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Abstract Sparse model updating problems, considered in this paper, focus on updating the constructed second-
order finite element model under the sparsity constraint, that is, the updated model should have the desired eigen-
values and eigenvectors, and preserve the symmetry, positive semi-definiteness, and sparsity of the original model.
In the process of performing model updating, sparsity of the model, which implies the inner connectivity and other
physical properties of the updated system, plays a critically important role in the model updating problems. How-
ever, very few results in the earlier literature have paid attention to this important constraint due to the difficulty
associated with it. In this paper, an alternating projection method, which is versatile enough to solve a huge class
of sparse model updating problems, is presented. A distinct practical feature of this method is that it is easy to
design and develop because, in the process of applying this method, one only needs to alternatively find the optimal
solutions of some matrix approximation problems arising naturally from the requirement of practical application.
And our numerical results demonstrate that alternating projection is an effective tool for sparse model updating
problems.
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Mathematics Subject Classification 65F18 · 15A22 · 93B55

1 Introduction

Many physical applications arising from applied mechanics, circuit analysis, electrical oscillation, vibro-acoustics,
or finite element model of PDEs can be mathematically modeled by a second-order ordinary differential system

M ÿ + C ẏ + Ky = f(t), (1)
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where y(t) ∈ R
n is a function of t and M,C, K ∈ R

n×n are constant matrices. And if y(t) = veλt is a fundamental
solution of (1), then the scalar λ and the vector v must solve the following quadratic eigenvalue problems:

(λ2M + λC + K ) v = 0.

Moreover, coefficient matrices M,C, K are often required to be real, symmetric, and positive semi-definite. The
model updating problem (MUP) is, for a given quadratic pencil λ2Ma +λCa + Ka , where Ma,Ca, Ka are matrices
in Rn×n with specified structure, to seek a new quadratic pencil

λ2M + λC + K (2)

so that the function ‖(M,C, K )−(Ma,Ca, Ka)‖2F isminimized subject to the constraints that the resulting quadratic
pencil (2) has prescribed eigenpairs, and the coefficient matrices M,C, K have the specified structure.

The MUP with the requirement that M,C, K are symmetric and positive semi-definite has been well studied
and there exists a large amount of literature on its solution [1–11]. A good exposition about general principles of
model updating and the Lagrange multiplier approach for solving MUPs can be found in the book by Friswell and
Mottershead [1]. Bai, Chu and Sun in [2] presented a quadratically convergent Newton-typemethodwhich is needed
to solve a linear system by the conjugate gradient method in each iteration. In [3], Kuo, Lin and Xu proposed two
efficient direct methods via dimension reduction to solve the MUP with the coefficient matrices being symmetric.
Liu and Yuan in [4] proposed a gradient-based iterative method. Gauss–Seidel method and the steepest descent
method were also employed by Chen in [5] and Ye in [6], respectively.

The MUPs arising from practical applications are often structured due to the inner connectivity of elements in
the original physical configuration. It is important from practical view point to keep the sparsity of the coefficient
matrices, which implies the partial inner connectivity of the original system. For example, the zero entry ci j in the
coefficient matrix C means there is no damping between the i th mass and the j th mass in a vibro-acoustics system.
In [12], Bai proposed the tridiagonal case, where M is an identity matrix of size n, C and K are both tridiagonal
matrices defined by

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 −a2
−a2 c2 −a3

. . .
. . .

. . .

−an−1 cn−1 −an
−an cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k1 −b2
−b2 k2 −b3

. . .
. . .

. . .

−bn−1 kn−1 −bn
−bn kn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

In the four-degrees-of-freedom mass–spring system in Fig. 1, see [13], the corresponding coefficient matrices
M,C, K take the following zero-pattern:

M =

⎛
⎜⎜⎝

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

∗ 0 ∗ 0
0 0 0 0
∗ 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟⎟⎠ , K =

⎛
⎜⎜⎝

∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ ∗

⎞
⎟⎟⎠

on the assumption that the restoring force follows Hooke’s law and that the damping is negatively proportional to
the velocity.

Now, for given matrices Ma,Ca, Ka ∈ R
n×n and eigenpairs (X,�) ∈ R

n×p × R
p×p, denoted in the following

real-valued form:

� := diag

{(
α1 β1

−β1 α1

)
, · · · ,

(
αkc βkc

−βkc αkc

)
, λ2kc+1, · · · , λp

}
∈ R

p×p,

X := [x1R, x1I , · · · , xkc R, xkc I , x2kc+1, · · · , xp] ∈ R
n×p,
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Fig. 1 A four-degrees-
of-freedom mass–spring
system
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as was characterized in [14], the sparse MUP is to find the optimal solution (M,C, K ) ∈ R
n×n ×R

n×n ×R
n×n of

the following optimization problem:

min ‖M − Ma‖2F + ‖C − Ca‖2F + ‖K − Ka‖2F such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MX�2 + CX� + K X = 0,

M = M�,C = C�, K = K�,

M ≥ 0,C ≥ 0, K ≥ 0,

sparsity(M,C, K ) = sparsity(Ma,Ca, Ka),

(4)

where “M ≥ 0,C ≥ 0, K ≥ 0” means M,C, K are all positive semi-definite matrices, and the constraint
“sparsity(M,C, K ) = sparsity(Ma,Ca, Ka)” means the matrices M,C, K have the same sparsity as the matrices
Ma,Ca, Ka , respectively.

Of all the above-mentioned articles or the most in the literature, however, very few have paid attention to
the sparsity of the coefficient matrices. In [13], Chu, Buono and Yu dealt with the quadratic inverse eigenvalue
problems generated from a physical system with a special structure. In [15], the quadratic inverse eigenvalue
problem, where the coefficient matrices M,C, K are all symmetric tridiagonal, with the constraint of nonnegative
physical parameters was discussed. The existent methods aim at special structures and can hardly be generalized to
other systems. In [16], a general purpose and robust numerical approach for solving the structured quadratic inverse
eigenvalue problems, in which the coefficient matrices require to be sparse, are presented; however, it ignores the
constraint that the coefficient matrices are positive semi-definite. In this paper, we consider to solve the sparse MUP
by the well-known alternating projection technique through alternatively finding the projections of a given matrix
onto some sets. In [17], the alternating projection method has been applied to solve the MUP with the fixed mass
matrix M ; however, it ignores the constraints that the coefficient matrices are sparse and positive semi-definite,
which ensure the availability of the updated model.

