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Abstract This paper is devoted to the problem of controlling chaos in the Qi system. A time-delayed feedback
control method is applied to suppress chaos to unstable equilibria or unstable periodic orbits. Using a local stability
analysis, we theoretically prove that the Hopf bifurcation occurs. Some numerical simulations are carried out to
support the theoretical predictions. Finally, main conclusions are drawn.
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1 Introduction

Chaotic systems play a critical role in numerous fields such as, for example, information processing, secure commu-
nications, and high-performance circuit design for telecommunications [1]. Chaos is a very attractive subject from
a theoretical point of view; however, it is quite challenging technically [2]. Over the last decade, many techniques
have been proposed to control chaos, and many excellent results have been reported [3—-27]. In 2005, Qi et al. [28]
investigated the complex dynamical behaviors (e.g., familiar period-doubling route to chaos, Hopf bifurcation) of
the following Qi system:

X1 = a(xz — x1) + x2x3x4,

X2 = b(x) + x2) — x1x3x4,

X3 = —cx3 + X1X2X4, (1)
X4 = —dx4 + x1x2x3,

where x1, x2, x3, and x4 are the state variables of the system and a, b, ¢, and d are all positive real constants.

Interestingly, system (2) can generate chaotic phenomena (Fig. 1) given the system parameters a = 30,b =
10,c =1,and d = 10.
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Since chaos can cause irregular behaviors that are sometimes undesirable in practical systems, in many cases, it
is preferable to avoid or eliminate them. Control mechanisms that enable a chaotic system to achieve and maintain
a desired dynamical behavior have potential applications in various disciplines [29]. In 2009, Niah and Sunday [29]
investigated the chaos control of system (2) by applying a recursive backstepping nonlinear controller. The aim of
this paper is to investigate the dynamics of a four-dimensional (4D) chaotic Qi system by considering the effect of
delayed feedback. Analyzing the characteristic equation of a linearized system of the Qi model, we theoretically
prove that under some suitable conditions, a Hopf bifurcation will occur. Numerical results support theoretical
predictions.

2 Controlling chaos via feedback control methods

In this section, we shall apply a conventional feedback method to the dynamical system (2). Our aim is to drag
the chaotic trajectories to the equilibria or the periodic orbits. To reflect the dynamical behaviors of the model
depending on past information, it is reasonable to incorporate a time delay into this system. The signal error of the
current and past states of the continuous time system will be given as feedback to the system itself. Following the
idea of Pyragas [30], we consider two cases.

Case I Add the time-delayed force k1[x> — x2(f — 71)] to the second equation of system (2). In this case, system (2)
takes the form

X1 = a(xz — x1) + x2x3x4,

X2 = b(x1 + x2) — x1x3x4 + k1[x2(2) — x2(t — 11)],

X3 = —cXx3 + X1x2X4, 2)
X4 = —dx4 + x1x2X3.

Case II Add the time-delayed forces ka[x2(f) — x2(t — 72)] and k3[x3(f) — x3(t — 12)] to the second and third
equations of system (2), respectively. In this case, system (2) becomes

X1 = a(x2 — x1) + x2x3X4,
X2 = b(x1 + x2) — x1x3x4 + ka[x2(1) — x2(t — ©2)],
X3 = —cx3 4+ x1x00x4 + k3[x3() — x3(t — )], 3)
X4 = —dx4 + x1x2X3.
Let E(x], x5, x5, x3) be the equilibrium of systems (2) and (3).
Case 1 Delayed feedback on the first equation [system (2)]:
The linearized system of Eq. (2) around E (x}, x3, X3, x3) is given by
X1 = —axy + (a 4+ x5x))x2 + x5x5x3 + X3x3 X4,
X2 = (b+ x3x))x1 + kixo + x{xjx3 + x{x3x4 — kixa(t — 11),
X3 = x3x;x1 + x{xjxo — cx3 + xjx5x4, %)
X4 = x3x5x1 + x{x3x0 + x{x3x3 — dxg.

