
J Eng Math (2016) 99:137–155
DOI 10.1007/s10665-015-9825-7

A new mixed finite-element approach for the elastoplastic
analysis of Mindlin plates

Akif Kutlu · Günther Meschke ·
Mehmet Hakkı Omurtag

Received: 24 November 2014 / Accepted: 15 September 2015 / Published online: 15 December 2015
© Springer Science+Business Media Dordrecht 2015

Abstract The objective of this paper is to develop an accurate and efficient solution procedure for elastoplastic
problems in structural mechanics in the framework of a two-field mixed variational principle. A novel solution
algorithm is proposed and applied to the elastoplastic analysis of Mindlin plates. The Hellinger–Reissner principle
is adopted to obtain the global finite-element equations of the problem. Instead of a static condensation, the stress-
type field variables are preserved during the solution. According to the proposed approach, the strain increments
within a nonlinear solution step are obtained directly at the nodal points from matrix operations instead of gradients
of a displacement field. In the present implementation, the vonMises yield criterionwith linear hardening is adopted.
For the integration of the elastoplastic constitutive rate equations at the nodal points, a 3D fully implicit algorithm is
employed. A layered approach is followed to enable the resolution of the plastic strains through the plate thickness.
The mixed formulation of the Mindlin plate theory is shear-locking free by construction. The proposed solution
strategy is verified by solving several benchmark problems that demonstrate the high accuracy and convergence
rate of the presented layered mixed formulation for elastoplastic analyses.

Keywords Elastoplastic analysis · Hellinger–Reissner principle · Layered approach · Linear hardening · Mindlin
plate · Mixed formulation

Mathematics Subject Classification 74K20 · 74C05 · 74S05

1 Introduction

The finite-element method (FEM) has a long-standing tradition as a versatile and efficient tool for the numerical
solution of engineering problems, including problems involving the analysis of the nonlinear behavior of materials
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and structures; see the monographs [1,2]. In standard displacement-based formulations the resulting stress field is,
in general, characterized by jumps along interelement boundaries. In the case of lower-order elements, numerical
instabilities, such as locking, in the case of (nearly) incompressible materials may be encountered. As an alternative,
finite-element formulations based on mixed variational formulations, leading to so-called mixed finite-element
formulations, have been proposed and successfully applied to various types of engineering problems [3–5]. Mixed
formulations have also been adopted for nonlinear beam, plate, and shell elements [6,7]. In recent decades, a large
number of nonlinear mixed variational formulations of beam/column-framed structures have been proposed in
particular to avoid computational difficulties associated with displacement-based formulations, for example, [8–
11]. Mixed finite-element formulations not only suppress shear and membrane locking problems but also provide
accurate stress and displacement quantities with a smaller number of elements [12]. Despite comprehensive studies
on both formulations in the literature, the advantages and disadvantages of mixed-type finite elements compared
to displacement-type finite elements are still under discussion and the subject of many publications [13,14]. These
discussions often focus on algorithms for the updating of the state variables (displacements, rotations, stresses, and
stress resultants), which is generally straightforward in displacement-type finite elements but has many alternatives
with different complications inmixed finite-element formulations owing to themultiple fields that are introduced, for
example, [15]. The proposed mixed finite-element solution strategy involves an efficient procedure for the update
of state variables and fully exploits all advantages of mixed variational formulations, for example, introducing
shear locking-free analysis and providing a precise stress analysis with fewer elements and less computation
time.

A specific focus of this paper is laid on elastoplastic analyses of plate structures using mixed finite elements for
Mindlin plates for the purpose of obtaining reliable predictions of the ultimate load. Early attempts to obtain the
limit states of structures, for example [16,17], were based on the upper and lower boundary limits [18]. Numerical
procedures to determine the limit loads of structures generally requires a discretization of the domain and involves an
optimization scheme [19]. As far as thin (shear rigid) plates are concerned, a plastic hinge theory with hardening was
employed by Eggers and Kröplin [20] using a mixed finite-element formulation. The elastic–viscoplastic response
of Mindlin plates has been investigated by Dinis and Owen [21] with a finite-element formulation based on a
yield criterion formulated in terms of stress resultants. A detailed review of elastoplastic finite-element analyses of
beam- and plate-type structures was presented by Owen and Hinton [22]. A comprehensive treatment of general
geometrically and materially nonlinear problems including plate and shell elements was presented by Bathe and
Bolourchi [23]. A semiloof finite element was formulated by Dinis and Owen [24] to incorporate large deflections
in the context of elasto-viscoplastic analyses of thin plates and shells in terms of generalized stresses. Reddy and
Mitchell [25] applied an extended kinematic minimum principle for the finite-element approximation of Mindlin
plates for elastoplastic analyses considering the spread of plasticity through the plate thickness. A layered plate
finite element, based on the Hu–Washizu variational principle, was employed by Wempner and Chao–Meng [26]
to investigate the propagation of plasticity through the plate thickness using an elastic perfectly plastic material
model. In the mixed formulation a constant distribution of the stress resultants was assumed over each plate finite
element.

The Hu–Washizu variational principle was taken as the basis for a finite-element model for elastoplastic bending
analyses of Reissner–Mindlin plates in Papadopoulos and Taylor [27] using the stress resultant plasticity approach.
Daye and Toridis [28] developed a mixed finite-element solution procedure based on the Hellinger–Reissner vari-
ational principle using a stress resultant plasticity model for the analysis of the static and dynamic elastoplastic
response of shear deformable plate and shallow shell structures taking into consideration the geometrical nonlinear-
ity. A monolithic solution strategy, in conjunction with a tangent stiffness approach to static analysis and an initial
stiffness approach to dynamic analysis, was adopted. Papadopoulos and Taylor [29] employed a mixed triangu-
lar shear deformable plate element based on the Hu–Washizu variational principle for elasto-viscoplastic analysis
of plates using a stress resultant plasticity formulation. In Ibrahimbegović and Frey [30], the enhanced assumed
strain method was used to overcome shear locking in a stress resultant plasticity model for shear deformable plates
employing a four-node plate finite element. A single scalar equation to update the material state was used for the
analyses of plates with different shapes subjected to point and distributed loadings. Auricchio and Taylor [31]
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suggested a new elastoplastic shear deformable plate theory by modifying the yield function to make it possible to
describe the spread of plasticity through the plate thickness while employing the stress resultant plasticity approach
in the finite-element formulation. The advantages and accuracy of this approach were evaluated using comparisons
with results from 3D finite-element models and classical elastoplastic plate models.