The organization of this paper is as follows. The essentials and related work of the alternating projection method
are introduced in Sect. 2. The details on applying the alternating projection method to solve sparse MUPs are
presented in Sect. 3. Numerical examples are given in Sect. 4 to demonstrate the efficiency of our proposed
algorithms.

2 Alternating projection method

The alternating projection method is a numerical algorithm which alternatively finds the optimal solution of a
constrained optimization problem. There exists an extensive literature on the alternating projection method and its
variants. In [18], von Neumann presented the 2-subspace version, that is, for a given point P0, if the sets S1 and
S2 are closed, linear subspaces of the Hilbert space, then the alternating projection of P0 between these two sets
converges to the approximation in S1 ∩ S2 nearest to the point P0. Halperin [19] proved the m-subspace version,
where the sets Si (1 ≤ i ≤ m) are required to be closed subspaces in the Hilbert space. It can be described as
follows:
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Theorem 1 [19] If M1, M2, . . . , Mr are closed subspaces in a Hilbert space H, then

lim
n→∞ ‖(PMr PMr−1 · · · PM1)

n(x) − PM (x)‖ = 0, ∀x ∈ H,

where M = ⋂r
i=1 Mi , and PMi (x) (1 ≤ i ≤ r) is the projection of x onto the set Mi .

Also there are fruitful results on the projection onto closed, convex subsets of a Hilbert space [20], see [21] for
the 2-subspace version and [22,23] for m-subspace version. The theoretical results on the alternating projection
between non-convex sets are still very weak, see [24] for some weak convergence results and applications.

The alternating projectionmethod also have been successfully applied to solvemany problems in awide variety of
applications, see, for example, the computation of channel capacity and rate-distortion functions [25], image recon-
struction [26], the nearest correlation matrix [27], linear systems arising in the discretization of partial differential
equations [28], and the other applications in articles [29–33] and the extensive references collected therein.

In this paper, we mainly consider to apply the alternating projection method to find the approximation, which
lies in the intersection of several sets Si (1 ≤ i ≤ m) and is nearest to the given coefficient matrices Ma,Ca, Ka .

3 Alternating projection method for sparse MUPs

In this section, we consider solving the sparse MUPs. Before going in detail, it is essential to transform the sparse
MUPs to another simpler form. Define

T =
⎛
⎝

M
C

K

⎞
⎠ , Ta =

⎛
⎝

Ma

Ca

Ka

⎞
⎠ , A = (I, I, I ) , B =

⎛
⎝

X�2

X�

X

⎞
⎠ .

Then the problem (4) is reduced to the problem of finding the solution T to the optimization problem

min ‖T − Ta‖F such that

⎧⎪⎪⎨
⎪⎪⎩

AT B = 0,

T = T� ≥ 0,

sparsity (T ) = sparsity (Ta).

(5)

Applying the alternating projection method to solve the optimization problem (5), we find the projections of
Ta = (t (a)

i j )3n×3n onto the following sets:

S1 =
{
T ∈ R

3n×3n | T = T�, AT B = 0
}

,

S2 =
{
T ∈ R

3n×3n | T = T� ≥ 0
}

,

S3 =
{
T ∈ R

3n×3n | T = T�, sparsity (T ) = sparsity (Ta)
}

.

S1 and S3 are linear subspaces in the Hilbert space, and S2 is a closed and convex set. Therefore, the convergence
theory of the alternating projection method guarantees that the alternating projections among these three sets
S1, S2, S3 can converge to the optimal solution of the problem in (5). Therefore, the main work on applying the
alternating projection method to solve sparse MUPs is to find the projections of Ta onto these three sets S1, S2, S3.

Firstly, it is not difficult to find that the projection of the matrix Ta onto the set S3 is T = (ti j )3n×3n , where

ti j =
⎧⎨
⎩

(t (a)
i j + t (a)

j i )/2 t (a)
i j �= 0,

0 t (a)
i j = 0.

Secondly, we consider the projection of the matrix Ta onto the set S2, which is to find the nearest approximation of
Ta in the set of symmetric and positive semi-definite matrices. Let
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S = Ta + T�
a

2
= Pdiag(α1, . . . , αn)P

�,

where P is orthogonal. In [34], Higham presented the unique projection:

T = Pdiag (β1, . . . , βn)P
�,

where βi = max{αi , 0}.
Lastly, we come to the problem of finding the projection of the given matrix Ta onto the set S1. We firstly apply

the canonical correlation decomposition to find the general form of the elements in the set S1 and then find the
projection of the matrix Ta onto the set S1.

Without loss of generality, we suppose the matrix X is nonsingular. In (5), rank(A) = n, rank(B) = p, and we
suppose n ≥ p. Here, we must stress that the assumption of n ≥ p is just for the convenience of discussion; in
fact, if n < p, then in the following discussion, B�, A�, B�T A� = 0 play the same roles as A, B and AT B = 0,
respectively. Let the canonical correlation decomposition of matrix pair (A, B) be

A� = Q�AX
−1
A , B = Q�B X

−1
B , (6)

where Q ∈ R
3n×3n is orthogonal, XA ∈ R

n×n and XB ∈ R
p×p are nonsingular, �A ∈ R

3n×n and �B ∈ R
3n×p

are of the form

�A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I (1)
A 0 0

0 �A 0

0 0 0

0 0 0

0 �A 0

0 0 I (2)
A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �B =
(
IB
0

)
, (7)

where I (1)
A , I (2)

A , IB are the identity matrices of size r1, r3, p, respectively, �A and �A are diagonal matrices of size
r2, and satisfy �2

A + �2
A which is an identity matrix of size r2. Here,

r1 = rank(A) + rank(B) − rank(A�, B),

r2 = rank(A�, B) + rank(AB) − rank(A) − rank(B),

r3 = rank(A) − rank(AB).

