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Abstract Riemann problems for two associated hyperbolic systems of conservation laws are considered. The
Riemann problem for constant flow velocity finds existing solutions in the literature. Here, it is proved that the
associated Riemann problem with the alternative assumption of constant pressure boundaries can be calculated
from the constant velocity solution. This introduces the total velocity as an unknown function of time, which is
explicitly determined in an algorithmic fashion.
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1 Introduction

The Riemann problem was introduced by Riemann in [1] for systems of hyperbolic conservation laws describing
gas dynamics [2, Chap. 18]. In Lax’s comprehensive discussion of such systems [3], it was proved that for strictly
hyperbolic systems (i.e., the eigenvalues of the system Jacobian are distinct), there is a unique solution of the
Riemann problem provided the boundary data given by two constant states vL and vR are sufficiently close (in
a precise sense). It has been demonstrated that Riemann problems for two-phase flow with multiple components
typically are non-strictly hyperbolic. Nevertheless, some of these problems even with global data have been solved,
e.g., [4,5].

The basis for this paper is a general model for flow of two immiscible fluid phases in a one-dimensional porous
medium. Assuming the flow is also incompressible and dispersion free, the Riemann problem for this model is

(v + a(v))t + f (v)x = 0, v(0, t) = vL, v(x, 0) = vR, (1)

where x ∈ [0, L], t � 0, v = v(x, t) ∈ R
n , and a(v), f (v) ∈ R

n are given twice differentiable functions, and vL,
vR are given constant states. We assume this system is hyperbolic, i.e., the eigenvalues of the Jacobian df are real.
When the total volumetric flow rate (i.e., flow velocity) is also assumed to be constant, Riemann problems of the
form (1) in some cases have known solutions, as will be reviewed in Sect. 2. In these cases, v represents overall
component concentrations, f is a given component fractional flux function, and a is a given model for the stagnant
component concentration, e.g., caused by components being adsorbed on the solid parts of the porous rock.
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24 T. E. Johansen, L. A. James

The known solutions to the Riemann problem (1) only apply to the situations where the total volumetric flux is
constant, in which cases the solutions of (1) are self similar, v(x, t) = v(ξ); ξ = x/t . If instead the pressures at
the medium boundaries x = 0, x = L are kept constant, the volumetric flux will not be constant, and solutions will
therefore not be self similar.

In this paper, we consider the following problem associated with (1):

(u + a(u))t +U (t) f (u)x = 0, u(0, t) = uL, u(x, 0) = uR, p(0, t) = pL, p(L , t) = pR, (2)

The total volumetric fluxU (t) � 0 is related to the pressure p(x, t) through Darcy’s Law for the simultaneous flow
of the two phases:

U (t) = −�(u)px , (3)

where �(u) is the total mobility of the fluid system. This total mobility is assumed to be known as a function of
u. It is assumed to be a smooth function, as is supported by a vast amount of physical experiments. The function
U (t) in (2) is continuous, and p is piecewise differentiable in both x and t . Since we assume incompressible flow,
there cannot be any fluid accumulation anywhere in the medium at any time. Therefore, U is a function of t only.
Adding the pressure boundary data in (2) to the data in (1) could render the system overdetermined. However, in
(2) U (t) has become an unknown function as opposed to in (1) where U ≡ 1, and it is shown below that U (t) in
(2) is uniquely determined.

The main result of the paper is the following.

Theorem 1 If the Riemann problem (1) has a solution v, the associated problem (2) also has a solution u, p, U (t),
where u is given by

u(x, t) = v

(
x

�(t)

)
, (4)

where

�(t) =
∫ t

0
U (τ ) dτ. (5)

Furthermore, U (t) is uniquely determined from u(x, t) and the model boundary conditions, whereupon p(x, t) is
uniquely determined from (3).

The determination of U (t) is given in Sect. 3. It is constructive in the sense that the function U (t) is uniquely
determined in an algorithmic fashion.

