth of the nanofluid layer has a stabilizing effect, while increasing the value of Rn has a destabilizing effect
on the system.

Figure 6a, b shows the neutral curves for different values of αL . The critical thermal Rayleigh number Rac
increases with increases in the value of αL , indicating that increasing αL has a stabilizing effect on the system.
When only magnetic forces were in operation, i.e., in the microgravity environment, the effect of αL was to advance
the onset of convection (Fig. 2a, b). Figure 6c, d shows the neutral curves associated with different values ofmodified
particle density NB. The effect of increasing the value of NB is to advance the onset of convection. This is because
the movement of the heavier nanoparticles in the fluid produces strong disturbances, which results in the lower
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Table 2 Values of critical thermal Rayleigh number and critical wavenumber in gravitational environment for water- and ester-based
MNFs

δ αL Rigid–rigid Rigid–free Free–free

Water Ester Water Ester Water Ester

kc Rac kc Rac kc Rac kc Rac kc Rac kc Rac

0.01 1 3.12 668.96 3.12 920.54 2.64 547.34 2.64 750.99 2.16 432.86 2.16 591.31

2 3.10 528.83 3.11 728.71 2.62 434.58 2.63 596.61 2.15 345.23 2.14 471.16

3 3.09 586.54 3.09 807.68 2.61 481.14 2.61 660.15 2.13 381.33 2.14 520.26

4 3.09 703.65 3.10 967.39 2.61 575.57 2.61 788.75 2.14 454.75 2.13 620.09

5 3.10 840.77 3.10 1152.90 2.62 686.04 2.61 938.05 2.13 540.77 2.13 736.18

0.03 1 3.12 669.11 3.14 920.74 2.64 547.46 2.64 751.15 2.16 432.95 2.16 591.44

2 3.11 529.05 3.11 729.01 2.63 434.76 2.63 596.85 2.15 345.36 2.14 471.35

3 3.10 586.89 3.10 808.17 2.61 481.42 2.62 660.55 2.14 381.55 2.13 520.56

4 3.10 704.20 3.10 968.15 2.61 576.01 2.61 789.36 2.12 455.08 2.13 620.57

5 3.11 841.58 3.10 1154.00 2.62 686.68 2.61 938.94 2.13 541.26 2.13 736.88

0.05 1 3.12 669.26 3.13 920.94 2.64 547.58 2.64 751.32 2.16 433.04 2.16 591.57

2 3.10 529.26 3.11 729.32 2.62 434.93 2.62 597.10 2.14 345.49 2.14 471.54

3 3.10 587.24 3.10 808.66 2.61 481.70 2.61 660.94 2.14 381.76 2.13 520.87

4 3.09 704.75 3.10 968.91 2.61 576.44 2.61 789.97 2.14 455.42 2.13 621.05

5 3.10 842.38 3.11 1155.10 2.61 687.32 2.62 939.83 2.13 541.75 2.13 737.58

The fixed parameter values are Le = 200, 
φ = 0.01, NA = 10, d = 0.001

Table 3 Values of critical magnetic thermal Rayleigh number and critical wavenumber in microgravity environment for water- and
ester-based MNFs

δ αL Rigid–rigid Rigid–free Free–free

Water Ester Water Ester Water Ester

kc Ngc kc Ngc kc Ngc kc Ngc kc Ngc kc Ngc

0.01 1 3.12 2630.60 3.12 2594.60 2.64 1758.00 2.64 1724.80 2.16 1099.10 2.16 1072.80

2 3.10 2822.60 3.11 2773.40 2.62 1903.70 2.63 1857.70 2.15 1200.20 2.14 1160.80

3 3.09 2848.00 3.09 2799.80 2.61 1913.30 2.61 1868.50 2.13 1200.70 2.14 1163.00

4 3.09 2807.60 3.10 2764.70 2.61 1874.50 2.61 1834.80 2.14 1169.10 2.13 1137.40

5 3.10 2759.60 3.10 2721.90 2.62 1832.20 2.61 1797.40 2.13 1137.80 2.13 1111.40

0.03 1 3.12 2631.70 3.14 2595.70 2.64 1758.80 2.64 1725.60 2.16 1099.60 2.16 1073.30