Substituting (6) into AT B = 0, we have

X−�
A ��

A Q
�T Q�B X

−1
B = 0. (8)

Partition the matrices T̂ = Q�T Q and �B into two block matrices:

T̂ =

r1 r2 r3 r4 r2 r3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T̂11 T̂12 T̂13 T̂14 T̂15 T̂16 r1

T̂21 T̂22 T̂23 T̂24 T̂25 T̂26 r2

T̂31 T̂32 T̂33 T̂34 T̂35 T̂36 r3

T̂41 T̂42 T̂43 T̂44 T̂45 T̂46 r4

T̂51 T̂52 T̂53 T̂54 T̂55 T̂56 r2

T̂61 T̂62 T̂63 T̂64 T̂65 T̂66 r3

, �B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I (1)
B 0 0

0 I (2)
B 0

0 0 I (3)
B

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where r4 = 3n − r1 − 2r2 − 2r3 and T̂ j i = T̂�
i j for 1 ≤ i < j ≤ 6, I (k)

B is a matrix of the form

I (k)
B =

nk( )
I nk
0 rk − nk

,
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where I is the identity matrix, for k = 1, 2, 3, and nk = min
{
rk, p − ∑k−1

j=0 r j
}
, r0 = 0.

Substituting the expressions (7) and (9) into Eq. (8), we get
⎛
⎜⎜⎝

T̂11 I
(1)
B T̂12 I

(2)
B T̂13 I

(3)
B

(�AT̂21 + �AT̂51)I
(1)
B (�AT̂22 + �AT̂52)I

(2)
B (�AT̂23 + �AT̂53)I

(3)
B

T̂61 I
(1)
B T̂62 I

(2)
B T̂63 I

(3)
B

⎞
⎟⎟⎠ = 0;

thus, the submatrices in T̂ should satisfy

T̂11 I
(1)
B = 0, T̂12 I

(2)
B = 0, T̂13 I

(3)
B = 0,

(�AT̂21 + �AT̂51)I
(1)
B = 0, (�AT̂22 + �AT̂52)I

(2)
B = 0, (�AT̂23 + �AT̂53)I

(3)
B = 0,

T̂61 I
(1)
B = 0, T̂62 I

(2)
B = 0 T̂63 I

(3)
B

(10)

Therefore, the following theorem holds.

Theorem 2 The general form of the matrices in the set S1 can be expressed as Q−�T̂ Q−1, where T̂ has the form
(9), and the block entries satisfy (10). In the special case of p = n, the elements in the set S1 can be expressed as

r1 r2 r3 r4 r2 r3⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 T̂14 0 0 r1

0 T̂22 T̂23 T̂24 (−�−1
A �AT̂22)� 0 r2

0 T̂�
23 T̂33 T̂34 (−�−1

A �AT̂23)� 0 r3

T̂�
14 T̂�

24 T̂�
34 T̂44 T̂45 T̂46 r4

0 −�−1
A �AT̂22 −�−1

A �AT̂23 T̂�
45 T̂55 T̂56 r2

0 0 0 T̂�
46 T̂�

56 T̂66 r3

,

where T̂22, T̂33, T̂44, T̂55, T̂66 are all symmetric square matrices, and T̂14, T̂23, T̂24, T̂34, T̂45, T̂46, T̂56 are arbitrary
real matrices.

Next, for a given matrix Ta , we consider finding its nearest matrix in the set S1. Partitioning the matrix Q�TaQ
into a block matrix (T̂ 0

i j )6×6 consistently according to blocks of Q�T Q, we get

∥∥T − Ta
∥∥2
F = ∥∥Q�T Q − Q�TaQ

∥∥2
F

= ∥∥T̂11 − T̂ 0
11

∥∥2
F + ∥∥T̂12 − T̂ 0

12

∥∥2
F + ∥∥T̂�

12 − T̂ 0
21

∥∥2
F + ∥∥T̂13 − T̂ 0

13

∥∥2
F + ∥∥T̂�

13 − T̂ 0
31

∥∥2
F

+∥∥T̂51 − T̂ 0
51

∥∥2
F + ∥∥T̂�

51 − T̂ 0
15

∥∥2
F + ∥∥T̂61 − T̂ 0

61

∥∥2
F + ∥∥T̂�

61 − T̂ 0
16

∥∥2
F

+∥∥T̂62 − T̂ 0
62

∥∥2
F + ∥∥T̂�

62 − T̂ 0
26

∥∥2
F + ∥∥T̂63 − T̂ 0

63

∥∥2
F + ∥∥T̂�

63 − T̂ 0
36

∥∥2
F

+∥∥T̂22 − T̂ 0
22

∥∥2
F + ∥∥T̂52 − T̂ 0

52

∥∥2
F + ∥∥T̂�

52 − T̂ 0
25

∥∥2
F

+∥∥T̂23 − T̂ 0
23

∥∥2
F + ∥∥T̂�

23 − T̂ 0
32

∥∥2
F + ∥∥T̂53 − T̂ 0

53

∥∥2
F + ∥∥T̂�

53 − T̂ 0
35

∥∥2
F

+∥∥T̂33 − T̂ 0
33

∥∥2
F + ∥∥T̂44 − T̂ 0

44

∥∥2
F + ∥∥T̂55 − T̂ 0

55

∥∥2
F + ∥∥T̂66 − T̂ 0

66

∥∥2
F

+∥∥T̂14 − T̂ 0
14

∥∥2
F + ∥∥T̂�

14 − T̂ 0
41

∥∥2
F + ∥∥T̂24 − T̂ 0

24

∥∥2
F + ∥∥T̂�

24 − T̂ 0
42

∥∥2
F

+∥∥T̂34 − T̂ 0
34

∥∥2
F + ∥∥T̂�

34 − T̂ 0
43

∥∥2
F + ∥∥T̂45 − T̂ 0

45

∥∥2
F + ∥∥T̂�

45 − T̂ 0
54

∥∥2
F

+∥∥T̂46 − T̂ 0
46

∥∥2
F + ∥∥T̂�

46 − T̂ 0
64

∥∥2
F + ∥∥T̂56 − T̂ 0

56

∥∥2
F + ∥∥T̂�

56 − T̂ 0
65

∥∥2
F .
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Lemma 1 For the given real matrices X1 = (x1i j )s×s, X2 = (x2i j )s×s,Y1 = (y1i j )s×s,Y2 = (y2i j )s×s, D1 =
diag(d111, . . . , d1ss), and D2 = diag(d211, . . . , d2ss), where D1 and D2 are diagonal matrices, there exists a unique
matrix