We first review the structure of solutions of Riemann problems (1). Such a solution consists of a sequence of
n + 1 constant states vL = v0, v1, . . . , vn = vR separated by n elementary waves wi (ξ), each of which is a shock
(or contact discontinuity) or a smooth rarefaction wave. If we denote the smallest and largest velocities for the i th
wave by σ−

i and σ+
i , respectively, the solution of (1) can be written

vL = v0; 0 � x � y1 = σ−
1 t,

w1(ξ); y1 � x � x1 = σ+
1 t,

...

vi−1; xi−1 � x � yi = σ−
i t,

wi (ξ); yi � x � xi = σ+
i t,

...

vR = vn; σ+
n t = xn � x � L . (6)
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If the i th wave is a rarefaction wave,

dwi (ξ)

dξ
= ri (wi (ξ)), (7)

where ri ∈ R
n is the right eigenvector of df corresponding to the eigenvalue λi . We also have σ−

i = λi (vi ); σ+
i =

λi (vi+1). If the i th wave is a shock, the classical Rankine–Hugoniot condition for material balance across a shock
is

σ+
i = σ−

i = [( f )1]
[(v)1 + (a1(v))1]

= · · · = [( f )n]
[(v)n + (an(v))n]

, (8)

where ( ) j denotes vector components and [ ] is the jump in value across a shock.
We next describe the way the wave structures of (1) and (2) are related. Clearly, the right eigenvectors of df and

U (t)df are the same, and if λ is an eigenvalue of df,U (t)λ is an eigenvalue ofU (t)df. This defines the relationship
between rarefaction waves for the two systems. Also, if σ is a shock velocity for (1) satisfying (8),U (t)σ is a shock
velocity for (2). Let (x, t) be given. For any wave value wi (x/t) for (1) with velocity σ ,

dx

dt
= σ or x = σ · t. (9)

Since U (t) is continuous, the location X of wi (x, t) in a solution of (2) is well defined and

dX

dt
= U (t)σ or X = �(t)σ. (10)

Hence, since U ≡ 1 in (1) and v is self similar,

u(x, t) = v

(
1 · t
�(t)

x, t

)
= v

(
x

�(t)

)
, (11)

which proves (4). The remainder of the proof of the Theorem 1 is the construction of U (t), which is given in Sect.
3. Once U (t) is known, p(x, t) follows from (3). We also formulate and prove two results on the smoothness of
U (t) in Sect. 3.

In Sect. 2, we discuss the previous literature related to Riemann problem of the form (1). In Sect. 4, we present
a calculated example and compare the analytical solutions in this paper with numerical solutions obtained from a
first-order finite-difference method.

2 Previous work

In addition to being useful in interpretation of core flood experimentswith constant pressure boundaries, the results in
this paper also offer applications in numerical simulation. For example, streamline simulation is frequently used by
the oil industry to compute fluid flow in reservoirs between injectors and producers [6,7]. In streamline simulations,
the pressure distribution is first solved from an elliptic equation subject to simplifying assumptions. Subsequently,
streamlines are generated using the pressures, and finally, the fluid flow between injectors and producers can be
calculated analytically along streamlines, provided that the Riemann problem at hand has a known solution. The
popularity of this approach is primarily because of considerable time savings compared to conventional simulations.
Previous streamline simulations using solutions of Riemann problems along streamlines could only be performed
for cases of constant flow rates. A more common way to operate wells is by keeping flowing well bore pressure
constant. The solutions derived in this paper therefore widen the applicability of streamline simulations. Riemann
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26 T. E. Johansen, L. A. James

problem solutions can also be used as building blocks for the construction of numerical methods which can be
used with general boundary conditions. Examples of this are the Random Choice Method, [8–10], and Godunov’s
Method, [11].

Global solutions formany hyperbolicRiemann problems have yet to be found.Ageneral theory for local existence
and uniqueness of solutions of Riemann problems is described in [3] under the condition of strict hyperbolicity
(distinct eigenvalues of the Jacobian).

However, flow phenomena in porous media are typically not strictly hyperbolic. The most well-known Rie-
mann problem pertinent to the oil industry is the Buckley–Leverett theory for water injection in an oil reservoir
[12,13]. It is a single hyperbolic equation modeling the conservation of water. The conservation of oil is taken
care of through the assumption of constant volumetric flux U both in space and time. Lake in [14, Chap. 5]
gives a comprehensive description and easy to follow methodology for using and applying the Buckley–Leverett
theory.

