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Abstract This paper presents analytical and numerical-analytic approaches to solving the problem of the action
of an arbitrarily distributed axisymmetric load applied instantly to the surface of an isotropic elastic half-space. The
first approach is built around the Laplace and Hankel integral transforms whose inversion is performed jointly with
Cagniard’s technique, and as a result, exact analytical expressions are obtained for computing stresses along an axis
of symmetry. The second approach uses the Laplace integral transform and the expansion of sought for values into
the Fourier–Bessel series to reduce the problem to a numerical solution of a series of Volterra integral equations.
Concrete numerical analysis was performed for cases where the domain of application of a distributed load is fixed
or expands in time with both constant and variable velocity.

Keywords Analytic solution · Distributed axisymmetric load · Elastic half-space · Fourier–Bessel expansion ·
Laplace transform · Nonstationary problem
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1 Introduction

Studies in wave processes in an isotropic elastic half-space with an application of axisymmetric surface actions, in
particular, distributed normal mechanical loads, have been the subject of investigation in quite a number of papers.
Their bibliographies are given in [1–5]. For their solution, besides implementing classical numerical methods (the
finite-difference [6] and finite-element methods [7]), effective numerical-analytic methods have been developed.
They are based on integral transforms – Laplace in time and Hankel in space. The methods of building originals
are different, and they depend primarily on the law of load space-time distribution on the half-space boundary.

In some studies, asymptotic methods are used for transforms, and the features of displacement and stress fields
near wave fronts have been investigated (see [8,9]). The methods of the theory of residues in [10] applied to a
Hertz distribution type load, which occurs under a smooth flat die in the static load contact problem, have yielded
expressions for normal displacements of half-space surface points as multiple integrals of real variable functions.
The displacements of points on a half-space surface and the axis of symmetry were also studied in [11,12], where,
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for joint transform inversion, the Cagniard–de Hoop technique [13] was implemented taking into account transform
homogeneity with respect to transform parameters. For an approximate search for variables distant from the points’
axis of symmetry, the study by [11] used the saddle technique for computing the Laplace inverse transform integral
because immediate implementation of the Cagniard technique for the Laplace inverse transform integral containing
theBessel function ismathematically challenging. Similar to [11], the paper [14] presents solutions for displacements
and stresses in the inner points of the half-space for cases where an evenly distributed load with a stepwise profile in
time is applied to its boundary. Corresponding expressions have been obtained as a sum of nine indefinite integrals
treated as “static,” “Rayleigh,” and “dynamic” components. In studying stresses in points on the axis of symmetry, the
introduction of new integration variables reduced double indefinite integrals containing Bessel functions to definite
integrals of elementary functions. The computation involves special quadrature formulas to account for kernel
singularity. The paper [15] offered another approach to finding displacements of half-space points. Computational
expressions are written both in the form of a superposition of analytical solutions of the Lamb problem and as a
convolution over the radial coordinate of the external load distribution function and the corresponding fundamental
solution. In so doing, the researchers considered two kinds of load distribution over the spatial coordinate, and
elastic displacements were computed for a delta function time-variable load. The latter caused a jump in calculated
displacements, which does not correlate with the linear formulation of the mechanics of continua.

In the aforementioned studies, the load application domain is fixed. Problems with a variable application domain
are less well understood. Published studies investigate primarily the cases of even extension of boundaries, and the
displacement of points is investigated either on the half-space surface or in proximity to elastic wave fronts [8,16].

As the preceding analysis shows, analytical solutions of the nonstationary problem in the action of a surface
axisymmetric load on an elastic isotropic half-space have been obtained only for certain partial cases of load space-
time distribution. This paper presents a numerical-analytic approach to investigating stress and displacement fields
in an elastic half-space when a nonstationary axisymmetric arbitrary-profile load is applied to its boundary. The
method is built around the time-variable Laplace transform and the expansion of variables in the Fourier–Bessel
series over the radial coordinate of a model cylinder. This eliminates the need for an involved inversion of two
integral transforms. Note that this approach is similar to that in [17] as applied to solving the problem in elastic
medium shock with a blunt body. In addition, the paper describes an analytical technique for determining stresses in
points on the axis of symmetry for a moving boundary of the load distribution domain. The method is built around
Laplace and Hankel integral transforms, whereas the transition to the domain of original functions is performed
exactly using the Cagniard–de Hoop method. The computations performed with both approaches were compared
with one another and the results of other authors. Comparison has shown that the computations demonstrate the
required accuracy and can be used for a wide range of acting loads.

2 Problem statement

An elastic half-space, to which a nonstationary load is applied, is considered. The physical properties of the half-
space material are described using elastic Lame constants (λ andμ) and density ρ. The problem has axial symmetry;
therefore, the half-space is related to the cylindrical coordinate system Orz selected such that the Oz-axis, being
the axis of symmetry, is directed to the half-space, and the Or -axis is directed along its surface (Fig. 1).

Fig. 1 Scheme of
half-space loading
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Distributed load on an elastic half-space 59

The nonstationary load in the form of normal stress occurs at a certain initial time instant t = 0 and, in general,
is a function of time and coordinate r .