2 3.11 2825.00 3.11 2775.70 2.63 1905.20 2.63 1859.20 2.15 1201.10 2.14 1161.70

3 3.10 2851.40 3.10 2803.20 2.61 1915.60 2.62 1870.70 2.14 1202.00 2.13 1164.40

4 3.10 2812.00 3.10 2769.00 2.61 1877.30 2.61 1837.70 2.12 1170.80 2.13 1139.10

5 3.11 2764.90 3.10 2727.10 2.62 1835.60 2.61 1800.80 2.13 1139.90 2.13 1113.50

0.05 1 3.12 2632.90 3.13 2596.80 2.64 1759.50 2.64 1726.30 2.16 1100.00 2.16 1073.70

2 3.10 2827.30 3.11 2778.00 2.62 1906.70 2.62 1860.70 2.14 1202.00 2.14 1162.70

3 3.10 2854.80 3.10 2806.60 2.61 1917.80 2.61 1872.90 2.14 1203.40 2.13 1165.70

4 3.09 2816.30 3.10 2773.30 2.61 1880.20 2.61 1840.50 2.14 1172.60 2.13 1140.90

5 3.10 2770.20 3.11 2732.40 2.61 1839.00 2.62 1804.20 2.13 1142.00 2.13 1115.60

The fixed parameter values are Le = 200, 
φ = 0.01, NA = 10, d = 0.001
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value of Rac. Figure 7a, b shows the variation of the critical thermal Rayleigh number Rac with NB at different
values of the parameter δ. As we just mentioned, the value of the critical thermal Rayleigh number Rac decreases
as the value of NB increases. There is a sudden change in behavior around the point 0.010; this is because some of
the nanoparticles may amass near the bottom owing to sedimentation if we keep on increasing the value of NB.

The effects of increasing the volumetric fraction 
φ of nanoparticles on neutral curves are shown in Fig. 7c, d.
The critical thermal Rayleigh number Rac increases with increases in the value of 
φ. Thus increasing the value
of 
φ has a stabilizing effect on the system.

We have also solved the same problem for other combinations of boundary conditions, viz., when both upper and
lower boundaries are rigid and when both upper and lower boundaries are free. The results for these combinations of
boundary conditions are displayed in Table 2 in a gravity environment and in Table 3 in a microgravity environment.
The results for these boundary conditions are qualitatively similar to the results discussed earlier; thus they are not
included in the paper. Tables 2 and 3 display the critical wavenumber kc, critical thermal Rayleigh number Rac,
and critical magnetic thermal Rayeligh numbers Ngc. Our first observation from these tables is that for any given
value of the parameter δ, for a given MNF, and for a particular combination of boundary conditions, the value of the
critical wavenumber kc is the same in the gravity and microgravity environments. The value of the critical magnetic
Rayleigh number Ngc in a microgravity environment is larger than that of Rac in gravity environment. Thus when
only magnetic forces are operational, the convection gets delayed. We observe from Table 2 that the value of the
critical thermal Rayleigh number Rac first decreases as αL increases from 1 to 2 and then starts increasing with
further increases in the value of αL . In Table 3 the value of the critical magnetic thermal Rayleigh number Ngc first
increases as αL increases from 1 to 3 and then starts decreasing with further increases in the value of αL . Similar
behavior was observed in [30] for water- and ester-based ferrofluids. This seems to be analogous to tight coupling
between buoyancy andmagnetic forces, as pointed out by Finlayson [12]. He proposed the following formula (using
his notations) in the case of ferromagnetic fluids to make precise the aforementioned coupling:
Rgc
Rg0c

+ Nc

N0c
= 1,

where Rgc and Nc are critical Rayleigh numbers in gravity and microgravity environments, respectively, and
Rg0c = 1708,N0c = 2568.5. In our case, it is difficult to make precise this type of tight coupling.

7 Conclusions

Linear stability theory was used to study convective instability in a thin layer of MNF. The viscosity of the MNF
is assumed to be dependent on the applied magnetic field. The effects of Brownian diffusion, thermophoresis, and
magnetophoresis were incorporated in the mathematical model. The resulting eigenvalue problem was solved using
the Chebyshev pseudospectral method. The effects of important parameters of the problem were observed at the
onset of convection in microgravity and gravity environments. We draw the following conclusions:

(i) In a microgravity environment, the effect of 
φ is to delay the onset of convection, while αL and Rn advance
the onset of convection.

(ii) In a gravity environment, the effect of d, αL ,
φ is to stabilize the system, while Rn and NB destabilize the
system.
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