The characteristic equation of (4) takes the form

A+a —(a + xg‘xjfi —X3X;  —X3X3
_ * K _ —AT]  _ykok koK
det b+x3x)) A=k +ke xyx; X[ X3 _0 )
—x¥x; —x¥xk Adtc  —xixx |7
274 174 172
—X3X3 —Xx]X3 —x{xy A4d
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Fig. 1 Chaotic attractor of system (2) witha = 30,5 = 10,c =1, andd = 10
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that is,

AV a3dd + ol + arh +ag + (53X + bod% + bih + by)e T =0, (6)

where

ap = cdky 4 2(x})2 x5 x3x + c(xFxd)? 4+ d (x4 ki (xfxd)?
+(b + x3x3)[cd(a + x3x}) — 2(x?‘x§)2x§‘xjf - cx]kx;(x;‘)z
—dxFx3(x)? = (a + X5 (xFx)?] — xixil(a + xix])xixid
+ D2 x) — kil (o)? + ()2 xixd (@ + X))
—x3xi(a + X5x)) () 4 (Fxh) it — kixgxg
— (e xDPxdnd 4 ks ()2 + ela + x5 xfxg],

a; = aled — ki(c +d) — (xfxgk)z — (xfxff)z - (x]kxf)z]
—[edky 4 2(x})? x5 x5x) + c(xfx)? +d(xfx])? 4 ki (xfx)?]
+(b + x3xD(c + d)(a + x3x}) — xF3 () + (D]
—x3xj[(a + x3x))xi x5 + xi‘x}f(x;)z + (d — k1)x3x}]
—x3x3[((c — k1)x3x3 + (a + x3x;)xfx5 + xfx;(xj{)z],

ay = alc+d —ky) +cd —ki(c+d) — (xfx5)? — (xfx))? — (xfx))?
—(a + x3x3)(b + x3x3) — (xikxjf)z — (x;xgk)z,

a3 =a+c+d—ki,

by = kiacd — kla(xTxI)z — qu]"(xjf)S(x;)3 — kld(xikxjf)2 — x3x5[x5x5kic + xfxf(xjf)zkl],

by = kia(c +d) + kied — ky (x}x3)? — (x3x) %k,

by =ki(c+d+a),

by = k3.

Next, we will discuss the distribution of the roots of the transcendental equation (6).

Lemma 1 [31] For the transcendental equation

POuem e by =3 4 p Ot p @4 p© 4 [pi”m—l +ot pD p}g)] ehT gL
+ [pim))»"*l + p,(l'f)lk + p,(,’")] e M =,

as (11, 72, 13, . . ., Tyy) vary, the sum of orders of the zeros of P (X, e M e M) in the open right half-plane
can change, and only a zero appears on or crosses the imaginary axis.

When 71 = 0, equation (6) becomes
A 4 (a3 4+ b3)A3 + (@2 + b2)A + (a1 + bi)A + (ag + bo) = 0. 7

We can easily know that all the roots of (7) have a negative real part if the following conditions hold:

Dy =a3+b3 >0, 8)
b b

Dy=det( BT AEONN 4 by)(as +b3) — (a1 +b1) > 0, ©)
1 ar + by

a3 +bz ar+b; 0
D3 = det 1 a)+by ay+ by
0 az+bsy a;+ b

= (a3 + b3)[(az + ba) (a1 + b1) — (a3 + b3)(ao + bo)] — (a1 + b1)* > 0, (10
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a3 +bs ay+ by 0 0
1 ar»+ by ag+ by 0
0 az+bs a;+ b 0
0 1 ar +by ag+ by

Then the equilibrium point E (x}, x5, x3, x}) is locally asymptotically stable when (8)—(11) hold.
We assume that

(H1)  (8)—(11) hold.

