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Abstract The rheological equation of a standard linear solid, i.e., the Zener model, is thermodynamically consis-
tent. Thus, it was often used as a starting point for the development of nonlinear viscoelastic models, especially for
elastomers. The basic idea of this paper is a generalization of the one-dimensional fractional constitutive equation
of the Zener model to large strains. To reduce the number of material parameters of differential models based on
the concept of the internal variables and to avoid integral constitutive equations, we develop a differential model
based on the concept of dual stress and strain tensors and their derivatives. To this end, we select two couples of
dual stress and strain tensors that have been used in finite elasticity. Then we obtain two constitutive models of
incompressible isotropic materials called M1 and M2. We show that the M1 model is not suitable for describing
the viscoelastic behavior of elastomers. To improve the predictions of the M2 model, we assume that the material
is thixotropic. Therefore, the ratio of the relaxation and creep time depends on deformation. Experimental results
show that this ratio may be represented as a function of the first invariant of the Cauchy–Green strain tensor. This
yields a new constitutive equation whose material parameters were identified using experimental data on relaxation
loadings in the literature. Next, we show that the model is able to predict the experimental data for combined loads
of tension–torsion. Consequently, the model seems to be efficient at predicting the multiaxial visco-hyperelastic
behavior of elastomers. The main advantage of the current model is that it has a differential form with relatively
few parameters and is mathematically convenient.
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2 S. Bouzidi et al.

1 Introduction

Elastomeric rubbers are being used increasingly in various industrial applications such as, for example, shock
absorbers, enginemounts, tires, and adhesive joints. To design elastomer components using convential finite-element
method (FEM) techniques, it is necessary to choose a three-dimensional constitutive equation that would be reliable
for predicting the multiaxial behavior of elastomers. The mechanical behavior of such materials is dominated by
hyperelastic behavior with a nonlinear response varying with the strain rate owing to viscous effects; the behavior
is called visco-hyperelastic. In the literature, essentially two approaches have been developed for describing the
viscoelastic behavior of elastomers at large strains: integral and differential formulations. Often, hereditary integral
representations are more commonly used. For more details, the nonlinear viscoelastic theories and constitutive
models were well summarised in the book by Locket [1] and recent review articles [2,3].

Finite linear viscoelasticity (FLV) theory is amajor foundation formodeling themechanical behavior ofmaterials,
whichdepends on the strain rate. In fact, FLV theory is a simplificationof the phenomenological approachofColeman
and Noll [4], which was based on the concept of rate-dependent functionals with fading memory properties. Thus,
the stress may be decomposed into two components: an equilibrium stress corresponding to the stress response at an
infinitely slow rate of deformation and a viscosity-induced overstress. The overstress was expressed as an integral
over the deformation history and a relaxation function specified as a measure of the material memory [5]. The
FLV theory of Coleman and Noll [4] contains, for an isotropic material, 12 relaxation functions and 3 steady-state
material functions. This theory is not appealing because of the large number of functions that need to be determined
by experimentation. Simplified versions of FLV theory have been developed that consist mainly of decreasing the
number of relaxation functions [6–10]. For instance, Pipkin and Rogers [11] motivated the addition of successive
terms in integral series representation of the stress in terms of the history of strain till the difference between the
test data and the prediction from theory became smaller than a preassigned value. Thus, they derived a nonlinear
theory of viscoelasticity. Bernstein et al. [12] proposed the Bernstein–Kearsley–Zapas (BKZ) elastic-fluid model,
which was able to predict the stress relaxation of many kinds of rubber. Recently, a modified version of Kaye-
Bernstein–Kearsley–Zapas (K-BKZ) theory was used to model the nonlinear viscoelastic behavior of elastomers
[13]. The integral models of type K-BKZ are attractive because of their form, which is equivalent to that envisaged
by molecular dynamics. They are based on the molecular network concepts that consist of entanglements. The
disappearance of the nodes of the network over time is accelerated by the deformation. These models have been
used for a long time and successfully in the field of thermoplastic polymer flows, as well as in shear and elongation
deformation modes. Jaishankar and McKinley [14] improved K-BKZ theory using fractional derivatives in the
framework of complex fluids and soft materials.

Although FLV theory is very general, other less general theories have been used in the literature [15,16]. Recently,
Hoo Fatt and Ouyang [17] proposed a new single integral form for stresses in which the material parameters inter-
vening in the elastic potential depend on time. Ciambella et al. [18] have expressed the second Piola–Kirchhoff
stress tensor as a sum of the equilibrium stress and the overstress represented by a convolution integral in which
the relaxation function is described by a Mittag–Leffler type. The authors claimed that their model may be a
generalization of both differential and fractional models. The complexity of the model requires the use of a sophis-
ticated optimization process for obtaining the material parameters. Christensen [19] used the kinetic theory of
rubber elasticity as a starting point for behavior in large deformations and generalized this theory to include the
effect of time. He showed that the type of degree of nonlinearity is very different under relaxation conditions from
those involved during creep conditions. O’Dowd and Knauss [20] developed an integral constitutive model that
describes the principal deformations of polymeric materials under small and large deformations using the conjugate
pair of the second Piola–Kirchhoff stress and the Green strain tensors. Recently, multinetwork theories have been
developed [21] for polymeric solids and reproduce successfully a variety of physical phenomena. These theories
may be applied to elastomeric solids; however, much work remains to be done. In addition, integral models are
difficult to implement using conventional FEM techniques [22], and differential constitutive equations are more
appropriate for FEM analysis. To formulate differential constitutive equations in large strains, differential models
of linear viscoelasticity [23] may be used as basic models. For these models, elastic behavior is represented by a
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Phenomenological isotropic visco-hyperelasticity 3

linear spring and the linear viscous element by a dashpot. Thus, many viscoelastic behaviors of polymers can be
approximated by changing the number of springs and dashpots and the connection mode of these elements [24]. Let
us focus on a rheological model that is capable of predicting relaxation and creep phenomena (nonviscous material).
A simple rheological model incorporating both behaviors is the standard linear solid (SLS) model [25,26]. The
SLS model reasonably describes the viscoelastic behavior of elastomers, as it gradually tends to an equilibrium
elastic state during a long relaxation test [27–29]. At small deformations, its creep compliance and relaxation
modulus may be represented by a Prony series. Thus, several parameters are usually required to reproduce the
viscoelastic behavior of elastomers. Consequently, the identification of the material parameters can be an ill-posed
problem. To overcome this issue, one reduces the number of material parameters using fractional differential models
[30–33].

Recently, the concept of fractional differential has been applied to extend the constitutive equations of Maxwell
and Kelvin–Voigt linear models to finite viscoelasticity [34,35]. The constitutive equations that are deduced from
these models are not suitable for predicting the viscoelastic behavior of solids. In fact, they cannot predict either
relaxation or creep responses. Adolfsson and Enelund [36] have proposed a fractional finite viscoelastic model
that is based on the concept of internal variables. The model was validated numerically by finite elements. The
mathematical structure of this model entails high numerical computational costs in order to fix the number of
material parameters to identify and experimentally validate the model. Johnson and Quigley [37] have proposed a
one-dimensional phenomenological integral model based on the extension of the Maxwell model to large strains.
The parameters of this model can be easily determined from the experimental data of tension relaxation tests. The
model hasmanymaterial parameters and can accurately predict experimental data. Kim et al. [38] have implemented
this model in finite-element analysis using the multiplicative decomposition of deformation gradients.

Other authors have applied continuum thermodynamics theory and the multiplicative decomposition of the
deformation gradient into elastic and viscous parts or internal variable to formulate constitutive equations [5,39–44].
The decomposition of the deformation gradient into elastic and viscous parts is a conceptual approach, F = FeFv.
Generally, this decomposition cannot be determined experimentally since neitherFe norFv is an observable quantity
[45]. In the framework of elastoplasticity, the decomposition of the deformation gradient into elastic and plastic
terms relies on clear physical assumptions; there is a lack of evidence in the context of viscoelasticity. However,
this decomposition has been successfully applied in many nonlinear constitutive equations [26,46,47].

An alternative to themodels based on continuum thermodynamics is themicromechanics approach. Thesemodels
are based on the macromolecular chain network concept with cross links. The earlier work of Green and Tobolsky
[48] demonstrated that the classical relaxation theories could be expressed in terms ofmolecular structure theory and
chemical rate theory. They obtained a time-dependent behavior from the sum of an elastic component and a strain-
history-dependent component. These authors introduced a transient network concept based on the assumption that
chains are steadily breaking and reforming. Bergström and Boyce [49] developed a visco-hyperelastic constitutive
model to predict the hysteresis of rubber subjected to slow cyclic loads. Reese [50] developed a material model
for the thermo-viscoelastic behavior of rubberlike polymers based on transient network theory. Some of these
micromechanical models can be found in the literature [51,52]. However, these micromechanics-based models are
extremely difficult to use and rely on assumptions that have been questioned [53].