The following dimensionless variables and notations are introduced:

r̄ = r

R
, z̄ = z

R
, ū j = u j

R
, t̄ = cpt

R
, σ̄ jk = σ jk

λ + 2μ
( j, k = r, z), α = 1, β = cs

cp
. (1)

Here, R is a certain characteristic linear size, u j projections of the elastic displacements vector, σ jk stress
tensor components, and cp = √

(λ + 2μ)/ρ and cs = √
μ/ρ compression and shear wave propagation velocities,

respectively. In what follows, we shall use only dimensionless notations; hence, their overline shall be omitted.
The motion of an elastic medium in the axisymmetric case is described by two scalar wave potentials, Φ and Ψ ,

satisfying the following equations [18]:

	Φ = 1

α2

∂2Φ

∂t2
, 	Ψ = 1

β2

∂2Ψ

∂t2
, 	 ≡ ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
. (2)

Physical values (displacements and stresses) are expressed by the potentials Φ and Ψ as follows:

ur = ∂Φ

∂r
+ ∂2Ψ

∂r∂z
, uz = ∂Φ

∂z
− ∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
,

σzz =
(
1 − 2

β2

α2

)
∂2Φ

∂t2
+ 2β2

(
∂2Φ

∂z2
− ∂3Ψ

∂r2∂z
− 1

r

∂2Ψ

∂r∂z

)
,

σrr =
(
1 − 2

β2

α2

)
∂2Φ

∂t2
+ 2β2

(
∂2Φ

∂r2
+ ∂3Ψ

∂r2∂z

)
,

σr z = 2β2 ∂

∂r

(
∂Φ

∂z
+ ∂2Ψ

∂z2
− 1

2β2

∂2Ψ

∂t2

)
. (3)

The boundary conditions on the surface z = 0 consist in specifying the normal stress σzz and an absence of shearing
stress σzr :

σzz |z=0 = Q(r, t), σzr |z=0 = 0 (r ≥ 0). (4)

The initial conditions for potentials are zero conditions:

Φ|t=0 = Φ̇
∣∣
t=0 = Ψ |t=0 = Ψ̇

∣∣
t=0 = 0, (5)

and at infinity, wave perturbations decay.

3 Analytical solution

The solution of problem (1)–(5) is obtained using a Laplace integral transform for time t with parameter s and a
Hankel integral transform of order 0 for coordinate r with parameter ξ [19]. In particular,

f L(s) = L{ f (t)} =
∞∫
0

e−st f (t)dt,

f (t) = L−1{ f L(s)} = 1

2π

δ+i∞∫
δ−i∞

ets f L(s)ds, (6)
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f B(ξ) = B{ f (r)} =
∞∫
0

f (r)J0(rξ)r dξ,

f (r) = B−1{ f B(ξ)} =
∞∫
0

f B(ξ)J0(rξ)ξ dξ.

Here, L and B denote, respectively, Laplace and Hankel integral transform operators, L−1 and B−1 are inversion
operators, and Jm is the cylindrical Bessel function of the first kind for index m. The function transform is denoted
by the corresponding upper index. In the space of Laplace and Hankel transforms [19], we obtain the following
boundary problem (in which the initial conditions have been realized):

∂2ΦLB

∂z2
−

(
s2

α2 + ξ2
)

ΦLB = 0,
∂2Ψ LB

∂z2
−

(
s2

β2 + ξ2
)

Ψ LB = 0,

(
1 − 2

β2

α2

)
s2ΦLB + 2β2

(
∂2ΦLB

∂z2
+ ξ2

∂Ψ LB

∂z

)
= QLB(s, ξ) (z = 0),

∂ΦLB

∂z
+ ∂2Ψ LB

∂z2
− s2

2β2Ψ LB = 0 (z = 0),

ΦLB → 0; Ψ LB → 0 (z → ∞).

(7)

The general solution of wave equations decaying at z → ∞ has the form

ΦLB = Ae−(z/α)P , P =
√
s2 + α2ξ2, Ψ LB = Be−(z/β)S, S =

√
s2 + β2ξ2. (8)

By determining the arbitrary constants A and B from the boundary conditions, we shall obtain an expression for
the normal stress transform:

σ LB
zz (ξ, s, z) = QLB(ξ, s)

(
s2 + 2β2ξ2

)2
e−(z/α)P − 4β3

α
ξ2PSe−(z/β)S

(
s2 + 2β2ξ2

)2 − 4β3

α
ξ2PS

. (9)

Displacement uz and shear stress σr z in transforms are written as follows:

uLBz = −QLB(ξ, s)
1

α

P
[(
s2 + 2β2ξ2

)
e−(z/α)P − 2β2ξ2e−(z/β)S

]
(
s2 + 2β2ξ2

)2 − 4β3

α
ξ2PS

,

σ LB
rz = −QLB(ξ, s)

1

α

(
s2 + 2β2ξ2

)
P

[
e−(z/α)P − e−(z/β)S

]
(
s2 + 2β2ξ2

)2 − 4β3

α
ξ2PS

.