Dy = det = (ag + bo) D3 > 0. (11)

For w > 0, iw is a root of (6) if and only if
ot — ;30°1 — ww® + awi + ay + (—b3w’i — brw* + biwi + by)e @™ = 0.
Separating the real and imaginary parts gives
(bo — byw?) cos wt] + (b1w — b30*) sin wt] = ww? — w* — ap,
(biw — b3a)3) coswt] — (bg — bza)z) sin wt] = a3w3 —a|w. (12)
It follows from (12) that
(bo = br0?)* + (b0 = b30°)? = (0" — * —ap)* + (130° —a10)?,
which is equivalent to
o + p30® + pro* + p1o® + po =0, (13)
where
po= ag - b(z), p1 = a% — 2apay + 2boby — b%,
p2 = a(% —2ayaz + 2b1b3 + 2ag — b%, p3 = a% —2ay — b%.

Use the notation z = w?; then (13) takes the following form:

A4 p3d + prt 4+ piz 4 po=0. (14)
Let

h(z) = z* + paz® + paz® + prz + po. (15)
Suppose

(H2) (14) has at least one positive real root.

If all the coefficients of system (2) are given, then we can easily calculate the roots of (14). Since lim,_, ~, £(z) = o0,
we can conclude that if pg < 0, then (14) has at least one positive real root. Without loss of generality, we assume
that (14) has four positive real roots, defined by z1, z2, 23, z4. Then (13) has four positive roots:

w1 =71, w2 =472, w3=473, ws=/Za.
By (12), we derive

(@0} — of — ag)(by — b)) + (a30; — a1wp) (b1 — b3w})

(bo — brw))? + (biwy — byw})?

COS Wi T =

Thus, if we use the notation

N1 2 — wt — ag)(by — bro?) + (az0; — biwy — b3}
) = _[ arccos [ (@2 = @ — a0)(bo iwzk) (a30} a1§ok2)( 1w — b3w}) +2j71],
Wk (bo — brwy)* + (b1 — b3wy)

(16)
where k = 1,2,3,4; j =0, 1,2, ..., then iwy are a pair of imaginary roots of Eq. (6) when 71 = ‘L’l(]{). Define

) : ©)
Ty =T, = min {t,,'}, @)= wio. 17
1o 140 k€{1’2’3’4}{ ) 0 %0 17)
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()

Let A(t1) = a(t1) + iw(71) be a root of (6) around 7y = 7", where a(71) and w(t;) satisfy a(r](,{)) = 0 and

w(rl(,{) ) = wy. Differentiating both sides of (6) with respect to t; yields

[ da }_1 @2 430302 + 2a0) + ag)e 30327 + 2bo). + by T
dl’l N

Letting A = 1w, 71 = tl(,i), we have

“{[&]

where

_ p1cos a)krl(,i) + posin a)krl(,i) + 03

A

’

)\=ia)k,t1=rl(,{) ]

p1 = (ag — 3aza}) (bswi — b1) + (4o} + 2a0) (bo — bro}),
p2 = (ao — 3azw}) (by — brw}f) — (4w} + 2ar0%) (b3wy — by),
p3 = (b1 — 3b3w}) (b3wi — by) + 2b2(bo — brow})

A = (b3wi — biay)? + (bo — brw})?.

Suppose that the following condition holds:

(H3) picoswy fl(li()) + 2 sin a)ktl(,i) + p3 #0.

A(b323 4+ boA2 + biA + by) Ab3)3 +boA2 + b +by) A

According to the preceding analysis and the results of Kuang [32] and Hale [33], we have the following theorem.

Theorem 2 If (H1) and (H2) hold, then the equilibrium E (x{, x5, x5, x3) of system (2) is asymptotically stable
when Ty € [0, 11,). In addition to (H1) and (H2), if (H3) holds, then system (2) undergoes a Hopf bifurcation at the

equilibrium E(x, x5, x5, x;) when t| = Tl(l{)’ k=1,2,3,4,7=0,1,2,....