A mixed finite-element approach using stress resultant plasticity and first-order shear deformation theory was
proposed by Croce et al. [32]. In this model, after performing static condensation, only translations and rotations
at the nodes were used as field variables. More recently, numerical discretization techniques were proposed to
provide an improved resolution that can eliminate shear locking. Rabczuk et al. [33] introduced a meshfree method
to analyze the dynamic fracture of thin shells interacting with fluids by covering both the geometric and the
material nonlinearities. Areias and Rabczuk [34] used a meshfree method with C1 continuity on the basis of edge
rotations and load control to solve the finite-strain fracture of plates and shells with both brittle and ductile material
formulations. A consistent mixed quadrilateral shell element with in-plane shear strains assumed in the scheme
of least-squares was suggested by Areias et al. [35] for solving geometrically and materially nonlinear problems.
The so-called alpha FEM proposed in [36], which is conceptually based on the node-based smoothed FEM, was
applied to laminated composite plates in [37] in conjunction with the discrete gap technique to eliminate shear
locking. Furthermore, discretization methods with higher-order approximations, such as the isogeometric method
and defining the transverse shear stresses with higher-order theories [38], are suitable candidates for efficient
nonlinear analyses of plates.

The main objective of this paper is to develop an efficient mixed finite-element solution algorithm for materially
nonlinear finite-element analysis with a specific implementation for elastoplastic analyses of Mindlin plates. To this
end,Mindlin plates are formulatedwithin the framework of a two-fieldmixed variational formulation using a layered
approach and a 3D J2-plasticity model with linear hardening. In conventional approaches to mixed finite-element
models, a static condensation procedure (on the element or the system level) is performed to restrict the solution of
the finite-element equations in terms of the related displacement quantities, which makes it possible to use suitable
displacement-based finite-element programs. In contrast to the bulk of existing mixed variational formulations in
the literature, a monolithic solution strategy is proposed in this paper, where the stress-type field variables are
preserved in addition to the displacement-type field variables. As is demonstrated in the paper, this choice provides
several advantages with respect to the numerical formulation. First, all field variables (including displacement- and
stress-type variables) are interpolated independently, which relaxes the necessity of satisfying further continuity
conditions. Therefore, C0 continuity is sufficient for the compatibility requirements of the interpolation functions.
Stress-type field variables (or their increments) at the finite-element nodes are obtained from the direct solution of
the system equations. A continuous distribution of displacement- and stress-type field variables is automatically
achieved over the plate domain. Once the stress-type field variables are obtained, compliance matrices are used
to compute the strains (or increments of strains) directly at each node, conforming with a continuous strain field
over the domain. More importantly, this approach avoids error-prone numerical differentiation operations in the
postprocessing phase. An additional advantage of the proposed mixed formulation is that it provides a priori shear-
locking-free formulation and that the element performance is independent of the aspect ratio [39].

2 Formulation

2.1 Hellinger–Reissner principle

The Hellinger–Reissner principle [40] defines the total strain energy of a deformable body over a corresponding
volume V using the complementary energy χ(σ) as

Πint =
∫
V
W dV =

∫
V

(
σεu − χ(σ )

)
dV . (1)

Here the superscript u symbolizes that the strain tensor εu is defined in terms of displacement components. The
Hellinger–Reissner variational principle states that δΠHR = δ (Πint + Πext) = 0, where Πext(u) is the external
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Fig. 1 Stress resultants and kinematics according to Mindlin assumptions. a Transverse shear force and bending moment on cross
section with normal x . b Separate rotations of cross section due to bending and transverse shear. c Assumed total rotation of cross
section

energy. Using Eq. (1), the stationarity of the functional ΠHR leads to

δΠHR =
∫
V

(
σ δεu + δσεu − ∂χ(σ )

∂σ
δσ

)
dV + δΠext(u) = 0. (2)

Using matrix notation, the first variation of the external energy may be expressed as

δΠext =
∫
V

(
− qTδu

)
dV −

∫
Γσ

t̂Tδu dΓσ = 0. (3)

Here q denotes the external load vector and t̂ the traction vector at the Neumann boundary Γσ of the domain.
Considering ε = ∂χ(σ )/∂σ and rearranging (2) in matrix form exposes the first variation of the Hellinger–Reissner
functional as follows:

δΠHR =
∫
V

(
εu − εσ

)T
δσ dV +

∫
V

(
σTδεu − qTδu

)
dV −

∫
Γ

t̂Tδu dΓ = 0. (4)

2.2 Field equations of Mindlin plates

This subsection contains a brief summary of the governing equations of the Mindlin plate theory. The Mindlin
plate theory assumes that shear strains εs = ( γxz γyz )T are constant through the plate thickness with the related
kinematic relations defined as γxz = w,x +ϕx and γyz = w,y +ϕy , respectively. The transverse displacement of the
midplane w is positive when it coincides with the positive z-axis. ϕx and ϕy are independent rotation angles of the
plate cross sections (Fig. 1). Throughout the paper, the notion (. . .),x is used to denote partial derivatives ∂(. . .)/∂x =
(. . .),x . The in-plane strains ε f = ( εxx εyy γxy )T at any point z on the cross section are calculated from ε f = zκ
(the subscript f denotes quantities associatedwith flexure), where the curvatures κ = ( κxx κyy κxy ) are defined
as κxx = ϕx,x , κyy = ϕy,y , and κxy = ϕx,y +ϕy,x . To trace the spread of the plastic zone through the plate thickness,
the cross section is divided into layers (Fig. 2b). Each layer may have individual material properties. Flexural (in-
plane) stresses σ f = ( σxx σyy σxy )T and transverse shear stresses σ s = ( σxz σyz )T are related to their strain
counterparts as σ f = Q f ε f and σ s = Qsεs (the subscript s denotes quantities associated with transverse shear).
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(a) (b)