T = (2I + D2
1 + D2

2)
−1 (X1 + X2 + D1Y1 + D2Y2),

such that
∥∥T − X1

∥∥2
F + ∥∥T − X2

∥∥2
F + ∥∥D1T − Y1

∥∥2
F + ∥∥D2T − Y2

∥∥2
F = min.

Furthermore, if the matrix T is required to be symmetric, then the matrix can be expressed as

T = Φ 
 (X1 + X�
1 + X2 + X�

2 + D1Y1 + Y�
1 D1 + D2Y2 + Y�

2 D2),

where 
 denotes the Hadamard product of two matrices, and

Φ = (φ jk), φ jk = 1

4 + d21 j j + d21kk + d22 j j + d22kk
.

Proof If the matrix T is not symmetric, then
∥∥T − X1

∥∥2
F + ∥∥T − X2

∥∥2
F + ∥∥D1T − Y1

∥∥2
F + ∥∥D2T − Y2

∥∥2
F

=
s∑

i=1

(
(tii − x1i i )

2 + (tii − x2i i )
2 + (d1i i ti i − y1i i )

2 + (d2i i ti i − y2i i )
2
)

+
∑

1≤ j �=k≤s

(
(t jk − x1 jk)

2 + (t jk − x2 jk)
2 + (d1 j j t jk − y1 jk)

2 + (d2 j j t jk − y2 jk)
2
)

,

and therefore, applying the first-order condition, we get the expression

t jk = x1 jk + x2 jk + d1 j j y1 jk + d2 j j y2 jk
2 + d21 j j + d22 j j

.

If the matrix T is required to be symmetric, then
∥∥T − X1

∥∥2
F + ∥∥T − X2

∥∥2
F + ∥∥D1T − Y1

∥∥2
F + ∥∥D2T − Y2

∥∥2
F

=
s∑

i=1

(
(tii − x1i i )

2 + (tii − x2i i )
2 + (d1i i ti i − y1i i )

2 + (d2i i ti i − y2i i )
2
)

+
∑

1≤ j<k≤s

(
(t jk − x1 jk)

2 + (t jk − x1k j )
2 + (t jk − x2 jk)

2 + (t jk − x2k j )
2

+ (d1 j j t jk − y1 jk)
2 + (d1kk t jk − y1k j )

2 + (d2 j j t jk − y2 jk)
2 + (d2kk t jk − y2k j )

2),
and therefore, applying the first-order condition, we get the expression

t jk = x1 jk + x1k j + x2 jk + x2k j + d1 j j y1 jk + d1kk y1k j + d2 j j y2 jk + d2kk y2k j
4 + d21 j j + d21kk + d22 j j + d22kk

.

Thus the lemma holds. ��
All submatrices of T̂ can be divided into eight classes due to conditions (10) they have to satisfy; the following

is the classification of submatrices and the procedure for finding all submatrices:

– The submatrix T̂11 satisfying

T̂11 = T̂�
11, T̂11 I

(1)
B = 0,

∥∥T̂11 − T̂ 0
11

∥∥2
F = min .
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166 B. Dong et al.

Partition the matrices T̂11, T̂ 0
11 as follows:

T̂11 =
n1 r1 − n1( )T̂ 1
11 T̂ 2

11 n1

T̂ 3
11 T̂ 4

11 r1 − n1

, T̂ 0
11 =

n1 r1 − n1( )T̂ 01
11 T̂ 02

11 n1

T̂ 03
11 T̂ 04

11 r1 − n1

,

thus we get

T̂ 1
11 = 0n1×n1, T̂ 2

11 = (T̂ 3
11)

� = 0n1×(r1−n1), T̂ 4
11 = 1

2

(
T̂ 04
11 + (T̂ 04

11 )�
)

.

– The submatrix T̂16, T̂61 satisfying

T̂61 = (T̂16)
�, T̂61 I

(1)
B = 0,

∥∥T̂61 − (T̂ 0
16)

�∥∥2
F + ∥∥T̂61 − T̂ 0

61

∥∥2
F = min .

Partition the matrices T̂61, T̂ 0
61 as follows:

T̂i j =
n1 r1 − n1( )
T̂ 1
i j T̂ 2

i j n1

T̂ 3
i j T̂ 4

i j r1 − n1

, T̂ 0
i j =

n1 r1 − n1( )
T̂ 01
i j T̂ 02

i j n1

T̂ 03
i j T̂ 04

i j r1 − n1

.

From T̂61 I
(1)
B = 0, we can obtain

T̂ 1
61 = 0n1×n1, T̂ 3

61 = 0n1×(r1−n1).

From
∥∥T̂61 − (

T̂ 0
16

)�∥∥2
F + ∥∥T̂61 − T̂ 0

61

∥∥2
F = min, we get

T̂ 2
61 = 1

2

(
T̂ 02
61 + (

T̂ 03
16

)�)
, T̂ 4

61 = 1

2

(
T̂ 04
61 + (

T̂ 04
16

)�)
.

