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Abstract The notion of material stability is examined in the context of active muscle tissue modeling, where the
nonlinear constitutive law is dependent both on the physiologically driven muscle contraction and finite mechanical
deformation. First, the governing equations and constitutive laws for a general active-elastic material with a single
preferred direction are linearized about a homogeneous underlying configuration with respect to both the active
contraction and deformation gradient. In order to obtain mathematical restrictions analogous to those found in
elastic materials, stability conditions are derived based on the propagation of homogeneous plane waves with real
wave speeds, and the generalized acoustic tensor is obtained. Focusing on 2Dmotions, and considering a simplified,
decoupled transversely isotropic energy function, the restriction on the active acoustic tensor is recast in terms of
a generally applicable constitutive law, with specific attention paid to the fiber contribution. The implication of
the material stability conditions on material parameters, active contraction, and elastic stretch is investigated for
prototype material models of muscle tissue.

Keywords Active strain · Finite deformation · Muscle tissue · Plane waves · Stability

1 Introduction

Muscles are involved in a multitude of essential physiological functions such as respiration, locomotion, and
circulation, and possess the ability to change conformation in the presence of a stimulus. This unique characteristic,
alongwith recent developments in tissue engineering, hasmade it possible to utilize culturedmuscle cells as actuators
in engineered systems [1]. Desire to understand and predict muscle’s nonlinear behavior, both in biological and
engineered systems, has lead to a multitude of studies, particularly in the context of continuum mechanics, where
models are readily implemented into a numerical framework [2].
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194 C. Paetsch, L. Dorfmann

Mathematical descriptions of muscle behavior generally account for the influence of fiber activation by one of
two approaches [3,4]. The first class of models includes an additive active stress component in overall stress
tensor, either directly [5–10] or through a decoupled energy function [11–14]. Here, we consider an alterna-
tive approach, which incorporates the underlying micromechanical behavior of muscle contraction by adopt-
ing a multiplicative decomposition of the deformation gradient, and is referred to as active strain [2,4,15–25].
Specifically, the macroscopic deformation is considered the result of both the elastic strain and the shorten-
ing of the sarcomere, the basic motor unit of the muscle. A similar approach has been applied to softening in
polymeric materials [26] and growth in soft biological tissues [27]. It is noted that these two approaches are
not necessarily mutually exclusive; however, for the purposes of the current study, we consider material mod-
els which include an explicit multiplicative decomposition of the deformation gradient to be of an active strain
type.

As material modeling and computational simulation related to active muscle tissue continue, it is desirable to
develop mathematical restrictions on constitutive formulations, parallel to those found in elastic materials. For
instance, the concept of material stability, in the purely mechanical case, can impose bounds on the mathematical
model to ensure it maintains physical relevance [28]. Furthermore, when a particular model is implemented in
numerical context, stability conditions can help avoid undesirable behavior [29]. Strong ellipticity is a commonly
employed stability condition, see for instance [29–35], which ensures the propagation of small-amplitude plane
waves superimposed on the underlying configuration. Many criteria exist which may be suitable for an active,
fibrous biological material; see Bertoldi and Gei [36] for various stability criteria applied to electroactive materials
and Holzapfel et al. [29] for comparison of alternative conditions for purely elastic biological tissues. The strong
ellipticity condition is appealing as the formulation is independent of boundary conditions and has a clear physical
interpretation while not being excessively restrictive [22].

Prior studies have investigated strong ellipticity conditions for active stress and active strain muscle models.
Pathmanathan et al. [9] show loss of ellipticity occurring for a specific active stress model, with material failure
possible for sufficiently large fiber compression. Specific to our current study, Ambrosi and Pezzuto [3] provide
strong ellipticity conditions for active strain constitutive models. However, they only consider incremental pertur-
bations in the total deformation and do not account for variations in the active fiber contraction. Similarly, Rossi et
al. [22] investigate the stability of myocardium constitutive relations with an active strain formulation. They use an
exponential energy function that is strongly elliptic, but again neglect incremental changes in the active contraction.
These investigations of purely mechanical stability conditions neglect the unique and characteristic behavior of
active muscle fibers. Therefore, in the following, we seek a generalization of the strong ellipticity condition for
a class of materials described by an active strain approach, which includes a variation in the active contraction.
A similar approach has been taken for other non-purely mechanical material models, such as thermoelastics [37],
electroelastics [36,38], and magnetoelastics [39].

To this end, in Sect. 2,we provide a brief summary of the kinematic quantities used to describe both themechanical
and physiological deformations, including the incompressibility condition normally adopted for biological tissue.
Furthermore, we derive the balance laws based on the virtual power formulation developed by Stålhand et al.
[25] and introduce constitutive relations for a non-dissipative muscle model. Incremental equations resulting from
variations in the deformation and active contraction, superimposed on the underlying configuration, are provided in
Sect. 3. Here, the Lagrangian version of the incremental equation of motion is derived and then pushed forward into
the current configuration. We introduce the fourth-order elasticity tensor, the second-order coupling tensor, both
in material and spacial configurations, and the scalar coefficient related to the increment in the active contraction.
Additionally, homogeneous plane waves are considered as a solution to the governing incremental equations subject
to generalized dead loading. The stability condition is obtained by requiring the resulting modified acoustic tensor,
referred to here as the active acoustic tensor, to be positive-definite, ensuring waves propagate with real speeds.
Section 4 introduces invariant representation of the energy function to satisfy objectivity, and Sect. 5 specializes the
analysis to 2Dmotions for a decoupled energy function, simplifying the stability condition and allowing for explicit
expressions of the quantities related to the active acoustic tensor. We introduce a specific form of the decoupled
energy function in Sect. 6 and consider three different cases of an overlap parameter, a unique component of muscle
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Stability of active muscle tissue 195

models, which accounts for the relative position of the actin and myosin proteins. The set of critical deformations
and active contractions for which stability is lost is then determined. Section 7 contains concluding remarks.

2 Basic equations

2.1 Kinematics

To describe the motion of a deformable body, we identify a reference configuration Br with boundary ∂Br and the
location of a generic material point P is given by the position vectorX relative to some origin O . The configuration
occupied by the body at time t is denoted by Bt with boundary ∂Bt and the point P by the position vector x relative
to some origin o. The vector field χ(X, t) describes the motion of the body such that

x = χ(X, t) for all X ∈ Br, X = χ−1(x, t) for all x ∈ Bt . (2.1)

The velocity and acceleration of the particle P are given, respectively, by

v = x,t = ∂

∂t
χ(X, t), a = x,t t = ∂2

∂t2
χ(X, t), (2.2)

where ∂/∂t is the rate of change at fixed X, which is also represented by the shorthand notation ,t . The deformation
gradient F is defined by

F = Grad (x), (2.3)

where Grad is the gradient operator with respect to Br. The Cartesian components are Fiα = ∂xi/∂Xα , where xi
and Xα are the components of x and X, respectively, with i, α ∈ {1, 2, 3}. Roman indices are associated with Bt

and Greek indices with Br. We also adopt the standard notation

J = det(F) = dv

dV
> 0, (2.4)

where dV is a volume element in Br and dv is the corresponding volume element in Bt . For an incompressible
material we have

J = det(F) = 1. (2.5)

The right and left Cauchy–Green tensors are given byC = FTF andB = FFT, respectively. For a detailed discussion
of the kinematics of solid continua, we refer to, for example, Ogden [40] and Dorfmann and Ogden [41].

In this paper, we follow a phenomenological approach tomodel the behavior ofmuscle tissue and do not attempt to
capture each biological process andmicroscopic interaction involved in muscle contraction.We consider the muscle
to be composed of fibers, which provide the active contraction, and connective tissue. The reference configuration
Br of passive muscle is defined to be stress-free (natural configuration) in the absence of mechanical loads. Focusing
on the fibers only, when subjected to a stimulus, again, in the absence of surface traction and body forces, in general,
thematerial will deform. The resulting configuration, denoted byBa, is taken as the natural, stress-free configuration
of the active fibers. Note, the connective tissue is not stress-free in Ba. For other active materials, the mathematical
representation of these stresses is given by Dorfmann and Ogden [42,43].

The change in configuration is conveniently described by a tensor field Fa, similar to the approach taken by
Stålhand et al. [25] for smooth muscle; Ambrosi et al. [15], Cherubini et al. [16], and Nardinocchi and Teresi
[18,19] for cardiac tissue; and Hernández-Gascón et al. [17] and Paetsch et al. [4] for skeletal muscle. We assume
activation occurs isochorically and therefore require det(Fa) = 1. It is noted that the tensor field Fa is a function
of active fiber contraction, defined by the scalar λa, and not the result of a gradient operation. Fiber contraction
implies that λa ≤ 1 with minimum value, λa,min, such that λa,min > 0. In general, the active contraction λa may
depend on physiological factors, such as calcium ion concentration or electric potential, allowing for the current
framework of active muscle tissue to incorporate coupled models of skeletal muscles, such as Böl et al. [44].
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196 C. Paetsch, L. Dorfmann

After the application of mechanical loads, the cross-bridges between the interacting actin and myosin filaments
are deformed, and the muscle tissue occupies the current configuration Bt . This two-step process, activation and
mechanical deformation, gives rise to the multiplicative decomposition:

F = FeFa, (2.6)

where Fe maps material points from the active natural configuration Ba to the current configuration Bt and provides
the elastic deformation of the actomyosin cross-bridges; see Paetsch et al. [4] for further details.