Fig. 2 Layered Mindlin plate. a Positive directions of stress resultants. b Decomposition of cross section into layers

The flexural and shear parts of the elasticity matrices Qf and Qs are given as

Qf =
⎛
⎝ Q11 Q12 0

Q21 Q22 0
0 0 Q33

⎞
⎠, Qs = ks

(
Q44 0
0 Q55

)
, (5)

with the components Q11 = Q22 = E/
(
1 − υ2

)
, Q12 = Q21 = υE/

(
1 − υ2

)
, and Q33 = Q44 = Q55 = G

and the shear correction factor ks = 5/6. Here, E is the elasticity modulus, υ is Poisson’s ratio, and G denotes the
shear modulus. Integrating the stresses along the thickness h of the plate by dividing the cross section into N layers
yields the stress resultants M = ( Mxx Myy Mxy )T and S = ( Sxz Syz )T as

M =
∫ h/2

−h/2
σf z dz =

N∑
L = 1

∫ zL

zL−1

σf z dz, S =
∫ h/2

−h/2
σs dz =

N∑
L=1

∫ zL

zL−1

σs dz . (6)

The positive directions of shear forces and moments are defined according to Fig. 2a.
Inserting the constitutive relations into Eq. (6), the stress resultants can be expressed in terms of strains as

M = Dεf and S = Cεs, where the elasticity matrices D and C are given explicitly as

Di j = 1

3

N∑
L=1

(Qi j )L(z3L − z3L−1), Ci j =
N∑

L=1

(Qi j )Lks(zL − zL−1),

respectively. Finally, the equilibrium equations of the Mindlin plate are given as

qz + Sxz,x + Syz,y = 0, Mxx,x + Mxy,y − Sxz = 0, Myy,y + Mxy,x − Syz = 0.

2.3 Algorithm for elastoplastic analysis of Mindlin plates with mixed finite elements

The FEM is characterized by a spatial discretization of domain B as B = ⋃nelm
e=1 Be (e: element number, nelm:

total number of elements), using elementwise approximations of the field variables x as xe = ∑nenodes
m=1 φmxm

(m: node number, nenodes: total number of nodes in an element, φm : shape functions), and enforcing equilibrium
based on an underlying variational principle. In the numerical solution of nonlinear problems, the equilibrium states
Fint
n+1 = Fext

n+1 are obtained at discrete load levels (n+1 = 1, 2, . . . , NT ) using an iterative solution scheme, such as
the Newton–Raphson method. Adopting the Hellinger–Reissner variational principle, equilibrium and constitutive
relations are satisfied in a weak form within a two-field formulation, where stresses σ and displacements u are the
fundamental variables of the functional.

In this paper, we propose a monolithic solution strategy to iteratively compute the increments of stresses �σ and
displacements �u from the solution of the system equations during subsequent Newton steps within a load step
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Fig. 3 Overview of proposed elastoplastic algorithm. k is the global iteration step number

[n, n+1] (Fig. 3). During a Newton iteration step k the updated displacements are calculated as ukn+1 = uk−1
n+1+�u.

We propose to determine the strain increments �ε from the tangential relation �ε = (Cep)−1�σ and to perform
the update of the total strains as εkn+1 = εk−1

n+1 + �ε. From εkn+1 and the stored values of plastic strains ε
(k−1)p
n+1

the updated stresses σ k
n+1 are determined from the local integration of the constitutive equations to compute the

updated vector of internal forces F(k)int
n+1 .

As far as the computational costs of mixed finite-element approaches are concerned, it is evident that the number
of degrees is larger compared with displacement-based finite elements. However, while the stresses are calculated
from gradients of the displacements in displacement-type elements, connected by a larger numerical error compared
to the nodal variables obtained from the solution to the system equations, they are directly computed as field variables
in a mixed formulation. Hence, for the same accuracy of the stresses, a smaller number of elements is needed if
mixed elements are used. In addition, it should be pointed out that the proposed solution algorithm provides the
following significant additional advantages:

1. The strain increments �ε can be calculated either from the displacement gradient (as in the displacement
method) or from the stress increments �σ via the compliance matrices (as in a mixed formulation). Clearly, the
latter approach is more precise. Compared to the numerical differentiation using matrix operations to calculate
strain increments as required in the displacement approach, it is more efficient in terms of computation time.

2. Since the stress increments �σ are calculated at each nodal point of a domain directly from the global equation
system, the strain increments �ε are also computed at each node. Therefore, local constitutive integration can
be performed at the nodes of the domain instead of the elements’ Gaussian points. The total calculation time
related to the constitutive routine is proportional to the total number of nodal points, which is less than the total
number of Gaussian points within the mesh.

3. Displacement-type finite-element formulations perform local constitutive integrations at the Gaussian points,
which may lead to discontinuous plastic zones within the analysis domain. One Gaussian point may become
plastic within a load increment, while the other nearby Gaussian points may be still in an elastic regime. In
contrast, the proposed algorithm for integrating constitutive relations at nodal points exploits the fact that the
stresses – and, consequently, the material behavior – is continuous over the domain. The proposed algorithm is
summarized in Table 1.