– The submatrices T̂21, T̂51 satisfying

T̂12 = T̂�
21, T̂12 I

(2)
B = 0, (�AT̂21 + �AT̂51)I

(1)
B = 0,

∥∥T̂21 − T̂ 0
21

∥∥2
F + ∥∥T̂12 − T̂ 0

12

∥∥2
F + ∥∥T̂51 − T̂ 0

51

∥∥2
F + ∥∥T̂15 − T̂ 0

15

∥∥2
F = min .

1. If n2 �= 0, then I (1)
B = Ir1×r1 . Partition matrices T̂21, T̂ 0

21, T̂51, T̂
0
51, T̂

0
12, T̂

0
15,�

−1
A �A in the following form:

T̂i j =
n2 r2 − n2( )
T̂ 1
i j T̂ 2

i j n2

T̂ 3
i j T̂ 4

i j r2 − n2

, T̂ 0
i j =

n2 r2 − n2( )
T̂ 01
i j T̂ 02

i j n2

T̂ 03
i j T̂ 04

i j r2 − n2

,

�−1
A �A =

n2 r2 − n2( )
�1 0 n2

0 �2 r2 − n2

.

From T̂12 I
(2)
B = 0 and

(
�AT̂21 + �AT̂51

)
I (1)
B = 0, we get

T̂ 1
21 = 0, T̂ 2

21 = 0, T̂51 = −�−1
A �AT̂21.

From
∥∥T̂21 − T̂ 0

21

∥∥2
F + ∥∥T̂12 − T̂ 0

12

∥∥2
F + ∥∥T̂51 − T̂ 0

51

∥∥2
F + ∥∥T̂15 − T̂ 0

15

∥∥2
F = min, we get

∥∥T̂ 3
21 − T̂ 03

21

∥∥2
F + ∥∥T̂ 3

21 − (
T̂ 02
12

)�∥∥2
F + ∥∥ − �2T̂

3
21 − T̂ 03

51

∥∥2
F + ∥∥ − �2T̂

3
21 − (

T̂ 02
15

)�∥∥2
F = min,

∥∥T̂ 4
21 − T̂ 04

21

∥∥2
F + ∥∥T̂ 4

21 − (
T̂ 04
12

)�∥∥2
F + ∥∥ − �2T̂

4
21 − T̂ 04

51

∥∥2
F + ∥∥ − �2T̂

4
21 − (

T̂ 04
15

)�∥∥2
F = min .
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Therefore, the matrices T̂ 3
21, T̂

4
21 have the following forms:

T̂ 3
21 = (

2I + �2
2 + �2

2

)−1
(
T̂ 03
21 + (

T̂ 02
12

)� − �2T̂
03
51 − �2

(
T̂ 02
15

)�)
,

T̂ 4
21 = (

2I + �2
2 + �2

2

)−1
(
T̂ 04
21 + (

T̂ 04
12

)� − �2T̂
04
51 − �2

(
T̂ 04
15

)�)
.

2. n2 = 0. Partition matrices T̂21, T̂ 0
21, T̂51, T̂

0
51, T̂

0
12, T̂

0
15,�

−1
A �A in the following form:

T̂i j =
n1 r1 − n1( )
T̂ 1
i j T̂ 2

i j n1

T̂ 3
i j T̂ 4

i j r1 − n1

, T̂ 0
i j =

n1 r1 − n1( )
T̂ 01
i j T̂ 02

i j n1

T̂ 03
i j T̂ 04

i j r1 − n1

,

�−1
A �A =

n1 r1 − n1( )
�1 0 n1

0 �2 r1 − n1
.

From (�AT̂21 + �AT̂51)I
(1)
B = 0, we get

(
T̂ 1
51

T̂ 3
51

)
= −�A�A

(
T̂ 1
21

T̂ 3
21

)
= −

(
�1T̂ 1

21

�2T̂ 3
21

)
.

From
∥∥T̂21 − T̂ 0

21

∥∥2
F + ∥∥T̂12 − T̂ 0

12

∥∥2
F + ∥∥T̂51 − T̂ 0

51

∥∥2
F + ∥∥T̂15 − T̂ 0

15

∥∥2
F = min, we get

T̂ 2
21 = 1

2

(
T̂ 02
21 + (

T̂ 03
12

)�)
, T̂ 4

21 = 1

2

(
T̂ 04
21 + (

T̂ 04
12

)�)
,

T̂ 2
51 = 1

2

(
T̂ 02
51 + (

T̂ 03
15

)�)
, T̂ 4

51 = 1

2

(
T̂ 04
51 + (

T̂ 04
15

)�)
,

∥∥T̂ 1
21 − T̂ 01

21

∥∥2
F + ∥∥T̂ 1

21 − (
T̂ 01
12

)�∥∥2
F + ∥∥ − �1T̂

1
21 − T̂ 01

51

∥∥2
F + ∥∥ − �1T̂

1
21 − (T̂ 01

15 )�
∥∥2
F = min,

∥∥T̂ 3
21 − T̂ 03

21

∥∥2
F + ∥∥T̂ 3

21 − (
T̂ 02
12

)�∥∥2
F + ∥∥ − �2T̂

3
21 − T̂ 03

51

∥∥2
F + ∥∥ − �2T̂

3
21 − (

T̂ 02
15

)�∥∥2
F = min .

Therefore, the matrices T̂ 1
21, T̂

3
21 have the following forms:

T̂ 1
21 = (

2I + �2
1 + �2

1

)−1
(
T̂ 01
21 + (

T̂ 01
12

)� − �1T̂
01
51 − �1

(
T̂ 01
15

)�)
,

T̂ 3
21 =

(
2I + �2

2 + �2
2

)−1 (
T̂ 03
21 + (

T̂ 02
12

)� − �2T̂
03
51 − �2

(
T̂ 02
15

)�)
.

– The submatrices T̂13, T̂62, T̂63
Partition the matrices T̂13, T̂ 0

13 as follows:

T̂13 =
n3 r3 − n3( )
T̂ 1
13 T̂ 2

13 n3

T̂ 3
13 T̂ 4

13 r3 − n3

, T̂ 0
13 =

n3 r3 − n3( )
T̂ 01
13 T̂ 02

13 n3

T̂ 03
13 T̂ 04

13 r3 − n3

.

