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Abstract Based on rotated block triangular preconditioners proposed by Bai in (Sci China Math 56, 2013 ), we
give a class of inexact rotated block triangular preconditioners for block two-by-two matrices of real square blocks
W and T , which avoid inversion of thematrix αW+T exactly at each step of solving the linear systems. The spectral
properties of the corresponding preconditioned matrices are analyzed. Numerical results show that these inexact
rotated block triangular preconditioners are more effective than the exact ones when they are used to accelerate
Krylov subspace iteration methods for solving block two-by-two linear systems.

Keywords Block two-by-two matrix · Block triangular preconditioning · Inexact preconditioning ·
Incomplete factorization

1 Introduction

We consider an iterative solution for the large sparse system of linear equations

Ax ≡
(
W −T
T W

) (
y
z

)
=

(
f
g

)
≡ b, (1.1)

where the matrix A ∈ R
2m×2m has a block two-by-two structure with W ∈ R

m×m and T ∈ R
m×m . Note that the

matrix A is nonsingular if andonly if null(W )∩null(T ) = {0} and±i is not a generalized eigenvalue of thematrix pair
(W, T ) (i.e., T x �= ∓iWx for some x �= 0), where null(·) denotes the nullspace of the corresponding matrix and i =√−1 is the imaginary unit. Many practical problems arising from scientific computing and engineering applications
may require the solution of a linear system of the form (1.1), for example, computational electrodynamics [1,2],
optimization [3–7], optimal control [8–10], and real equivalent formulations of complex linear systems [11–13];
see also [14–17].

A number of iterative methods have been proposed for the block two-by-two linear system (1.1) such as C-to-R
iteration methods [11], alternating splitting iteration methods [18–20], preconditioned Krylov subspace iteration
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88 C. Lang, Z.-R. Ren

methods [21], and so on; see also [22–24]. To solve the block two-by-two linear system (1.1) effectively, Bai et al., in
[9], established a class of preconditioned and modified Hermitian and skew-Hermitian splitting (PMHSS) iteration
methods by modifying and preconditioning the Hermitian and skew-Hermitian splitting (HSS) iteration method
[18,25,26]. The PMHSS methods are essentially a kind of splitting iteration method, and the splitting matrices

F(α) =
[
1 + 1

α

]
Q

(
αW + T 0

0 αW + T

)
, with Q = 1

2

(
I −I
I I

)
, (1.2)

can be used as preconditioners called PMHSS preconditioners for the matrix A in (1.1), where α is a given positive
constant and I is the identity matrix. The authors established the convergence theory of these PMHSS methods and
analyzed the spectral properties of the PMHSS preconditioned matrix F(α)−1A when the matrices W and T were
symmetric positive semidefinite in [9]. Numerical experiments showed that the PMHSS preconditioners were quite
competitive when used to precondition Krylov subspace iteration methods such as the generalized minimal residual
(GMRES) method.

Based on structures of the PMHSS preconditioners, Bai in [12] recently constructed a class of rotated block
triangular preconditioners, called rotated block lower triangular (RBLT), rotated block upper triangular (RBUT),
and rotated block triangular product (RBTP) preconditioners, for a block two-by-two linear system of the form
(1.1). These rotated block triangular preconditioners are applicable not only to symmetric positive semidefinite
matrices W and T but also in cases where either W or T is nonsymmetric. The author analyzed the eigenproperties
and derived bounds for the degrees of the minimal polynomials of the preconditioned matrices. It was shown that
the GMRES iteration method incorporated with these rotated block triangular precondtioners could be competitive
with and even more efficient than that incorporated with the PMHSS preconditioner.