2.3.1 Algorithm for mixed elastoplastic finite-element analysis of layered Mindlin plates

In this subsection the proposed general two-field finite-element formulation for elastoplastic analysis is adapted
to Mindlin plates. To this end, instead of stresses, stress resultants P are used. Nodal displacements and rotations
are summarized in vector u and curvatures and shear deformations in vector e. Referring to definition (4), the first
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Table 1 Algorithm for
materially nonlinear
two-field mixed finite
elements

n load step counter, NT total
number of load steps, k
global iteration counter,
KONV limit for global
iteration, nd counter for
nodes, TND total number of
nodes

Loop over load steps ( 0, 1)n NT= − :
Compute external load vector at 1n + : ext

1n+F
Initialize: 0

1n n+ =u u
Iteration step loop ( 0, )k KONV= :

Compute tangent material matrices: epC
Generate tangent system matrix: tK

Calculate the increments: ( )1 ext ( ) int
1 1, k

t n n
−

+ +Δ Δ = −u σ K F F

Update displacements: 1
1 1

k k
n n

+
+ += + Δu u u

Loop over nodes in the domain ( 1, )nd TND= :
Compute the strain increments: 1

tan
k −Δ = Δε C σ

Update total the strains: 1
1 1

k k k
n n

+
+ += + Δε ε ε

Call constitutive integration algorithms and calculate
stresses and other state variables: 1

1
k
n

+
+σ , 1

1
k
n

+
+α , ( 1)

1
k p
n

+
+ε

Compute internal force vector: ( 1) int 1
1 1( )k k

n n
+ +

+ +F σ
Check for convergence:

variation of the Hellinger–Reissner functional for Mindlin plates is given as

δΠHR =
∫

Ω

(
eu − eP

)T
δP dΩ +

∫
Ω

(
PTδeu − qTδu

)
dΩ = 0, (7)

where Ω defines the middle plane of the plate as the integral domain. The notations eu and eP represent curvatures
and transverse shear strains in terms of displacements and stress resultants, respectively. Inserting the compatibility
and equilibrium equations from Sect. 2.2, Eq. (7) can be reformulated as

δΠHR =
∫

Ω

[
ϕx,x −

(
D−1
11 Mxx + D−1

12 Myy

)]
δMxx dΩ

+
∫

Ω

[
ϕy,y −

(
D−1
21 Mxx + D−1

22 Myy

)]
δMyy dΩ

+
∫

Ω

[
ϕx,y + ϕy,x − D−1

33 Mxy

]
δMxy dΩ +

∫
Ω

[
w,x + ϕx − C−1

11 Sxz
]
δSxz dΩ

+
∫

Ω

[
w,y + ϕy − C−1

22 Syz
]
δSyz dΩ +

∫
Ω

[
Sxzδw,x + Syzδw,y

]
dΩ

+
∫

Ω

[
Mxxδϕx,x + Mxyδϕx,y + Sxzδϕx

]
dΩ +

∫
Ω

[
Mxyδϕy,x + Myyδϕy,y + Syzδϕy

]
dΩ

−
∫

Ω

δwqz dΩ = 0. (8)

The functional can be linearized about the current state at iteration step k as L[δΠHR] = δΠk
HR + �δΠk

HR, where
δΠk

HR = δΠHR
(
uk,Pk, δu, δP

)
defines the state of the system at iteration step k depending on the state variables

uk,Pk . Considering geometrically linear problems, because the compatibility relations are ensured eu
k − eP

k = 0
in state k, where the strains are fixed, the determination of the state of displacements, rotations, and stress resultants
is only related to the satisfaction of the equilibrium of the system,

δΠk
HR =

∫
Ω

(
eu

k−eP
k
)T

︸ ︷︷ ︸
0

δP dΩ +
∫

Ω

(
P(k)Tδeu

k − qTδu
)
dΩ

=
∫

Ω

(
P(k)Tδeu

k − qTδu
)
dΩ, (9)
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Table 2 Algorithm for
materially nonlinear
analysis for Mindlin plates
using mixed finite elements

Loop over load steps ( 0, 1)n NT= − :

Compute external load vector at 1n + Generate external load: ext
1n

+

+F
Initialize: 0

1n n+ =u u
Iteration step loop ( 0, )k KONV= :

Compute tangent material matrices: epC

Generate tangent system matrix: k
++
K

Compute the increments: ( ) ( )1
ext (int)

1 1 1, ( )k k k
n n n

−++ + +

+ + +Δ Δ = −u P K F F P

Update displacements: 1
1 1

k k
n n

+
+ += + Δu u u

Loop over nodes in the domain ( 1, )nd TND= :
Compute increments in curvatures and shear strains at 
the node nd : Δ Δe P
Loop over layers ( 1, )L N= : 

Compute strain increment: ( )kΔ Δε e
Update total strains: 1

1 1
k k k
n n

+
+ += + Δε ε ε

Call constitutive integration algorithms and 
calculate stresses and other state variables: 1

1
k
n

+
+σ , 

1
1

k
n

+
+α , ( 1)

1
k p
n

+
+ε

Compute internal force vector: 1(int) 1
1 1( )k k

n n

+
+ +
+ +F P

Check for convergence:

which, after inserting approximations, generates the global state vector (or internal force vector)
+
F k(int) and external

load vector
+
F ext in the form

+
F k(int) − +

F ext. Here Pk is the vector of the stress resultants at state k calculated from
the integrals of stresses obtained from the local integration of the constitutive equations. The increments of the
displacements and rotations�u and of the stress resultants�P are computed from the solution of the global system
of equations. The tangent system matrix is generated according to the directional derivative of the first variation of
the functional:

�δΠk
HR = lim

β→0

(
d

dβ
[δΠHR(u + βu,P + βP, δu, δP)](u=uk ,P=Pk )

)
. (10)

Considering only material nonlinearity, (10) yields

�δΠk
HR =

∫
Ω

[
�euδP − D

−1
k

�PδP + �Pδeu
]
dΩ,

which, after including finite-element approximations, corresponds to the structural tangent matrix
++
K . D

−1
k

=
( des/ ds)|k is the section compliance matrix at iteration step k, which is calculated by integrating the tangent
elastoplastic moduli of each layer through the thickness of the plate. The section compliance matrices are generated
at nodes and interpolated over the finite elements as

D
−1
i j =

nenodes∑
m=1

φm(D
m
i j )

−1, (11)

where (D
m
i j )

−1 is the section compliance matrix computed at node m, φm is the corresponding shape function,
and � represents the assembly operator. The proposed algorithm for the elastoplastic analyses of Mindlin plates is
summarized in Table 2.