Remark 3 1t is shown that if (H1) and (H2) are fulfilled, then the states x; (i = 1, 2, 3, 4) of system (2) will tend
to x;* when 7 € [0, 71,). If (H1), (H2), and (H3) hold, then the states x; (i = 1,2, 3, 4) of system (2) may coexist
and remain in an oscillatory mode near the equilibrium E (x{, x5, x5, x;). Thus, chaos vanishes, which means that

chaos can be controlled.

Case 2 Delayed feedback on second and third equations [system (3)]
The linearized system of Eq. (3) around E (x}, x3, x3, x;) is given by
X1 = —axi + (a + x3x))x2 + x3x5x3 + x3x3 X4,

X2 = (b + x3x)x1 + kaxa + x{xix3 + x{x3xs — koxo(t — 1),

X3 = x3x5x1 + x{xjx2 + (k3 — ¢)x3 + x{ x5 x4 — kaxz(t — 12),

X4 = x5x3x1 + x{x3x0 + x7x3x3 — dxg.

The characteristic equation of (19) takes the form

A+a —(a + x3x}) —x3x} —X5X3
_ * Lk _ —\T kK k¥
det b+ x3x)) A—ky+koe xyxy . XAy 0
—x3x} —x{x) A —ky+c+ ke —x{x3 ’
—x3x3 —x{x3 —x{x; A+d
that is,

M esrd 4 e 4 e+ co + (d3A + dar® + dih + do)e T 4 ege T =0,

@ Springer
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where

co = aldky(c — kp) — 2x3x5x} (6 + (xFxD) (e — ko) 4+ (xfx})2d
ko (xFx)?] + (b + x3xPld(a + x3x}) (ko — ¢) — xF(x3)*x3x}
—(F?xix) — (¢ — k)xfxd ()2 + dxixs (x)? — (@ + x3x) (x5
+x5x)[(a + x3x))x{x;d — (xTx;‘)zx;xZ + koxix3 (x;)2 + (xfxg")zx;xjf
—dkpxix} + (X2 x3x5(a + x5x)] — 5xi (@ + x5 () k)
—kpx3x3 (¢ — ko) — kox ()X} + (¢ — kp) (@ + x3x})xxs,

1 = dka(c — ko) — 223 x5x} + (Fxd)(c — ko) 4+ d(xfx}) — ka(xfx3)?
+alky(c — ko) + d(c — 2ka) — (x{x§)* + (xx)* + (x{x3)°]
—(b 4 x3xD(a + X5x)(c +d — ko) + xFx5 () — xfxd (6D
+x5x)[(a + x3x))xix) — x;kx:f(x;‘)z + (d — k2)x3x}]
x5 x5 [(ky — ) x3xs — xFxi () — (a + x5x)xfxs],

2 = ka(c — ko) + d(c — 2k) — (xFxD)? + (xFx1)? 4+ a(d + ¢ — 2k2)
—(b+ x3x3)(a + x3x3) — (x;x;)Z - (xé‘x%‘)z,

c3=a+b+c—2k,

do = a(cky — k3)d — aky(xx$)? + aka(x}x3)?,
—(b + 5xDldka(a + x3x}) + xFxd () ks]

+x5x) [dkoxsxy — kzxi"x;(x;)z] + x53x5[cka — kzxf‘(xik)zxf{ + ka(a + x3x)x{x31,

dy = (ka — 2k3)d — ka(x}x$)* + ka(xfx3)* + alcky — 2k3 + 2kad)
—(b + x3x))(a + x3x])ko + x5 x5 (kox3x) — kgxfxgk(x;‘)z) — 2k (x5x3),
dy = cky — 2k3 + 2kad + 2kaa,
d3 = 2k3,
eo = ak3.

Multiplying e*™ on both sides of (20), we have
O 4 323 4 e 4 c1h + c0)et™ + (dsdd + dar? + dia + do) + epe 2 = 0.

