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Abstract Based on the Stokes microcontinuum fluid model together with the averaged inertia principle, the
combined effects of fluid inertia forces and non-Newtonian rheology on the squeeze film characteristics between
circular stepped disks have been presented in this paper. Comparing with the case of a Newtonian lubricant without
inertia forces, the influences of convective inertia forces and non-Newtonian couple stresses provide an increase in
values of the load-carrying capacity and the approaching time. The improved performances are more pronounced
for stepped squeeze films operating with a larger density parameter and couple stress parameter, and a smaller step
height ratio and radius ratio.
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1 Introduction

Research on squeeze film performances plays an important role in many areas of industrial engineering and applied
sciences. To satisfy the requirement of modern machine systems operating under severe conditions, the use of
various non-Newtonian complex fluids as lubricants has received great attention. Common lubricants exhibiting
non-Newtonian behaviors are the natural lubricating fluids, polymer-thickened oils, and base oils blended with
certain types of additives. According to the experimental work of Oliver and Shahidullah [1], a polymer-thickened
lubricant can provide higher load capacities between of squeeze film strips compared to the case of a Newtonian
lubricant. From the experimental results of Scott and Suntiwattana [2], the use of extreme pressure/anti-wear
additives can reduce wear of wet clutching materials. In accordance with the experimental study of Spike [3], a
lubricating oil blended with suitable additives can stabilize lubricant behavior in elasto-hydrodynamic lubrication
contacts. Since the traditional Newtonian continuum theory is not suitable to describe the flow behavior of these
kinds of non-Newtonian complex fluids, a number of microcontinuum theories have been generated by Stokes [4],
Eringen [5,6] and Ariman et al. [7,8]. In these generations, the Stokes microcontinuum theory of couple stress
fluids [4] shows an elegant theory allowing for the presence of body couples and couple stresses. This theory
of couple stress fluids is important for scientific and engineering applications of pumping fluids such as human
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bloods [9], synovial fluids [10], and peristaltic flows [11]. On the basis of the microcontinuum theory of Stokes
[4], a number of investigators have applied this couple stress fluid model to study the lubrication performance of
squeeze film bearings, such as the pure squeeze film journal bearings by Naduvinamani et al. [12] and Reddy et al.
[13], the sphere-plate squeeze films by Lin [14] and Elsharkawy and Al-Fadhalah [15], the parallel-plate squeeze
films by Ramanaiah [16] and Bujurke et al. [17], and the squeeze films between stepped plates by Kashinath [18].
According to their results, the presence of non-Newtonian couple stresses provides an increase in the load-carrying
capacity and the approaching time compared to the traditional case with a Newtonian lubricant. In addition, further
studies have also been presented on circular stepped porous bearings operating under different situations, such as
the effects of surface roughness and couple stresses by Naduvinamani and Siddangouda [19], and the combined
effects of surface roughness and magnetohydrodynamic couple stresses by Naduvinamani et al. [20]. However, the
contributions [12–18] have neglected the effects of fluid inertia forces in the study of squeeze film behaviors. Since
the effects of film pressure may become more and more significant when the fluid velocity increases, the fluid inertia
force effects should be included in the study of squeeze film motions. So far no attempt has been made to investigate
the influences of fluid inertia forces on circular stepped squeeze films with a non-Newtonian couple stress fluid. A
further study is therefore of interest.

In this paper, the combined effects of fluid inertia forces and non-Newtonian rheology on the squeeze film
characteristics between circular stepped disks are presented on the basis the Stokes microcontinuum theory of
couple stress fluid model together with the averaged inertia principle. A pressure gradient equation considering
the influences of non-Newtonian couple stresses and fluid inertia forces is obtained by employing the momentum
integral method. Comparing with the case of a Newtonian lubricant without inertia forces, the results (including the
load-carrying capacity and the approaching time) are presented and discussed through the variation of the density
parameter, the couple stress parameter, the step height ratio, and the radius ratio of the circular stepped squeeze film.