2.2 Balance laws and constitutive equations

We use the principle of virtual power to derive the governing equations of active muscle tissue. This has been used
by, for example, Stålhand et al. [25] for smooth muscle in 3D, Sharifimajd and Stålhand [45] for skeletal muscle in
1D, and Hernández-Gascón et al. [17] for skeletal muscle in 3D. Let δv and δλa,t denote the arbitrary, admissible
virtual velocity field and the virtual rate of fiber contraction, respectively. The principle of virtual power for a
dynamic system has the form

P̂ext = P̂int + P̂inertial, (2.7)

where P̂ext, P̂int, and P̂inertial depend on δv and δλa,t . The external virtual power, P̂ext, consists of the virtual
mechanical power and the virtual power related to the fiber contraction. Specifically, we write

P̂ext =
∫

∂Br

T · δv dS +
∫
Br

Taδλa,t dV, (2.8)

where the vector T is the mechanical traction and the scalar Ta, power conjugate to δλa,t , is the external thermody-
namic force related to the active contraction of the muscle fibers. For simplicity, mechanical body forces have been
neglected. The internal virtual power, P̂int, is given by

P̂int =
∫
Br

tr(S δF,t )dV +
∫
Br

Paδλa,tdV, (2.9)

where S is the nominal stress, δF,t is the material gradient of the virtual velocity, and Pa is the internal counterpart
to Ta. In Eq. (2.9), we introduced the trace operator acting on two second-rank tensors. For arbitrary tensor fields
A,B, the trace operator tr(AB) is written in component form as Ai j B ji . The virtual power of the inertial force has
the form

P̂inertial =
∫
Br

ρra · δv dV, (2.10)

where ρr denotes the mass density in the reference configuration Br. For an isochoric deformation J = 1 and, from
the mass conservation equation, it follows that ρr = ρ, where ρ is the density in the current configuration Bt .

The use of Cauchy’s theorem enables T to be expressed as T = STN, whereN is the unit normal on the boundary
∂Br. Using the definitions (2.8)–(2.10) in (2.7), combined with the divergence theorem, yields the equation of
motion in the absence of body forces:

Div S = ρrx,t t in Br, (2.11)

where Div is the divergence operator in the reference configuration Br and x,t t is defined in Eq. (2.2)2. Furthermore,
the principle of virtual power also provides the balance of thermodynamic forces related to the stress generated by
the active fiber contraction λa and is given by

Pa = Ta in Br, (2.12)

where Pa and Ta are the respective internal and external thermodynamic forces related to the shortening of themuscle
fibers. These thermodynamic forces can be interpreted as the complex biological and chemical processes driving

123



Stability of active muscle tissue 197

the changing state of the muscle fibers, see Stålhand et al. [25], Hernández-Gascán et al. [17], and Sharifimajd and
Stålhand [45] for a detailed discussion.

Next, we introduce the dissipation inequality

Pint ≥
∫
Br

�,t dV, (2.13)

requiring the internal power Pint to be greater than or equal to the rate of change in the Helmholtz free energy, �,
integrated over the body in the reference configuration Br. For the purpose of our current study, we consider the
system to be conservative and neglect dissipation, contrary to the approach proposed by Sharifimajd and Stålhand
[45] for skeletal tissue. While this assumption omits some muscle behavior, it allows for a clearer formulation and
still captures the primary characteristics of an active biological tissue. Therefore, the inequality in (2.13) is replaced
by an equality. An explicit, pointwise expression for Pint may be obtained by taking the virtual velocities in (2.9)
to be real and we write

�,t = tr(SF,t ) + Paλa,t . (2.14)

The free energy � is assumed to be a function of the deformation gradient F and the active fiber contraction
tensor Fa. At this point, we do not include explicit dependence on Fe, which is connected to F and Fa through
(2.6), allowing for a concise expression of the constitutive equations. We also consider the free energy to explicitly
depend on the muscle fiber direction, defined by referential unit vector A. This allows � to be written in the form

� = �(F,Fa,A). (2.15)

Substituting (2.15) into (2.14) yields

tr

((
S − ∂�

∂F
+ pF−1

)
F,t

)
+

(
Pa − tr

(
∂�

∂Fa
F′
a

))
λa,t = 0, (2.16)

where F′
a = ∂Fa/∂λa and the incompressibility constraint (2.5) is enforced by introducing the Lagrange multiplier

p. Equation (2.16) is satisfied for all values of F,t by taking

S = ∂�

∂F
− pF−1, (2.17)

which provides the constitutive relation for the nominal stress. To clarify notation, we express the nominal stress in
component form as

Sαi = ∂�

∂Fiα
− pF−1

αi , (2.18)

where the switched order of the indices with respect to the non-symmetric tensor F is noted, consistent with Ogden
[40].

The second term of (2.16) is satisfied by taking Pa as

Pa = tr

(
∂�

∂Fa
F′
a

)
, (2.19)

which is interpreted in the following manner. Fiber shortening is the result of the thermodynamic force Ta, through
Pa, resulting in a change in free energy tr((∂�/∂Fa)F′

a), where we have neglected energy dissipation.

3 Incremental equations and stability

3.1 Incremental motions

In this section, we derive the equations governing incremental deformations and activation superimposed on a
known finitely deformed configuration Bt in the presence of a known active contraction λa. Following Dorfmann
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and Ogden [46,47], we use a superposed dot to represent the increment in a variable. Thus, ẋ(X, t) represents a
time-dependent incremental displacement and λ̇a(X, t) a time-dependent increment in the active fiber contraction.
The corresponding increment of the deformation gradient is given by Ḟ = Grad (ẋ). Similarly, the increments of
S, Ta, Pa are denoted by Ṡ, Ṫa, Ṗa, respectively.

We begin with the incremental forms of the balance equations (2.11) and (2.12), defined by

Div Ṡ = ρrẋ,t t , Ṫa = Ṗa. (3.1)

The increment of the nominal stress (2.17) for an incompressible material is then given in component form as

Ṡαi = Aαiβ j Ḟ jβ + 	αi λ̇a − ˙
pF−1

αi , (3.2)

where we recall λa is a scalar. The components of the fourth-order and second-order tensors A and � are given,
respectively, by

Aαiβ j = ∂2�

∂Fiα∂Fjβ
(3.3)

and

	αi = ∂2�

∂Fiα∂FaBβ

F ′
aBβ

, (3.4)

where the upper case Roman subscripts are associated with the components of the intermediate configuration Ba of
the active fibers. The fourth-order tensor possesses the symmetry

Aαiβ j = Aβ jαi , (3.5)

and, in general, no equivalent symmetry exists for the second-order tensor �. The increment of the term related to
the Lagrange multiplier in Eq. (3.2) yields

˙
pF−1

αi = ṗF−1
αi − pF−1

α j Ḟ jβF
−1
βi . (3.6)

The increment of the internal thermodynamic force Pa, in component form, is written as

Ṗa = 	αi Ḟiα + Lλ̇a, (3.7)

where the scalar L is given by

L = ∂2�

∂FaBβ
∂FaDγ

F ′
aBβ

F ′
aDγ

+ ∂�

∂FaBβ

F ′′
aBβ

, (3.8)

and the notation F′′
a = ∂2Fa/∂λ2a has been used.