Note that the rotated block triangular preconditioning processes in [12] involve solving linear subsystems of the
coefficient matrix αW + T . Thus, it is necessary to invert αW + T at each step of the preconditioning processes.
In many practical applications, the matrices W and T are very large and sparse, and much more computing time
is required to invert the matrix αW + T exactly. By making use of the idea of inexact preconditioning [25,27,28],
in this paper we present a class of inexact rotated block triangular preconditioners for a block two-by-two linear
system of the form (1.1), which avoids inversion of the matrix αW + T exactly at each step of solving the linear
subsystems.We can take advantage of the structures of thematricesW and T to solve the linear subsystems inexactly.
For example, we use incomplete Cholesky factorization when the matrix αW + T is symmetric positive definite
or incomplete LU factorization when the matrix αW + T is nonsymmetric. Then the spectral properties of these
inexact preconditioned matrices are analyzed, and the effectiveness of the GMRES iteration method incorporated
with these inexact rotated block triangular preconditioners is shown when compared with the exact ones.

The outline of this paper is as follows. In Sect. 2 we present the inexact rotated block triangular preconditioners
and describe procedures for computing the generalized residual equations with these preconditioners. The spectral
properties of the preconditioned matrices are analyzed in Sect. 3. In Sect. 4, we use numerical results to show the
effectiveness of these inexact preconditioners. Finally, in Sect. 5, we end the paper with some concluding remarks.

2 Inexact rotated triangular preconditioning

Let α be a real constant. In [12] the author constructed rotated block triangular preconditioners for the block two-
by-two matrix A in (1.1). When the matricesW and T are large and sparse, it is costly to compute the inverse of the

matrix αW + T exactly. Assume that the matrix ˜αW + T , an approximation to the matrix αW + T , is nonsingular.
To save computing time, we present three inexact rotated block triangular preconditioners by following the approach
in [12], which are an inexact rotated block lower triangular (IRBLT) preconditioner

L̃(α) = 1√
α2 + 1

G

(
˜αW + T 0

αT − W ˜αW + T

)
, (2.1)

an inexact rotated block upper triangular (IRBUT) preconditioner
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Inexact rotated block triangular preconditioners 89

Ũ (α) = 1√
α2 + 1

G

(
˜αW + T W − αT

0 ˜αW + T

)
, (2.2)

and an inexact rotated block triangular product (IRBTP) preconditioner

P̃(α) = 1√
α2 + 1

G

(
˜αW + T 0

αT − W ˜αW + T

)(
˜αW + T 0

0 ˜αW + T

)−1 (
˜αW + T W − αT

0 ˜αW + T

)
(2.3)

for the matrix A, where the matrix

G = 1√
2

(
I −I
I I

)

is a block Givens rotation. Note that G = √
2Q, with Q being the matrix defined in (1.2). It is expected that these

inexact preconditioners will be more effective than the exact ones in [12].
When these inexact rotated block triangular preconditioners are used to accelerate the convergence rate of Krylov

subspace iteration methods, it is necessary to solve sequences of generalized residual equations of the forms

L̃(α)v = r, Ũ (α)v = r, and P̃(α)v = r, (2.4)

where r = (rTa , rTb )T and v = (vTa , vTb )T are the current and generalized residual vectors, respectively. Here and in

the sequel, (·)T denotes the transpose of a vector or a matrix. As these inexact preconditioners L̃(α), Ũ (α), and
P̃(α) are multiplicative structures, the generalized residual equations in (2.4) can be accomplished by solving only

subsystems of the same coefficient matrix ˜αW + T . Thus, we can compute the generalized residual vectors v in
(2.4) by the following procedures.

Procedures for Computing the Generalized Residuals

Set r̃a =
√

α2+1
2 (ra + rb) and r̃b =

√
α2+1
2 (−ra + rb).

• Computing v from L̃(α)v = r :

– Solve va from ˜(αW + T )va = r̃a .

– Solve vb from ˜(αW + T )vb = (W − αT )va + r̃b.

• Computing v from Ũ (α)v = r :

– Solve vb from ˜(αW + T )vb = r̃b.

– Solve va from ˜(αW + T )va = (αT − W )vb + r̃a .

• Computing v from P̃(α)v = r :

– Solve ṽa from ˜(αW + T )ṽa = r̃a .

– Solve vb from ˜(αW + T )vb = (W − αT )ṽa + r̃b.

– Solve va from ˜(αW + T )va = (αT − W )vb + r̃a .