Next, we will focus on the distribution of the roots of the transcendental equation (21).
When 7o = 0, (21) reads as

A+ (3 4+ d3)A% + (c2 + d2)A* + (c1 +dDA +co +do + eg = 0.
All the roots of (22) have a negative real part if the following conditions hold:

Dy =c3+d; >0,

- d d

D2=det(CST Par 1)=(Cz+d2)(03+d3)—(61+d1)>0,
c2+dy

B c3+ds o +d 0

D3 = det 1 c+d co + do + eg

0 c3+c3 c1+cp
= (c3 + d3)[(c2 + d2)(e1 +dy) — (c3 + d3)(co + do + €0)] — (¢c1 +d1)* > 0,

2y

(22)

(23)
(24)

(25)
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c3+ds cp+d; 0 0
= 1 cr+dy co+dy+ e 0 _
D4 = det 0 s+ ds e1 +dy 0 = (co +dy + eo)D3 > 0.
0 1 c+ds co +do + eo

Then the equilibrium point E(x}, x5, x5, x) is locally asymptotically stable when (23)—(26) hold.
We assume that

(H4)  (23)—(26) hold.

For @ > 0, iw is a root of (21) if and only if

(—@* — 3@%1 — 2@” + c1@ic)e®? + (—d3@’i — drd® + d1 i + dp) + ege ™ = 0.

Separating the real and imaginary parts gives

b — 0@” + o + eg) cos DTy + (036)3 — @) Sin o1y = dr&* — dy,

(0
(c1d0 — C3&)3) coswt) + (c?)4 —@” + co — ep) SinwT) = d3&)3 —d®.
It follows from (27) that

(dr@} — do) (@} — 2@ + co — eo) — (d3d} — dyax)(c3@} — 1)

’

COSWTy) = - - - -
(wz — Cza)]% +co)? — e% + (C3a)£ — C](,()]%)2

(d307 — d16p) (@ — 207 + co + €0) — (dad} — do)(c1k — c3@})

sin w1y, =

(@ — 20 + c0)? — €§ + (3] — c1@})?
which leads to
8120"% + 810" + 81000 + 800° + 830° + 8707 + 86@° + 850 + 840 + 830° + 8,0 + 81 =0,
where
81 = dg(eg — c0)* — c,
8, = 2do(cods — eoda + cady — c1dy)(eg — co) + 20¢2 + (c1do — cody — eody)?,
33 = 2d3(co + eo)(c1do — codi — eod1),
84 = (coda — eods + cady — c1d1)? + 2do(eg — co)(c1ds — cady + c1dy — do)
+2(cady — dacy — c3do)(crdy — cody — eod) + (co + do)>dy — 20 — ¢} — 3,
ds = 2d3(cod) — dac1 — c3dp)(co + eo) — 2cad3(ci1do — codi — eod1) + 2cic3,
86 = 2do(da — c3d3)(eo — co) + (cad) — dacy — ¢3do)? 4 2¢2 — ¢ — 32
+2(c1d3 — ¢ — 2dy + c3dy — do)(coda — eoda + cady — c1dy) — 2cad3(co + o),
87 = 2d3(c1dp — cody — epdy) + 2d3(drc3 — dy)(co + eg) — 2c2d3(cady — dacy — c3dp),
83 = (c1d3 — cady + c3dy — do)* + 2(da> — c3d3)(coda — eoda + cady — c1d)y)
+(c2d3)? 4 2d3(co + €) + 2(dacy — dy)(c2dy — dacy — c3dp) — 1,
89 = 2d3(cod) — dac1 — c3dp) — 2c2d3(dacs — dy),
810 = 2(d2 — c3d3)(c1d3 — cady + c3dy — do) + (dacs — dy)* — 2243,
811 = 2d3(dzc3 — dy),
812 = (da — c3d3)* + dj.
Let
h(@) = 81202 4 8110" + 8100'° + 89@° + 83@° + 870" + 860° + 85@° + 840" + 830" + 820% + 1.
We assume that

(H5)  (28) has at least one positive real root.
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If all the coefficients of system (3) are given, it is not difficult to calculate the roots of (28). Since limg,_, oo h (®) = o0,
we can conclude that if §; < 0, then (28) has at least one positive real root.