Following the approach suggested by Abeyaratne and Knowles [37], Merodio and Ogden [30], and Dorfmann
and Ogden [38,46], we assume that the underlying state is homogeneous and time independent. The increments of
the equation of motion (3.1)1 are then given in component form as

Aαiβ j ẋ j,αβ + 	αi (λ̇a),α − p̌i = ρr ẋi,t t , (3.9)

where the Greek subscripts following the comma denote differentiation with respect to X. Following the work by
Merodio and Ogden [30], we also use the shorthand notation

p̌i = ( ṗF−1
αi − pF−1

α j Ḟ jβF
−1
βi ),α. (3.10)

In what follows it is convenient to use a push forward operation on the increment field variables, i.e., change the
reference configuration from Br to Bt , [38,46]. Using the relation (2.1)1, we write the incremental displacement
ẋ(X, t) and the increment in the active contraction λ̇a(X, t) as Eulerian quantities

ẋ(X, t) = u(χ(X), t) = u(x, t), (3.11)

λ̇a(X, t) = φ(χ(X), t) = φ(x, t). (3.12)
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Stability of active muscle tissue 199

The push forward version of the incremental nominal stress Ṡ, for an incompressible material, has the form

Ṡ0 = FṠ, (3.13)

where the subscript 0 is used to denote a Eulerian quantity. The updated version of the balance equation (3.1)1 is

div Ṡ0 = ρu,t t , (3.14)

where div defines the divergence operator in the current configurationBt . In component form, Eq. (3.14) is expressed
as

A0i jkl ul,ik + 	0i jφ,i − p̄ j = ρru j,t t , (3.15)

where the Roman subscripts following the comma refers to differentiation with respect to x and the subscripts ,t t on
the right-hand side denote the usual time derivatives. The incremental updated variable of the Lagrange multiplier,
denoted by p̄, j in Eq. (3.15), has the form

p̄ j = ( ṗδi j − pui, j ),i , (3.16)

where u satisfies the incremental incompressibility condition

div u = 0. (3.17)

The incremental balance equation (3.1)2, using (3.7), can be recast in the updated form

	0i j u j,i + Lφ = Ṫa . (3.18)

The tensors A0i jkl and 	0i j are defined in index notation by

A0i jkl = FiαFkβAα jβl (3.19)

and

	0i j = Fiα	α j , (3.20)

which possess the symmetries

A0i jkl = A0kli j , 	0i j = 	0 j i . (3.21)

3.2 Homogeneous plane waves

We now specify the forms of the incremental displacement and the incremental activation superimposed on a
homogeneously deformed underlying configuration in the presence of uniform activation. In this case, the tensors
A0 and �0 are constant as are the corresponding components A0i jkl and 	0i j , which depend on the underlying
deformation gradient F and on the active contraction λa. Specifically, we seek solutions to the incremental equations
(3.15) and (3.18) of the form

u = m ei(kx·n−ωt), (3.22)

p̄ = q ei(kx·n−ωt), (3.23)

φ = g ei(kx·n−ωt), (3.24)

where u represents a plane wave with amplitude given by vector m, propagation direction given by unit vector
n, wave number given by k and wave speed given by ω. The imaginary unit i is defined by i2 = −1. The scalar
quantities q and g denote the amplitudes of the increments p̄ and φ, respectively. Substituting (3.22) into the
incompressibility condition (3.17) gives the connection

m · n = 0, (3.25)

which constrains the vectors m and n to be orthogonal.
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Here, we consider the case where the external thermodynamic force Ta is independent of the motion χ and
of the active fiber contraction λa and, therefore, Ṫa = 0. This assumption is a generalization of the dead-loading
boundary conditions considered in stability problems of purely elastic materials [40] and enables us to avoid undue
mathematical complexity in the following formulations without being overly restrictive. Using the incremental
forms (3.22), (3.23), and (3.24), we write the updated incremental balance equations as

k2Q(n)m − ρ ω2m + ik[qn − gR(n)] = 0, (3.26)

ikR(n) · m + Lg = 0, (3.27)

where Q(n) is the mechanical acoustic tensor with components

Q jl(n) = A0i jkl ni nk, (3.28)

and the vector R(n) follows as

R(n) = �0n. (3.29)

Here, we assume L �= 0 to prevent Eqs. (3.26) and (3.27) from degenerating to the purely mechanical case. An
explicit expression for g is obtained by rewriting Eq. (3.27) in the form

g = −i
k

LR(n) · m, (3.30)

which shows that the amplitude of the incremental change of the active fiber length, φ, is zero unless accompanied
by an increment in the mechanical displacement u (given by the vectorm). However, it does not follow, in general,
that u vanishes in the absence of an incremental change in the active fiber stretch, see Eq. (3.26). Substituting (3.30)
into (3.26) and contracting withm results in

m · H(n)m = ρ
(ω

k

)2
, (3.31)

where the real, symmetric tensor H(n) is given by

H(n) = Q(n) − 1

LR(n) ⊗ R(n), (3.32)

and the incompressibility constraint (3.25) is used.
To ensure real wave speeds, or equivalently, for the eigenvalue ρr(ω/k)2 to be positive, we require that H(n) be

positive-definite for allm, which is enforced by the inequality

m · H(n)m > 0, (3.33)

or, alternatively, may be expressed in terms of the components of A0 and �0 as(
A0i jkl − 1

L	0i j	0kl

)
ninkm jml > 0. (3.34)

If the inequality (3.34) holds for a givenF, λa, and for all non-zero vectorsm and n, which satisfy the incompress-
ibility constraint (3.25), then the current state is considered stable for a given energy function �. Note, Eq. (3.34)
is a generalization of the strong ellipticity condition for purely elastic material and tensor H(n) is the generalized
acoustic tensor, here referred to as the active acoustic tensor. Unsurprisingly, the resulting criterion does not lead
to a conclusive remark regarding the stability of active strain material models in general. As we will illustrate in
Sect. 6, the loss of stability depends on the specific energy function and the underlying state.

The conditions for real wave speeds may alternatively be found by solving the eigenvalue problem (3.31) written
as

det

(
H(n) − ρ

(ω

k

)2
I
)

= 0. (3.35)

For a 3D system, the three roots are required to be positive for the underlying configuration with active fiber
stretch to be stable. In the following sections, we will utilize Eq. (3.34), which allows leveraging previous work
related to the stability of passive fibers.
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4 Invariant-based constitutive relation for active muscle tissue

The energy function � of an incompressible, transversely isotropic material with active fibers may be written in
terms of invariants related to the deformation I1, I2, fiber direction I4, I5, active fiber contraction I4a , I5a , and
deformation of the cross-bridges I4e , I5e . Accordingly, Eq. (2.15) is replaced with

� = �(I1, I2, I4, I5, I4a , I5a , I4e , I5e), (4.1)

where we note that not all invariants are independent, but are included for a convenient representation of the
cross-bridge deformation. The invariants I1 and I2 are defined in terms of C (equivalently B) by

I1 = tr(C), I2 = 1

2

[
tr2(C) − tr(C2)

]
. (4.2)

Furthermore, the inclusion of a preferred direction A gives rise to the invariants

I4 = A · CA, I5 = A · C2A, (4.3)

and the invariants related to the active fiber stretch are

I4a = A · CaA, I5a = A · (C2
aA), (4.4)

where Ca = FT
a Fa. The square root of I4 provides the stretch of the material in the fiber direction, and similarly,

the square root of I4a provides the contraction of the muscle fibers during activation.
Themultiplicative decomposition of the deformation tensor (2.6) gives rise to invariants related to the cross-bridge

deformation

I4e = Ae · CeAe = I4 I
−1
4a

, (4.5)

I5e = Ae · C2
eAe, (4.6)

where the unit vector Ae specifies the fiber direction in Ba and is given by Ae = I−1/2
4a

FaA. Similar to C and Ca,

we define Ce = FT
e Fe = F−T

a CF−1
a . Equation (4.5) shows that the dependence of � on I4e can, in principle, be

replaced by I4 and I4a .
The first derivatives of I1, I2, I4, and I5 with respect to F are common in the literature and are not repeated here.

However, derivatives of those invariants related to the active fiber contraction are non-standard and are repeated
from Paetsch et al. [4] here as

∂ I4e
∂F

= 2I−1
4a

A ⊗ FA, (4.7)

∂ I5e
∂F

= 2I−1
4a

(A ⊗ FC−1
a CA + C−1

a CA ⊗ FA), (4.8)

and I4a and I5a are independent of F. Using Eq. (2.17), combined with the standard transformation law σ = FS,
gives the explicit expression of the Cauchy stress for incompressible active muscle as

σ = 2(�1 + I1�2)B − 2�2B2 + 2�4a ⊗ a + 2�5(a ⊗ Ba + Ba ⊗ a) + 2I−1
4a

�4ea ⊗ a

+2I−1
4a

�5e(a ⊗ Bea + Bea ⊗ a) − pI, (4.9)

where the vector a = FA denotes the fiber direction in the current configuration Bt and Be = FeFT
e . We also used

the shorthand notations �i = ∂�/∂ Ii , i ∈ {1, 2, 4, 5}, �4e = ∂�/∂ I4e , �5e = ∂�/∂ I5e . Expressions for the
tensors and scalar quantities in Eq. (3.34) are lengthy, but straightforward. Therefore, an algorithmic expression is
provided in place of the explicit form. To that end, we introduce the following notations:

J1 = I1, J2 = I2, J3 = I4, J4 = I5,

J5 = I4e , J6 = I5e , J7 = I4a , J8 = I5a ,

123



202 C. Paetsch, L. Dorfmann

and the free energy in terms of Ji , i ∈ {1, . . . , 8} is denoted as 
 = 
(J1, . . . , J8). The components ofA0, �, and
L can now compactly be written as

A0i jkl = FiαFkβ

(
6∑

m=1

6∑
n=1


mn
∂Jm
∂Fjα

∂Jn
∂Flβ

+
6∑

m=1


m
∂2Jm

∂Fjα∂Flβ

)
, (4.10)

	0i j = FiαF
′
aBβ

(
6∑

m=1

8∑
n=5


mn
∂Jm
∂Fjα

∂Jn
∂FaBβ

+
6∑

m=5


m
∂2Jm

∂Fjα∂FaBβ

)
, (4.11)

L = F ′
aBβ

F ′
aDγ

(
8∑

m=5

8∑
n=5


mn
∂Jm

∂FaBβ

∂Jn
∂FaDγ

+
8∑

m=5


m
∂2Jm

∂FaBβ
∂FaDγ

)
+ F ′′

aBβ

8∑
m=5


m
∂Jm

∂FaBβ

, (4.12)

where 
m = ∂
/∂Jm , 
mn = ∂2
/∂Jm∂Jn . Expressions for the non-standard first and second derivatives of the
invariants with respect to F and Fa are provided in Appendix 1 for reference.