2.3.2 Computation of transverse shear strains

Assuming a constant shear strain according to theMindlin plate theory yields an inexact stress distribution, although
the shear forces are calculated adequately through the mixed formulation. To avoid this deficiency, the transformed
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A new mixed finite-element approach for the elastoplastic analysis 145

section method, or equivalent section method [41,42], is adopted. This method entails a continuous distribution
of the shear strains and uses effective section properties to determine the transverse stress distribution through the
plate thickness. The proposed mixed formulation provides the required shear forces directly, which is an additional
advantage for the postprocessing phase.

2.3.3 Finite-element discretization

Quadrilateral isoparametric finite elements are used to discretize the plate domain. Each node has eight field variables
corresponding to both displacements and rotations as well as to stress resultants: w, ϕx , ϕy , Sxz , Syz , Mxx , Myy ,
Mxy . Since functional (8) only contains first-order derivatives, linear shape functions are sufficient to fulfill the
C0 continuity requirement. The evaluation of the integrals is performed by means of a 2×2 Gaussian quadrature
scheme.

2.4 Numerical integration of elastoplastic constitutive equations

For the integration of the elastoplastic equations, a predictor–corrector schemewith the now standard returnmapping
algorithm [43,44] is employed. For completeness, only a brief summary is given in this subsection. For a given
strain increment �ε within the interval [tn, tn+1] computed at the nodal points and the known state of the plastic
strains ε

p
n and internal variables αn at tn , the updated values ε

p
n+1 and αn+1 at tn+1 are computed.

2.4.1 Basic equations of infinitesimal strain plasticity

Infinitesimal strain plasticity theory is characterized by an additive decomposition of the total strains ε into elastic
εe and plastic εp parts as ε = εe + εp. The stress is expressed in terms of elastic modulus tensor C and the elastic
strain as σ = C :(ε − εp). The evolution of the plastic strains and the internal plastic variable α is assumed in an
associative format:

ε̇p = γ̇
∂ f

∂σ
, α̇ = γ̇

∂ f

∂q
. (12)

The yield function f (σ ,q) ≤ 0 is expressed in terms of the stresses and the stresslike plastic variable q. Here,H is
the matrix of generalized plastic moduli, which relates q and α as q = −H : α. γ̇ ≥ 0 is the consistency parameter.
The loading/unloading conditions are provided by the Kuhn–Tucker conditions:

γ̇ ≥ 0, f (σ ,q) ≤ 0, γ̇ f (σ ,q) = 0, γ̇ ḟ (σ ,q) = 0. (13)

2.4.2 Backward Euler integration

Using the backward Euler scheme, the algorithmic forms of Eq. (12) are obtained as [45]

ε
p
n+1 = ε

p
n + �γn+1

∂ fn+1

∂σ n+1
, αn+1 = αn + �γn+1

∂ fn+1

∂qn+1
, (14)

with �γn+1 = γ̇n+1�t . The algorithmic form of the Kuhn–Tucker conditions (13) is given as follows:

�γn+1 ≥ 0, fn+1 ≤ 0, �γn+1 fn+1 = 0. (15)

Using the return map algorithm [44], the trial stress tensor σ trial
n+1 = C : (εn+1 − ε

p
n
)
is computed. If σ trial

n+1 stress is
admissible according to Eq. (15), then the step [tn, tn+1] is treated as elastic. However, if the stress is not admissible,
it is projected on the yield surface with the conditions fn+1 = 0, �γn+1 > 0 �ε

p
n+1 �= 0, �α

p
n+1 �= 0. The yield

condition fn+1 = 0 and the algebraic set of nonlinear equations (14) are enforced iteratively. At the i th iteration
step the residuals of Eq. (14) are given as
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R(i)
n+1 =

⎧⎪⎨
⎪⎩

−ε
p(i)
n+1 + ε

p
n + �γ

(i)
n+1

(
∂ f
∂σ

)(i)

n+1

−α
(i)
n+1 + αn + �γ

(i)
n+1

(
∂ f
∂q

)(i)

n+1

⎫⎪⎬
⎪⎭

?= 0 (16)

and solved recursively with the initialization of the variables as i = 0, �γ
(0)
n+1 = 0, ε p(0)

n+1 = ε
p
n , α

(0)
n+1 = αn . The

increment of the consistency parameter is calculated as

��γ (i) = f (i)
n+1 − ∇T

CAR
(i)
n+1

∇T
CA∇ , (17)

where ∇T
C =

[
f (i)
n+1,σ : C f (i)

n+1,q : H
]
, ∇ = [

f,σ f,q
](i)T
n+1. With I as the fourth-order unit tensor, A is written as

A−1 =
(
I + (

�γ f,σσ

)(i)
n+1 : C (

�γ f,σq
)(i)
n+1 : H(

�γ f,qσ

)(i)
n+1 : C I + (

�γ f,qq
)(i)
n+1 : H

)
. (18)

The incremental state variables in the i th iteration are obtained as{
�εp

�α

}(i)

n+1
= A

(
R + ��γ

{
f,σ
f,q

})(i)

n+1
. (19)

Finally, the state variables and the consistency parameter are updated until the residual becomes close enough to
zero in the Newton–Raphson solution algorithm:

ε
p(i+1)
n+1 = ε

p(i)
n+1 + �ε

p(i)
n+1, α

(i+1)
n+1 = α

(i)
n+1 + �α

(i)
n+1, �γ (i+1) = �γ (i) + ��γ (i) . (20)

2.4.3 Consistent elastoplastic tangent moduli

The algorithmic elastoplastic tangent moduli Cep = ∂σ n+1/∂εn+1 are computed at the converged step tn+1 as

Cep = C : Aεε −
(
C : Aεε : f,σ + C : Aεσ : f,q

)⊗ (
f,σ : C : Aεε + f,q : H : Aσε

)
∇T
CA∇ , (21)

where Aεε, Aεσ , and Aσε are submatrices of the algorithm matrix A.