The first non-strictly multicomponent problem appearing in the literature with a complete global solution seems
to be for single-phase (water) flow with dissolved components that adsorb on the rock in a nonlinear and coupled
fashion, [4]. The adsorption causes a chromatographic separation of the individual components. A global solution
of a non-strictly hyperbolic system modeling polymer flooding with nonlinear adsorption was presented in [15].
Here, the water phase contains dissolved polymer for the purpose of increasing the water viscosity to enhance
sweep efficiency. Again, this was for constant volumetric flux in space and time. An example using this solution
with constant pressure boundaries is presented in Sect. 4 of this paper.

A system with multiple adsorbing polymer components with decoupled adsorption was presented in [16]. This
was generalized to a coupled adsorption model in [5]. A system describing four components, two-phase flow with
components partitioning between the two phases was analyzed in [17,18]. A comprehensive discussion and analysis
of this is also presented in Orr [19, Chap. 5].

3 Construction of U(t). Proof of Theorem 1

In this section, we will use the following notation for a solution of (2), see Eqs. (6) and (10):

vL = v0 ; 0 � X � Y1 = �(t)σ−
1 ,

w1(x, t) ; Y1 � X � X1 = �(t)σ+
1 ,

...

vi−1; Xi−1 � X � Yi = �(t)σ−
i ,

wi (x, t); Yi � X � Xi = �(t)σ+
i ,

...

vR = vn ; �(t)σ+
n = Xn � X � L . (12)

The construction of U (t) consists of two main cases. If tBT,i is the time when the i th wave is breaking through
at x = L , we consider
Case I: t � tBT,n,

Case II: tBT,n � t � tBT,n−1.

The general result will then follow recursively from Case I and Case II, as will be explained at the end of this
section.

Figure 1 shows an example with 4 waves w1, w2, w3, w4 separated by the sequence of constant states vo =
vL, v1, v2, v3, v4 = vR. Case I is at a time before the fastest wave w4 breaks through at x = L (i.e., t � tBT,4), and
Case II is at a time after the fastest wave w4 has reached x = L and before the following wave w3 reaches x = L
(i.e., tBT,4 � t � tBT,3).
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Solution of multi-component, two-phase Riemann problems 27

Fig. 1 Example of waves
and constant states

3.1 Case I. t � tBT,n

Assume u,U (t), p(x, t) is a solution of (2) andwi is a rarefactionwave in uwhichwe parameterize by s ∈ [
si−1, si

]
;

wi (si−1) = Yi ; wi (si ) = Xi .
By (3),

p(Yi , t) − p(Xi , t) = U (t)

Xi∫
Yi

dx

�(wi )
. (13)

If λi is the eigenvalue of d f corresponding to wi , since f by assumption is twice differentiable, the eigenvalues of
d f are smooth and (10) gives

dX

ds
= �(t)

dλi
ds

. (14)

Hence,

p(Yi , t) − p(Xi , t) = U (t)�(t)

si∫
si−1

1

�(wi )

dλi
ds

ds. (15)

If wi is a shock, then

p(Yi , t) − p(Xi , t) = 0, (16)

since p is continuous.
We define

Ji =

⎧⎪⎪⎨
⎪⎪⎩

0 if wi is shock,
si∫

si−1

1

�(wi )

dλi
ds

ds if wi is rarefaction.
(17)

Then, the following applies to both rarefactions and shocks:

p(Yi , t) − p(Xi , t) = U (t)�(t)Ji . (18)

When integrating (3) between X = 0 and X = L , we get (since in case I, Xn � L):

pL − pR = U (t)

[
n−1∑
i=1

(
Yi+1 − Xi

�(vi )
+ �(t)Ji

)
+ L − Xn

�(vR)

]
. (19)
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28 T. E. Johansen, L. A. James

We next use (10) to relate the end points Yi , Xi of any wave to the leading edge of the fastest wave, Xn .
From (10),

[Yi , Xi ] = [
σ−
i �(t), σ+

i �(t)
]
, (20)

and

Xn = σ+
n �(t). (21)

Hence,

dYi
dXn

= σ−
i

σ+
n

= βi and
dXi

dXn
= σ+

i

σ+
n

= αi , (22)

where αi , βi are constants. Hence, since Xi = Yi at t = 0,

Yi = βi Xn; Xi = αi Xn . (23)