5 Two-dimensional motion and activation

In this section, we specialize the equations from Sect. 4 to those governing two-dimensional motion and accompa-
nying activation. Specifically, we focus on a homogeneous underlying deformation and uniform activation restricted
to the (X1, X2) plane. Thus, the incremental displacement vector u and the incremental activation strain φ depend
only on x1 and x2, and the out-of-plane component vanishes, u3 = 0. In terms of principal stretches, the out-of-plane
stretch is λ3 = 1 and the incompressibility constraint becomes λ1λ2 = 1. Furthermore, we take the fibers to lie in
the plane of deformation and, assuming the principle directions of F and Fa coincide with the Cartesian coordinate
system, we write

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3, (5.1)

Fa = λa1e1 ⊗ e1 + λa2e2 ⊗ e2 + e3 ⊗ e3, (5.2)

where λa1 and λa2 satisfy the constraint λa1λa2 = 1.We note that, while plane motions of an incompressible material
may be described in terms of a single variable, kinematic quantities in this section are provided in more general
terms of λa1 and λa2 . Therefore, the invariants defined by (4.2) and (4.3), for the underlying plane strain deformation,
become

I1 = I2 = 1 + λ21 + λ22 (5.3)

and

I4 = A2
1λ

2
1 + A2

2λ
2
2 = a21 + a22 , I5 = (I1 − 1)I4 − 1, (5.4)

where Aα and ai , with α, i ∈ {1, 2}, are the components ofA and a, respectively. The invariants related to the active
fiber stretch given by (4.4), (4.5), and (4.6) have the forms

I4a = A2
1λ

2
a1 + A2

2λ
2
a2 = a2a1 + a2a2 ,

I5a = A2
1λ

4
a1 + A2

2λ
4
a2 = a2a1λ

2
a1 + a2a2λ

2
a2 ,

I4e = I4 I
−1
4a

,

I5e = I−1
4a

(A2
1λ

4
1λ

−2
a1 + A2

2λ
4
2λ

−2
a2 ) = I−1

4a
(a21λ

2
1λ

−2
a1 + a22λ

2
2λ

−2
a2 ),

(5.5)

where aai , i ∈ {1, 2}, are the components of the vector aa = FaA. Because of the specialization, it can be seen from
(5.3), (5.4), and (5.5) that there remain only six independent variables. This suggests a reduced form of �, denoted
by �̂, to be defined as

�̂ = �̂(I1, I4, I4e , I5e , I4a , I5a ), (5.6)
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and the Cauchy stress given by (4.9) reduces to

σ = 2�̂1B + 2�̂4a ⊗ a + 2I−1
4a

�̂4ea ⊗ a + 2I−1
4a

�̂5e(a ⊗ Bea + Bea ⊗ a) − pI. (5.7)

Equivalently, the energy formulation 
 defined in terms of Ji , i ∈ {1, . . . , 8}, is replaced by 
̂ =

̂(J1, J3, J5, J6, J7, J8) and Eqs. (4.10), (4.11), and (4.12) still hold. Unlike in the purely mechanical case, con-
straining deformations and active contractions to occur in a plane does not greatly reduce the number of terms in
the stability criterion. Therefore, we further specialize �̂ based on a generalization of constitutive models found in
the literature in order to provide concise, yet widely applicable stability criteria.

Following the simplification in Holzapfel et al. [48], Holzapfel and Ogden [49] and Lin et al. [50], we neglect
the dependence of �̂ on I5e and I5a and consider a decoupled form

�̂ = �̂iso(I1) + �̂fib(I4, I4e , I4a ), (5.8)

where �̂iso provides the contribution of the isotropic connective tissue and �̂fib gives the passive and active fiber
responses. This additively decomposed formulation, similar to the decoupled free energy presented by Paetsch et
al. [4], Hernández-Gascón et al. [17], and Sharifimajd and Stålhand [45], significantly reduces the number of terms
in (4.10), (4.11), and (4.12). Given the free energy (5.8), the Cauchy stress in (5.7) simplifies to

σ = 2�̂1B + 2(�̂4 + I−1
4a

�̂4e)a ⊗ a − pI, (5.9)

where �̂1 = ∂�̂iso/∂ I1, �̂4 = ∂�̂fib/∂ I4 and �̂4e = ∂�̂fib/∂ I4e . We also provide the explicit expressions of the
fourth- and second-order tensor components shown in the stability criterion (3.34) as

A0i jkl = 2
[
2�̂11Bi j Blk + �̂1Bikδ jl + 2(�̂44 + 2I−1

4a
�̂44e + I−2

4a
�̂4e4e)aia jakal + (�̂4 + I−1

4a
�̂4e)aiakδ jk

]

(5.10)

and

	0i j = 4
[
�̂44a + I−1

4a
�̂4e4a − I−2

4a
(�̂4e + I4�̂44e + I4 I

−1
4a

�̂4e4e)
]
F ′
akα Aαaak ai a j , (5.11)

where �̂11 = ∂2�̂iso/∂ I 21 , �̂44 = ∂2�̂fib/∂ I 24 , �̂44e = ∂2�̂fib/∂ I4∂ I4e , �̂4e4e = ∂2�̂fib/∂ I 24e , �̂4e4a =
∂2�̂fib/∂ I4e∂ I4a , and �̂44a = ∂2�̂fib/∂ I4∂ I4a . Equation (5.10) is of a similar form to that presented by Mero-
dio and Ogden [30] for fiber-reinforced elastic materials. Furthermore, from Eq. (4.12), we express the scalar L
as

L = 4
(
I 24 I

−4
4a

�̂4e4e + 2I4 I
−3
4a

�̂4e − 2I4 I
−2
4a

�̂4e4a + �̂4a4a

)
(F′

aA · aa)2

+ 2
(
�̂4a − I4 I

−2
4a

�̂4e

)[
(F′

aA · F′
aA) + F′′

aA · aa
]
, (5.12)

where we have used the notation �̂4a = ∂�̂fib/∂ I4a and �̂4a4a = ∂2�̂/∂ I4a∂ I4a .
The plane strain specialization of the incompressibility condition (3.17) becomes

u1,1 + u2,2 = 0, (5.13)

where u1, u2 are the components of the incremental displacement vector u defined in (3.11) and the subscript
following a comma indicates partial derivative with respect to xi , i ∈ {1, 2}. From (3.22) and (3.25), we deduce that

m1 = n2, m2 = −n1, (5.14)

where mi , ni , i ∈ {1, 2}, are the Cartesian components of the vectors m and n, respectively. The first term of the
stability criterion (3.34) can now be written as

A0i jkl ni nkm jml = 4�̂11(λ
2
1 − λ22)

2n21n
2
2 + 2�̂1(λ

2
1n

2
1 + λ22n

2
2) + 2(n1a1 + n2a2)

2
[
H1(n2a1 − n1a2)

2 + H2

]
,

(5.15)
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where the coefficients H1 and H2 are

H1 = 2(�̂44 + 2I−1
4a

�̂44e + I−2
4a

�̂4e4e), (5.16)

H2 = �̂4 + I−1
4a

�̂4e . (5.17)

The second term of (3.34) becomes

1

L	0 j i	0kl ni nkm jml = 4
G2

L (F′
aA · aa)2(n2a1 − n1a2)

2(n1a1 + n2a2)
2, (5.18)

where G has the form

G = 2
[
�̂44a + I−1

4a
�̂4e4a − I−2

4a
(�̂4e + I4�̂44e + I4 I

−1
4a

�̂4e4e)
]
. (5.19)

We now restrict our attention to the stability analysis of the muscle fibers. Thus, we assume that the isotropic
contribution to the energy satisfies the strong ellipticity condition and, from (5.15), it follows that

4�̂11(λ
2
1 − λ22)

2n21n
2
2 + 2�̂1(λ

2
1n

2
1 + λ22n

2
2) > 0. (5.20)