From the foregoing procedures for computing the generalized residual equations, we see that the only difference
between our proposed inexact preconditioners and the exact ones in [12] is that we solve the subsystems of the

coefficient matrix ˜αW + T instead of αW + T . Because the matrix ˜αW + T is an approximation to the matrix
αW + T , we may choose it by making use of the special structure of αW + T . Here, we adopt incomplete
triangular factorization methods [21] to implement the inexact preconditioning processes. More specifically, we
use incomplete LU factorization when αW + T is nonsymmetric and incomplete Cholesky factorization when it is
symmetric positive definite.
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90 C. Lang, Z.-R. Ren

3 Eigenvalue properties of preconditioned matrices

In this section, we analyze the eigenvalue properties of the preconditioned matrices L̃(α)−1A, Ũ (α)−1A, and
P̃(α)−1A.

We first introduce some necessary notations that will be used in the subsequent discussions. Denote the matrices

M(α) = ˜(αW + T )−1(αW + T ), Ṽ (α) = ˜(αW + T )−1(W − αT ),

and

R̃(α) =
(

M(α) Ṽ (α)

Ṽ (α)(M(α) − I ) M(α) + Ṽ (α)2

)
,

S̃(α) =
(
M(α) + Ṽ (α)2 Ṽ (α)(I − M(α))

−Ṽ (α) M(α)

)
,

R̃s(α) =
(
M(α) + Ṽ (α)2(I − M(α)) Ṽ (α) − Ṽ (α)3 − Ṽ (α)M(α)

Ṽ (α)(M(α) − I ) M(α) + Ṽ (α)2

)
.

It then follows from(
0 −I
I 0

)
R̃(α)

(
0 I

−I 0

)
= S̃(α)

that R̃(α) and S̃(α) are orthogonally similar matrices. In addition, we introduce

I (α) = 1√
2(α2 + 1)

(
(α + 1)I (α − 1)I
(1 − α)I (α + 1)I

)
,

which is a block two-by-two orthogonal matrix, and the corresponding spectral decomposition is

I (α) = �(α)�(α)�(α)∗,

where

�(α) = 1√
2

(
I iI
iI I

)
and �(α) = 1√

2(α2 + 1)

(
((α + 1) + i(α − 1))I 0

0 ((α + 1) − i(α − 1))I

)
.

Here and in the sequel, (·)∗ and ‖ · ‖ are used to represent the conjugate transpose and the Euclidean norm of a
vector or a matrix, respectively. Let

D(α) =
(
M(α) 0
0 M(α)

)
(3.1)

and

D̃(α) = D(α)�(α) = 1√
2(α2 + 1)

(
((α + 1) + i(α − 1))M(α) 0

0 ((α + 1) − i(α − 1))M(α)

)
(3.2)

be two block-diagonal matrices.
In what follows, we derive equivalent expressions for the preconditioned matrices L̃(α)−1A, Ũ (α)−1A, and

P̃(α)−1A and demonstrate the corresponding spectral properties.

Theorem 3.1 Let W and T be two real square matrices such that ˜αW + T is nonsingular, with α being a real
constant. Then, for the preconditioning matrices L̃(α), Ũ (α), and P̃(α) defined in (2.1), (2.2), and (2.3), it holds
that
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Inexact rotated block triangular preconditioners 91

(i) L̃(α)−1A = R̃(α)I (α), Ũ (α)−1A = S̃(α)I (α), and P̃(α)−1A = R̃s(α)I (α);
(ii) If M(α) is diagonalizable, i.e., there exist a diagonal matrix �(α) = diag(μ1, μ2, . . . , μn) and a nonsingular

matrix Q(α) such that M(α) = Q(α)−1�(α)Q(α), then

(ii1) The eigenvalues of L̃(α)−1A and Ũ (α)−1A are located respectively within the same union of circles
having its center c̃± j (α) and radius δ̃(α) on the complex plane, where

c̃± j (α) = 1√
2(α2 + 1)

((α + 1) ± i(α − 1))μ j

and

δ̃(α) = ‖Q−1(α)‖‖Q(α)‖‖Ṽ (α)‖
{√

1 + ‖Ṽ (α)‖2 + ‖M(α) − I‖
}

;

(ii2) The eigenvalues of P̃(α)−1A are located respectively within the union of circles having its center
c̃± j (α) and radius δ̃s(α) on the complex plane, where

c̃± j (α) = 1√
2(α2 + 1)

((α + 1) ± i(α − 1))μ j

and

δ̃s(α) = ‖Q−1(α)‖‖Q(α)‖
{
‖Ṽ (α)‖2

√
1 + ‖Ṽ (α)‖2 + ‖Ṽ (α)‖‖M(α) − I‖ (‖Ṽ (α)‖ + 1

) }
.