2 Pressure gradient equation

Figure 1 describes the squeeze film configuration of circular stepped disks lubricated with an incompressible non-
Newtonian couple stress fluid. The upper stepped disk with inner radius Rb and outer radius Ra is approaching the
lower one with a squeezing velocity vs = −∂h/∂t . It is assumed the thin-film theory of hydrodynamic lubrication
of Pinkus and Sternlicht [21] is applicable, but the influences of convective fluid inertia forces arising from the
temporal acceleration are included. According to the Stokes microcontinuum theory of couple stress fluid model
[4], the equations of momentum and continuity in axially cylindrical coordinates (r, θ, z) can be expressed as

Fig. 1 Squeeze film
configuration of circular
stepped disks lubricated
with a non-Newtonian
couple stress fluid
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In these equations, ρ is the fluid density, p is the fluid pressure, μ is the fluid viscosity, and u and w are the velocity
components in the r - and z- directions, respectively. In addition, η represents a new material constant responsible for
Stokes couple stress fluids. The relevant boundary conditions for velocity components are the non-slip conditions
and the non-couple stress conditions.

At z = 0 : u = 0,
∂2u

∂z2

∣∣∣∣
z=0

= 0, w = 0. (4)

At z = h : u = 0
∂2u
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∣∣∣∣
z=h

= 0, w = −vs. (5)

In these equations, the local film height h is

h =
{

hb 0 ≤ r ≤ Rb,

ha Rb ≤ r ≤ Ra,
(6)

where

hb = hs + ha, (7)

and hs denotes the step height. Since the film height h is small, the convective inertia forces in the momentum can
be treated by the averaged inertia principle as proposed by Mahanti and Ramanaiah [22]:
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Using the relationship of continuity equation and the velocity boundary conditions, the above momentum integral
equation can be written as
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To solve for the velocity component, a modified pressure gradient gp is introduced as follows:

gp = ∂p

∂r
+ ρ

h
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Then one can rewrite the momentum integral equation as

∂4u

∂z4 − μ

η

∂2u

∂z2 = −1

η
gp. (11)
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Employing the boundary conditions for velocity components, the radial velocity component can be obtained from
the above differential equation:

u = gp

2μ
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1 − 1
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cosh

(
2z − h

2l

)]}
, (12)

where l is defined as
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μ
. (13)

In order to derive the pressure gradient equation, the integrals
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where the functions g0 and g1 are defined by

g0(h, l) = h3 − 12l2h + 24l3 tanh
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Substituting the result of integral
∫ h

0 u2 dz into the right-hand side of Eq. (10), one can obtain the expression for
pressure gradient function ∂p/∂r as
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= gp − 1
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For each region 0 ≤ r ≤ Rb and Rb ≤ r ≤ Ra, respectively, the film height is independent of the radial coordinate.
On the other hand, the equation for the squeeze motion is

∫ h

0
u dz = 1

2
rvs. (19)

Equating the right-hand side of Eqs. (14) and (19), one can obtain another expression of the modified pressure
gradient function:

gp = −6μ

g0
rvs. (20)

Substituting this expression for the modified pressure gradient gp into Eq. (18) and performing the derivative, one
can derive the pressure gradient equation for the squeeze film:

∂p

∂r
= −6μ

g0
rvs − 27ρ

h

g1

g2
0

rv2
s . (21)
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The above equation can be applied to investigate the circular stepped squeeze film characteristics considering the
influences of non-Newtonian couple stresses and convective fluid inertia forces.

3 Squeeze film performance

In order to analyze the squeeze film performance, the following non-dimensional variables and parameters are
introduced:

r∗ = r

Ra
, p∗ = p

pr
, p∗

a = pa

pr
, p∗

b = pb

pr
, h∗
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ha0
, h∗

b = hb

ha0
, h∗ = h

ha0
, (22a)
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, g∗
1 = g1
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a0

, V ∗ = 6μR2
a vs

prh3
a0

, α = Rb

Ra
, β = hs

ha0
, ϕ = l

ha0
, δ = ρh4

a0 pr

6μ2 R2
a
, (22b)

where pr is the ambient pressure, ha0 is the initial minimum film height, and the superscript “*” represents the
non-dimensional quantity of the variables. In addition, α denotes the non-dimensional radius ratio, β is the non-
dimensional step height ratio, ϕ is the non-dimensional couple stress parameter, and δ is the non-dimensional density
parameter. Then the pressure gradient equation can be written in a non-dimensional form:
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The boundary conditions for the non-dimensional film pressure are p∗
a = 1 at r∗ = 1, and p∗

a = p∗
b at r∗ = α.