Then, the stability requirement (3.34), using (5.15), (5.18), and (5.20), reduces to

(a · n)2
[(

H1 − 2
G2

L (F′
aA · aa)2

)
(a × n)2 + H2

]
≥ 0, (5.21)

and must hold for all n �= 0. Note, we have relaxed the strict inequality as the condition (5.20) is assumed to
hold. Equation (5.21) is satisfied when the fiber orientation in the current configuration is orthogonal to the wave
propagation direction, i.e., a · n = 0, and the inequality simplifies to(
H1 − 2

G2

L (F′
aA · aa)2

)
(a × n)2 + H2 ≥ 0. (5.22)

Condition (5.22) suggests the following three possibilities. First, when a and n are parallel, the leading term
vanishes and the stability condition is simply H2 ≥ 0. Second, assuming H2 is non-negative, the condition (5.22)
holds for a × n �= 0 given

H1 − 2
G2

L (F′
aA · aa)2 ≥ 0, (5.23)

although this is not a necessary condition. For the third case, we assume (5.23) does not hold and, followingMerodio
and Ogden [30], we eliminate the dependence on the arbitrary vector n by observing(
H1 − 2

G2

L (F′
aA · aa)2

)
(a × n)2 ≥

(
H1 − 2

G2

L (F′
aA · aa)2

)
I4. (5.24)

The sufficient conditions for material stability of active fibers become

H2 ≥ 0,

(
H1 − 2

G2

L (F′
aA · aa)2

)
I4 + H2 ≥ 0, (5.25)

along with the assumption that the isotropic base satisfies (5.20).

6 Illustrative example

6.1 Specialize underlying deformation

In many systems, both natural and engineered, muscles perform as linear actuators subject to uniform extension,
in the fiber direction, with lateral contraction. Understanding the onset of instabilities under these conditions is,
therefore, of particular interest. Thus, for isochoric deformation, the deformation gradient becomes

F = λ e1 ⊗ e1 + λ−1e2 ⊗ e2 + e3 ⊗ e3, (6.1)
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and assume that the fiber orientation A coincides with the principal direction e1. The tensor describing the active
fiber contraction, Fa, follows as

Fa = λa e1 ⊗ e1 + λ−1
a e2 ⊗ e2 + e3 ⊗ e3, (6.2)

and the relevant invariants can be expressed as

I1 = λ2 + λ−2 + 1, I4 = λ2, I4e = λ2λ−2
a , I4a = λ2a . (6.3)

The corresponding principal stresses are

σ1 = σ = σiso + σfib, σ2 = σ3 ≡ 0, (6.4)

where the Cauchy stress component in the direction of uniaxial tension is given by an isotropic and a fiber contri-
bution. From (5.8) and (5.9), we find

σfib = 2(�̂4 + λ−2
a �̂4e)λ

2. (6.5)

Given the deformation described by (6.1), inequality (5.25)1 implies that muscle fibers cannot sustain a compressive
stress, i.e., σfib > 0. This requirement mirrors material instability in fiber-reinforced nonlinear elastic solids, see
Merodio and Ogden [33]. Given the specific forms of A and Fa, we can now express the scalar coefficient L as

L = 2λ2λ−2
a

(
3λ−2

a �̂4e + 2λ2λ−4
a �̂4e4e − 4�̂4e4a

)
+ 2

(
�̂4a + 2λ2a�̂4a4a

)
. (6.6)

For the given underlying deformation and active fiber contraction, the stability criterion (5.25) can now be written
as

H2 ≥ 0, H2 + H1λ
2 − 2

G2

L λ2λ2a ≥ 0. (6.7)

6.2 Prototype energy function

For purpose of illustration, we now specialize the decoupled form of �̂ given in (5.8). In our present study, we
are primarily concerned with fiber contribution to the energy. However, for completeness, we give the energy
formulation associated with the isotopic connective tissue as

�̂iso = μ

2
(I1 − 3), (6.8)

which is known as the neo-Hookean material for which �̂1 = μ/2 and �̂11 = 0. The condition stated in (5.20)
requires that μ > 0.

Inequality (6.7)2 provides some immediate insight for selecting a specific form of the fiber contribution �̂fib. If,
for example, we consider a formulation �̂fib that depends on I4e only, then the stability criterion (6.7) reduces to

F ′ ≥ 0, 3F ′ + 2I4eF
′′ ≤ 0, (6.9)

where �̂fib(I4e) = F(I4e) and the prime indicates differentiation with respect to I4e . The fiber contribution to the
Cauchy stress given by (6.5) and its derivative are

σfib = 2I4eF
′, σ ′

fib = 2F ′ + 2I4eF
′′, (6.10)

and Eq. (6.9) can equivalently be written as

σfib ≥ 0, 2I4eσ
′
fib + σfib ≤ 0. (6.11)

From (6.11)2, it follows that the derivative of σfib with respect to I4e must be negative, i.e., σ ′
fib < 0. Thus, a type

of model �̂fib = F(I4e) is not sufficient.
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Fig. 1 (Case 1) The
non-dimensionalized fiber
contribution to the Cauchy
stress, given μa in Eq.
(6.15), for stretch in the
fiber direction and different
values of active contraction.
The material parameters
taken are μp = 100,
c1 = 3,000 and λa varies as
indicated
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Consider an alternative formulation of the type �̂fib = �̂fib(I4e , I4a ). Specifically, following the standard rein-
forcing model, we assume that

�̂fib = μ

2

[
μfib(I4e − 1)2 + α(I4a − 1)2

]
, (6.12)

where the second term accounts for the change in active contraction that does not result in a change in stress and, as
wewill see in Sect. 6.4, directly influences thematerial stability. Additionally, we have introduced the dimensionless
material constant α. The first term characterizes the change in stress due to mechanical deformation and the active
contraction through the dimensionless parameter μfib, which is given by

μfib = μp + μa, (6.13)

where the parameters μp and μa are related to the passive and active fiber contributions, respectively. For the
function (6.12), using (6.5), the expression of the fiber contribution to the stress is calculated as follows:

σfib = μλ2λ−2
a

[
∂μfib

∂ I4e
(λ2λ−2

a − 1)2 + 2μfib(λ
2λ−2

a − 1)

]
. (6.14)

Next, we consider three alternative expressions ofμa to illustrate the implications of the derived stability conditions.

6.2.1 Case 1

We take μa to be given by

μa = c1(1 − I4a ), (6.15)

where c1 > 0 is a dimensionless parameter. With no activation, I4a = 1, and thus μa = 0. To illustrate the influence
of muscle activation, we provide the dimensionless response curves for various values of λa in Fig. 1. We note that
in the passive case, the muscle fibers are stress-free in the reference configuration Br. However, when activated,
λa < 1 and the stress σfib > 0 at the reference length. Furthermore, the activation results in a stiffer fiber response.

6.2.2 Case 2

We now augment the form ofμa to include the influence of the actomyosin overlap. For recent studies which include
dependence on muscle fiber overlap, see Böl et al. [44], Ehret et al. [51], Grasa et al. [11], Hernández-Gascón et
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Fig. 2 (Case 2) The
non-dimensionalized fiber
contribution to the Cauchy
stress, given μa in Eq.
(6.16), for stretch in the
fiber direction and different
values of active contraction.
The material parameters
taken are μp = 100,
c1 = 3,000, c2 = 0.5 and
λa varies as indicated
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al. [17], Murtada et al. [13], and Sharifimajd and Stålhand [45], Stålhand et al. [25]. Consider μa to include an
exponential overlap parameter dependent on I4a

μa = c1(1 − I4a )e
(I4a−1)/c2 , (6.16)

where c2 �= 0 is a dimensionless parameter. The corresponding stress-deformation response, depicted in Fig. 2,
shows that the behavior is similar to the previous case. Compared to Fig. 1, however, the magnitude of the response
is scaled by introducing the exponential term in (6.16).

6.2.3 Case 3

Paetsch et al. [4] recently proposed an alternative formulation of μa that accounts for the change in fiber stiffness
due to increasing activation and deformation. This is accounted for by specifying the dependence of μa on I4a and
I4e , respectively. We consider the form

μa = c1(1 − I4a )e
−(I4e−1)/c2 , (6.17)

where again c2 �= 0 is a dimensionless parameter. When the muscle fiber is in the passive state, (6.17) recovers
μa = 0 and we note the inclusion of the minus sign in the exponent with respect to I4e . Unlike the formulation
(6.16), with constant activation, the magnitude of μa decreases with increasing deformation, which can be seen
from the dimensionless stress-stretch response in Fig. 3. For an experimental verification of (6.17), we refer to [52].

6.3 Stability condition given by Eq. (6.7)1

In this section, we examine the stability condition (6.7)1 of active muscle fibers, given (6.1) and (6.2), and bounds on
thematerial properties are explored.Merodio andOgden [33,34] derive a connection between the stress-deformation
response and the stability of fiber-reinforced materials. A corresponding relation for active materials is not possible
here, as the stress response is independent of the second term appearing in (6.12), as can be seen from (6.14), but
appears in the stability requirement through L, see (9.3).