(10)

Now the problem consists of inversion of expressions obtained with respect to integral transforms.
Note that the fraction in (9)–(10) is a homogeneous function of transform parameters s and ξ . For certain types

of external actions, which define the function QLB(s, ξ), this makes it possible to obtain analytical expressions for
σzz , σr z , and uz using the Cagniard technique [13] of joint inversion of integral transforms. The inversion technique
depends on the properties of the function QLB(ξ, s) = LB{Q(r, t)}. Hence, it should be made more specific. Here
we shall investigate a load of the following kind:

Q(r, t) = q0H(t)H(kt − r), (11)

where H is the Heaviside step function.
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Function (11) specifies the normal stress that occurs spontaneously and propagates at a constant velocity over
the half-space surface. It is not difficult to determine the Fourier and Hankel transforms for this function:

QL(r, s) = q0
1

s
e−s(r/k), QLB(ξ, s) = q0

k2(
s2 + ξ2k2

)3/2 . (12)

Then, for example, (9) yields

σ LB
zz (ξ, s, z) = q0k

2

(
s2 + 2β2ξ2

)2
e−(z/α)P − 4β3

α
ξ2PSe−(z/β)S

(
s2 + ξ2k2

)3/2[(
s2 + 2β2ξ2

)2 − 4β3

α
ξ2PS

] .

We perform a Hankel transform inversion for the z-axis,

σ L
zz(r = 0, s, z) = q0k

2

∞∫
0

(
s2 + 2β2ξ2

)2
e−(z/α)P − 4β3

α
ξ2PSe−(z/β)S

(
s2 + ξ2k2

)3/2[(
s2 + 2β2ξ2

)2 − 4β3

α
ξ2PS

]ξdξ, (13)

and, assuming s is real, we shall change the variable: ξ = sη, dξ = sdη.
Let us rewrite (13) as the sum of two integrals:

σ L
zz(s, z) = q0

s

[
RL
1 (s, z) + RL

2 (s, z)
]

= q0
s

⎡
⎣

∞∫
0

R̄L
1 (s, z, η)dη +

∞∫
0

R̄L
2 (s, z, η)dη

⎤
⎦, (14)

where

R̄L
1 (s, z, η) = e−s(z/α)

√
1+α2η2 k2(

1 + η2k2
)3/2

(
1 + 2β2η2

)2
(
1 + 2β2η2

)2 − 4β3

α
η2

√
1 + α2η2

√
1 + β2η2

η,

R̄L
2 (s, z, η) = −4β3

α
e−s(z/β)

√
1+β2η2 k2(

1 + η2k2
)3/2 η2

√
1 + α2η2

√
1 + β2η2(

1 + 2β2η2
)2 − 4β3

α
η2

√
1 + α2η2

√
1 + β2η2

η.

In (14), we shall perform the following change of variable in the integrands:

– for R̄L
1 (s, z, η): z

α

√
1 + α2η2 = t, η =

√
α2t2 − z2

αz
,

– for R̄L
2 (s, z, η): z

β

√
1 + β2η2 = t, η =

√
β2t2 − z2

βz
.

Then the integrals in (14) will take the form

RL
1 (s, z) =

∞∫
z/α

e−st R̃1(t, z)dt, RL
2 (s, z) =

∞∫
z/β

e−st R̃2(t, z)dt.

The right-hand term in the latter expressions is the Laplace transform operator; hence, the original in the left-hand
side is the integrand function, i.e.,

R1(t,z) = H
(
t− z

α

)
R̃1(t, z), R̃1(t,z) = −α3k2

[
α2z2 + 2β2 Ã(t, z)

]2
t z

[
α2z2 + k2 Ã(t, z)

]3/2
	1(t,z)

,

R2(t,z) = H

(
t − z

β

)
R̃2(t,z), R̃2(t,z) = −4

β4k2

α

B̃(t,z)
√

β2z2 + α2 B̃(t, z)t2z[
β2z2 + k2 B̃(t, z)

]3/2
	2(t,z)

,

(15)
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where

	1(t, z) =
[
α2z2 + 2β2 Ã(t, z)

]2 − 4αβ3t Ã(t, z)
√

α2z2 + β2 Ã(t, z),

	2(t, z) =
[
2β2t2 − z2

]2 − 4
β

α
t B̃(t, z)

√
β2z2 + α2 B̃(t, z),

Ã(t, z) = α2t2 − z2, B̃(t, z) = β2t2 − z2.

Finally, taking into account the factor 1/s in (14), we shall obtain the following exact analytical expression for
normal stress σzz(t, z) on the problem’s axis of symmetry as integrals of fractional-analytic functions:

σzz(t, z) = q0

[
H

(
t − z

α

) ∫ t

z/α
R̃1(τ, z)dτ + H

(
t − z

β

)∫ t

z/β
R̃2(τ, z)dτ

]
. (16)

Using expressions (10) and (12), and the stated procedure for constructing originals, it is not difficult to obtain
an equation for displacement uz(t, z), which is similar to (16), where

R̃1(t,z) =
k2α7z5t

[
α2z2 + 2β2 Ã(t, z)

]√
Ã(t, z)

[
α2z2 + k2 Ã(t, z)

]3/2
	1(t,z)

,

R̃2(t,z) = −2βz3k2 B̃3/2(t,z)
√

β2z2 + α2 B̃(t, z)[
β2z2 + k2 B̃(t, z)

]3/2
	2(t,z)

.