3 Numerical results

In this section, the developed finite-element formulation and the proposed solution algorithms for elastoplastic
analysis of Mindlin plates are applied to selected benchmark analyses and parametric studies. Before presenting
the elastoplastic examples, we investigate the accuracy of the computed stresses.

3.1 Simply supported elastic square plate: numerical assessment of the accuracy of stresses

The accuracy of the calculated stresses using the proposed mixed formulation is investigated by compar-
ing the analysis results with analytical results given by Reddy [46] for a simply supported moderately thick
square plate with a height-to-length ratio of h/a = 0.1 and elastic material behavior. Both sinusoidal (SL)
q(x, y) = q0 sin(πx/a) sin(πy/a) and uniformly distributed loading (UL) q(x, y) = q0 cases are considered.
It must be pointed out that SL results are exact and UL results are obtained from the first 19 terms of the analytical
solution. To ensure a sufficient quality of the discretization, five different finite-element meshes in a range of 4× 4
to 20 × 20 elements were used in a mesh sensitivity study (Table 3). In Table 3, w = 102w0D/(a4q0) denotes
the nondimensional central deflection and σ xx = σxxh2/(a2q0), σ xy = σxyh2/(a2q0), and σ xz = σxzh/(aq0)
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Table 3 Influence of discretization: nondimensional central deflection and stresses of a simply supported square plate

Load case Source w σ xx σ xy σ xz

SL Mixed FEM (mesh) (4 × 4) 0.2578 0.1805 0.1078 0.2263

(8 × 8) 0.2668 0.1876 0.1125 0.2357

(12 × 12) 0.2686 0.1889 0.1133 0.2374

(16 × 16) 0.2693 0.1894 0.1136 0.2380

(20 × 20) 0.2696 0.1896 0.1137 0.2382

Reddy [46] 0.2702 0.1900 0.1140 0.2387

UL Mixed FEM (mesh) (4 × 4) 0.4392 0.2604 0.2535 0.4643

(8 × 8) 0.4310 0.2718 0.2255 0.4938

(12 × 12) 0.4283 0.2742 0.2176 0.5007

(16 × 16) 0.4273 0.2751 0.2143 0.5033

(20 × 20) 0.4268 0.2755 0.2126 0.5045

Reddy [46] 0.4259 0.2762 0.2085 0.4909

υ = 0.25, σ xx (a/2, a/2, h/2), σ xy(a, a,−h/2), σ xz(0, a/2, 0)

are nondimensional stress components. The maximum stresses were evaluated at three points: σ xx (a/2, a/2, h/2),
σ xy(a, a,−h/2), σ xz(0, a/2, 0). A rapid convergence of the displacements and stress components with an increas-
ing element number is apparent from Table 3. Even for very coarse meshes, the results from the mixed formulation
are consistent with the analytical results of Reddy [46]. For the 4 × 4 mesh and a SL load case an error of ∼5%
is obtained for both displacement and stress components. This error decreases to 0.20∼0.26% (with exact results)
for the finest mesh with 20 × 20 elements. For the same mesh configuration [σ xx (a/2, a/2, h/2) elements] and
load case UL, the errors for w, σ xx , σ xy , and σ xz are 0.21, 0.25, 1.97, and 2.77% (with analytical results of the
first 19 terms), respectively. One may conclude that the results of the presented mixed finite-element formulation
show a parallel behavior, are close enough to the exact results, and can predict the transverse shear stresses quite
accurately, although a first-order shear deformation theory with linear shape functions is employed.

3.2 Elastoplastic plate with linear hardening

A uniformly loaded simply supported square plate (6 m× 6 m) with thickness h = 0.2 m is considered. The elastic
modulus of the plate, the Poisson’s ratio, and the yield stress are assumed as E = 2.067 × 108 MPa, υ = 0.3,
and σY = 206.7 × 103 kPa. Linear hardening is assumed, with a tangent modulus ET = 2.067 × 106 MPa. The
hardening modulus H and ET are related as H = ET /(1− ET /E) [22]. For comparison, the results from element-
free Galerkin analysis by Belinha and Dinis [47] are used, where a layered approach was adopted with eight layers
of equal thickness through the plate cross-section. They used a fine discretization with a regular mesh with 441
nodes, employing seventh-order splines for test functions and 6 × 6 integration points inside each nodal cell.

To examine the performance of the proposed solution procedure, several parametric studies are performed: four
different meshes (4 × 4, 8 × 8, 12 × 12, 20 × 20) and four different configurations of layers across the height (4,
8, 12, 16) and four different numbers of load step (5, 10, 20, 40). In the following diagrams, the nondimensional
central deflection of the plate with the plastic moment Mp = σYh2/4 is plotted versus the nondimensional loading
parameter.

Figure 4 depicts the central deflection of the plate discretized by a coarse mesh consisting of 4 × 4 elements.
The results show that all curves are significantly below the reference curve denoted by a solid line with an average
mean square error (AMSE) of 0.836, 1.142, 2.934, and 2.385 for the solution with 4 layers and 1.390, 1.082, 0.885,
and 0.778 for the solution obtained with 16 layers. When 20 or 40 loading steps are used, a difference between the
results using 4 layers and the remaining results using 8 and more layers is observed.
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Fig. 4 Central deflection of a simply supported elastoplastic
square plate with 4 × 4 mesh. Thick line Belinha and Dinis [47],
diamond 4 layers, square 8 layers, circle 12 layers, triangle 16
layers

Fig. 5 Central deflection of a simply supported elastoplastic
square plate with 8 × 8 mesh. Thick line Belinha and Dinis [47],
diamond 4 layers, square 8 layers, circle 12 layers, triangle 16
layers

The load–displacement curves for a finer finite-element mesh (8 × 8) are presented in Fig. 5. For this mesh
configuration, the importance of the number of layers for the reflecting nonlinear behavior becomes apparent even
for small load steps compared to the 4 × 4 mesh configuration.

Figure 6 contains the load–displacement diagrams for a discretization using a mesh of 20× 20 elements. Based
on this figure, it is concluded that, even for a fine discretization, 5 load steps using only 4 layers through the thickness
are insufficient and that a sufficient convergence can be achieved with 12 layers and 20 load steps for the present
benchmark example.