The aim of this paper is to propose a novel differential visco-hyperelastic model that can predict the multiaxial
behavior of incompressible elastomeric solids. To obtain the model, we will extend the one-dimensional fractional
rheological equation of theSLSmodel, i.e., theZenermodel, to large strains using the concept of dual stress and strain
tensors. The paper is organized as follows. In Sect. 2, we recall the one-dimensional fractional constitutive equation
of the SLS model in the framework of linear viscoelasticity. Then the concept of dual variables and their derivatives
is applied to this constitutive equation to obtain two constitutivemodels, calledM1 andM2.Wewill demonstrate that
M1 is not appropriate for describing the visco-hyperelastic behavior of elastomers. Model M2 seems qualitatively
able to reproduce the shape of a nominal stress curve. Therefore, the material parameters for this model are
identified using experimental results found in the literature. Good agreements are shown between these predictions
and experimental data of the multiaxial behavior of elastomeric solids. We end with some concluding remarks.
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4 S. Bouzidi et al.

2 Phenomenological finite viscoelasticity

Elastomeric (or rubberlike)materials constitute a family of high polymers that regroups the thermoplastic elastomers
(e.g., polyurethanes), natural rubbers (vulcanized natural rubber, carbon black filled natural rubber), and synthetic
elastomers (e.g., silicone rubbers, styrene–butadiene rubber, ethylene propylene diene monomer rubber).

These polymers are widely used for sound and vibration damping. One of the remarkable properties of these
materials, besides their high damping ability, is the strong frequency dependence of dynamic properties. Material
damping is quantified by the loss factor, defined as the ratio between the imaginary part and the real part of the
complex modulus of elasticity in the frequency domain. These materials show a weak frequency dependence of
their damping properties over a broad frequency range. This weak frequency dependency is difficult to describe
with classical viscoelasticity based on integer derivative operators. Among these models, the standard linear solid
(SLS), better known as the Zener model, is probably the most attractive one. This model is built on the parallel
coupling of a linear spring and a Maxwell element (a serial coupling of a linear spring and a viscous damper). Its
rheological representation is shown in Fig. 1a, and the one-dimensional constitutive equation at any time is

σ(t) + τRσ̇ (t) = ERε(t) + ERτcε̇(t), (1)

where σ(t) and ε(t) are the engineering stress and strain, ER is the relaxed magnitude of the elastic modulus
(prolonged modulus of elasticity), and the parameters τR = η/E and τc = τR(1+ E/ER) = τRξ−1 are respectively
the relaxation and creep (retardation) time. Equation (1) is not able to correctly represent the viscoelastic behavior
of elastomers.

Usually, a large number of derivative operators are required to obtain a reasonably accurate description of
observed damping characteristics. Consequently, many material parameters are necessary, and their identification
could be problematic. By introducing fractional order derivative operators in the constitutive relations, the number
of material parameters can be significantly reduced (Fig. 1b). Thus, Eq. (1) can be generalized as follows:

σ(t) + τα
RD

ασ (t) = ERε(t) + ERτα
c D

αε(t), (2)

where Dασ (t) and Dαε(t) are fractional derivatives in the sense of Caputo and Mainardi [54],

Dγ f (t) =

⎧
⎪⎨

⎪⎩

1
Γ (1−γ )

t∫

0

f ′(s)
(t−s)γ ds γ ∈ ]0, 1[,

d f (t)
dt γ = 1,

(3)

where the Gamma function is defined by Γ (z) = ∫∞
0 uz−1e−udu.

A number of publications have shown that fractional order viscoelastic models successfully predict the experi-
mental data over a broad frequency range for several polymers using only four material parameters in the uniaxial
case [30,55]. Also, these fractional viscoelastic models can predict the experimental data of the creep and relaxation

Fig. 1 a Standard
three-parameter Zener
model and b fractional
three-parameter Zener
model
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Phenomenological isotropic visco-hyperelasticity 5

stress of many polymers [56,57]. According to [55], the use of Eq. (2) is attractive in the analysis of viscoelastic
damped structures. It leads to well-posed equations of motion with causal solutions when used in modal analy-
sis. The finite-element formulations corresponding to these models have been presented to predict the temporal
responses of viscoelastic structures. Substantial contributions in this research field have been presented by Padovan
[58], Enelund et al. [59], and Schmidt and Gaul [60]. Padovan and Schmidt used a single constitutive equation that
involves fractional derivatives acting on the stresses and strains. Consequently, both strain and stress histories need
to be stored and included in each time step when integrating the structural response. Enelund et al. have developed
a formulation based on internal variables. The fractional derivative was introduced in the evolution law equation
of the internal variables. This general three-dimensional formulation has been implemented in a finite-element
framework. The advantage of this approach is that only the history of the internal variable must be stored; thus, the
computer time and memory are saved. This formulation was subsequently generalized by Adolfsson and Enelund
[36] to large strains using the concept of the decomposition of the deformation gradient into elastic and inelastic
parts. In the frequency domain, one needs to store the history of displacement owing to the nonlocal character of
fractional derivatives. To overcome this drawback, Yuan and Agrawal [61] proposed a numerical scheme. In this
scheme, the dynamic of motion of a system containing a fractional term is transformed into a set of differential
equations with no fractional derivative terms. Recently, Schmidt and Gaul [62] have proven that this scheme is
equivalent to a classical spring–dashpot representation. Furthermore, they have shown that the model of Yuan and
Agrawal predicts incorrect asymptotic behavior.

The elastomeric materials are often used in applications where the approximation of small deformations is not
valid, so the theory of linear viscoelasticity is not suitable. Moreover, many rubber components that are used
as vibration isolators are subjected to small oscillatory loads superimposed on large static deformation. Thus,
most dynamic properties of vibration isolators can be described by the linearized steady-state harmonic response.
Therefore, Eqs. (1) and (2) cannot be applied in the range of large strains. In the literature, several models have been
proposed to extend classical linear viscoelastic models to the nonlinear domain [26]. However, less attention has
been devoted to fractional derivative viscoelasticity in combination with large deformations. The main objective
of this paper is the extension of Eq. (2) to large strains. To this end, the equilibrium stress response of elastomeric
materials must be derived from the strain-energy density function. Thus, Eq. (2) can be rearranged as

σ(t) + τα
RD

ασ (t) = ∂W

∂ε(t)
+ ERξ−1τα

RD
αε(t), (4)

whereW is the strain-energy density function of the elastomeric solid, and τα
R · τ−α

c = ξ = ER/ENR < 1, in which
ENR = E + ER is the instantaneous modulus of elasticity (nonrelaxed elastic modulus).

2.1 Differential isotropic visco-hyperelastic model

Let F = ∂x/∂X be the deformation gradient tensor, where X is the position vector of a material particle in the
undeformed configuration and x is the corresponding position vector in the deformed configuration. The right and
left Cauchy–Green strain tensors are denoted by C = FTF and B = FFT, respectively. The principal invariants of
C (or B) are given by I1(C) = I1(B) = tr(C), I2(C) = I2(B) = (1/2)[I 21 (C) − tr(C2)], and I3(C) = I3(B) =
det(C) = (det(F))2 = J 2 [63].

The generalization of Eq. (4) at finite strains was not considered in the publications of Haupt and Lion [34] and
Drozdov [35]. To do that, we apply the concept of dual variables and derivatives corresponding to family 1 of Haupt
and Tsakmakis [64]. According to this concept, we introduce the so-called covariant and contravariant Oldroyd

derivatives (
�•), (

�•) with respect to the stress configuration

(
�•) = (•̇) + LT(•) + (•)L, (

�•) = (•̇) − L(•) − (•)LT. (5)
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6 S. Bouzidi et al.

A superscripted dot represents the material time rate, the symbol T denotes the transposed tensor, and L = ḞF−1

is the velocity gradient.
We select dual stress and strain tensors that are standard in the framework of finite elasticity [65,66]. The stress

and strain tensors form the conjugate pairs (S,E) and (τ ,A). The tensors S and E = (1/2)(C − I) are the second
Piola–Kirchhoff stress tensor and Green–Lagrange strain tensor, respectively, and I is the identity tensor; these
tensors operate in the reference configuration. The weighted Cauchy stress tensor (or Kirchhoff stress tensor) is
defined by τ = Jσ , where σ is the Cauchy stress tensor and A = (1/2)(I − B−1) is the Almansi strain tensor; the
tensors τ and A act in the actual configuration.