Proof We first prove (i). We only demonstrate the product expression of the matrix L̃(α)−1A, and those about the
IRBUT and the IRBTP preconditioning matrices Ũ (α) and P̃(α) can be derived analogously to L̃(α). To this end,
we define the matrix

J (α) = 1√
α2 + 1

(
α I I
−I α I

)
.

By straightforward computation, we obtain J (α)−1 = J (α)T, J (α)−1GT = I (α), and

AJ (α) = 1√
α2 + 1

(
αW + T W − αT
αT − W αW + T

)
. (3.3)

Because the matrices A and GT satisfy AGT = GTA and

L̃(α)−1 =
√

α2 + 1

⎛
⎝ ( ˜αW + T )−1 0

Ṽ (α)( ˜αW + T )−1 ( ˜αW + T )−1

⎞
⎠GT, (3.4)

it follows from (3.3) and (3.4) that

L̃(α)−1A =
√

α2 + 1

⎛
⎝ ( ˜αW + T )−1 0

Ṽ (α)( ˜αW + T )−1 ( ˜αW + T )−1

⎞
⎠ AGT

=
√

α2 + 1

⎛
⎝ ( ˜αW + T )−1 0

Ṽ (α)( ˜αW + T )−1 ( ˜αW + T )−1

⎞
⎠ (AJ (α))(J (α)−1GT)

=
⎛
⎝ ( ˜αW + T )−1 0

Ṽ (α)( ˜αW + T )−1 ( ˜αW + T )−1

⎞
⎠ (

αW + T W − αT
αT − W αW + T

)
I (α)
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92 C. Lang, Z.-R. Ren

=
(

M(α) Ṽ (α)

Ṽ (α)(M(α) − I ) M(α) + Ṽ (α)2

)
I (α)

= R̃(α)I (α).

This shows the validity of (i).
Nowwe demonstrate (ii). We only prove the eigenvalue properties of the IRBLT preconditioned matrix L̃(α)−1A

in (ii1) because those of the IRBUT preconditioned matrix Ũ (α)−1A can be obtained similarly. From (3.1) we have

R̃(α) = D(α) + Ỹ (α),

with

Ỹ (α) =
(

0 Ṽ (α)

Ṽ (α)(M(α) − I ) Ṽ (α)2

)
=

(
Ṽ (α) 0
0 Ṽ (α)

) (
0 I

M(α) − I Ṽ (α)

)
.

Thus, it can be obtained from (i) that

L̃(α)−1A = R̃(α)I (α) = D(α)I (α) + Ỹ (α)I (α)

and

�(α)∗ L̃(α)−1A�(α) = �(α)∗D(α)I (α)�(α) + �(α)∗Ỹ (α)I (α)�(α)

= �(α)∗D(α)�(α)�(α)∗ I (α)�(α) + �(α)∗Ỹ (α)I (α)�(α)

= D(α)�(α) + �(α)∗Ỹ (α)I (α)�(α)

= D̃(α) + �(α)∗Ỹ (α)I (α)�(α).

Here we have used the fact that �(α) is unitary and �(α)∗D(α)�(α) = D(α). Because I (α) is orthogonal, we
can further obtain

‖�(α)∗Ỹ (α)I (α)�(α)‖ = ‖Ỹ (α)‖
≤ ‖Ṽ (α)‖

∥∥∥∥
(

0 I
M(α) − I Ṽ (α)

)∥∥∥∥
≤ ‖Ṽ (α)‖

{∥∥∥∥
(
0 I
0 Ṽ (α)

)∥∥∥∥ +
∥∥∥∥
(

0 0
M(α) − I 0

)∥∥∥∥
}

≤ ‖Ṽ (α)‖
{√

1 + ‖Ṽ (α)‖2 + ‖M(α) − I‖
}

.