Substituting (23) in (19) and rearranging and also using Xn = �(t)σ+
n , we arrive at


p = U (t)

[(
n−1∑
i=1

(
βi+1 − αi

�(vi )
+ Ji

σ+
n

)
− 1

�(vR)

)
Xn + L

�(vR)

]
. (24)

Solving (24) for U (t) and substituting in (10),

dXn

dt
= U (t)σ+

n . (25)

Hence,

dXn

dt
= 
pσ+

n

AXn + B
, (26)

where 
p, A, B are constants given by


p = pL − pR, (27)

A =
n−1∑
i=1

(
βi+1 − αi

�(vi )
+ Ji

σ+
n

)
− 1

�(vR)
, (28)

B = L

�(νR)
. (29)

Integrating the separable Eq. (26), we find an explicit expression for Xn as a function of time:

Xn = −B + √
B2 + 4ACt

A
, (30)
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Fig. 2 The rarefaction wave at three different times after its leading edge has reached x = L

where

C = 2
pσ+
n . (31)

The unknown velocity U (t) is then determined explicitly from (24),

U (t) = 
p√
B2 + 4ACt

. (32)

The pressure distribution p(x, t) can now be calculated from (3) using (32).

3.2 Case II. tBT,n � t � tBT,n−1

If wn is a shock, Xn = Yn . Therefore, in this case, vR is no longer present in [0, L] and the situation is identical
to case I with vR := vn−1 and n := n − 1. It therefore suffices to consider wn being a rarefaction wave. Let this
smooth wave be parameterized by s ∈ [

sn−1, sR
]
with wn(sn−1) = vn−1 and wn(sR) = vR. Let s be arbitrary but

fixed in this interval, and let ts be the time when wn(s) reaches X = L . We will next determine U (ts) which will
complete case II since s was arbitrary. Let t∗ be the time when the leading edge of wn reaches L , i.e., Xn = L . Let
X (s, t∗) be the location of wn(s) at t = t∗. Let t ∈ [

t∗, ts
]
be arbitrary. The movement of wn is depicted in Fig. 2

as three profiles at times t∗, t and ts vs. X .
In order to capture the dynamics of the system, it is necessary to determine U (t); t < ts and then,

U (ts) = lim
t→ts

U (t).

Let s be the parameter for which Xn(s) = L at t = t . Then, by (10), similar to (19) with wn being a rarefaction
wave,


p = U (t)

⎡
⎣n−1∑

i=1

Yi+1 − Xi

�(vi )
+ �(t)

n−1∑
i=1

Ji + �(t)

s∫
sn−1

1

�(ωn)

dλn
ds

ds

⎤
⎦ . (33)
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30 T. E. Johansen, L. A. James

Using (10),

�(t) = X (t, s)

λn(s)
(34)

and

U (t) = 1

λn(s)

dX (t, s)

dt
. (35)

Similar to (22), we define

dYi
dX (t, s)

= βi ; dXi

dX (t, s)
= αi (36)

and find

Yi = X (t, s)βi ; Xi = X (t, s)αi . (37)

In (33), we substitute (34) for �(t), Xi and rearrange, to arrive at

X (t, s)
dX (t, s)

dt
= 
pλ2n(s)

A1λn(s) + B1 +
s∫

sn−1

1

�(ωn)

dλn
ds

ds

, (38)

where

A1 =
n−1∑
i=1

βi+1 − βi

�(vi )
; B1 =

n−1∑
i=1

Ji . (39)

Integrating (33) between t∗ and t and letting t → ts , we find

X (t∗, s)2 − L2 = 2
pλn(s)2(ts − t∗)

A1λn(s) + B1 +
s∫

sn−1

1

�(ωn)

dλn
ds

ds

. (40)

We then go back to (30), from which we can calculate t∗ (with Xn = L). Furthermore,

X (t∗, s) = �(t∗)λn(s). (41)

Therefore, (40) provides an explicit expression for ts . Re-introducing U (ts) in (40), we find

U (ts) = X (t∗, s)2 − L2

2Lλn(s)(ts − t∗)
. (42)

To summarize, t∗ is calculated from (30), then ts is calculated from (40), and finally U (ts) from (42). Since s was
arbitrary, this completes Case II.
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The two above cases complete the proof of Theorem 1, since once the fastest wave is no longer present in [0, L],
we can repeat the construction of U (t) with vR = vn−1; n := n − 1.