For the considered deformation, using the formulation of �̂fib given by (6.12), we write Eq. (5.17) as

H2 = μλ−2
a (λ2λ−2

a − 1)

[
1

2

∂μfib

∂ I4e
(λ2λ−2

a − 1) + μfib

]
, (6.18)
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Fig. 3 (Case 3) The
non-dimensionalized fiber
contribution to the Cauchy
stress, given μa in Eq.
(6.17), for stretch in the
fiber direction and different
values of active contraction.
The material parameters
taken are μp = 100,
c1 = 3,000, c2 = 0.5 and
λa varies as indicated
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where ∂μfib/∂ I4e depends on the particular expression of μa. For passive fibers in the undeformed configuration,
we have

H2 = 0, λ = 1, λa = 1, (6.19)

and condition (6.7)1 holds.
We now show that in the deformed state, an instability arises when the fiber stretch is less than the active

contraction. Cases 1 and 2 yield ∂μfib/∂ I4e = 0, while Case 3 gives ∂μfib/∂ I4e = −μa/c2. As it will be shown,
μp ≥ 0, thus μfib ≥ 0 for all cases and we have

H2 < 0 for λ < λa, (6.20)

which corresponds to σfib < 0. This, as noted by (6.11)1, is not permitted if the material response is to remain
stable.

For fiber extension, λ > λa, the stability condition H2 ≥ 0 reduces to

f (λ, λa) = 1

2

∂μfib

∂ I4e
(λ2λ−2

a − 1) + μp + μa ≥ 0. (6.21)

For Cases 1 and 2, the above expression becomes f (λ, λa) = μp + μa. The minimum value for μa in both cases is
zero for the admissible range of 0 < λa ≤ 1, and a sufficient condition to satisfy the stability condition with fibers
in extension is

μp ≥ 0. (6.22)

For Case 3, the condition (6.7)1 has the form

f (λ, λa) = μp + μa

[
1 − 1

2c2
(λ2λ−2

a − 1)

]
≥ 0. (6.23)

For the passive state μa = 0, f (λ, 1) = μp and (6.23) requires μp ≥ 0. With active fibers, Case 3 does not readily
yield a restriction on the material parameters as we have for Cases 1 and 2. However, with some effort, we can find
sufficient stability conditions for λ > λa that provide bounds on the material properties.

A sufficient restriction for the ratio of c1 to μp can be obtained by noting that the minimum value of a function
exp(−ξ)(1 − 1/2 ξ) is −1/2 exp(3) ≈ −0.025, and (6.23) becomes c1(1 − λ2a)/μp ≤ 40. We can eliminate the
dependence on the active contraction by requiring the stricter inequality:
c1
μp

≤ 40. (6.24)
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Fig. 4 The fiber
contribution to the stress,
non-dimensionalized by μ,
for an active stretch of
λa = 0.95 and the material
parameters taken are
μp = 100, and c2 = 0.5 and
c1 varies as indicated. For
sufficiently large ratios of
c1/μp, σfib < 0 and stability
is lost in accordance with
(6.7)1
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Equation (6.24) stipulates that instabilities with respect to H2 ≥ 0 associated with fiber overlap in extension can
be eliminated for a sufficiently small ratio of active fiber to passive fiber stiffness. While this ratio of parameters
ensures stability for all λ and λa such λ > λa, it is not a necessary condition. This point may be illustrated by
considering the stress-stretch response for different values of c1/μp.

Figure 4 gives the non-dimensional fiber contribution to the stress, σfib/μ, for various ratios of c1 to μp plotted
against the stretch for an active contraction of λa = 0.95 and a fixed value of μp = 100. Given σfib in Eq. (6.5) and
the expression for H2 of (5.17), σfib = 2H2λ

2 and H2 < 0 corresponds to σfib < 0. In Fig. 4, we observe σfib > 0
with c1/μp = 30 for all λ. Additionally, for c1/μp = 300, σfib > 0 for all λ. However, it is noted that σfib > 0
does not hold for all λa with c1/μp = 300. Finally, for c1/μp = 500, stability is lost as the stress goes to zero for a
sufficiently large stretch.

In the next section, we select values of μp and c1 such that (6.24) holds, so that H2 ≥ 0 for all λ > λa.

6.4 Stability related to Eq. (6.7)2

In this section, we separately consider the formulations of μa, given by (6.15), (6.16), and (6.17), and determine
the corresponding critical values of the extension λ and the active contraction λa that violate the stability condition
(6.7)2. These are denoted by λcrit and λa,crit. We again focus on the fiber contribution (6.12) and evaluate the
response for selected values of model parameters. The explicit expressions of the coefficients required to evaluate
the stability condition (6.7)2 are shown in Appendix 2.

We evaluate the stability criterion (6.7)2 using the energy (6.12) and the Case 1 expression of μa given by
(6.15). We consider the fixed values of μp = 100 and c1 = 3,000. The corresponding results for selected values of
α = 3c1, 6c1, and 9c1 are shown in Fig. 5. For clarity of presentation, we do not consider fiber compression and
limit the extension to 0 ≤ λ ≤ 1.5. Starting from the reference length λ = 1, for fibers in the passive state (λa = 1),
an increase in the magnitude of α has a stabilizing effect, i.e., for increasing values of α, fibers become unstable
at large values of λ. Figure 5 also shows that, for each value of α, fiber activation further stabilizes the response
when 0.95 < λa < 1. For λa < 0.95, fiber activation has a destabilizing influence. The graph corresponding to
α = 3c1, for example, shows that the amount of stretch λ required to induce instability monotonically reduces with
increased activation. For λa < 0.78, the configuration becomes unstable for all values of λ. The critical curves
corresponding to α = 6c1 and α = 9c1 show that increasing values of α clearly enhances the stability of the
response.
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Fig. 5 (Case 1) Critical
stretches and critical active
contractions for loss of
stability given in (6.15).
Material parameters
μp = 100 and c1 = 3,000
are fixed while
α = 3c1, 6c1, 9c1
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Fig. 6 (Case 2) Critical
stretches and critical active
contractions for loss of
stability given in (6.16).
Material parameters
μp = 100, c1 = 3,000 and
α = 3c1 are fixed while
c2 = 0.4, 0.5, 0.6
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Next, we study the stability of the energy (6.12) using the expression of the active fiber contribution μa given
by (6.16). We again consider the fixed values of μp = 100 and c1 = 3,000 and restrict attention to α = 3c1. To
evaluate the effect of the exponential term on the overall response, we select values of c2 = 0.4, 0.5, and 0.6 and
show the corresponding results in Fig. 6. The critical curves for the values of c2 = 0.4, 0.5, and 0.6 are similar to the
results shown in Fig. 5. The passive fiber becomes unstable for values of λ greater than approximately 1.15. Active
contraction has a very similar effect as discussed in the previous case. Figure 6 further shows that an increasing
value of c2 has a destabilizing influence when λa < 1. For example, λa = 0.8 the critical stretch becomes smaller
with increasing values of c2.

In the final illustration, we use the Case 3 expression of μa given by (6.17) to assess the stability of the energy
function (6.12) by comparing with the results shown in Figs. 5 and 6. The material parameters considered are again
μp = 100, c1 = 3,000 and α = 3c1. The critical curves for selected values of c2 = 0.4, 0.5, and 0.6 are shown
in Fig. 7a and b, and the results are quite different from the other cases of μa considered. Loss of stability occurs
in the passive case for a stretch of 4.9, which is much larger when compared with the other cases, similar to the
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Fig. 7 (Case 3) Critical
stretches and critical active
contractions for loss of
stability given in (6.17) with
a maximum stretch of 5, b
maximum stretch of 1.5.
Material parameters
μp = 100, c1 = 3,000 and
α = 3c1 are fixed while
c2 = 0.4, 0.5, 0.6
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difference in the stiffness observed in the stress response for a given set of material parameters, see Figs. 2 and 3.
We observe in Fig. 7(b) an additional instability mode for stretches less than 1.25 and values of λa larger than 0.6.
For example, for the stretch λ = 1.1, the passive state is a stable configuration. However, for the case of c2 = 0.4,
the fibers become unstable when λa takes a value less than 0.9. It can be shown that this additional instability mode
arises due to the inclusion of a minus sign in the exponential overlap parameter with respect to the invariant.