Therefore,

‖�(α)∗ L̃(α)−1A�(α) − D̃(α)‖ ≤ ‖Ṽ (α)‖
{√

1 + ‖Ṽ (α)‖2 + ‖M(α) − I‖
}

.

Let λ be an eigenvalue of thematrix L̃(α)−1A. Because�(α) is a unitarymatrix, λ is also an eigenvalue of thematrix
�(α)∗ L̃(α)−1A�(α). If M(α) is diagonalizable, i.e., M(α) = Q(α)−1�(α)Q(α), then from (3.2) we obtain

D̃(α) = 1√
2(α2 + 1)

(
Q(α)−1 0

0 Q(α)−1

)

×
(

((α + 1) + i(α − 1))�(α) 0
0 ((α + 1) − i(α − 1))�(α)

)(
Q(α) 0
0 Q(α)

)
,
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Inexact rotated block triangular preconditioners 93

where �(α) = diag(μ1, μ2, . . . , μn). Denoting c̃± j (α) = ((α + 1) ± i(α − 1))μ j/
√
2(α2 + 1), we know that

c̃± j (α) are eigenvalues of the matrix D̃(α). From the Bauer–Fike theorem [29,30] we have

|λ − c̃± j (α)| ≤ ‖Q(α)−1‖‖Q(α)‖‖�(α)∗ L̃(α)−1A�(α) − D̃(α)‖
≤ ‖Q(α)−1‖‖Q(α)‖‖Ṽ (α)‖

{√
1 + ‖Ṽ (α)‖2 + ‖M(α) − I‖

}
= δ̃(α).

This verifies the validity of (ii1).
Finally, we prove (ii2). By rewriting R̃s(α) = D(α) + Ys(α) with

Ys(α) =
(
Ṽ (α)2(I − M(α)) Ṽ (α) − Ṽ (α)3 − Ṽ (α)M(α)

Ṽ (α)(M(α) − I ) Ṽ (α)2

)
,

from (i) we obtain

P̃(α)−1A= R̃s(α)I (α) = D(α)I (α) + Ỹs(α)I (α)

and, thereby,

�(α)∗ P̃(α)−1A�(α) = �(α)∗D(α)I (α)�(α) + �(α)∗Ỹs(α)I (α)�(α)

= D(α)�(α) + �(α)∗Ỹs(α)I (α)�(α)

= D̃(α) + �(α)∗Ỹs(α)I (α)�(α). (3.5)

Moreover, it holds that

‖�(α)∗Ỹs(α)I (α)�(α)‖=‖Ỹs(α)‖

≤
∥∥∥∥
(
0 −Ṽ (α)3

0 Ṽ (α)2

)∥∥∥∥+
∥∥∥∥∥
(
Ṽ (α)2(I−M(α)) Ṽ (α)(I−M(α))

Ṽ (α)(M(α)− I ) Ṽ (α)

)∥∥∥∥∥
≤‖Ṽ (α)‖2

√
1+‖Ṽ (α)‖2+

∥∥∥∥
(
Ṽ (α)(I−M(α)) 0

0 Ṽ (α)(I − M(α))

) (
Ṽ (α) I
−I 0

)∥∥∥∥
≤‖Ṽ (α)‖2

√
1+‖Ṽ (α)‖2+‖Ṽ (α)‖‖M(α)− I‖

∥∥∥∥
(
Ṽ (α) I
−I 0

)∥∥∥∥
≤‖Ṽ (α)‖2

√
1+‖Ṽ (α)‖2+‖Ṽ (α)‖‖M(α)− I‖

{∥∥∥∥
(
Ṽ (α) 0
0 0

)∥∥∥∥+
∥∥∥∥
(

0 I
−I 0

)∥∥∥∥
}

≤‖Ṽ (α)‖2
√
1+‖Ṽ (α)‖2+‖Ṽ (α)‖‖M(α)− I‖ (‖Ṽ (α)‖+1

)
. (3.6)