Thework and the stress power for conjugate pairs (S,E) and (τ ,A) are invariant under the change of configuration

S : E = τ : A, S : Ė = τ :�A, (6)

where : denotes the scalar product of two second rank tensors.
According to the concept of dual variables, it is not only pairs of variables that are naturally coupled but also

their derivatives:

Ṡ : Ė =�
τ :�A . (7)

It seems that the concept of dual variables remains valid even for nonlinear viscoelasticity; the proof can be found in
the publications of Hassani et al. [67], Haupt and Lion [34], and Haupt [68]. Indeed, reliable nonlinear viscoelastic
models can be formulated using internal variables. The concept of internal variables postulates that the current state
at a given point of a dissipative material is specified by the strain tensor, C, and a finite number of scalar, vector, or
tensor internal variables, γ1, γ2, . . . γm . The information relative to the whole past of a material is thus contained in
the set of internal variables at time t . The free energy of viscoelastic material can be decomposed as follows [63]:

ψ(C, γ1, γ2, . . . γm) = Weq(C) +
m∑

α=1

Yα(C, γα), (8)

where Weq(C) is the equilibrium free energy (hyperelastic). The second term on the right-hand side is a dissipative
free energy responsible for the viscoelastic regime. The scalar-valued functions Yα represent the so-called config-
urational energy of the viscoelastic solid and characterize the nonequilibrium state. Each subscripted α is related
(conjugate) to γα by the internal equation

Qα = −2
∂Yα(C̄, γα)

∂γα

, (9)

where C = J 2/3C̄, and C̄ is associated with the isochoric deformations of the material.
The set of equations already obtained must be completed by a kinetic relation, which describes the evolution of

the material variables. These are of the form

Qα = fα(C̄,Q1,Q2, . . . ,Qm). (10)

From a phenomenological point of view, the physical microstructure of a material can be represented by internal
variables that can be stress or strain tensors and refers to appropriately selected configurations [43]. For internal
variables of the strain type, the one-dimensional rheological models of linear viscoelasticity can be extended to
finite strains by introducing an intermediate configuration.Within the concept of internal variables, this intermediate
configuration is related to the multiplicative decomposition of the deformation gradient, F = FeFv, where Fe
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Phenomenological isotropic visco-hyperelasticity 7

and Fv are elastic and viscous parts, respectively. According to this approach, it is possible to generalize the
constitutive equation of the Maxwell model to large strains. Consequently, the second Piola–Kirchhoff stress tensor
is decomposed as a sum of the equilibrium hyperelastic stress and the rate-dependent overstress. The stress relation
is combined with the evolution equations, and it seems that it is sufficient to provide the thermodynamic consistency
of the material response.

The first model, M1, is defined through the second Piola–Kirchhoff stress tensor S(t), stress rate
�
S = Ṡ(t),

the Green–Lagrange strain tensor E(t), and strain rate
�
E = Ė(t). These dual tensors are defined in Lagrangian

configuration. Thus, the model may be qualified as a Lagrangian model, i.e., M1.
The equivalents of Eqs. (1) and (4) at large strains are respectively as follows:

S(t) + τRṠ(t) = ∂W

∂E(t)
+ 2μ0τRξ−1Ė(t) (11)

and

S(t) + τα
RD

αS(t) = ∂W

∂E(t)
+ 2μ0τ

α
R ξ−1DαE(t), (12)

where Ė(t) is theGreen strain rate operating on the reference configuration. The parameter τR represents a relaxation
time corresponding to the Lagrangian model, i.e., M1, and μ0 is the shear modulus at small strains.

The second model, M2, operates in the current configuration and may be defined through the Kirchhoff stress

tensor τ and
�
τ = τ̇ − Lτ − τ LT, which is dual to

�
A = Ȧ + LTA + AL = D [64], where D = (1/2)(L + LT) is

the strain rate tensor. Thus, the equivalent of Eq. (1) at large strains is as follows:

τ (t) + τR
�
τ(t) = �(B(t)) + 2μ0τRξ−1

�
A(t), (13)

where the functional �(B(t)) = 2B∂W/∂B represents the equilibrium Cauchy stress tensor, and the constant τR is
a relaxation time of the Eulerian model, i.e., M2.

Equation (13) may be written in the reference configuration as follows:

F−1τFT−1 + τRF−1 �
τ FT−1 = F−1�(B)FT−1 + 2μ0τRξ−1F−1DFT−1, (14)

S(t) + τRṠ(t) = ∂W

∂E(t)
− 2μ0τRξ−1ė(t), (15)

where e = (1/2)(C−1 − I) is the Piola strain tensor.
We use the concept of fractional derivatives to generalize Eq. (15), obtaining

S(t) + τα
RD

αS(t) = ∂W

∂E(t)
− 2μ0τ

α
R ξ−1Dαe(t). (16)

In Eqs. (12) and (16), the stress tensor and stress rate are those of the second Piola–Kirchhoff stress tensor. The
strain tensor and strain rate are those respectively of the strain tensor of Green–Lagrange and Piola. Consequently,
both constitutive equations are formulated in the reference configuration. For numerical reasons [58] and to preserve
theprinciple of objectivity, the constitutive equations need tobewritten in the reference configuration.Thus,Eqs. (12)
and (16) may be well suited for finite-element computations.

The causality principle requires that S(t) vanish for t < 0 with the initial condition S(t = 0) = 0, and we have
E(t) = e(t) = 0 for t ≤ 0.

Let us recall the definition of the Laplace transform of the Caputo fractional order derivative [69] before solving
equations (12) and (16):

L[Dα f (t)] = pαL[ f (t)] −
n−1∑

k=0

[ f k(0)pα−1−k], (17)

where n is an integer chosen such that n − 1 < α ≤ n.
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8 S. Bouzidi et al.

In particular, the case of fractional relaxation is obtained for n = 1, so Eq. (17) becomes

L[Dα f (t)] = pαL[ f (t)] − f (0)pα−1. (18)

We apply the Laplace transform to Eq. (12) (see Appendix 1 for details):

L[S(t) + τα
RD

αS(t)
] = L

[
∂W

∂E(t)
+ 2μ0τ

α
Rξ−1DαE(t)

]

(19)

and

Ŝ(p) =
(

1

τ−α
R + pα

)[

τ−α
R L

(
∂W

∂E(t)

)

+ 2μ0ξ
−1 pαÊ(p)

]

. (20)

The inverse Laplace transform of Eq. (20) leads to

S(t) = SL(t) = τ−α
R

t∫

0

∂W

∂E(s)
(t − s)α−1Eα,α

(

−
(
t − s

τR

)α)

ds

+2μ0ξ
−1

t∫

0

Ė(s)Eα,1

(

−
(
t − s

τR

)α)

ds. (21)

Similarly, the solution of Eq. (16) is

S(t) = SE(t) = τ−α
R

t∫

0

∂W

∂E(s)
(t − s)α−1Eα,α

(

−
(
t − s

τR

)α)

ds

−2μ0ξ
−1

t∫

0

ė(s)Eα,1

(

−
(
t − s

τR

)α)

ds, (22)

where Eα,1 (z) =∑∞
k=0 z

k/Γ (αk + 1) is the Mittag–Leffler function in which α > 0, | z |< ∞. This function is a
generalization of the exponential function, i.e., E1(z) = exp(z) (Appendix 2). A straightforward generalization of
the Mittag–Leffler function Eα,β (z) =∑∞

k=0 z
k/Γ (αk + β) was introduced by Humbert and Agarwal [70].

For z ∈ R+, 0 < α ≤ 1, and β ≥ α, the generalizedMittag–Leffler function on the negative axis, i.e., Eα,β (−z),
is completely monotone [70].

From a theoretical point of view, the incompressibility constraint facilitates the finding of analytical solutions.
Experimentally, all elastomers are compressible (i.e., the bulk modulus is finite), and Poisson’s ratio can approach
1/2. In experiments, incompressibility is a good approximation in the framework of plane problems (e.g., simple
traction and equibiaxial traction) for vulcanized natural rubber and carbon black filled rubber. For instance, an
excellent fit of the experimental data was obtained for carbon black filled natural rubber [71]. Moreover, Charrier
et al. [72] proved that the behavior of slightly compressible materials may approximate well that of incompressible
materials. We used experimental data from the literature, which were obtained by assuming that the SBR was an
incompressible material. Consequently, the incompressibility constraint of the material implies the introduction of
a Lagrange multiplier, P(t), so that the Cauchy stress tensor is defined by adding a pressure term, P(t)I.
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Phenomenological isotropic visco-hyperelasticity 9

The Cauchy stress tensor σ = FSFT is given by the expression

σL(t) = τ−α
R F(t)

⎡

⎣

t∫

0

∂W

∂E(s)
(t − s)α−1Eα,α

(

−
(
t − s

τR

)α)

ds

⎤

⎦FT(t)

+ 2μ0ξ
−1F(t)

⎡

⎣

t∫

0

Ė(s)Eα,1

(

−
(
t − s

τR

)α)

ds

⎤

⎦FT(t) − P(t)I (23)

and

σE(t) = τ−α
R F(t)

⎡

⎣

t∫

0

∂W

∂E(s)
(t − s)α−1Eα,α

(

−
(
t − s

τR

)α)

ds

⎤

⎦FT(t)

− 2μ0ξ
−1F(t)

⎡

⎣

t∫

0

ė(s)Eα,1

(

−
(
t − s

τR

)α)

ds

⎤

⎦FT(t) − P(t)I. (24)

Note that the Green functions k(t) = τ−α
R tα−1Eα,α (−(t/τR)α) and R(t) = Eα,1 (−(t/τR)α) are monotonically

decreasing functions of time, and they can represent phenomena of relaxation. The tensor ∂W/∂E(t) depends on
the strain-energy density function. Ė and ė are respectively the Green strain rate and the Piola rate tensors.