For further investigation of the convergence behavior of the proposed numerical solution procedure, the AMSEs
of the central deflection of the elastoplastic plate with respect to the results obtained from Belinha and Dinis [47]
are presented in Fig. 7. It must be noted that the results from Belinha and Dinis are obtained by digitizing the plots
from their figures. In Fig. 7 the AMSE is plotted versus the NDOF for different meshes, numbers of layers, and
loading steps. The figure shows that the number of layers has a significant effect on the error, while the number of
load steps is less significant.

3.3 Elastoplastic analyses of Mindlin plates with perfect plastic constitutive behavior

In this subsection, a parametric study and convergence study for the elastoplastic analysis of a square Mindlin plate
is presented for the perfect plasticity case, adopting results from Owen and Hinton [22] as a reference solution
that were obtained from the heterosis element [48]. A simply supported and uniformly loaded square plate with
nondimensional parameters a = 1, E = 10.92, υ = 0.3, h = 0.01, and σY = 1600 is investigated. From Owen
and Hinton [22] we get the central deflections of the plate for both layered and nonlayered analyses. The plate is
analyzed with the proposed mixed finite-element formulation using 4 layers, 8 layers, 12 layers, and 16 layers. In
Figs. 8 and 9 the nondimensional loading parameters are plotted against nondimensional central deflections for
8 × 8 and 20 × 20 finite-element meshes and different numbers of loading steps.

Figure 8 indicates that even for a ratio of h/a = 0.01 considering four layers through the thickness is insufficient.
From Fig. 9 it is concluded that for the 20 × 20 mesh, a parallel behavior with the reference result presented in
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Fig. 7 Average mean square errors of central deflection with
respect to results of Belinha and Dinis [47] as a function of the
number of degrees of freedom for different numbers of layers and
load steps
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Fig. 8 Central deflection of a simply supported perfectly elasto-
plastic square plate with 8×8 mesh. Thick lineOwen and Hinton
[22] layered approach, dotted line Owen and Hinton [22] non-
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Fig. 9 Central deflection of a simply supported perfectly elasto-
plastic square plate with 20 × 20 mesh. Thick line Owen and
Hinton [22] layered approach, dotted line Owen and Hinton [22]
nonlayered approach, diamond 4 layers, square 8 layers, circle
12 layers, triangle 16 layers
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Table 4 Nondimensional central deflection (w0D × 100/(Mpa2)) of a square plate with various thickness-to-width ratios

qa2/Mp 4 Layers 8 Layers 12 Layers 16 Layers

h/a = 0.05 16.875 7.5519 7.2039 7.1520 7.1368

20.000 10.5311 9.6917 9.5543 9.4902

23.125 26.4713 17.3260 16.4164 16.2241

h/a = 0.10 16.875 7.8266 7.4664 7.4176 7.4115

20.000 10.8547 10.0122 9.8840 9.8230

23.125 27.8144 17.9182 16.9719 16.8071

h/a = 0.15 16.875 8.2509 7.9121 7.8755 7.8846

20.000 11.3736 10.5586 10.4396 10.3938

23.125 29.8535 18.9286 17.9670 17.8755

Owen and Hinton [22] is obtained when the number of layers is larger than 4 and the number of loading steps is
sufficiently large (i.e., larger than 20) to resolve the complete load–displacement diagram.

3.4 Investigation of spatial resolution of plastic zones through the thickness

In this example, the spatiotemporal evolution of plastic deformations through the plate thickness is investigated.
To this end the simply supported square plate analyzed in Sect. 3.2 is considered with the same loading, material,
and hardening properties. With a side length of a = 6 m, three different thickness-to-side-length ratios, h/a =
0.05, 0.10, 0.15, are examined. Table 4 contains the nondimensional central deflection of a square plate for three
nondimensional load levels (16.875, 20, and 23.125). Four different layer configurations are considered (4, 8, 12,
and 16 layers through the plate thickness). It is observed from Table 4 that the influence of the number of layers is
increasing with a decreasing h/a ratio and that with an increasing load level, a larger number of layers is required.

Finally, the distribution of the nondimensional normal stress component (σxx/σY) through the plate thickness
at the center of the plate is plotted in Fig. 10 for three different load levels and for two different thickness-to-width
ratios. Four and 16 layers are employed to discretize the cross section of the plate. It is observed that the number of
layers has a larger effect at larger load levels. Only marginal differences are observed for the two ratios h/a = 0.05
and 0.15.

3.5 Investigation of circular, skew, and L-shaped plates

To evaluate the behavior of the proposed finite element in a numerical analysis of plates characterized by non-
rectangular shapes subjected to distributed and point loading, a circular plate, a skew, and an L-shaped plate are
analyzed in this subsection (Fig. 11). According to the previous convergence studies, the analyses are performed
by considering 40 loading steps and 16 layers through the plate section. A constant Poisson’s ratio υ = 0.3 is used;
a plate thickness ratio of h/a = 0.05 is assumed unless stated otherwise. Except for the L-shaped plate, the plate
boundaries are considered to be clamped. The specific boundary conditions of the L-shaped plate are depicted in
Fig. 11. Perfect plasticity is assumed in order to compare the results with existing results from limit load analyses
in the literature.

The nondimensional central deflection of a circular plate subjected to uniformly distributed loading is shown in
Fig. 12 for three different finite-element discretizations. In the figure, the limit load [17] is also included. Even for
a coarse mesh composed of 12 quadrilateral elements over the full plate, a good approximation is achieved.

Owing to the nature of the proposed formalism, point loads cannot be directly employed in the analyses. Similar to
the other field variables, shear forces are also continuously distributed over the discretized domain and a concentrated
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force causes violation of the continuity in shear force parameters. Therefore, point loading requires distributing the
force over a small plate element. With this approach the nondimensional central deflection of a circular plate under
the action of a central point load P is presented in Fig. 13. The point load P is considered to be distributed over a
square area 0.04a×0.04a, where a is the radius of the circular plate. It can be concluded that both for point loading
and uniform loading a similar number of elements is required to obtain converged values of the central deflection.