Suppose that Eq. (28) has positive roots. Without loss of generality, we assume that it has 12 positive roots,
denoted by o (k = 1,2,3..., 12). If we use the notation

(]) 1 [arccos((‘bd)l% _ dO)(a)é _ 025)]% + co — 6’()) — (d}d)i — dlé;)k)(C:%C’Z)i — Cl&)k)) + 2]7_[] , (29)

Dk =

O (@f — 20} + c0)? — € + (c3@d; — c1@})?

wherek =1,2,...,12,j =0,1,2, ..., then iy are a pair of imaginary roots of Eq. (21) when 7, = Tz('lg)- Define
0 . 0 ~

Ty = Tz(k()) = el rznén ) {Tz(k)} Dy = Oo- 30)

Let A(1p) = a(1)+id(12) be aroot of (21) around 7, = TZ(k ,and leta(rzi)) = 0and a)(réli)) = w. Differentiating
both sides of (21) with respect to 7, yields
AL (@A3 43302 + 2000 + )er? + 3d3A% + 2doA +di T
dn B Alege™*2 —er2 (A + 343 + A2 + c1A + ¢p)] A

Letting A = 1a)k, = tz(,i), we obtain

dr | 01 +i6 0163 + 0,04
Rey | — = T T 23 . 3

Al loign=) O3+ifa 65 +6;
where

)

= (c] — 3C3(I)1%) cos c?)kr(’) + (4a)k — 2¢chp) sma)kr(’) +d; — 3d3c?),%,

(/) (/)+2d26?)k,

= (c1 — C3a)k)wk cos a)kt(/) + (eg — co + cza)k — a)k)a)k sin a)kr(/),

04 = (eg — co + czwk — wk)a)k cos a)krzj)(cla)k — C3a)k)wk cos a)ktm.

6h = (c1 — SC3a)k) sin gty + (2cawp — 4a)k) COS Wi T

Assume that the following condition holds:

(H6) 0103 + 6,04 # O.

Based on the foregoing analysis and the results of Kuang [32] and Hale [33], we obtain the following theorem.
Theorem 4 If (H4) and (HS) hold, then the equilibrium E(x{, x5, x3, x}) of system (3) is asymptotically stable
when 1ty € [0, 12,). In addition to (H4) and (HS), if (H6) holds, then system (3) undergoes a Hopf bifurcation at the
equilibrium E (x7, xz,x3,x4) when 1) = rzj) k=1,2,...,12,j=0,1,2,...

Remark 5 Tt is shown that if (H4) and (HS) are satisfied, then the states x; (i = 1, 2, 3, 4) of system (2) will tend
to x;" when 1; € [0, 72,). If (H4), (HS), and (H6) hold, then the states x; (i = 1, 2, 3, 4) of system (2) may coexist
and remain in an oscillatory mode near the equilibrium E (x}, x3, x5, x3). Thus, chaos vanishes, which means that
chaos can be controlled.

3 Computer simulations

In this section, we present some numerical results of systems (2) and (3) to verify the analytical predictions obtained
in the previous section. Let us consider the following two systems:

X1 = 30(xy — x1) + xpx3X4,

X2 = 10(x1 + x2) — x1x3x4 — Sl (t) — x2(t — 1)1,

X3 = —x3 + x1X2X4, 31
X4 = —10x4 + x1x2x3
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Fig. 2 Chaos vanishes when 71 = 0.1 < 711, ~ 0.162. The equilibrium E(—2.2129, —1.4290, 7.2141, 2.2813) is asymptotically
stable; the initial value is (—0.5, —1, 6.5, 1)
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Fig. 3 Chaos vanishes when 77 = 02 > 71, ~ 0.162. The Hopf bifurcation occurs from the equilibrium