On the right-hand side of Eqs. (23) and (24), the first term can be interpreted as the instantaneous hyperelasticity
response of the models; this is viewed as the elastic relaxation function of the material. The second term of Eqs. (23)
and (24) is interpreted as overstress; thus, this relaxation function may be related to the material memory [5]. The
relaxation functions are not affected by the deformation. However, it seems they are related to different physical
processes [16].

2.1.1 Model responses for a step-strain relaxation loading

To prove the consistency of models M1 and M2, we will investigate their predictions in the context of a simple
relaxation test. Thus, the deformation gradient is

F = λe1 ⊗ e1 + 1√
λ

(e2 ⊗ e2 + e3 ⊗ e3), (25)

where λ = λ(t) is the stretch ratio, e1 is the extension direction, and e2 and e3 are the transverse directions.
For the relaxation test, the expression of the stretch ratio is λ(t) = (λ0 − 1)H(t) + 1, where H(t) is a Heaviside

unit step function and λ0 is the imposed stretch ratio. We may eliminate the unknown variable P(t) using the
boundary conditions σ11(t) = σ(t) and σ22(t) = σ33(t) = 0. According to experiments of Goldberg and Lianis
[73], Yuan and Lianis [74], and Yuan [75], in the quasi-static regime, the SBR can be considered incompressible
and of a Mooney–Rivlin type. The strain-energy density of the Mooney–Rivlin model for incompressible rubber is

W = c10(I1(C) − 3) + c01(I2(C) − 3) =
(μ0

2

)
[χ(I1(C) − 3) + (1 − χ)(I2(C) − 3)], (26)

where μ0 = 2(c10 + c01) > 0 is the constant shear modulus for infinitesimal deformations and 0 < χ ≤ 1 is a
dimensionless constant. When χ = 1, one obtains the neo-Hookean strain-energy density function. One can see
that the material parameters c10 = μ0χ/2 and c01 = μ0(1 − χ)/2 are effectively dependent. We point out that
the constants c10 > 0 and c01 ≥ 0 must be positive in order to satisfy the requirement of a positive strain-energy
density. The aspects of stability and identification of the material parameters were detailed in the paper by Hartmann
[76] by considering the Mooney–Rivlin strain-energy density function.
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We deduce from Eqs. (23) and (24) the stress relaxation for models M1 and M2, respectively:

σL(t) = (λ20 − λ−1
0 )
[
2(c10 + c01λ

−1
0 )(1 − g(t))

]
+ μ0ξ

−1
[
λ40 − λ20 − λ−2

0 + λ−1
0

]
g(t) (27)

and

σE(t) = (λ20 − λ−1
0 )
[
2(c10 + c01λ

−1
0 )(1 − g(t)) + μ0ξ

−1g(t)
]
, (28)

where g(t) = Eα,1 (−(t/τR)α).
The component of the first Piola–Kirchhoff stress tensor, i.e., π , can be deduced respectively from Eqs. (27) and

(28):

πL(t) = (λ0 − λ−2
0 )
[
2(c10 + c01λ

−1
0 )(1 − g(t))

]
+ μ0ξ

−1
[
λ30 − λ0 − λ−3

0 + λ−2
0

]
g(t), (29)

πE(t) = (λ0 − λ−2
0 )
[
2(c10 + c01λ

−1
0 )(1 − g(t)) + μ0ξ

−1g(t)
]
. (30)

In experiments and in the case of a simple extension, the nominal stress must be a positive-definite monotonically
increasing function of the stretch ratio [77], and its second derivative must be negative. In other words, the slope of
the stress isochrones (i.e., the slope of the pertinent nominal stress vs. a measure of deformation curves for fixed t)
is a nonincreasing function of the deformation measure [78]. According to Batra [79], the criterion can be applied
in the framework of nonlinear elastic (or hyperelastic) materials. We evaluate the second derivative of the nominal
stress of models M1 and M2 as follows:
d2πL(λ0)

dλ20
= −12

[
c10λ

−4
0 + 2c01λ

−5
0

]
(1 − g(t)) + 6μ0ξ

−1
[
λ0 + λ−4

0 − 2λ−5
0

]
g(t), (31)

d2πE(λ0)

dλ20
= −6

[(
2c10λ

−4
0 + 4c01λ

−5
0

)
(1 − g(t)) + μ0ξ

−1λ−4
0 g(t)

]
. (32)

We have

d2πL(λ0)

dλ20
≤ 0 ⇔ μ0ξ

−1[λ50 + 1 − 2λ−1
0 ]

2[c10 + 2c01λ
−1
0 ] ≤ 1 − g(t)

g(t)
. (33)

For λ0 > 1, ∃t0 > 0 such that, ∀t ∈ [0, t0], μ0ξ
−1[λ50 + 1− 2λ−1

0 ]/[2(c10 + 2c01λ
−1
0 )] > [1− g(t)]/g(t). This

means that the second derivative d2πL(λ0)/dλ20 is positive when t ∈ [0, t0]. For model M2 we have

∀λ0 ≥ 1,
d2πE(λ0)

dλ20
< 0. (34)

The second derivative of the nominal stress of model M2 is always negative, as indicated by Eq. (32). For
model M1, the nominal stress is not a concave function of the stretch ratio. This result contradicts experimental
data and is thus excluded in the process of material parameter identification in the next section.

2.1.2 Material parameter identification

Thematerial parameters (c10, c01, ξ, τR, α)ofmodelM2are determinedusing the experimental data of the relaxation
tests of Goldberg and Lianis [73] (Appendix 3). These data are obtained by varying both the time and the stretch ratio
on SBR specimens. At a slow strain rate, SBR behaves like a Mooney–Rivlin material. The material parameters are
considered to be nearly constant during the relaxation tests. Their identification implies the solution of a nonlinear
least-squares problem with optimization,

min

⎛

⎝
1

NM

N∑

i=1

M∑

j=1

[
σmod(c10, c01, ξ, τR, α, λi0, j) − σexp(c10, c01, ξ, τR, α, λi0, j)

]2

⎞

⎠,
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Table 1 Material parameters of model of Eq. (28)

c10 (Pa) c01 (Pa) α ξ τR (s)

82.12 × 103 190.16 × 103 0.375 0.511 0.238

Fig. 2 Comparison of
constitutive model of
Eq. (28) with experimental
data for an extension
relaxation test of [73]
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107
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where N andM are respectively the number of test and experimental data for each test. σexp and σmod are respectively
the experimental data and theoretical values of the Cauchy stress. The material parameters (c10, c01, ξ, τR, α) are
determined by a stochastic Monte Carlo technique. The stochastic Monte Carlo technique is implemented in the
commercial package MATLAB; tens of thousands of parameter sets were tested and evaluated. The parameters are
listed in Table 1.

We checked whether the proposed model could correctly reproduce the experimental data of each relaxation test
using the material parameters given in Table 1. The corresponding results are presented in Fig. 2 for different values
of the stretch ratio, λ0 ∈ {1.1, 1.2, 1.5, 1.8, 2, 2.5}.

The relative error (ERR) is calculated as follows:

ERR j = |σexp( j) − σmod( j)|
|σexp( j)| ; (35)

it is plotted versus time in Fig. 3 for different values of the stretch ratio.
At the beginning of the relaxation, one can note that the relative error is rather high. Thus, the model gives good

estimates for λ0 = 1.5, but it underestimates experimental results for λ0 < 1.5 and overestimates experimental
results for λ0 > 1.5.

We conclude that the model cannot correctly reproduce experimental data for each relaxation test, and the results
of parameter identification of the model are moderate.

The values of the material parameters are probably not suitable; they can depend on the stretch ratio. If this
is the case, the Laplace transform cannot be applied to Eq. (16). However, it may be solved numerically [69,80].
Consequently, the identification of material parameters demands more computation time.