In this section, we finally discuss and prove a Proposition on the smoothness of the total velocity U (t). This is
done by considering the critical times when the leading and trailing points (Xi and Yi ) of different waves pass the
outlet end X = L of the medium.

It is not immediately clear that (42) is consistent with the fundamental equations in (10) as ts → t∗. However,
we have

lim
ts→t∗

dX (t∗, s)
dt

= lim
ts→t∗

X (t∗, s) − L

t∗ − ts
= lim

ts→t∗
X2(t∗, s) − L2

(X (t∗, s) + L)(t∗ − ts)

= lim
ts→t∗

X2(t∗, s) − L2

2L(t∗ − ts)
= U (t∗)λ(sR). (43)

The result then follows from the fact that U is continuous and wn is a rarefaction wave with continuous
eigenvalue λ.

Proposition 1 The solution U (t) in Theorem 1 is differentiable when a shock wavewn passes the outlet end X = L
if and only if

σ+
n

�(vn)
= σ+

n−1

�(vn−1)
. (44)

Proof The terms in (24) were expressed using Xn . Let t∗ be the time where the shock reaches X = L . For t > t∗,
Xn is no longer meaningful, and we instead express the terms in (24) using Xn−1 since Xn−1 is present in the system
after t∗. Let

gB(t) =
n∑

i=1

(
β̄i+1 − β̄i

�(vi )
+ 1

σ ∗
n−1

Ji

)
xn−1 + L − ᾱn Xn−1

�(vn)
, (45)

where β̄i , ᾱi are the quantities in (22) expressed in terms of Xn−1. Then, with reference to (22), U (t) before Xn

reaches x = L is 
p/gB(t). Similarly, after xn has reached x = L , we define

gA(t) =
n∑

i=1

(
β̄i+1 − β̄i

�(vi )
+ 1

σ ∗
n−1

Ji

)
xn−1 + L − Xn−1

�(vn−1)
, (46)

with 
p/gA(t) being U (t) after Xn has reached x = L . We note that gA(t∗) = gB(t∗) and find

(
dU

dt

)+
(t∗) = −
pg′

A(t∗)
g2A(t∗)

= 
p

g2A(t∗)

[
k1 − ᾱn

�(vn−1)

]
X ′
n−1(t

∗) (47)

and

(
dU

dt

)−
(t∗) = − 
p

g2B(t∗)

[
k1 − 1

�(vn−1)

]
X ′
n−1(t

∗), (48)

where k1 is constant.
Hence, U ′(t∗) exists if and only if

αn

�(vn)
= 1

�(vn−1)
, (49)
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Fig. 3 � versus saturation Fig. 4 Fractional flow functions

or

σ+
n

�(vn)
= σ+

n−1

�(vn−1)
. (50)

This proves Proposition 1. �	
Corollary 1 The function U (t) is differentiable during the time interval when a rarefaction wave (or a constant
state) passes the outlet at X = L.

Proof By continuity, for a rarefaction wave, the relationship (44) is satisfied as an infinitesimal shock. �	
The relationship (37) is in general not valid for a shock, although it may happen coincidentally. An example on

this is as follows:
Assume that a shock wn is followed by a rarefaction wn−1 such that σ+

n−1 = σ+
n . Then, (50) means that �(vn) =

�(vn−1), i. e. the total mobility is the same on both sides of the shock. Typically, � for a single conservation law
has the shape depicted in Fig. 3, where s1, s2 are parameter values on each side of a shock, and (50) is satisfied.

4 Calculated examples

In the oil industry, The Buckley–Leverett solution (1941) is synonymous with fractional flow theory where an
immiscible fluid displaces another in one-dimensional flow in a porous medium. Physically, fractional flow theory
describes the linear displacement of one phase by another immiscible phase where there is a front described by
a shock or sudden change in concentration. In its simplest form, it describes one component displacing another
immiscible component in one dimension in the absence of diffusive and compressible flow, i.e., water displacing oil
[12,13]. Mathematically, the Buckley–Leverett equation is a first-order hyperbolic partial differential conservation
equation in time and space.