From T̂13 I
(3)
B = 0,

∥∥T̂13 − T̂ 0
13

∥∥2
F + ∥∥T̂�

13 − T̂ 0
31

∥∥2
F = min, we get

T̂ 1
13 = 0, T̂ 2

13 = 1

2

(
T̂ 02
13 + (T̂ 03

31 )�
)

, T̂ 3
13 = 0, T̂ 4

13 = 1

2

(
T̂ 04
13 + (

T̂ 04
31

)�)
.

Similarly, we can get T̂62, T̂63.
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– The submatrices T̂22, T̂52 satisfying

T̂22 = T̂�
22,

(
�AT̂22 + �AT̂52

)
I (2)
B = 0,∥∥T̂22 − T̂ 0

22‖2F + ∥∥T̂52 − T̂ 0
52‖2F + ∥∥T̂�

52 − T̂ 0
25‖2F = min .

Partition the matrices T̂22, T̂52, T̂ 0
22, T̂

0
25, T̂

0
52, I

(2)
B ,�−1

A �A in the following form:

T̂i j =
n2 r2 − n2( )
T̂ 1
i j T̂ 2

i j n2

T̂ 3
i j T̂ 4

i j r2 − n2

, T̂ 0
i j =

n2 r2 − n2( )
T̂ 01
i j T̂ 02

i j n2

T̂ 03
i j T̂ 04

i j r2 − n2

,

�−1
A �A =

n2 r2 − n2( )
�1 0 n2

0 �2 r2 − n2
.

From the condition T̂22 = T̂�
22, we can get

T̂ 2
22 = (T̂ 3

22)
�,

From the condition
(
�AT̂22 + �AT̂52

)
I (2)
B = 0, we can get

(
T̂ 1
52

T̂ 3
52

)
= −�−1

A �A

(
T̂ 1
22

T̂ 3
22

)
= −

(
�1T̂ 1

22

�2T̂ 3
22

)
.

From the condition
∥∥T̂22 − T̂ 0

22‖2F + ∥∥T̂52 − T̂ 0
52‖2F + ∥∥T̂�

52 − T̂ 0
25‖2F = min, we get

(
T̂ 2
52

T̂ 4
52

)
= 1

2

⎛
⎝ T̂ 02

52 + (
T̂ 03
25

)�

T̂ 04
52 + (

T̂ 04
25

)�

⎞
⎠ , T̂ 4

22 = 1

2

(
T̂ 04
22 + (

T̂ 04
22

)�)
,

∥∥T̂ 1
22 − T̂ 01

22

∥∥2
F + ∥∥ − �1T̂

1
22 − T̂ 01

52

∥∥2
F + ∥∥ − �1T̂

1
22 − (

T̂ 01
25

)�∥∥2
F = min,

∥∥T̂ 3
22 − T̂ 03

22

∥∥2
F + ∥∥T̂ 3

22 − (
T̂ 02
22

)�∥∥2
F + ∥∥ − �2T̂

3
22 − T̂ 03

52

∥∥2
F + ∥∥ − �2T̂

3
22 − (

T̂ 02
25

)�∥∥2
F = min .

Therefore, the submatrices T̂ 1
22, T̂

3
22 have the following form:

T̂ 3
22 = (

2I + �2
2 + �2

2

)−1
(
T̂ 03
22 + (

T̂ 02
22

)� − �2T̂
03
52 − �2

(
T̂ 02
25

)�)
,

T̂ 1
22 = Φ 


(
T̂ 01
22 + (

T̂ 01
22

)� − �1T̂
01
52 − (

T̂ 01
52

)�
�1 − T̂ 01

25 �1 − �1
(
T̂ 01
25

)�)
,

where Φ = (φkl), φkl = 1

2 + (�1)
2
k + (�1)

2
l + (�1)

2
k + (�1)

2
l

.

– The submatrices T̂23, T̂53 satisfying

(
�AT̂23 + �AT̂53

)
I (3)
B = 0,∥∥T̂23 − T̂ 0

23‖2F + ∥∥T̂�
23 − T̂ 0

32‖2F + ∥∥T̂53 − T̂ 0
53‖2F + ∥∥T̂�

53 − T̂ 0
35‖2F = min .
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Partition the matrices T̂23, T̂53, T̂ 0
23, T̂

0
35, T̂

0
53,�

−1
A �A in the following form:

T̂i j =
n3 r3 − n3( )
T̂ 1
i j T̂ 2

i j n3

T̂ 3
i j T̂ 4

i j r3 − n3

, T̂ 0
i j =

n3 r3 − n3( )
T̂ 01
i j T̂ 02

i j n3

T̂ 03
i j T̂ 04

i j r3 − n3

,

�−1
A �A =

n3 r3 − n3( )
�1 0 n3

0 �2 r3 − n3
.

From the condition
(
�AT̂23 + �AT̂53

)
I (3)
B = 0, we get

(
T̂ 1
53

T̂ 3
53

)
= −�−1

A �A

(
T̂ 1
23

T̂ 3
23

)
= −

(
�1T̂ 1

23

�2T̂ 3
23

)
.

From
∥∥T̂23 − T̂ 0

23‖2F + ∥∥T̂�
23 − T̂ 0

32‖2F + ∥∥T̂53 − T̂ 0
53‖2F + ∥∥T̂�

53 − T̂ 0
35‖2F = min, we get

(
T̂ 2
53

T̂ 4
53

)
= 1

2

⎛
⎝ T̂ 02

53 + (
T̂ 03
35

)�

T̂ 04
53 + (

T̂ 04
35

)�

⎞
⎠ ,

(
T̂ 2
23

T̂ 4
23

)
= 1

2

⎛
⎝ T̂ 02

23 + (
T̂ 03
32

)�

T̂ 04
23 + (

T̂ 04
32

)�

⎞
⎠ ,

∥∥T̂ 1
23 − T̂ 01

23

∥∥2
F + ∥∥T̂ 1

23 − (
T̂ 01
32

)�∥∥2
F + ∥∥ − �1T̂

1
23 − T̂ 01

53

∥∥2
F + ∥∥ − �1T̂

1
23 − (

T̂ 01
35

)�∥∥2
F = min,

∥∥T̂ 3
23 − T̂ 03

23

∥∥2
F + ∥∥T̂ 3

23 − (
T̂ 02
32

)�∥∥2
F + ∥∥ − �2T̂

3
23 − T̂ 03

53

∥∥2
F + ∥∥ − �2T̂

3
23 − (

T̂ 02
35

)�∥∥2
F = min .