2.2 Novel constitutive equation

To improve the predictions of model M2, we suppose that the material is thixotropic. Many authors have reported
that elastomeric materials are thixotropic [46,47,81]. For instance, in the framework of a harmonic regime, the
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Fig. 3 Relative error versus time for different values of λ0, log-
arithmic time scale

Fig. 4 Variation in material parameter ξ

complex moduli depend on the strain amplitude [47]. In linear viscoelasticity (Eq. 4), the storage and loss moduli
are independent of the deformation amplitude [82]. Therefore, the parameter ξ = (τR/τc)

α is a constant and does
not depend on the strain.

We note that the modulus E should depend on the right Cauchy–Green strain tensor, E(Ce) = E((F−1
v )TCF−1

v );
however, Fv is not an observable quantity and cannot be measured.

In this work, we take into account the thixotropy by assuming that the parameter ξ(C(t)) = ER/[ER + E(C(t))]
is a function of the right Cauchy–Green strain tensor, i.e., C(t), and the viscosity depends on the derivative of C(t),
i.e., η = η(Ċ(t)). However, we assume that the relaxation time is constant, i.e., τR = η(Ċ(t))/E(C(t)) = const.

Equation (16) may be written as follows:

S(t) + τα
RD

αS(t) = ∂W

∂E(t)
− 2μ0τ

α
R ξ−1(t)Dαe(t). (36)

Thus, Eq. (36) is a linear differential equation with constant coefficients and can be solved using the Laplace
transform as follows:

Ŝ(p) =
(

1

τ−α
R + pα

)[

τ−α
R L

(
∂W

∂E(t)

)

− 2μ0L
(

ξ−1(t)Dαe(t)
)]

. (37)

Now, one needs to evaluate the inverse Laplace transform of the function on the right-hand side of Eq. (37). We
find after calculations (Appendix 1),

S(t) = τ−α
R

t∫

0

∂W

∂E(s)
(t − s)α−1Eα,α

(

−
(
t − s

τR

)α)

ds

−2μ0

t∫

0

ξ−1(s)Dαe(s)(t − s)α−1Eα,α

(

−
(
t − s

τR

)α)

ds − P(t)C−1(t), (38)
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Phenomenological isotropic visco-hyperelasticity 13

where

Dαe(s) = 1

Γ (1 − α)

s∫

0

e′(x)
(s − x)α

dx . (39)

The constitutive equation is

σ (t) = τ−α
R F(t)

⎡

⎣

t∫

0

∂W

∂E(s)
K (t − s)ds

⎤

⎦FT(t) − 2μ0F(t)

⎡

⎣

t∫

0

ξ−1(s)Dαe(s)K (t − s)ds

⎤

⎦FT(t) − P(t)I, (40)

where K (t − s) = (t − s)α−1Eα,α (−((t − s)/τR)α).
Equation (40) can also be written in the form

σ (t) = 2τ−α
R B(t)

⎡

⎣

t∫

0

(c10 + c01 I1(C))K (t − s)ds

⎤

⎦− 2τ−α
R F(t)

⎡

⎣

t∫

0

c01C(s)K (t − s)ds

⎤

⎦FT(t)

−2μ0F(t)

⎡

⎣

t∫

0

ξ−1(s)Dαe(s)K (t − s)ds

⎤

⎦FT(t) − P(t)I (41)

in the context of the Mooney–Rivlin model.
To evaluate Eq. (41) in the framework of boundary problems, it is necessary to propose a particular expression

for the function ξ .
We consider the reduced stress obtained from Eq. (28) with λ0 �= 1

σR(t, λ0) = σ(t, λ0)

λ20 − λ−1
0

= 2
(
c10 + c01λ

−1
0

)(
1 − g(t)

)+ μ0ξ
−1g(t). (42)

When the time is near zero, Eq. (42) becomes a function that depends on the shear modulus, i.e., μ0, and the
material parameter ξ :

σR(t → 0) = σR0 � μ0ξ
−1; (43)

thus,

ξ

μ0
� σ−1

R0 . (44)

Using the experimental data of [73], we deduced the graph of the function σ−1
R0 , which is shown in Fig. 4 for

different imposed values of the stretch ratio λ0.
We note that the shear modulus, i.e., μ0, is constant. Consequently, the material parameter ξ is approximatively

a linear function of the stretch ratio.
In three-dimensional space, the material parameter ξ may be approximated by a single function depending on

the variable (I1(C) − 3) as follows:

ξ(C) = A
√
C : I − 3 + ξ0 (45)

or

ξ(C) = A
√
I1(C) − 3 + ξ0, (46)

where ξ0 represents the value of ξ at infinitesimal strains and A is a positive constant.
The actual model involves only six material parameters, (c10, c01, A, ξ0, τR, α), which are determined using data

of the relaxation test loading. It is completely described by the constitutive equation (41).
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14 S. Bouzidi et al.

Table 2 Material parameters of model of Eq. (48)

c10 (Pa) c01 (Pa) α A ξ0 τR (s)

97.17 × 103 150.64 × 103 0.287 0.173 0.401 0.343

2.2.1 Identification of material parameters

In the case of relaxation we have

ξ(C) = A
√

λ20 + 2λ−1
0 − 3 + ξ0, (47)

and Eq. (41) becomes

σ(t) = (λ20 − λ−1
0

)
[

2(c10 + c01λ
−1
0 )(1 − g(t)) + μ0

(

A
√

λ20 + 2λ−1
0 − 3 + ξ0

)−1

g(t)

]

. (48)

We easily obtain from Eq. (48) the second derivative of the nominal stress:

d2π(λ0)

dλ20
= −

(
12c10λ

−4
0 + 24c01λ

−5
0

)
(1 − g(t))

+μ0g(t)

[

(λ0 − λ−2
0 )

(
d2ξ−1

dλ20

)

+ 2(1 + 2λ−3
0 )

(
dξ−1

dλ0

)

− 6λ−4
0 (ξ−1)

]

. (49)

After some simple algebraic calculations, one deduces a sufficient condition to ensure the concavity of the curve
π = π(λ0):

ξ0

A
≥ 0.6994. (50)

We use the previous stochasticMonte Carlo technique to identify the material parameters (c10, c01, A, ξ0, τR, α).
The nonlinear minimization problem is

min

⎛

⎝
1

NM

N∑

i=1

M∑

j=1

[
σmod(c10, c01, A, ξ0, τR, α, λi0, j) − σexp(c10, c01, A, ξ0, τR, α, λi0, j)

]2

⎞

⎠.

The values of (c10, c01, A, ξ0, τR, α) thus found are tabulated in Table 2.
The results obtained with the identified parameters in the case of the relaxation test are presented in Fig. 5.
For different values of the stretch ratio, λ0, the maximum relative error is less than 2.5% (Fig. 6). It seems that

the results obtained from the identified parameters from our model and the experimental data are in good agreement
for all values of the stretch ratio.

The new model is better than the first one because it perfectly fits experimental curves.

2.2.2 Validation of the model using combined tension–torsion tests

In this section, we validate the model by considering an inhomogeneous deformation of tension–torsion loadings.
In cylindrical coordinates, the extension–torsion problem of a solid circular cylinder composed of an incom-

pressible isotropic material is described by

r = λ−1/2R, θ = Θ + ψλZ , z = λZ , (51)

where (R,Θ, Z) and (r, θ, z) are respectively the cylindrical coordinates in the undeformed and in the current
configurations, λ denotes the axial stretch, and ψ is the angle of twist per unit length.
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Fig. 5 Comparison of constitutive model of Eq. (48) with exper-
imental data for extension relaxation test of [73]

Fig. 6 Relative error versus time for different values of λ0 (new
model), logarithmic time-scale

The deformation gradient tensor F is

F =
⎛

⎜
⎝

1√
λ

0 0

0 1√
λ

√
λψR

0 0 λ

⎞

⎟
⎠, (52)

and the components of the tensors B, C, and e are given by

B =
⎛

⎝
λ−1 0 0
0 λ−1 + λ(ψR)2 λ3/2ψR
0 λ3/2ψR λ2

⎞

⎠, (53)

C =
⎛

⎝
λ−1 0 0
0 λ−1 ψR
0 ψR λ2 + λ(ψR)2

⎞

⎠, (54)

e = 1

2

⎛

⎝
λ − 1 0 0
0 λ + (ψR)2 − 1 −λ−1ψR
0 −λ−1ψR λ−2 − 1

⎞

⎠. (55)

Equations (51)–(55), together with the constitutive equation of the proposed model, imply that

σ =
⎛

⎝
σrr 0 0
0 σθθ σθ z

0 σθ z σzz

⎞

⎠. (56)

Yuan and Lianis [74] assumed that the motion was slow in their experiments; thus, it can be considered as
quasi-static; that is, the equation of motion (or, here, the equation of equilibrium) becomes

div σ = 0. (57)
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No external force is applied to the lateral surface of the sample when it is deformed. Thus, on the lateral surface
(radius r = r0) we have

σrr (r = r0, t) = 0. (58)

The pressure P is independent of θ and z and is a function of t and r only, i.e., P = P(r, t) (Appendix 4).
To find the Lagrange multiplier, i.e., the pressure P(r, t), in terms of the material parameters, λ(t) and ψ(t), we

use the constitutive equation of the proposed model, Eqs. (52)–(57), and the boundary condition (see Appendix 4
for more details).