Let us now consider the load

Q(r, t) = q0H
(
kt − r2

)
, (17)

whose application domain boundary moves with variable velocity. The transform of the function Q(r, t) will have
the form

QLB(ξ, s) = q0
k

2s2
e−ξ2(k/4s).

Then, (9) yields the following equation for the normal stress transform:

σ LB
zz (ξ ,s,z) = q0

k

2s2
e−ξ2(k/4s)

[ (
s2 + 2β2ξ2

)2
e−(z/α)

√
s2+α2ξ2 − 4β3

α
ξ2

√
s2 + α2ξ2

√
s2 + β2ξ2e−(z/β)

√
s2+β2ξ2

]
(
s2 + 2β2ξ2

)2 − 4β3

α
ξ2

√
s2 + α2ξ2

√
s2 + β2ξ2

.

Applying the same technique as in the previous case, we obtain the following analytical expression for computing
the stress σzz along the problem’s axis of symmetry:

σzz(t,z) = q0

[
H

(
t− z

α

)
F1(t,z)

ζ (t,z)−2z

ζ (t,z)
−H

(
t− z

β

)
F2(t,z)

ζ̄ (t,z)−2z

ζ̄ (t,z)

]
, (18)

where

F1(t, z) =
(
1 + 8β2

k2
fα(t, z)

)2
(
1 + 8β2

k2
fα(t, z)

)2− 16β3

αk2
fα(t, z)

√
1 + 4α2

k2
fα(t, z)

√
1 + 4β2

k2
fα(t, z)

,

F2(t,z) = 16β3

αk2

fβ(t,z)
√
1 + 4α2

k2
fβ(t,z)

√
1 + 4β2

k2
fβ(t,z)(

1 + 8β2

k2
fβ(t,z)

)2− 16β3

αk2
fβ(t,z)

√
1 + 4α2

k2
fβ(t,z)

√
1 + 4β2

k2
fβ(t,z)

,
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Distributed load on an elastic half-space 63

fα(t, z) = tk + 2z2 − 2zζ (t, z), ζ (t, z) = 2

√
tk + z2 + k2

4α2 ,

fβ(t, z) = tk + 2z2 − 2zζ̄ (t, z), ζ̄ (t, z) = 2

√
tk + z2 + k2

4β2 .

The expressions for the remaining stresses and displacements are obtained similarly.

4 Numerical-analytic solution

With certain restrictions placed on the investigation time interval, the solution of the problem being considered can
be obtained even with an acting load of a sufficiently general kind. So, the analytical solution described previously
can serve as a baseline for controlling the accuracy of results. The essence of the method being developed herein
consists in the following. Instead of an elastic half-space, we introduce for consideration a certain model elastic
semi-infinite cylinder with radius l with such boundary conditions on the lateral surface that the general solution
for wave potentials presented as a Fourier–Bessel series fulfills these conditions. Radius l is chosen considering the
time interval during which the process should be investigated and the computational procedure for convergence.
The solution of this modified problem coincides with the solution of the original problem for half-spaces up to the
instant at which waves reflected from the lateral surface occur.

In short, the statement of the modified problem is as follows. With dimensionless notations (1), the solution of
wave equations (2) is sought for at zero initial conditions (5), conditions of excitation decay at infinity (at z → ∞),
conditions (4) on the cylinder end (at z = 0), and the following conditions on the lateral surface (at r = l):

σr z |r=l = 0, ur |r=l = 0. (19)

It is assumed that the function Q(r, t), which specifies the pattern of load distribution on the cylinder end, can
be expanded into a Fourier–Bessel series on the interval 0 ≤ r ≤ l:

Q(t, r) =
∞∑
n=1

Qn(t)J0(λnr), Qn(t) = 2

l2 J0(λnl)2

∫ l

0
Q(r, t)J0(λnr)r dr. (20)

Here, λn denotes equation roots:

J1(λnl) = 0, n = (
1,∞)

. (21)

Expansion into a Fourier–Bessel series also exists for stresses and displacements:

σzz(r ,t,z) =
∞∑
n=1

σzzn (t,z)J0(λnr), uz(r ,t,z) =
∞∑
n=1

uzn (t,z)J0(λnr),

σr z(r ,t,z) =
∞∑
n=1

σr zn (t,z)J1(λnr), ur (r ,t,z) =
∞∑
n=1

urn (t,z)J1(λnr).

(22)

The general solution for wave equations (2) following application of the Laplace integral transform in time taking
into account the zero initial conditions, the decay conditions at infinity, and the conditions (19) on the cylinder lateral
surface can be written as
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ΦL(r, s, z) =
∞∑
n=1

An(s)e
−(z/α)P J0(λnr), P =

√
s2 + α2λ2n,

Ψ L(r, s, z) =
∞∑
n=1

Bn(s)e
−(z/β)S J0(λnr), S =

√
s2 + β2λ2n .