Figure 14 presents the nondimensional central deflection of a skew plate with side length ratio a/b = 1.5 and
angle ω = 60◦ (Fig. 11) for uniform loading. Convergence of the parameters with respect to the increased element
numbers can be observed from the figure. The results converge very rapidly and are consistent with the limit load
value provided by Sobotka [18].

The last problem is concernedwith anL-shaped plate. At two opposite edges the boundary is assumed to be simply
supported while all other boundaries are assumed to be free (Fig. 11). The uniformly loaded plate is discretized with
four different meshes. As a benchmark result, the limit load provided by Bleyer et al. [19] is used for comparison.
Figure 15 depicts the nondimensional displacement of the reentrant corner of the L-shaped plate. A difficulty in
the achievement of the convergence is observed because this problem involves a stronger singularity than previous
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Fig. 15 Deflection of reentrant corner of L-shaped plate sub-
jected to uniformly distributed load. Thick line limit load (Bleyer
et al. [19]), diamond 48 elements, square 108 elements, circle
363 elements, triangle 588 elements

problems. There is a slight difference between the limit load given by Bleyer et al. [19] and the maximum load
reached by this procedure.

3.6 Investigation of element behavior for mesh distortion

To investigate the mesh sensitivity of the proposed element, the linear static problem presented in [49] is studied.
For this purpose a clamped square plate with h/a = 0.001 and υ = 0.3 is considered. Owing to the symmetry of
the problem, a quarter of the uniformly loaded plate is considered. The distorted meshes (Fig. 16) are generated by
moving the position of the interior nodal points by a factor s [49]. Based on a regular mesh, the new coordinates(
x ′, y′) of the interior points are obtained from the initial coordinates (x, y) using the following formulas:

x ′ = x + rcs�x, y′ = y + rcs�y , (22)

where rc is a randomly generated number between −1.0 and 1.0, s ∈ [0, 0.5] is used to control the order of
distortion, and �x and �y correspond to the initial sizes of the regular mesh elements in the x- and y-directions,
respectively. The yellow regions in Fig. 16 show that the related element is no longer convex. Table 5 contains the
nondimensional central deflection of the plate for three different values of s. This table also contains the deviation κ

of the results from distorted meshes as compared to regular mesh layouts obtained from the proposed mixed finite-
element formulation for different levels of mesh distortion expressed by the parameter s. As a means of comparison,
the respective deviations reported in [49] for different plate elements are included in this table. Similar as the finite
element based on the assumed natural strain method proposed by Bathe and Dvorkin [50] (MITC element) and in
contrast to the finite elements with mixed interpolation and smoothed curvatures (MISC elements), the deviation
κ increases as the irregularity parameter s increases. However, for s = 0.5, the deviation is considerably smaller
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(a) (b) (c)

Fig. 16 Distorted meshes of a quarter of a square plate: a s = 0.2; b s = 0.4; c s = 0.5

Table 5 Nondimensional central deflection w0100D/
(
qa4

)
of a clamped plate under uniform load for various distorted meshes and

the deviation κ of results from one of the distorted meshes with respect to the regular mesh layouts

Element s = 0.0 s = 0.2 κ (%) s = 0.4 κ (%) s = 0.5 κ (%)

MITC4 0.1211 0.1245 2.8 0.1189 1.8 0.1087 10.2

MISC1 0.1302 0.1361 4.5 0.1377 5.8 0.1347 3.5

MISC2 0.1266 0.1323 4.5 0.1331 5.1 0.1287 1.7

MISC3 0.1249 0.1305 4.5 0.1309 4.8 0.1260 0.9

MISC4 0.1233 0.1287 4.4 0.1288 4.5 0.1227 0.5

Mixed element 0.1334 0.1301 2.5 0.1294 3.0 0.1290 3.3

Exact solution 0.1265 0.1265 0.1265 0.1265

For comparison, solutions from existing finite elements [49] are included

for the mixed element as compared to the MITC element. In average, it concluded that the current element shows
a sensitivity to the mesh distortion that is comparable to (and in general smaller than) the other plate elements.

4 Conclusions

The main objective of this article was to develop a new mixed finite-element formulation for elastoplastic structural
analysis with a specific application to Mindlin plates. The proposed nonlinear finite-element model preserves stress
parameters as field variables beside displacement type field variables, during the whole solution procedure. The
proposed formulation for Mindlin plates does not suffer from shear locking even without using any stabilization
procedure.

The formulation provides both displacement and stress increments directly at the nodal points. The strain incre-
ments are computed from stress increments in terms of linear constitutive relations. The local integration of con-
stitutive equations is performed at nodal points instead of Gaussian points based on the updated continuous strain
field. The proposed algorithmic formulation for elastoplastic analysis of isotropic Mindlin plates is characterized
by employing an implicit integration of 3D elastoplastic models. A layered approach is adopted for the spatial
resolution of plastic deformations through the plate thickness.

The finite-element plate model was applied to numerical analyses of plates characterized by perfectly plastic
and linear hardening elastoplastic material behavior and the von Mises criterion. It was shown that quadrilateral C0

plate finite elements were able to perform well in elastoplastic analyses even for moderate discretizations. Even in
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the case of coarse meshes, the nonlinear solution process showed stable convergence through the complete iterative
procedure. It was demonstrated in comparative analyses that the current plate element also performs well in the
case of circular, skew, and other types of geometries and that the results show only a slight sensitivity with respect
to mesh distortion.

In a number of parametric studies, the applicability and accuracy of the developed formulation were investigated
for different spatial discretizations, loading steps, and numbers of layers. From these benchmark analyses it is
concluded that even for thin plates a minimum of four layers across the thickness of the plates are required to
accurately replicate the elastoplastic behavior. For increasing load levels, the number of layers must be increased
to preserve the accuracy of the analysis. Obviously, the number of layers strongly affects the error level, while the
number of load steps affects the accuracy only slightly.
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