After calculations we obtain

P(r, t) = 2c10λ
−1(t)(1 − g(t)) + 2c01τ

−α
R λ−1(t)

⎡

⎣

t∫

0

(
λ2(s) + λ−1(s) + [rλ(s)ψ(s)]2

)
K (t − s)ds

⎤

⎦

− 2μ0λ
−1(t)

⎡

⎣

t∫

0

ξ−1(s)Dαerr (s)K (t − s)ds

⎤

⎦+
r0∫

r

{

2c10[λ(t)ψ(t)]2
(
1 − g(t)

)
r

+ 4c01τ
−α
R [λ(t)ψ(t)]2r

t∫

0

λ−1(s)K (t − s)ds − 4c01λ
1/2(t)ψ(t)τ−α

R

t∫

0

[
λ1/2(s)ψ(s)r

]
K (t − s)ds

}

dr

+
r0∫

r

⎧
⎨

⎩
2μ0r

−1λ−1(t)

⎡

⎣

t∫

0

ξ−1(s)Dαerr (s)K (t − s)ds −
t∫

0

ξ−1(s)Dαeθθ (s)K (t − s)ds

⎤

⎦

− 4μ0λ
1/2(t)ψ(t)

⎡

⎣

t∫

0

ξ−1(s)Dαeθ z(s)K (t − s)ds

⎤

⎦

− 2μ0r [λ(t)ψ(t)]2
⎡

⎣

t∫

0

ξ−1(s)Dαezz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭
dr. (59)

The resultant moment M(t) and axial force N (t) are respectively given by

M =
r0∫

0

2πr2σθ z dr (60)

and

N =
r0∫

0

2πrσzz dr. (61)

To validate our model, we used the experimental data of [74] obtained from the combined tension and torsion of
a cylindrical specimen made of SBR, with the parameters calculated in the previous section for the relaxation test.

For a step in the tension and linear ramp in the torsion, the loading is

λ(s) = 1 + (λ0 − 1)H(s), ψ(s) = ψ̇s. (62)

123



Phenomenological isotropic visco-hyperelasticity 17

Substitution of Eq. (62) into Eq. (59) yields

P(r, t) =
(
1 − g(t)

)[
2c10λ

−1
0 + 2c01(λ0 + λ−2

0 )
]

− 4c01λ0(rψ̇ t)2
[

G2(t) − 1

Γ (3)

]

−μ0

⎡

⎣
1 − λ−1

0

Γ (1 − α)

t∫

0

ξ−1(s)s−αK (t − s)ds

⎤

⎦

+ 1

2
(r20 − r2)(ψ̇ t)2

[
(2c10λ

2
0 + 4c01λ0)(1 − g(t)) + 4c01λ0(G1(t) − 1)

]

+ 2μ0

r0∫

r

⎧
⎨

⎩

⎡

⎣
−uψ̇2

Γ (3 − α)

t∫

0

ξ−1(s, u)s2−αK (t − s)ds

⎤

⎦+
⎡

⎣
uψ̇2t

Γ (2 − α)

t∫

0

ξ−1(s, u)s1−αK (t − s)ds

⎤

⎦

+
⎡

⎣
u(λ20 − 1)(ψ̇ t)2

2Γ (1 − α)

t∫

0

ξ−1(s, u)s−αK (t − s)ds

⎤

⎦

⎫
⎬

⎭
du, (63)

where G1(t) = Eα,2 (−(t/τR)α) and G2(t) = Eα,3 (−(t/τR)α).
Substitution of Eq. (62) into the equation of σθ z yields

σθ z(R, t) = λ
3/2
0 (ψ̇ t)R

[
(2c10 + 4c01λ

−1
0 )(1 − g(t)) + 2c01λ

−1
0 (G1(t) − 1)

]

− 2μ0

⎡

⎣
−λ

−1/2
0 Rψ̇

2Γ (2 − α)

t∫

0

ξ−1(s)s1−αK (t − s)ds + λ
3/2
0 (λ−2

0 − 1)Rψ̇ t

2Γ (1 − α)

t∫

0

ξ−1(s)s−αK (t − s)ds

⎤

⎦,

(64)

and the resultant applied moment is obtained from Eq. (60); after calculations we obtain

M(t) = π

2
(ψ̇ t)R4

0

[
(2c10 + 4c01λ

−1
0 )[1 − g(t)] + 2c01λ

−1
0 (G1(t) − 1)

]

+2πμ0ψ̇

⎡

⎣
λ−2
0

Γ (2 − α)

R0∫

0

t∫

0

R3ξ−1(s, R)s1−αK (t − s)dsdR

−t
λ−2
0 − 1

Γ (1 − α)

R0∫

0

t∫

0

R3ξ−1(s, R)s−αK (t − s)dsdR

⎤

⎦, (65)

where R0 = r0
√

λ0.
We substitute Eq. (62) into the equation of σzz , and using Eq. (63) we obtain

σzz(R, t) = −1

2
(R2

0 − R2)(ψ̇ t)2[(2c10λ0 + 4c01)(1 − g(t)) + 4c01(G1(t) − 1)]

− 2μ0

R0∫

R

⎧
⎨

⎩

⎡

⎣
−uλ−1

0 ψ̇2

Γ (3 − α)

t∫

0

ξ−1(s, u)s2−αK (t − s)ds

⎤

⎦

+
⎡

⎣
uλ−1

0 ψ̇2t

Γ (2 − α)

t∫

0

ξ−1(s, u)s1−αK (t − s)ds

⎤

⎦−
⎡

⎣
u(λ−1

0 − λ0)(ψ̇ t)2

2Γ (1 − α)

t∫

0

ξ−1(s, u)s−αK (t − s)ds

⎤

⎦

⎫
⎬

⎭
du

+ (λ20 − λ−1
0 )
[
(2c10 + 2c01λ

−1
0 )(1 − g(t))

]
+ 4c01(Rψ̇ t)2

[

G2(t) − 1

Γ (3)

]

+μ0

⎡

⎣
λ20 − λ−1

0

Γ (1 − α)

t∫

0

ξ−1(s)s−αK (t − s)ds

⎤

⎦. (66)
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Fig. 7 Comparison between predictions of the proposed model, those of Lianis’ theory, and the experimental data of [74] for tension–
torsion loadings (λ0 = 1.28, ψ̇ = 1.062992 rad/m-s)

The tensile force is given by

N (t) = πR2
0

(

(λ0 − λ−2
0 )
[
(2c10 + 2c01λ

−1
0 )(1 − g(t))

]
+ 1

4
(R0ψ̇ t)2

×
[

−2
(
c10 + 2c01λ

−1
0

)
(1 − g(t)) + 8c01λ

−1
0

(
G2(t) − 1

Γ (3)

)
− 4c01λ

−1
0

(
G1(t) − 1

)])

− 4πμ0λ
−2
0

( t∫

0

( R0∫

0

R

R0∫

R

uξ−1(s, u)du dR

){ −(ψ̇)2

Γ (3 − α)
s2−αK (t − s)

+ (ψ̇)2t

Γ (2 − α)
s1−αK (t − s) − (ψ̇ t)2(1 − λ20)

2Γ (1 − α)
s−αK (t − s)

}

ds

)

+ 2πμ0
λ0 − λ−2

0

Γ (1 − α)

[ R0∫

0

t∫

0

Rξ−1(s, R)s−αK (t − s)ds dR

]

. (67)

Lianis [6] simplified the FLV theory of Coleman and Noll [4] using thermodynamic arguments. He proposed a
constitutive equation containing only four relaxation functions and three steady-state functions. This simplified
theory was successfully applied to predict the behaviors of elastomeric materials in the framework of uniaxial
tension and combined tension–torsion [73–75]. In this paper, a special theory of finite viscoelasticity is motivated
on the basis of rheological models. So the question arises: Is there a relationship between the theory of FLV and
the proposed model? To provide a partial answer, we compare the predictions of our model, those of Lianis theory
[6,7,74], and experimental data [74] in the context of the combined tension–torsion loadings. Figures 7, 8, 9, and
10 show that the proposed model adequately describes the experimental data. One can see that the predictions of
the present model and those of Lianis’ theory are the same. We note, however, that our model has only six material
parameters that are derived from a differential form.