E(—2.2129, —1.4290, 7.2141, 2.2813); the initial value is (—0.5, —1, 6.5, 1)
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Fig. 4 Chaos vanishes when 7 = 0.1 < 15, ~ 0.164. The equilibrium E(—2.2129, —1.4290, 7.2141, 2.2813) is asymptotically

stable; the initial value is (—0.5, —1, 6.5, 1)
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Fig. 5 The chaos vanishes when » = 02 > 1, ~ 0.164. The Hopf bifurcation occurs from the equilibrium

E(—=2.2129, —1.4290, 7.2141, 2.2813). The initial value is (—0.5, —1, 6.5, 1)
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and

X1 = 30(x2 — x1) + x2x3x4,

X2 = 10(x1 + x2) — x1x3x4 — 6[x2(2) — x2(1 — 2)],

X3 = —x3 + x1x2x4 — 4[x3(t) — x3(t — ©2)], (32)
X4 = —10x4 + x1x2X3,

respectively. We can easily obtain that systems (33) and (33) have an equilibrium E(—2.2129, —1.4290, 7.2141,
2.2813).

For system (32), we can easily check that (H1)—(H3) are satisfied. We let j = 0, and, using MATLAB 7.0
software, we derive wg ~ 0.7004, 71, ~ 0.162. Thus, the equilibrium E(—2.2129, —1.4290, 7.2141, 2.2813) is
asymptotically stable when 71 < 71, ~ 0.162, which is illustrated in Fig. 2. When 71 = 71, ~ 0.162, Eq. (32)
undergoes a Hopf bifurcation at the equilibrium E(—2.2129, —1.4290, 7.2141, 2.2813), i.e., a small-amplitude
periodic solution occurs near E(—2.2129, —1.4290, 7.2141, 2.2813) when T is close to 71, ~ 0.162, which can
be shown in Fig. 3.

For system (33), we can check that (H4)-(H6) are satisfied. Then @y ~ 0.6809, 1o, ~ 0.164. Thus, the
equilibrium E(—2.2129, —1.4290, 7.2141, 2.2813) is asymptotically stable when 7o < 1, &~ 0.164, which is
illustrated in Fig. 4. When 1o = 13, ~ 0.164, Eq. (33) undergoes a Hopf bifurcation around the equilibrium
E(—2.2129, —1.4290, 7.2141, 2.2813) when 1 is close to 7, ~ 0.164, which is shown in Fig. 5.

Remark 6 Since the original system (2) is chaotic, there is no stabilized orbit. When we add feedback perturbations
to the original system (2), then under some suitable conditions, stabilized orbits will occur. Thus, we can conclude
that the stabilized orbits of the original system (2) are delay-induced.

4 Conclusions

In this paper, a feedback control method was applied to suppress the chaotic behavior of a 4D chaotic Qi system. By
adding a time-delayed force to the second equation of the 4D chaotic Qi system, we focused on the local stability of
the equilibrium E (x}, x3, x3, x3) and local Hopf bifurcation of the 4D delayed chaotic Qi system. It was shown that
if (H1) is satisfied, then the 4D delayed chaotic Qi system is asymptotically stable when 71 € [0, 71,). If (H1)—(H3)
hold, a sequence of Hopf bifurcations occur around the equilibrium E(x}, x5, x5, x}), that is, a family of periodic
orbits bifurcate from the equilibrium E (x*, y*, z*). Adding a time-delayed force to the second and third equations
of the 4D chaotic Qi system, we analyzed the local stability of the equilibrium E(x}, x3, x5, x3) and local Hopf
bifurcation of the 4D delayed chaotic Qi system. We found that if (H4) is satisfied, then the 4D delayed chaotic
Qi system is asymptotically stable when 7 € [0, 2,). If (H4)—(H6) hold, a sequence of Hopf bifurcations occurs
around the equilibrium E (x]k , xi" , x%‘ , xj{). All the cases showed that chaos vanishes and can be suppressed. Some
numerical simulations were carried out to visualize the theoretical findings.
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