7 Concluding remarks

Driven by recent interests in modeling muscle tissue using an active strain approach, we have developed stabil-
ity criteria based on a generalization of the strong ellipticity condition of purely elastic materials. We analyze
homogeneous plane waves in a homogeneously deformed body subjected to a uniform active contraction. Material
stability is based on waves propagating with real speed and is enforced by requiring the active acoustic tensor to be
positive-definite.
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The restriction on the generalized acoustic tensor does not lead to a conclusive statement regarding the stability
of the active strain approach, rather, stability depends on the specific form of the material model and the underlying
configuration. We specialize the stability criteria using a decoupled energy function and focus on two-dimensional
motion. Attention is restricted to the fiber contribution by assuming that the isotropic part to the overall energy
satisfies the stability requirements. Specifically, we show that the fiber energy contribution cannot solely depend on
the elastic deformation of the muscle cross-bridges.

To illustrate implications of the derived criteria, we introduce three forms of the fiber energy function. For Cases
1 and 2, a sufficient condition to satisfy the first stability condition is λ > λa and the passive fiber stiffness μp ≥ 0.
For Case 3, a requirement for stability is that the ratio of active to passive fiber stiffnesses c1/μp ≤ 40. Instabilities
then occur for sufficiently large deformations and active contractions, based on the selected material parameters.
The critical values of λ and λa are highly dependent on the parameter α, which scales the non-stress generating
term of the energy function. Additionally, we find that the inclusion of a fiber overlap function (Case 3) has a
destabilizing effect and gives rise to a failure mode not observed in the other two cases.
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Appendix 1: Derivatives related to invariants

We provide the derivatives of the invariants introduced in this study related to the deformation gradient and the
active strain tensor. The second derivatives with respect to the deformation tensor are, in component form, provided
as

∂2 I1
∂Fiα∂Fjβ

= 2δi jδαβ, (8.1)

∂2 I2
∂Fiα∂Fjβ

= 2
(
2FjβFiα − FjαFiβ + I1δi jδαβ − Bi jδαβ − Cαβδi j

)
, (8.2)

∂2 I4
∂Fiα∂Fjβ

= 2δi j AαAβ, (8.3)

∂2 I5
∂Fiα∂Fjβ

= 2
(
δi j AαCβηAη + AαFiβFjηAη + AαBi j Aβ + δαβFiηAηFjγ Aγ

+ AβFjαFiηAη + δi j AβCαγ Aγ

)
, (8.4)

∂2 I4e
∂Fiα∂Fjβ

= 2I−1
4a

δi j AαAβ, (8.5)

∂2 I5e
∂Fiα∂Fjβ

= 2I−1
4a

(
δi j AαC

−1
aβη

Cηφ Aφ + AαFiγC
−1
aγβ

Fjφ Aφ + AαFiγC
−1
aγ η

FjηAβ + C−1
aαβ

FjηAηFiφ Aφ

+C−1
aαγ

Fjγ AβFiφ Aφ + δi jC
−1
aαγ

Cγ ηAηAβ

)
. (8.6)

Additionally, we provide the derivatives of the invariants related to the active stretch:
∂ I4e

∂FaBβ

= −2I4 I
−2
4a

AβFaBη
Aη, (8.7)

∂ I5e
∂FaBβ

= −2
(
I−2
4a

AβFaBγ
Aγ AφCφηC

−1
aημ

CμαAα + I−1
4a

C−1
aβπ

CπηAηAγCγψ F−1
aψB

)
, (8.8)

∂ I4a
∂FaBβ

= 2AβFaBη
Aη, (8.9)

∂ I5a
∂FaBβ

= 2
(
AβFaBφ

Caφη Aη + Caβη AηFaBγ
Aγ

)
. (8.10)
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Next, the mixed derivatives with respect to F and Fa are written in component form

∂2 I4e
∂Fiα∂FaBβ

= −4I−2
4a

AαFiγ Aγ AβFaBη
Aη, (8.11)

∂2 I5e
∂Fiα∂FaBβ

= −2
[
2I−2

4a

(
AαFiγC

−1
aγ η

Cηφ Aφ + C−1
aαγ

Cγ ηAηFiφ Aφ

)
AβFaBμ

Aμ + I−1
4a

(
AαFiγC

−1
aγβ

AφCφηF
−1
aηB

+ AαFiγ F
−1
aγ B

C−1
aβη

Cηφ Aφ + F−1
aαB Fiφ AφC

−1
aβγ

Cγ ηAη + C−1
aαβ

Fiφ Aφ AηCηγ F
−1
aγ B

)]
. (8.12)

The second derivatives with respect to Fa of the relevant invariants are given:

∂2 I4e
∂FaBβ

∂FaDγ

= 2I4 I
−2
4a

Aβ Aγ (4I−1
4a

FaBφ
AφFaDη

Aη − δBD), (8.13)

∂2 I5e
∂FaBβ

∂FaDγ

= 2
[
I−2
4a

(
AφCφηC

−1
aημ

CμαAα(4I−1
4a

AβFaBφ
Aφ Aγ FaDμ

Aμ − δBD Aβ Aγ )

+ 2C−1
aβλ

CλμAμAφCφψ F−1
aψB

Aγ FaDρ
Aρ + 2AβFaBθ

AθC
−1
aγμ

CμαAαAφCφηF
−1
aηD

)

+ I−1
4a

(
Cλφ Aφ AμCμψ F−1

aψD
(C−1

aβγ
F−1
aλB + C−1

aβλ
F−1
aγ B

) + F−1
aβD

AφCφλF
−1
aλBC

−1
aγψ

CψμAμ

)]
, (8.14)

∂2 I4a
∂FaBβ

∂FaDγ

= 2δBD Aβ Aγ , (8.15)

∂2 I5a
∂FaBβ

∂FaDγ

= 2

[
AβδBDCaγ η Aη + AβFaBγ

FaDη
Aη + AβFaBφ

Aγ FaDφ
+ δβγ FaBφ

AφFaDη
Aη

+ FaDβ
FaBφ

Aφ Aγ + Caβη AηδBD Aγ

]
. (8.16)

Appendix 2: Coefficients related to stability

The coefficients appearing in (6.7) given (6.12) are

H1 = μλ−4
a

[
∂2μfib

∂ I 24e
(λ2λ−2

a − 1)2 + 4
∂μfib

∂ I4e
(λ2λ−2

a − 1) + 2μfib

]
, (9.1)

G = μλ−2
a (λ2λ−2

a − 1)

[
∂2μfib

∂ I4e∂ I4a
(λ2λ−2

a − 1) − ∂2μfib

∂ I 24e
λ2λ−4

a (λ2λ−2
a − 1)

+ 2
∂μfib

∂ I4a
− ∂μfib

∂ I4e
λ−2
a (5λ2λ−2

a − 1) − 2μfibλ
−2
a

]
− 2μμfibλ

2λ−6
a , (9.2)

L = 2μλ2λ−2
a

{
λ−2
a (λ2λ−2

a − 1)

[
∂2μfib

∂ I 24e
λ2λ−2

a (λ2λ−2
a − 1) + ∂μfib

∂ I4e

(
11

2
λ2λ−2

a − 3

2

)
+ 3μfib

− 2λ2a

(
∂2μfib

∂ I4e∂ I4a
(λ2λ−2

a − 1) + 2
μfib

∂ I4a

)]
+ 2μfibλ

2λ−4
a

}

+μ

[
(λ2λ−2

a − 1)2
(
2
∂2μfib

∂ I 24a
λ2a + ∂μfib

∂ I4a

)
+ 2α(3λ2a − 1)

]
, (9.3)

where H2 is given by (6.18). Next, we provide the derivatives related to μfib for each case of μa.
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Derivatives for Case 1

For μa = c1(1 − I4a ), we have

∂μfib

∂ I4a
= −c1, (9.4)

where all other derivatives are zero.

Derivatives for Case 2

For μa = c1(1 − I4a )exp((I4a − 1)/c2) we have

∂μfib

∂ I4a
= c1

[
1

c2
(1 − I4a ) − 1

]
e(I4a−1)/c2 , (9.5)

∂2μfib

∂ I 24a
= c1

c2

[
1

c2
(1 − I4a ) − 2

]
e(I4a−1)/c2 , (9.6)

with omitted derivatives equal to zero.

Derivatives for Case 3

For μa = c1(1 − I4a )exp(−(I4e − 1)/c2), we have

∂μfib

∂ I4e
= −μa

c2
, (9.7)

∂μfib

∂ I4a
= −c1e

−(I4e−1)/c2 , (9.8)

∂2μfib

∂ I 24e
= μa

c22
, (9.9)

∂2μfib

∂ I4e∂ I4a
= c1

c2
e−(I4e−1)/c2 , (9.10)

along with ∂2μfib/∂ I 24a = 0.