(23)

Here, An(s) and Bn(s) are invariables to be defined from boundary conditions (3), which, being subjected to the
Laplace transform taking into account expansions (20) and (22), take the form

σ L
zzn

∣∣∣
z=0

= QL
n (s), σ L

rzn

∣∣∣
z=0

= 0. (24)

By satisfying conditions (24), we obtain expressions for the coefficients of series (22) in transforms for stresses
and displacements:

σ L
zzn = QL

n
α
(
s2 + 2β2λ2n

)2
e−(z/α)P − 4β3λ2n PSe

−(z/β)S

α
(
s2 + 2β2λ2n

)2 − 4β3λ2n PS
,

σ L
rzn = QL

n
P

(
s2 + 2β2λ2n

)(
e−(z/β)S − e−(z/α)P

)
α
(
s2 + 2β2λ2n

)2 − 4β3λ2n PS
,

uLzn = QL
n
P

[−α
(
s2 + 2β2λ2n

)
e−(z/α)P + 2β2λ2ne

−(z/β)S
]

α
(
s2 + 2β2λ2n

)2 − 4β3λ2n PS
,

uLrn = QL
n

αλn
(
s2 + 2β2λ2n

)
e−(z/α)P − 2β2PSe−(z/β)S

α
(
s2 + 2β2λ2n

)2 − 4β3λ2n PS
.

Now the problem consists of the inversion of the expressions obtained and summing the series. This procedure can
be shown by the example of computing the stress σzz . Let us present σ L

zzn as

σ L
zzn = QL

n (s)DL
n (s, z), DL

n (s, z) = α
(
s2 + 2β2λ2n

)2
e−(z/α)P − 4β3λ2n PSe

−(z/β)S

α
(
s2 + 2β2λ2n

)2 − 4β3λ2n PS
. (25)

If the original Dn(t, z) is found, then σzzn (t, z) can be determined using the convolution [19]

σzzn =
t∫

0

Qn(τ )Dn(t − τ, z)dτ. (26)

To find the original, DL
n (s, z) is rewritten as follows:

DL
n (s, z) =

{
e−(z/α)s +

(
e−(z/α)P − e−(z/α)s

)
+ 4β3PSλ2n

α
(
s2 + 2λ2nβ

2
)2 − 4β3λ2n PS

×
{[

e−(z/α)s +
(
e−(z/α)P − e−(z/α)s

)]
−

[
e−(z/β)s +

(
e−(z/β)S − e−(z/β)s

)]}}
. (27)

Use the notation

RL
n (s) = 4β3PSλ2n

α
(
s2 + 2λ2nβ

2
)2 − 4β3PSλ2n

= FL
n (s)

1 − FL
n (s)

, (28)
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where

FL
n (s) = 4β3PSλ2n

α
(
s2 + 2λ2nβ2

)2 ,

and rewrite (28) as

(
1 − FL

n (s)
)
RL
n (s) = FL

n (s). (29)

Expression (29) in the space of originals is the integral Volterra equation of the second kind:

Rn(t) −
t∫

0

Rn(τ )Fn(t − τ)dτ = Fn(t). (30)

The function Fn(t) = L−1
{
FL
n (s)

}
is determined as follows:

F(t) = L−1

{
4λ2nβ

3

α

s
(
s2 + α2λ2n

)
(
s2 + 2λ2nβ

2
)2 S

sP

}
= L−1

{
4λ2nβ

3

α
l L1 (s)l L2 (s)

}
. (31)

Originals l1 and l2 have the following form [19]:

l1(t) = L−1

{
s
(
s2 + α2λ2n

)
(
s2 + 2λ2nβ

2
)2

}

= cos
(√

2βλnt
)

+
√
2λn

(
α2 − 2β2

)
4β

t sin
(√

2βλnt
)
,

l2(t) = L−1
{

S

sP

}
= L−1

{
1

s
√
s2 + α2λ2n

(√
s2 + β2λ2n − s

)
+ 1√

s2 + α2λ2n

}

= βλn

t∫
0

J i0[αλn(t−τ)]
1

τ
J1(βλnτ)dτ + J0(αλnt), J i0(αλnt) =

t∫
0

J0(αλnτ)dτ.

Applying convolution to (31) gives the following expression in the space of the originals

Fn(t) = 4λ2nβ
3

α

t∫
0

l1(t − τ)l2(τ )dτ. (32)

We shall also use known inversion formulas [19] to find the originals of the functions in (27), namely,

L−1
{
e−(z/α)P−e−(z/α)s

}
= knα(t, z) = −H

(
t− z

α

)
zλn

J1

(
αλn

√
t2−(z/α)2

)
√
t2−(z/α)2

, (33)

L−1
{
e−(z/β)S−e−(z/β)s

}
= knβ(t, z) = −H

(
t− z

β

)
zλn

J1

(
βλn

√
t2−(z/β)2

)
√
t2−(z/β)2

. (34)
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Finally, the original Dn(t, z) can be written as

Dn(t, z) = δ(t − z/α) + K̃n(t, z), (35)

where δ(t) is the Dirac delta function, and the function K̃n(t, z) is such that its transform K̃ L
n (s, z) has the form

K̃ L
n (s, z) = kLnα + RL

n

{[
e−(z/α)s + kLnα

]
−

[
e−(z/β)s + kLnβ

]}

= kLnα + e−(z/α)s RL
n − e−(z/β)s RL

n + RL
n

[
kLnα − kLnβ

]
.