Therefore, the submatrices T̂ 1
23, T̂

3
23 have the following form:

T̂ 1
23 = (

2I + �2
1 + �2

1

)−1
(
T̂ 01
23 + (

T̂ 01
32

)� − �1T̂
01
53 − �1

(
T̂ 01
35

)�)
,

T̂ 3
23 = (

2I + �2
2 + �2

2

)−1
(
T̂ 03
23 + (

T̂ 02
32

)� − �2T̂
03
53 − �2

(
T̂ 02
35

)�)
.

– The submatrices T̂33, T̂44, T̂55, T̂66.
The matrix T̂33 satisfies

T̂33 = T̂�
33,

∥∥T̂33 − T̂ 0
33

∥∥2
F = min,

thus we get

T̂33 = 1

2

(
T̂ 0
33 + (

T̂ 0
33

)�)
.

Similarly, we can get T̂44, T̂55, T̂66.

– The submatrices T̂14, T̂24, T̂34, T̂45, T̂46, T̂56.
The matrix T̂14 satisfies∥∥T̂14 − T̂ 0

14

∥∥2
F + ∥∥T̂�

14 − T̂ 0
41

∥∥2
F = min,

thus we get

T̂14 = 1

2

(
T̂ 0
14 + (

T̂ 0
41

)�)
.

Similarly, we can get T̂24, T̂34, T̂45, T̂46, T̂56.

Through the above discussion, we show how to produce the projections of the given matrix Ta onto the different
sets S1, S2, S3 and propose an alternating projection among the sets S1, S2, S3 to solve the sparse MUP.
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Table 1 Numerical results of Example (1.1)

n k APM Yalmip

Time It.
∥∥T − Ta

∥∥
F

∥∥ATB∥∥
F Time It.

∥∥T − Ta
∥∥
F

∥∥ATB∥∥
F

5 2 0 1 6.42 × 10−15 6.09 × 10−15 0.16 13 1.04 × 10−11 2.45 × 10−9

10 8 0 1 4.67 × 10−15 9.09 × 10−15 0.19 13 3.46 × 10−12 3.06 × 10−9

20 10 0.05 1 6.30 × 10−15 3.39 × 10−13 0.28 14 1.21 × 10−13 1.28 × 10−9

50 32 0.09 1 1.58 × 10−14 2.86 × 10−13 0.48 16 3.56 × 10−12 6.74 × 10−10

100 56 0.53 1 2.02 × 10−14 8.74 × 10−12 1.91 16 4.98 × 10−12 1.57 × 10−9

Table 2 Numerical results
of Example (1.2)

n k Time It.
∥∥T − Ta

∥∥
F

∥∥ATB∥∥
F

5 2 4.41 10, 000 1.10 × 10−5 5.69 × 10−4

10 8 20.72 10, 000 3.84 × 10−5 2.92 × 10−3

20 10 70.67 10, 000 4.44 × 10−5 7.01 × 10−3

50 32 664.61 10, 000 1.61 × 10−5 2.17 × 10−2

100 56 4264.91 10, 000 7.74 × 10−5 1.1415

4 Numerical experiments

In this section, we implemented the alternating projection method and compared our software with the well-known
software Yalmip [35]. Two numerical examples, which were run inMATLAB 7.6.0 on a machine withWindows XP
operation system, Intel(R) Core(TM) i3 CPU M370 @2.40GHz processor, and 2GB of memory, will be described
to show the efficiency of our method.

For convenience, it is necessary to explain notations we use in this section. “APM” is the alternating projection
method, “Yalmip” is the software Yalmip, n is the size of the problem, k is the number of given eigenpairs, time is
the elapsed time, and It. is the number of iterative steps. In our procedure, we set the largest number of iterations
to be 10000, and set the initial point to be (Ma,Ca, Ka).

Example 1 Similar to the article [12], in this example, we consider solving the sparse MUP with the constraints
that M is an identity matrix, C and K are both tridiagonal matrices as (3). Here, the given symmetric tridiagonal
matrices Ca, Ka are all randomly generated. Suppose (�, X) ∈ R

k×k × R
n×k is the eigenpairs of the quadratic

eigenvalue problem (λ2Ma + λCa + Ka)x = 0, the following three tests are performed:

1.1. Applying the exact eigenpairs (�, X) to update the coefficient matrices Ma,Ca, Ka ;
1.2. Perturbing entries of eigenpairs (�, X) with ε = 10−5. Applying the perturbed eigenpairs to update the

coefficient matrices Ma,Ca, Ka .
1.3. Perturbing the coefficient matrices Ma,Ca, Ka with ε = 10−5. Applying the eigenpairs (�, X) to update the

coefficient matrices.

Tables 1, 2, and 3 present the efficiency of the alternating projection method for solving the sparse MUP. From
these three tables, we can obtain the following information:

– If (�, X) consists of several exact eigenpairs of the quadratic pencil λ2Ma + λCa + Ka , since the initial point
Ma,Ca, Ka is exactly the solution of the problem, then the alternating projection method converges to the
required accuracy by only one step. Therefore, the test (1.1) states that this method can exactly reconstruct the
quadratic model rapidly based on the exact eigeninformation. The software Yalmip also can find the quadratic
model; however, it needs more iterations and CPU time.
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Table 3 Numerical results of Example (1.3)

n k APM Yalmip

Time It.
∥∥T − Ta

∥∥
F

∥∥ATB∥∥
F Time It.