Integrating the non-dimensional pressure gradient equation with respect to r∗ and applying the pressure boundary
conditions, one can derive the non-dimensional film pressure:
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The load-carrying capacity W is evaluated by integrating the film pressure field acting on the stepped disk surface:

W = 2π

∫ Rb

0
(pb − pr)r dr + 2π

∫ Ra

Rb

(pa − pr)r dr. (34)

Expressed in a non-dimensional form and using the expression of the film pressure, the non-dimensional load
capacity W ∗ can be derived after integrating the equation:
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a pr
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1 δV ∗2, (35)
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To obtain the approaching time, a non-dimensional definition t∗ is introduced:

t∗ = h2
a0 pr

6μR2
a

t. (38)

Then, the non-dimensional squeezing velocity can be expressed as:

V ∗ = 6μR2
a vs

prh3
a0

= −dh∗
a

dt∗
. (39)

Substituting into Eq. (35) results in the differential equation governing the film height varying with the approaching
time,

dh∗
a

dt∗
= W ∗

0 − [W ∗2
0 + 4δW ∗W ∗

1 ]1/2

2δW ∗
1

. (40)

Applying the initial condition for the non-dimensional film height h∗
a (t

∗ = 0) = 1, the non-dimensional approaching
time can be derived by integrating the differential equation:

t∗ =
∫ 1

h∗
a

2δW ∗
1

[W ∗2
0 + 4δW ∗W ∗

1 ]1/2 − W ∗
0

dh∗
a . (41)

Using the method of Gaussian quadrature, the numerical values of the approaching time can be evaluated.

4 Results and discussion

According to the above analysis, the geometry of the stepped disk is defined by the radius ratio α and the step height
ratio β. In addition, ϕ is the couple stress parameter dominating the influences of non-Newtonian property, and δ

is the density parameter characterizing the effects of fluid inertia forces. For δ = 0, the present study reduces to
the case of a non-Newtonian circular stepped squeeze film without fluid inertia forces. For δ = 0 and ϕ = 0, the
present analysis reduces to the case of a Newtonian circular stepped squeeze film neglecting fluid inertia effects.
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Fig. 2 Load capacity W ∗
varying with couple stress
parameter ϕ for different h∗

a
with α = 0.5 and β = 0.6
under the non-inertia case
(δ = 0)
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Fig. 3 Load capacity W ∗ varying with density parameter δ for different h∗
a with α = 0.5 and β = 0.6 under both the Newtonian-lubricant

(ϕ = 0) and non-Newtonian-lubricant (ϕ = 0.1) cases

Figure 2 shows load capacity W ∗ varying with couple stress parameter ϕ for different h∗
a with α = 0.5 and

β = 0.6 under the non-inertia case (δ = 0). It is observed that the presence of couple stresses (ϕ �= 0) provides an
increase in the load-carrying capacity compared to the Newtonian-lubricant case (ϕ = 0); and larger increments are
obtained with the decreasing value of h∗

a or the increasing value of ϕ. Figure 3 displays the load capacity W ∗ varying
with density parameter δ for different h∗

a with α = 0.5 and β = 0.6 under both the Newtonian-lubricant (ϕ = 0)
and non-Newtonian-lubricant (ϕ = 0.1) cases. The load capacity is observed to increase with the increasing values
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Fig. 4 Approaching time t∗
varying with film height h∗

a
for different ϕ with α = 0.5
and β = 0.6 under the
non-inertia case (δ = 0)
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Fig. 5 Approaching time t∗ varying with film height h∗
a for different δ with α = 0.5 and β = 0.6 under both the Newtonian-lubricant