Hence, the original K̃n(t, z), taking into account the operational calculus lag and multiplication theorems, is
written as follows:

K̃n(t,z) = knα(t,z) + H
(
t− z

α

)
Rn

(
t− z

α

)
−H

(
t− z

β

)
Rn

(
t− z

β

)

+
∫ t

0
Rn(t − τ)

[
knα(τ, z) − knβ(τ, z)

]
dτ. (36)

Note that Rn(t) is the solution of integral equation (30), and functions knα(t, z) and knβ(t, z) are specified by
expressions (33) and (34).

Formulas (26) and (35) yield an expression for σzzn

σzzn (t, z) = H
(
t − z

α

)
Qn

(
t − z

α

)
+

∫ t

0
Qn(τ )K̃n(t − τ, z)dτ. (37)

Finally, the normal stress is determined by the formula

σzz(r, t, z) =
∞∑
n=1

σzzn (t, z)J0(λnr)

= H
(
t − z

α

)
Q

(
t − z

α
, r

)
+

∞∑
n=1

J0(λnr)

t∫
0

Qn(τ )K̃n(t − τ, z)dτ. (38)

A procedure similar to that described earlier is used to compute the remaining components of the deflected mode.

5 Numerical results

Let us offer some numerical results obtained both based on the exact analytical expressions described in Sect. 2
and with the help of the numerical-analytic technique described in the previous section. In so doing, we chose
the following values of parameters of a half-space’s material: α = 1.0 and β = 0.55. It should be noted
that the coefficient β determines Poisson’s ratio ν of the half-space’s material. Thus, using the equations
β = cs/cp, cp = √

(λ + 2μ)/ρ, and cs = √
μ/ρ (λ and μ are Lamé’s elastic constants), it is not difficult

to obtain the equation for ν − ν = (
1 − 2β2

)
/
(
2 − 2β2

)
. And the accepted value β = 0.55 corresponds to

ν = (
1 − 2 · 0.552)/(2 − 2 · 0.552) ≈ 0.283. It was assumed that the load acting on the surface z = 0 had the form

Q(r, t) = q0H(t)H
(
r∗ − |r |), (39)

where q0 = −1. The radius of the model cylinder l was set equal to π (Fig. 1).
When computing the stress σzz using the analytical expression (16), as well as when solving the integral equation

(30) and computing the integrals in (26), (32), and (36)–(38), we used Simpson quadrature formulas. The constant
integration step 	t , as well as the number of terms N retained in the Fourier–Bessel series in (38), was chosen to
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Fig. 2 Stresses σzz(r, t, z) at Q(r, t) = q0H(t)H
(
k̃t − |r |) with different k̃. a σzz at point (r = 0, z = 0.5), b σzz on z-axis at moment

t = 2, c σzz in section z = 0.5 at fixed t for k̃ = 1 and 5

satisfy the condition of providing the required computational accuracy. Thus, the difference in the maximum values
of both the stress σzz (38) and the function RN (30) on the time interval being investigated [0,T ] (T = 2) at N = 80
and 	t = 1/5000 and 	t = 1/8000 was within 1%.

The convergence of the Fourier–Bessel series was accelerated using the factors φn = 2J1(ϕn)/ϕn , where ϕn =
λ2l(n − 1)/(N − 1), and λ2 is the least positive root of the equation J1(λ2l) = 0.

When using the quadrature method for computing integrals containing the function knα with a finite discontinuity
point t = tα = z/α (knα(t, z)|t<tα ≡ 0; limδ→0 knα(tα + δ, z) = −zαλ2n/2), integration along the interval
(t ′α; t ′α + 	t) containing this point involved integrating along the subinterval of nonzero values of knα . Here,
t ′α = 	t · E(tα/	t), where E(x) is the integer part of the argument. A similar procedure was used to compute
integrals with an integrand knβ(t, z).

Figures 2 and 3 show the case where the acting load propagates over the half-space surface with a definite
velocity, viz. a constant velocity, at which the boundary of the load distribution domain is defined by the radius

r∗(t) = k̃t (Fig. 2) and a variable velocity when the given radius equals r∗(t) =
√
k̃t (Fig. 3). Figure 2a shows the

time-dependent development of the stress σzz on the z-axis at the point r = 0, z = 0.5 for several values of the
velocity parameter k = k̃/α: k = 0.1, 1, 5, 10. Here, and in the following figures, stress relates to the amplitude of
the acting load q0. In the point considered, stress occurs with the arrival of a compression wave (t = z/α = 0.5),
and subsequently tends to unit. At that point, the rate at which a stationary value is achieved depends significantly
on the value of k. With small values of k (k = 0.1; 1), the stress grows quite slowly, whereas with k equal to 5 or
10, the stress at the instant of arrival of the stress wave front increases stepwise and rapidly achieves the ultimate
value occurring at the instant when the shear wave point (t = z/β ≈ 0.909) is achieved.