References

1. Baryshyan AL, Woods W, Trimmer BA, Kaplan DL (2012) Isolation and maintenance-free culture of contractile myotubes from
Manduca sexta embryos. PLoS One 7:e31598

2. Paetsch C, Dorfmann A (2013) Non-linear modeling of active biohybrid materials. Int J Nonlinear Mech 56:105–114
3. Ambrosi D, Pezzuto S (2012) Active stress vs active strain in mechanobiology: constitutive issues. J Elast 107:199–212
4. Paetsch C, Trimmer BA, Dorfmann A (2012) A constitutive model for active-passive transition of muscle fibers. Int J Nonlinear

Mech 47:377–387
5. Eriksson TSE, Prassl AJ, Plank G, Holzapfel GA (2013) Modeling the dispersion in electromechanically coupled myocardium. Int

J Numer Method Biomed Eng 29:1267–1284
6. Eriksson TSE, Prassl AJ, Plank G, Holzapfel GA (2013) Influence of myocardial fiber/sheet orientations on left ventricular

mechanical contraction. Math Mech Solids 18:592–606
7. Göktepe S, Kuhl E (2011) Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem.

Comput Mech 45:227–243
8. Khodaei H, Mostofizadeh S, Brolin K, Johansson H, Östh J (2013) Simulation of active skeletal muscle tissue with a transversely

isotropic viscohyperelastic continuum material model. Proc Inst Mech Eng H 227:571–580
9. Pathmanathan P, Chapman SJ, Gavaghan DJ, Whiteley JP (2010) Cardiac electromechanics: The effect of contraction model on

the mathematical problem and accuracy of the numerical scheme. Q J Mech Appl Math 63:375–399

123



Stability of active muscle tissue 215

10. Röhrle O, Davidson JB, Pullan AJ (2008) Bridging scales: a three-dimensional electromechanical finite element model of skeletal
muscle. SIAM J Sci Stat Comput 30:2882–2904

11. Grasa J, Ramírez A, Osta R, Muñoz M, Soteras F, Calvo B (2011) The 3D active-passive numerical skeletal muscle model
incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. BiomechModelMechanobiol
10:779–787

12. Ito D, Tanaka E, Yamamoto S (2010) A novel constitutive model of skeletal muscle taking into account anisotropic damage. J Mech
Behav Biomed Mater 3:85–93

13. Murtada SI, KroonM,Holzapfel GA (2010) A calcium-drivenmechanochemical model for prediction of force generation in smooth
muscle. Biomech Model Mechanobiol 9:749–762

14. Odegard GM, Haut Donahue TL,MorrowDA, Kaufman KR (2008) Constitutive modeling of skeletal muscle tissue with an explicit
strain-energy function. J Biomech Eng-Trans ASME 130:061017

15. Ambrosi D, Arioli G, Nobile F, Quarteroni A (2011) Electromechanical coupling in cardiac dynamics: the active strain approach.
SIAM J Appl Math 71:605–621

16. Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and
electrophysiological effects. Prog Biophys Mol Biol 97:562–573

17. Hernández-Gascón B, Grasa J, Calvo B, Rodríguez JF (2013) A 3D electro-mechanical continuum model for simulating skeletal
muscle contraction. J Theor Biol 335:108–118

18. Nardinocchi P, Teresi L (2007) On the active response of soft living tissues. J Elasticity 88:27–39
19. Nardinocchi P, Teresi L (2013) Electromechanical modeling of anisotropic cardiac tissues. Math Mech Solids 18:576–591
20. Nobile F, Quarteroni A, Ruiz-Baier R (2012) An active strain electromechanical model for cardiac tissue. Int J Numer Method

Biomed Eng 28:2040–7947
21. Rossi S, Lassila T, Ruiz-Baier R, Sequeira A, Quarteroni A (2014) Thermodynamically consistent orthotropic activation model

capturing ventricular systolic wall thickening in cardiac electromechanics. Eur J Mech A 48:129–142
22. Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2012) Orthotropic active strain models for the numerical simulations of cardiac

biomechanics. Int J Numer Method Biomed Eng 28:761–788
23. Ruiz-Baier R, Gizzi A, Rossi S, Cherubini C, Laadhari A, Filippi S, Quarteroni A (2014) Mathematical modelling of active

contraction in isolated cardiomyocytes. Math Med Biol 31:259–283
24. Shim J, Grosberg A, Nawroth JC, Parker KK, Bertoldi K (2012) Modeling of cardiac muscle thin films: pre-stretch, passive and

active behavior. J Biomech 45:832–841
25. Stålhand J, Klarbring A, Holzapfel GA (2011) A mechanochemical 3D continuum model for smooth muscle contraction under

finite strains. J Theor Biol 268:120–130
26. RajagopalKR,WinemanAS (1992)A constitutive equation for nonlinear solidswhich undergo deformation inducedmicrostructural

changes. Int J Plast 8:385–395
27. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467
28. Murphy JG (2013) Tension in the fibres of anisotropic non-linearly hyperelastic materials. Some stability results and constitutive

restrictions. Int J Solids Struct 50:423–428
29. Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-layer structural model for arterial walls with a Fung-type

model, and issues of material stability. J Biomech Eng 126:264–275
30. Merodio J, Ogden RW (2002) Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch

Mech 54:525–552
31. Merodio J, Ogden RW (2005) Mechanical response of fiber-reinforced incompressible non-linear elastic solids. Int J Nonlinear

Mech 40:213–227
32. Merodio J, Ogden RW (2005) Remarks on instabilities and ellipticity for a fiber-reinforced compressible nonlinearly elastic solid

under plane deformation. Q Appl Math 63:325–333
33. Merodio J, Ogden RW (2005) On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic

solids. Mech Res Commun 32:290–299
34. Merodio J, Ogden RW (2005) Tensile instabilities and ellipticity in fiber-reinforced compressible non-linearly elastic solids. Int J

Eng Sci 43:697–706
35. Walton JR, Wilber JP (2003) Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int J Nonlin Mech

38:441–455
36. Bertoldi K, Gei M (2011) Instabilities in multilayered soft dielectrics. J Mech Phys Solids 59:18–42
37. Abeyaratne R, Knowles J (1999) On the stability of thermoelastic materials. J Elast 53:199–213
38. Dorfmann A, Ogden RW (2010) Electroelastic waves in a finitely deformed electroactive material. IMA J Appl Math 48:1–34
39. Destrade M, Ogden RW (2011) On magneto-acoustic waves in finitely deformed elastic solids. Math Mech Solids 16:594–604
40. Ogden RW (1997) Non-linear elastic deformations. Dover Publications, Mineola
41. Dorfmann AL, Ogden RW (2014) Nonlinear theory of electroelastic and magnetoelastic interactions. Springer, New York
42. Dorfmann A, Ogden RW (2005) Some problems in nonlinear magnetoelasticity. Z Angew Math Phys 56:718–745
43. Dorfmann A, Ogden RW (2006) Nonlinear electroelastic deformations. J Elast 82:99–127
44. Böl M, Weinkert R, Weichert C (2011) A coupled electromechanical model for the excitation-dependent contraction of skeletal

muscle. J Mech Behav Biomed 4:1299–1310

123



216 C. Paetsch, L. Dorfmann

45. Sharifimajd B, Stålhand J (2013) A continuummodel for skeletal muscle contraction at homogeneous finite deformations. Biomech
Model Mechanobiol 12:965–973

46. Dorfmann A, Ogden RW (2010) Nonlinear electroelastostatics: incremental equations and stability. Int J Eng Sci 48:1–14
47. Dorfmann A, Ogden RW (2014) Instabilities of an electroelastic plate. Int J Eng Sci 77:79–101
48. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study

of material models. J Elast 61:1–48
49. Holzapfel GA, Ogden RW (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids: a continuum mechanical

framework. Math Mech Solids 14:474–489
50. LinHT,DorfmannAL, TrimmerBA (2009) Soft-cuticle biomechanics: a constitutivemodel of anisotropy for caterpillar integument.

J Theor Biol 256:447–457
51. Ehret AE, Böl M, Itskov M (2011) A continuum constitutive model for the active behavior of skeletal muscle. J Mech Phys Solids

59:625–636
52. Dorfmann A, Trimmer BA, Woods WA (2007) A constitutive model for muscle properties in a soft-bodied arthropod. J R Soc

Interface 4:257–269

123


	Stability of active muscle tissue
	Abstract
	1 Introduction
	2 Basic equations
	2.1 Kinematics
	2.2 Balance laws and constitutive equations

	3 Incremental equations and stability
	3.1 Incremental motions
	3.2 Homogeneous plane waves

	4 Invariant-based constitutive relation for active muscle tissue
	5 Two-dimensional motion and activation
	6 Illustrative example
	6.1 Specialize underlying deformation
	6.2 Prototype energy function
	6.2.1 Case 1
	6.2.2 Case 2
	6.2.3 Case 3

	6.3 Stability condition given by Eq. (6.7)1
	6.4 Stability related to Eq. (6.7)2

	7 Concluding remarks
	Acknowledgments
	Acknowledgments
	Appendix 1: Derivatives related to invariants
	Appendix 2: Coefficients related to stability
	Derivatives for Case 1
	Derivatives for Case 2
	Derivatives for Case 3

	References