(ϕ = 0) and non-Newtonian-lubricant (ϕ = 0.1) cases

of the density parameter. In addition, the combined effects of fluid inertia forces and non-Newtonian couple stresses
on the load capacity are more emphasized at a lower film height. Figure 4 describes the approaching time t∗ varying
with film height h∗

a for different ϕ with α = 0.5 and β = 0.6 under the non-inertia case (δ = 0). It is seen that
the presence of couple stresses results in an increase in the approaching time. These phenomena can be understood
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Fig. 6 Approaching time t∗
varying with density
parameter δ for different α

and β with h∗
a = 0.5 under

both the Newtonian-lubricant
(ϕ = 0) and non-Newtonian-lubricant
(ϕ = 0.1, 0.2) cases
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that since the effects of non-Newtonian couple stresses provide a higher load-carrying capacity, a higher film height
would be achieved for the same time to be taken compared to the case with a Newtonian lubricant. Figure 5 depicts
the approaching time t∗ varying with film height h∗

a for different δ with α = 0.5 and β = 0.6 under both the
Newtonian-lubricant (ϕ = 0) and non-Newtonian-lubricant (ϕ = 0.1) cases. Since the influences of fluid inertia
forces result in a higher load-carrying capacity as described in Fig. 3, a longer approaching time is obtained for
the circular stepped squeeze film compared to the non-inertia case. Further increments of the approaching time are
predicted for the squeeze film with a non-Newtonian couple stress fluid (ϕ = 0.1). Figure 6 shows the approaching
time t∗ varying with density parameter δ for different α and β with h∗

a = 0.5 under both the Newtonian-lubricant
(ϕ = 0) and non-Newtonian-lubricant (ϕ = 0.1, 0.2) cases. For the circular stepped disks with the radius ratio
α = 0.5 and the step height ratio β = 0.6 under the Newtonian-lubricant (ϕ = 0) case, the approaching time
increases with the increasing values of the density parameter. Decreasing the radius ratio and the step height ratio
(α = 0.5, β = 0.3;α = 0.3, β = 0.3) increases the increments of the approaching time. When the effects of
non-Newtonian couple stresses (ϕ = 0.1, 0.2) are included, larger increments of the approaching time are obtained.

The present work is mainly concerned with the combined effects of fluid inertia forces arising from the temporal
acceleration and non-Newtonian rheology on the squeeze film characteristics between circular stepped disks. The
microcontinuum theory intends to account for particle size influences of fluids involving substructure. The non-
Newtonian effects of couple stresses could be regarded as the behavior of one part of a deforming element on its
neighbourhood as Stokes [4]. On the whole, the combined effects of convective inertia forces and non-Newtonian
couple stresses provide an increase in the load-carrying capacity and a longer approaching time compared to the
non-inertia Newtonian-lubricant case, especially for the stepped disks operating with larger values of the density
parameter and the couple stress parameter. So far, the results of experimental and theoretical studies are not available.
However, a study of the effects of surface roughness and couple stresses on porous circular stepped squeeze films is
presented by Naduvinamani and Siddangouda [19]. A pressure gradient equation has been derived in their Eq. (25).
Ignoring the effects of surface roughness and porous material, their Eq. (25) using the same notation as the present
study reduces to

∂p

∂r
= − 6μ

h3 − 12l2h + 24l3 tanh(h/2l)
rvs. (42)

It agrees well with the present derivation of Eq. (20) when we neglect the inertial force term, 27ρg1rv2
s /(hg2

0).
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5 Conclusions

A pressure gradient equation considering the influences of non-Newtonian couple stresses and fluid inertia forces
is obtained on the basis of the Stokes microcontinuum fluid model together with the averaged inertia principle.
Comparing with the case of a Newtonian lubricant without inertia forces, the influences of fluid inertia forces
and non-Newtonian couple stresses provide increases in the load-carrying capacity and the approaching time. The
improved squeeze film performances are more emphasized for circular stepped disks operating with a larger value
of the density parameter and the couple stress parameter, and a smaller value of the step height ratio and the radius
ratio.
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