We give an example on how the theory in this paper can be applied to a polymer flooding case where the viscosity
of the water phase is linearly dependent on the concentration of polymer added.

In addition to demonstrating the computational algorithm, the purpose of this example is to demonstrate the
significant difference between the solutions based on the constant flow rate assumption, and the constant pressure
boundary assumption of this paper. Furthermore, a grid sensitivity study is presented using a first-order finite-
difference approximation, comparing the analytical and numerical solutions.
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Fig. 5 Adsorption function Fig. 6 Saturation profiles at a fixed time

The example is based on the results of [15], where the constant flow rate assumption is used to analyze the
Riemann problem for polymer flooding with nonlinear adsorption. This provides the Riemann problem solution (1)
needed for the construction of U (t) in Theorem (1).

The hyperbolic system of conservation laws for this polymer flooding process is

st + f (s, c)x = 0, [sc + a(c)]t + [ f (s, c)]x = 0, (51)

where t � 0 ; x ∈ R; the state vector (s, c) ∈ I × I represents water saturation and polymer concentration.
Furthermore f : I → R and a : I → R are twice differentiable functions modeling the fractional flux of the water
phase and polymer adsorption on the rock surface, respectively. We use the following explicit expressions:

f (s, c) = s2

s2 + (0.5 + 100c)(1 − s)2
, (52)

a(c) = 0.2c

1 + 10c
. (53)

The functions f and a are graphed in Figs. 4 and 5 for c ∈ [0.00, 0.01].
We consider the Riemann problem for (51) with sR = 0.25; sL = so = 0.70; cL = 0.01; cR = 0.00. The

solution is detailed in [15] and shown in Fig. 6 at a fixed time.
The solution is composed of three waves. The slowest wave is a rarefaction (v1) corresponding to the eigenvalue

∂ f /∂s. The middle wave (v2) is a shock corresponding to the eigenvalue f/(s + a′(c)), and the fastest wave is a
shock (v3) corresponding to the eigenvalue ∂ f /∂s .

Thewaves are separated by two constant states, s1 = 0.639 and s2 = 0.514. The integrals in (17) areJ2 = J3 = 0
since waves 2 and 3 are shocks, and the coefficients A, B,C in (28), (29), (31) are easily obtained by numerical
integration and summarized in Table 1:

A = 1 − v2

v3

1

λT (s2, cR)
+ 1

v3
J1 − 1

λT (sR, cR)
, B = L

λT (sR, cR)
, C = 2
p

φ
v3. (54)

The solution U (t) of Theorem 1 for the above Riemann problem is shown in Fig. 7, together with the constant
flow rate solution with U (t) ≡ 0.89. As can be seen, the constant pressure boundary solution U (t) decreases from
0.89 initially to 0.50 at the minimum and then increases to 0.53. Clearly, it represents a big error to use the constant
flow rate solution in an approximation for a constant pressure boundary case.

A numerical simulation of the polymer case was also carried out using a first-order upwind method with implicit
treatment of pressure and explicit treatment of saturation. Figure 8 shows the variation in numerical versus analyti-
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34 T. E. Johansen, L. A. James

Table 1 Integration
coefficients for the example
(see text)

Integration
coefficient

After first shock
breakthrough

After second shock
breakthrough

A 4.11 × 109 5.75 × 109

B 1.0 × 1010 1.16 × 1010

C 1.35 × 108 5.80 × 107

Fig. 7 Solution in Theorem 1 for the example Fig. 8 Numerical solution compared to analytical solution in
Fig. 6

cally computed total volumetric flux results. The simulations were performed with 20 and 200 grid points As Fig. 8
indicates, a reasonable resolution of U (t) is obtained using 200 grid points.

5 Conclusions

Existing solutions to global Riemann problems with constant volumetric flux have been extended to constant
pressure boundaries with variable flux. The derivation mathematically describes the explicit behavior before the
first wave breaks through, between waves and post breakthrough of the trailing rarefaction waves. The continuity
and smoothness of the flux is also described. The application of the constant pressure boundary solution is illustrated
with an example on polymer flooding.
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