Figure 2b shows the stress distribution along the z-axis (r = 0) at a fixed point in time t = T for the same
values of the velocity parameter k. Here, we also see the significant dependence of the stress distribution profile
on the given parameter. In the figure, for k = 5 and 10, one observes the location of the shear wave front, which
shows a break in the corresponding graphs (z = βT = 1.1). Note that the graphs in Fig. 2b were computed using
both the analytical solution in Sect. 2 and with the help of the developed numerical-analytic procedure described
in Sect. 3. In this way, it turned out that the results obtained agree to within the graph thickness. This confirms the
practical accuracy of the numerical-analytic procedure and allows us to use it, for instance, to calculate the stress
distribution along the Or -axis. In particular, Fig. 2c shows the distribution of σzz in the section z = 0.5 at fixed
time instants t = z/α = 0.5, 1, 1.5, T = 2 computed in such a manner. The dashed lines show the graphs for k = 1
and the solid lines show them for k = 5. For the previous value of k, the stress graphs for t = 1.5, 2 are not shown
because this case shows the influence of an artificially introduced boundary of the model cylinder, which distorts
the computations.

Figure 3 shows the process being investigated when the boundary of the load action domain is defined by the

function r∗(t) =
√
k̃t . The results shown in Fig. 3a, bwere obtained for velocity parameter values of k = k̃/α = 0.1,

1, 5, 10. Figure 3a shows stress as a time function at a particular point (r = 0, z = 0.5); Fig. 3b shows it as a
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Fig. 3 Stresses σzz(r, t, z) at Q(r, t) = q0H(t)H(k̃t − r2) with different k̃. a σzz at point (r = 0, z = 0.5), b σzz on z-axis at moment
t = 2, c σzz in section z = 0.5 at fixed t for k̃ = 1 and 5, and d increased fragment of Fig. 3b

function of z on the symmetry axis (r = 0) at the time point t = T . In these figures, one can see the position and
influence (as a graph break) of the shear wave front. Note again that the preceding graphs were obtained using both
analytical and numerical-analytic procedures, and the computation results were in very good agreement. Figure 3c
was built using the technique in Sect. 3. It shows the stress distribution along radius r at fixed time points t = 0.5,
1, 1.5, 2 for values of parameter k equal to 1 (the dotted graph) and 5 (the solid graph). Note that the graph t = 2,
k = 5 was obtained taking into account the model cylinder boundary influence. The position of the shear wave in
the section and, hence, at the time the boundary r = l was reached can be computed approximately using formula
r̃ +

√
(α(t − tr ))2 − z2, where tr is the time point at which the radius of the load action domain becomes equal to

r̃ (r̃ ≤ r∗(t)), whereas r̃ is taken such as to obtain a maximum value for the given formula. By replacing α with β,
one can obtain the shear wave position similarly. The computed values for the points of intersection of compression
and shear waves with the plane z = 0.5 for k = 5 at t = 2 were approximately 5.93l/6 and 4.72l/6. This is in good
agreement with the graph in Fig. 3c.

Let us note that Fig. 3b’s scale does not allow us to observe the following singularity of distribution of the stress
along the z-axis: at any value of k there is the axis segment z on which the stress σzz exceeds the value preset on
the surface z = 0. This is clearly visible in Fig. 3d, which is drawn in a corresponding scale. This singularity is

apparently caused by the circumstance that for load (39) with r∗(t) =
√
k̃t there is always a time interval in which

the boundary of the load distribution’s area moves at a velocity exceeding the pressure wave’s velocity. Incidentally,
in the case of load (39) with r∗(t) = k̃t , such excess takes place at k > 1, as noticed in Fig. 2b.

Finally, Fig. 4 shows the results of numerical-analytic computations for the case where the load distribution along

the radial coordinate is defined by the expression q0

√
1 − (r/r∗)2, whereas the radius of its action domain is fixed

(r∗ = l/6) or changes with a constant or variable velocity [r∗(t) = l/6 + k̃t or r∗(t) = l/6 +
√
k̃t ; k̃ = kα = 1].

Figure 4a shows stress development at the point (r = 0, z = 0.5); Fig. 4b shows the distribution of stress σzz along
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Fig. 4 Stresses σzz(r, t, z) at Q(r, t) = q0

√
1 − (r/r∗(t))2H(t)H(r∗(t) − |r |) with different r∗(t). a σzz at point (r = 0, z = 0.5), b

σzz on z-axis at moment t = 2, and c σzz in section z = 0.5 at fixed t for r∗ = 1/6 and r∗ = 1/6 + k̃t

the Oz-axis (r = 0) at the time point t = T = 2; Fig. 4b shows the stress distribution along the Or -axis in the
section z = 0.5 at time points t = 0.5, 1, 1.5, and 2 (the dotted graph shows the results for r∗ = l/6, and the solid
lines show those for r∗ = l/6 + k̃t).