3 Conclusion

In this article,we applied the concept of dual stress and strain and their derivatives to extend the fractional constitutive
equation of SLS, i.e., the Zener model, to finite strains. In fact, we used the dual tensors of family 1 [64] by limiting
it especially to two couples of stress and strain tensors that are physically significant in the context of finite elasticity.
We assumed that the elastomeric solids were isotropic and incompressible. Thus, two models, M1 and M2, were
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Fig. 8 Comparison between predictions of the proposed model, those of Lianis’ theory, and the experimental data of [74] for tension–
torsion loadings (λ0 = 1.355, ψ̇ = 0.600787 rad/m-s)
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Fig. 9 Comparison between predictions of the proposed model, those of Lianis’ theory, and the experimental data of [74] for tension–
torsion loadings (λ0 = 1.352, ψ̇ = 0.293307 rad/m-s)
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Fig. 10 Comparison between predictions of the proposed model, those of Lianis’ theory, and the experimental data of [74] for tension–
torsion loadings (λ0 = 1.459, ψ̇ = 0.184252 rad/m-s)

deduced. We showed that M1 was not appropriate for predicting the behavior of elastomers in the context of
relaxation loading. Model M2 seems qualitatively to reproduce the nonlinear relaxation behavior of elastomers.
Thus, its material parameters were identified using the experimental data of relaxation loadings published in the
literature. The agreement between theoretical and experimental results seems to be qualitatively good. To improve
quantitatively the predictions of this model, we assumed that the parameter ξ depended on the strain. Then the new
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material parameters were determined by considering the previous experimental data of relaxation tests. To validate
the model, we considered the experimental data of combined tension–torsion loadings found in the literature. For
computation, we used earlier numerical values of the new model’s material parameters. This model seems capable
of reproducing the behavior of elastomers in the framework of multiaxial loadings.

To our knowledge, the existing visco-hyperelastic models found in the literature are of integral and differential
types. The integral models describe the history of medium deformation using integral equations. However, these
equations are difficult to generalize for complex problems. For instance, attempts to take into account the accumu-
lation of damage and thixotropic elastomeric materials in terms of integral models add to the complexity of these
models and hamper their practical application. The differential models describe the rheological properties of materi-
als in terms of internal variable tensors and, as a rule, assign them the physical meaning of stresses or strains. These
models can conveniently be represented with the aid of symbolic diagrams illustrating the mechanical behavior
of the medium. Usually, the number of material parameters of these models is quite large, and their identification
probably requires complex methods of optimization.

The main advantage of the new model is its differential form with relatively few parameters and may be suitable
for implementation in finite-element analysis.

For future work, we envisage studying the stress response of small oscillatory loads superimposed on large
static deformations. Thus, we will develop the new model to predict the complex moduli of elastomers. In many
applications, these moduli are important in the framework of the design of rubber parts.

Acknowledgments The authors would like to thank the reviewers for their insightful comments that have significantly improved a
preliminary version of this paper.

Appendix 1: Resolution of fractional differential equation

The analytical solution of linear fractional differential equations (FDEs) with constant coefficients can be obtained
using the Laplace transform technique.

In the case of relaxation, the Laplace transform formula for the Caputo fractional derivatives involves the value
of the function f (t) at the lower terminal t = 0:

L[Dα f (t)] = pαL[ f (t)] − f (0)pα−1. (68)

Let us consider the following FDE:

S(t) + τα
RD

αS(t) = ∂W

∂E(t)
− 2μ0τ

α
R ξ−1(t)Dαe(t), (69)

with the initial condition S(0) = 0.
Applying the Laplace transform to both sides of this equation, and using the linearity of the Laplace transform,

we obtain the following result:

L[S(t)] + τα
RL
[
DαS(t)

] = L
[

∂W

∂E(t)

]

− 2μ0τ
α
RL
[
ξ−1(t)Dαe(t)

]
. (70)

Then

Ŝ(p) + τα
R pαŜ(p) = F̂1(p) − 2μ0τ

α
R F̂2(p), (71)

where F̂1(p) and F̂2(p) denote the Laplace transforms of ∂W/∂E(t) and ξ−1(t)Dαe(t).
The equation’s solution is

Ŝ(p) =
(

τ−α
R

pα + τ−α
R

)

F̂1(p) − 2μ0

(
1

pα + τ−α
R

)

F̂2(p). (72)

123



Phenomenological isotropic visco-hyperelasticity 21

The solution in the time–space domain is obtained using the inverse Laplace transform, and we obtain

S(t) = τ−α
R

t∫

0

∂W

∂E(s)
(t − s)α−1Eα,α

(
−
( t − s

τR

)α)
ds

−2μ0

t∫

0

ξ−1(s)Dαe(s)(t − s)α−1Eα,α

(
−
( t − s

τR

)α)
ds. (73)

Application of the Laplace transform to the FDE, in the case of ξ equal to a constant, gives

Ŝ(p) =
( τ−α

R

pα + τ−α
R

)
F̂1(p) − 2μ0ξ

−1
( pα

pα + τ−α
R

)
ê(p). (74)

We have

L−1

[(
pα

pα + τ−α
R

)

ê(p)

]

= L−1

[(
pα−1

pα + τ−α
R

)
(
pê(p)

)
]

. (75)

We obtain the solution as follows:

S(t) = τ−α
R

t∫

0

∂W

∂E(s)
(t − s)α−1Eα,α

(

−
( t − s

τR

)α)
ds − 2μ0ξ

−1

t∫

0

ė(s)Eα,1

(

−
( t − s

τR

)α)
ds. (76)

Appendix 2: Mittag–Leffler function

The function Eα , with α > 0 defined by Eα(z) = ∑∞
k=0 z

k/Γ (αk + 1), is called the Mittag–Leffler function of
order α. This function provides a simple generalization of the exponential function, i.e., E1(z) = exp(z).

When 0 < α ≤ 1, the Mittag–Leffler function on the negative axis is completely monotone and is capable of
representing phenomena of relaxation. The graph of the function Eα(−xα), with x = (t/τR) ≥ 0, is illustrated in
Fig. 11 for different values of α.

Fig. 11 Mittag–Leffler
function for different values
of α
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Appendix 3: Lianis material functions for SBR circular bar at 0 ◦C [73]

The Lianis constitutive equation for an isotropic incompressible viscoelastic material is given by

σ (t) =
[
a +

(
I1(B) − 3

)
b + cI1(B)

]
B − cB2 + 2

t∫

−∞
ϕ0(t − τ)Ċt (τ )dτ

+
t∫

−∞
ϕ1(t − τ)[BĊt (τ ) + Ċt (τ )B]dτ +

t∫

−∞
ϕ2(t − τ)[B2Ċt (τ ) + Ċt (τ )B2]dτ

+B

t∫

−∞
ϕ3(t − τ)I1(BĊt (τ ))dτ − P(t)I, (77)

where a, b, c are constants corresponding to the equilibrium stress, and the ϕk(u) are relaxation functions that
approach zero as u → ∞.

For aSBRat 0 ◦C, the constantsa, b, cwere found to bea = 29.5psi,b = 0, c = 51.07psi,where 1 psi=6.8948×
103 Pa, and the Lianis material functions were related by

ϕ1(t) = ϕ3(t) = −2ϕ2(t). (78)

The relaxation functions ϕk(t) are tabulated in Table 3.

Table 3 Lianis material functions for SBR at 0 ◦C
Time (s) ϕ0(t) (psi) ϕ1(t) (psi) ϕ2(t) (psi) ϕ3(t) (psi)

0.0 12.30 9.00 −4.50 9.00

1.0 12.30 9.00 −4.50 9.00

2.0 9.70 8.35 −4.28 8.35

4.0 7.43 7.65 −3.83 7.65

6.0 6.35 7.26 −3.63 7.26

10.0 5.07 6.87 −3.44 6.87

15.0 4.12 6.51 −3.26 6.51

20.0 3.51 6.29 −3.15 6.29

30.0 2.68 5.93 −2.97 5.93

40.0 2.18 5.60 −2.80 5.60

50.0 1.84 5.32 −2.66 5.32

60.0 1.62 5.04 −2.52 5.04

120.0 0.96 3.92 −1.96 3.92

180.0 0.66 3.04 −1.52 3.04

360.0 0.25 1.64 −0.82 1.64

540.0 0.09 0.70 −0.35 0.70

720.0 0 0 0 0
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Appendix 4: Tension–torsion of a circular cylinder

In cylindrical coordinates and for the extension–torsion of a solid circular cylinder made of an incompressible
isotropic material, we have

F =

⎛

⎜
⎜
⎝

1√
λ

0 0

0 1√
λ

√
λψR

0 0 λ

⎞

⎟
⎟
⎠, (79)