∥∥T − Ta
∥∥
F

∥∥ATB∥∥
F

5 2 0 1 1.34 × 10−5 4.63 × 10−4 0.08 6 1.52 × 10−5 4.23 × 10−4

10 8 0 2 2.57 × 10−5 5.62 × 10−4 0.11 7 2.11 × 10−5 2.56 × 10−4

20 10 0.073 1 1.56 × 10−5 6.12 × 10−4 0.19 9 1.72 × 10−5 5.15 × 10−4

50 32 0.16 2 1.43 × 10−5 3.12 × 10−4 0.37 11 1.67 × 10−5 4.95 × 10−4

100 56 0.94 2 2.44 × 10−5 2.91 × 10−4 1.51 12 2.31 × 10−5 6.34 × 10−4

– If (�, X) consists of perturbed eigenpairs of the quadratic pencil λ2Ma +λCa +Ka , still it is not clear at all that
any quadratic pencils could have (�, X) as its eigenpairs, thenmaybe there does not exist one solution satisfying
the quadratic pencil, and thus the alternating projection method reaches the maximum number of iterations.
Therefore, the test (1.2) states that the alternating projection method can provide a numerical justification for the
existence of such a quadratic pencil. The software Yalmip can only find a solution approximate to zero matrix,
which is meaningless.

– If (�, X) consists of several exact eigenpairs of a quadratic pencil λ2M + λC + K , and Ma,Ca, Ka are the
perturbed coefficient matrices of M,C, K with ε = 10−5, then the alternating projection method can find a
solution, which is of the almost same order 10−5 as that of the perturbation to coefficient matrices, in few steps.
Therefore, the test (1.3) states that the alternating projection method can solve the sparse MUP and serve as a
tool to reconstruct the quadratic pencil with the constraint of sparsity. The software Yalmip also can find the
quadratic model; however, it needs more iterations and CPU time.

Example 2 Taking the four-degrees-of-freedom mass–spring system coming from the engineering application into
consideration, we randomly generate positive real values as the physical parameters, where

Ma =

⎛
⎜⎜⎜⎝

0.2967 0 0 0

0 0.3188 0 0

0 0 0.4242 0

0 0 0 0.5097

⎞
⎟⎟⎟⎠ , Ca =

⎛
⎜⎜⎜⎝

0.3480 0 −0.2625 0

0 0 0 0

−0.2625 0 1.0635 −0.8010

0 0 −0.8010 0.8010

⎞
⎟⎟⎟⎠ ,

Ka =

⎛
⎜⎜⎜⎝

1.5366 −0.9289 −0.5785 0

−0.9289 1.6592 −0.7303 0

−0.5785 −0.7303 1.7975 −0.4886

0 0 −0.4886 0.4886

⎞
⎟⎟⎟⎠ ,

the quadratic pencil has 2 real eigenvalues and 3 pairs of complex conjugate eigenvalues

−2.2523,−0.9839,−0.1740 ± 2.7786i,−0.8098 ± 1.7182i,−0.0266 ± 0.1337i,

and the associated eigenvectors

X =

⎛
⎜⎜⎜⎝

−0.0415 0.4091 −0.1259 ± 0.2103i 0.0286 ± 0.4058i 0.8619 ∓ 0.1081i

−0.1066 0.4312 0.0142 ∓ 0.3261i −0.0422 ± 0.2251i 0.8726 ∓ 0.1054i

−0.4256 0.6416 0.0070 ± 0.0803i 0.1835 ∓ 0.1792i 0.8794 ∓ 0.1038i

0.4440 −1.0000 0.0449 ± 0.0096i −0.1696 ∓ 0.2073i 0.8972 ∓ 0.1028i

⎞
⎟⎟⎟⎠ ,

where i = √−1. We consider the model updating problem with different numbers of eigenpairs in Example 2, see
Table 4 for the numerical results, which state that our method has no requirement on the number of the prescribed
eigenpairs, and is more efficient than the software Yalmip.
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Table 4 Numerical results with different numbers of eigenpairs

n k APM Yalmip

Time It.
∥∥T − Ta

∥∥
F

∥∥ATB∥∥
F Time It.

∥∥T − Ta
∥∥
F

∥∥ATB∥∥
F

5 1 0.033 1 4.13 × 10−15 6.74 × 10−15 0.12 12 5.76 × 10−13 1.77 × 10−10

5 2 0.043 1 3.29 × 10−15 3.93 × 10−15 0.16 12 1.02 × 10−11 2.78 × 10−9

5 3 0.047 1 7.15 × 10−15 5.41 × 10−15 0.17 13 1.70 × 10−12 5.69 × 10−9

5 4 0.052 1 1.32 × 10−14 3.26 × 10−15 0.17 12 2.15 × 10−12 3.95 × 10−9

5 5 0.053 1 4.64 × 10−15 2.46 × 10−15 0.16 12 1.31 × 10−13 3.10 × 10−10

From these numerical results, we can make the conclusion that the alternating projection method is an effective
tool for sparsity-preserving model updating problems.

5 Conclusions

Sparse damped model updating problems play an important role in the applications arising from engineering.
However, very few results have paid attention to this problem due to the difficulties associated with the sparsity
constraint. And also the existent work aims at the special sparse structures, such as the tridiagonal, and can hardly
be generalized to other structures.

In this paper, we consider applying the alternating projection method, which is powerful and easy to be imple-
mented, and solving the sparse model updating problems. To our convenience, we firstly transform the sparse
damped model updating problem into another optimization problem with a simpler form and then solve this trans-
formed problem through alternatively finding the projections of the given matrix onto some convex sets or closed
linear subspaces of a Hilbert space. The numerical experiments show that this method is very efficient for sparsity-
preservingmodel updating problems. Furthermore, the so-called no spill-over is very important inmany application;
however, our method cannot maintain this property and we leave this as our future research topic.
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