Figure 4a shows that, with the arrival of the compression wave at the point considered (t = z/α = 0.5), the stress
σzz grows stepwise to unit and then drops and takes a minimal value with the arrival at the point of an expansion
wave propagating from the edge of the load application domain (t =

√
z2 + (r∗)2/α ≈ 0.724). With a movable

load boundary (graphs l/6 + k̃t and l/6 +
√
k̃t), this effect becomes more fuzzy. The impact of the shear wave,

whose front passes through the given point at t = z/β ≈ 0.909, is practically negligible. The figure also shows
that, after the shear wave has passed from the edge of the load application domain (t =

√
z2 + (r∗)2/β ≈ 1.316),

the stress changes smoothly.
Figure 4b makes it possible to evaluate the influence of the velocity of the load domain boundary motion on the

stress distribution profile along the Oz-axis at t = T = 2. The graph corresponding to the fixed boundary clearly
shows the positions of wave fronts, viz. compression–expansion waves z = αT = 2 and z =

√
(αT )2 − (r∗)2 ≈

1.93, and shear waves z = βT = 1.1 and z =
√

(βT )2 − (r∗)2 ≈ 0.967. At a moving load domain boundary,
behind the expansion wave front one can also see a sharp stress drop followed by its growth to a value of 1 acting
on the surface. Behind the shear wave front, there is practically no area with a sharp stress drop.

To evaluate the effectiveness of the numerical-analytic method and the validity of the results obtained, we also
considered the case of applying a finite unit pulse (Q(r, t) = H(T ∗ − t)H(r∗ − r)) evenly distributed in a circle
with radius r∗ = const, which was studied in [6,14]. Graph 3 in Fig. 5a, showing the distribution of the stress
σzz along the Oz-axis at t = 2, was computed using the method described herein and the initial data given in the
aforementioned publications (α = 1; β = 1/

√
3; T ∗ = 0.5; r∗ = 0.5), whereas graph 1 was obtained using the

integral transform method [14], and graph 2 was obtained using the finite-difference method [6]. The causes of
the sharp stress value changes (Fig. 5a) are set forth in detail in [14].

This problem was also solved using bundled software employing the finite-element method. The implicit two-
parameter (ξ = (1 + ζ )2/4; ψ = 1/2 + ζ ) Newmark method with ζ = 0.1 was used for numerical integration of
the calculation equation set. It should be noted that this scheme with standard parameter values (ζ = 0) refers to
dissipationless methods that lead to an occurrence of parasitic oscillations in numerical solutions of problems on
wave distributions in solids under shock loadings [20]. The result of the finite-element modeling as the stress σzz
at the point (r = 0, z = 0.5) when the load Q(r, t) = H(T ∗ − t)H(r∗ − r) is on the end surface of the modeling
cylinder is presented in Fig. 5b as dashed curve 1 (T ∗ = 0.5; r∗ = 0.5). The sizes of the finite elements of the
discrete model, including those near the researched point, their degree, time-step sizes, and the parameter ζ , were
chosen from conditions of solution stability and integration accuracy. From a comparison of dashed curve 1 and
continuous curve 2 [the latter is calculated on the basis of expression (38)], it is possible to draw a conclusion
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Fig. 5 Validation of developed method by stress σzz calculated at Q(r, t) = H(0.5 − t)H(0.5 − r) . a σzz on z-axis at moment t = 2
and b σzz at point (r = 0, z = 0.5)

on the topicality of the investigations dedicated to the development of effective analytical approaches to studying
nonstationary processes, especially in case of impulse-type loadings.

6 Conclusions

This paper describes a numerical-analytic method of solving the problem of the action on an elastic half-space of
an axisymmetric nonstationary mechanical load distributed arbitrarily in a domain with a variable boundary. The
method is built around the time-variable Laplace transformand expansion into the Fourier–Bessel series for the radial
coordinate of a model cylinder. This made it possible to eliminate the inversion of two integral transforms. Inversion
of the Laplace transform by a series of successive manipulations makes the solution yield stepwise functions. As
for the remaining smoother part, the inversion problem is reduced to solving a series of integral Volterra equations
of the second kind.

To investigate processes in an elastic half-space that are due to the application to its boundary of an axisymmetric
load evenly distributed in a circle with a boundary expanding at a constant or variable velocity, an analytical
approachwas developed and described. It involves the use ofLaplace andHankel integral transformswith subsequent
application of the Cagniard–de Hoop technique for transition to the domain of originals to obtain exact analytical
expressions for stresses and displacements in points along the axis of symmetry of the problem.

Some results of the numerical-analytic method were compared with solutions obtained using the analytical
method described, with solutions obtained by other authors, as well as with those computed using the finite-
element method. Agreement of numerical-analytic and analytical results confirms the practical accuracy of the
methods described and is indicative of their effectiveness for studying the dynamics of elastic media in cases where
arbitrarily distributed axisymmetric loads are applied.

7 Summary

The present study considers the axisymmetric problem of determining the stressed state of an elastic half-space to
whose boundary a nonstationary load is applied in the form of normal stress. Analytical and numerical-analytic
approaches are developed for its solution. In the first case, Laplace and Hankel integral transforms are used. Their
inversion is performed jointly, and as a result, an exact solution of the problem is obtained, and stresses along
the problem axis of symmetry are found. In the second case, the Laplace integral transform with inversion into
a Fourier–Bessel series is used. This reduces the problem to solving a series of integral Volterra equations. The
approaches developed make it possible to compute the parameters of the deflected mode of a half-space with
controlled accuracy. Examples of numerical computations are given.
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