B =
⎛

⎜
⎝

λ−1 0 0

0 λ−1 + λ(ψR)2 λ3/2ψR

0 λ3/2ψR λ2

⎞

⎟
⎠, (80)

C =
⎛

⎜
⎝

λ−1 0 0

0 λ−1 ψR

0 ψR λ2 + λ(ψR)2

⎞

⎟
⎠, (81)

e = 1

2

⎛

⎜
⎝

λ − 1 0 0

0 λ + (ψR)2 − 1 −λ−1ψR

0 −λ−1ψR λ−2 − 1

⎞

⎟
⎠. (82)

The equation of equilibrium is given by

div σ = 0. (83)

Equations (79)–(82), together with the constitutive equation of the proposed model, imply that

σ =
⎛

⎜
⎝

σrr 0 0

0 σθθ σθ z

0 σθ z σzz

⎞

⎟
⎠, (84)

where the nonzero components of the Cauchy stress tensor are given by

σrr (t) = 2τ−α
R Brr (t)

⎡

⎣

t∫

0

(c10 + c01 I1(C))K (t − s)ds

⎤

⎦− 2τ−α
R c01F

2
rr (t)

⎡

⎣

t∫

0

Crr (s)K (t − s)ds

⎤

⎦

−2μ0F
2
rr (t)

⎡

⎣

t∫

0

ξ−1(s)Dαerr (s)K (t − s)ds

⎤

⎦− P(t), (85)

σθθ (t) = 2τ−α
R

⎧
⎨

⎩
Bθθ (t)

⎡

⎣

t∫

0

(c10 + c01 I1(C))K (t − s)ds

⎤

⎦− 2τ−α
R c01

⎧
⎨

⎩
F2

θθ (t)

⎡

⎣

t∫

0

Cθθ (s)K (t − s)ds

⎤

⎦

+2Fθθ (t)Fθ z(t)

⎡

⎣

t∫

0

Cθ z(s)K (t − s)ds

⎤

⎦+ F2
θ z(t)

⎡

⎣

t∫

0

Czz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭

−2μ0

⎧
⎨

⎩
F2

θθ (t)

⎡

⎣

t∫

0

ξ−1(s)Dαeθθ (s)K (t − s)ds

⎤

⎦+ 2Fθθ (t)Fθ z(t)

⎡

⎣

t∫

0

ξ−1(s)Dαeθ z(s)K (t − s)ds

⎤

⎦

+F2
θ z(t)

⎡

⎣

t∫

0

ξ−1(s)Dαezz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭
− P(t), (86)
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σzz(t) = 2τ−α
R Bzz(t)

⎡

⎣

t∫

0

(
c10 + c01 I1(C)

)
K (t − s)ds

⎤

⎦− 2τ−α
R c01F

2
zz(t)

⎡

⎣

t∫

0

Czz(s)K (t − s)ds

⎤

⎦

−2μ0F
2
zz(t)

⎡

⎣

t∫

0

ξ−1(s)Dαezz(s)K (t − s)ds

⎤

⎦− P(t), (87)

σθ z(t) = 2τ−α
R Bθ z(t)

⎡

⎣

t∫

0

(
c10 + c01 I1(C)

)
K (t − s)ds

⎤

⎦− 2τ−α
R c01

⎧
⎨

⎩
Fθθ (t)Fzz(t)

⎡

⎣

t∫

0

Cθ z(s)K (t − s)ds

⎤

⎦

+Fθ z(t)Fzz(t)

⎡

⎣

t∫

0

Czz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭
− 2μ0

⎧
⎨

⎩
Fθθ (t)Fzz(t)

⎡

⎣

t∫

0

ξ−1(s)Dαeθ z(s)K (t − s)ds

⎤

⎦

+Fθ z(t)Fzz(t)

⎡

⎣

t∫

0

ξ−1(s)Dαezz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭
, (88)

where I1(C) = λ2 + 2λ−1 + λ(ψR)2.
Substituting (84) into (83), one obtains

∂σrr

∂r
+ ∂σr z

∂z
+ ∂σθr

r∂θ
+ σrr − σθθ

r
= ∂σrr

∂r
+ σrr − σθθ

r
= 0, (89)

∂σrθ

∂r
+ ∂σzθ

∂z
+ ∂σθθ

r∂θ
+ 2

σrθ

r
= ∂P

∂θ
= 0, (90)

∂σr z

∂r
+ ∂σzθ

r∂θ
+ ∂σzz

∂z
+ σr z

r
= ∂P

∂z
= 0. (91)

We see that Eq. (90) implies that ∂P/∂θ = 0 and Eq. (91) implies that ∂P/∂z = 0. This means that P is
independent of θ and z and is a function of t and r only. Then (89) becomes

∂σrr

∂r
+ 1

r
(σrr − σθθ ) = 0. (92)

The integration of (92) leads to

r0∫

r

dσrr = σrr (r0, t) − σrr (r, t) = −
r0∫

r

1

r
(σrr − σθθ )dr. (93)

We have

σrr (r = r0, t) = 0. (94)

One can deduce from Eq. (93) that

σrr (r, t) =
r0∫

r

1

r
(σrr − σθθ )dr. (95)

According to Eqs. (85) and (86), one can write the following relations:

σrr (r, t) = T1(r, t) − P(r, t), (96)

σθθ (r, t) = T2(r, t) − P(r, t), (97)
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where

T1(r, t) = 2τ−α
R Brr (t)

⎡

⎣

t∫

0

(
c10 + c01 I1(C)

)
K (t − s)ds

⎤

⎦− 2τ−α
R c01F

2
rr (t)

⎡

⎣

t∫

0

Crr (s)K (t − s)ds

⎤

⎦

−2μ0F
2
rr (t)

⎡

⎣

t∫

0

ξ−1(s)Dαerr (s)K (t − s)ds

⎤

⎦, (98)

T2(r, t) = 2τ−α
R Bθθ (t)

⎡

⎣

t∫

0

(
c10 + c01 I1(C)

)
K (t − s)ds

⎤

⎦− 2τ−α
R c01

⎧
⎨

⎩
F2

θθ (t)

⎡

⎣

t∫

0

Cθθ (s)K (t − s)ds

⎤

⎦

+2Fθθ (t)Fθ z(t)

⎡

⎣

t∫

0

Cθ z(s)K (t − s)ds

⎤

⎦+ F2
θ z(t)

⎡

⎣

t∫

0

Czz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭

−2μ0

⎧
⎨

⎩
F2

θθ (t)

⎡

⎣

t∫

0

ξ−1(s)Dαeθθ (s)K (t − s)ds

⎤

⎦+ 2Fθθ (t)Fθ z(t)

⎡

⎣

t∫

0

ξ−1(s)Dαeθ z(s)K (t − s)ds

⎤

⎦

+F2
θ z(t)

⎡

⎣

t∫

0

ξ−1(s)Dαezz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭
. (99)

Thus, Eq. (95) gives

σrr (r, t) =
r0∫

r

1

r
(T1 − T2)dr. (100)

Substituting Eqs. (100) into (96), we can easily find the Lagrange multiplier, i.e., the pressure P(r, t), in terms
of the material parameters λ(t) and ψ(t):

P(r, t) = T1(r, t) −
r0∫

r

1

r
[T1(r, t) − T2(r, t)]dr. (101)

After calculations we obtain

P(r, t) = 2c10λ
−1(t)(1 − g(t)) + 2c01τ

−α
R λ−1(t)

⎡

⎣

t∫

0

(
λ2(s) + λ−1(s) + [rλ(s)ψ(s)]2

)
K (t − s)ds

⎤

⎦

− 2μ0λ
−1(t)

⎡

⎣

t∫

0

ξ−1(s)Dαerr (s)K (t − s)ds

⎤

⎦+
r0∫

r

{

2c10[λ(t)ψ(t)]2
(
1 − g(t)

)
r

+ 4c01τ
−α
R [λ(t)ψ(t)]2r

t∫

0

λ−1(s)K (t − s)ds − 4c01λ
1/2(t)ψ(t)τ−α

R

t∫

0

[λ1/2(s)ψ(s)r ]K (t − s)ds

}

dr

+
r0∫

r

⎧
⎨

⎩
2μ0r

−1λ−1(t)

⎡

⎣

t∫

0

ξ−1(s)Dαerr (s)K (t − s)ds −
t∫

0

ξ−1(s)Dαeθθ (s)K (t − s)ds

⎤

⎦
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− 4μ0λ
1/2(t)ψ(t)

⎡

⎣

t∫

0

ξ−1(s)Dαeθ z(s)K (t − s)ds

⎤

⎦

− 2μ0r [λ(t)ψ(t)]2
⎡

⎣

t∫

0

ξ−1(s)Dαezz(s)K (t − s)ds

⎤

⎦

⎫
⎬

⎭
dr. (102)
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