Therefore, from (3.5) and (3.6) we have

‖�(α)∗ P̃(α)−1A�(α) − D̃(α)‖ ≤‖Ṽ (α)‖2
√
1 + ‖Ṽ (α)‖2 + ‖Ṽ (α)‖‖M(α) − I‖ (‖Ṽ (α)‖ + 1

) = δ̃s(α). (3.7)

Analogously to the derivation of (ii1), from (3.7) we immediately obtain the validity of (ii2). ��

For the special case ˜αW + T = αW + T , i.e., M(α) = I , the inexact rotated block triangular preconditioners
change into the exact ones, and the results given in Theorem 3.1 are the same as those in [12]. We may guarantee
that all the eigenvalues of these inexact preconditioned matrices are located in the right half or left half of the

complex plane by selecting a suitable parameter α and approximate matrix ˜αW + T , though this is not an easy task.

In applications, we choose ˜αW + T in accordance with the special structures of the matrices W and T .
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94 C. Lang, Z.-R. Ren

4 Numerical results

In this section, we test the effectiveness of our proposed inexact rotated block triangular preconditioners. To this end,
we apply the GMRES iteration method, incorporated with the IRBLT, the IRBUT, and the IRBTP preconditioners,
to the system of linear equations (1.1).

The real block two-by-two linear system (1.1) is equivalently reformulated from the complex linear system

(W + iT )x = h, with x = y + iz and h = f + ig. (4.1)

In the following two examples [12,13], we need to solve the linear system (4.1).

Example 4.1 (Complex-Shifted Linear System) Consider the parabolic partial differential equation in [12,13]. By
discretizing it with a finite-element method of bilinear elements on a uniform rectangular mesh, we obtain a linear
system of the form

(K + iωτM)x = h,

where ω is a positive parameter, τ is the temporal discretization step size, and K = M + τ L ∈ R
m×m , with

M ∈ R
m×m being the mass matrix and L ∈ R

m×m the discrete negative Laplace operator. Here, the exact solution
of the parabolic partial differential equation and the right-hand vector h of the discretized linear system are given
as in [12]; see also [11,13].

In Example 4.1, let W = K and T = ωτM . Then we obtain the linear system (4.1). It is easy to verify that the
matrices W and T are symmetric positive definite, as is αW + T .

Example 4.2 (Nonsymmetric BBC Problem) A complex linear system is of the form (W + iT )z = h, with

W = I ⊗ L + L ⊗ I and T = 10(I ⊗ Lc + Lc ⊗ I ) + 9(e1e
T
l + ele

T
1 ) ⊗ I,

where L = tridiag(−1− θ, 2,−1+ θ) ∈ R
l×l is a tridiagonal matrix, θ = ν/[2(l + 1)] with ν a positive constant,

Lc = L−e1eTl −eleT1 , and e1 and el are the first and last column vectors of the identitymatrix I ∈ R
l×l , respectively.

The right-hand-side vector h is defined as in [12]. See also [13,18,19].

In our implementations, the initial guess is taken to be zero and the iteration process is terminated once the
current residual r ( j) satisfies

‖r ( j)‖2
‖r (0)‖2 ≤ 10−6.

The parameter α is taken to be 1.0 because it is observed that in our implementations the results do not rely on
α sensitively. From [12] we see that it also holds true in the exact preconditioned GMRES methods. In addition,
we implement the inexact preconditioning processes by incomplete Cholesky factorization in Example 4.1 and by
incomplete LU factorization in Example 4.2. All codes were written in MATLAB R2008a and all experiments were
performed on a personal computer with 1.86 G memory.

In Tables 1 and 2, we list the numbers of iteration steps (IT) and CPU times in seconds (CPU) of the IRBLT,
IRBUT, and IRBTP preconditioned GMRES methods, termed briefly as IRBLT-GMRES, IRBUT-GMRES and
IRBTP-GMRES, for Examples 4.1 and 4.2 with respect to different values of the problem parameter ω or ν and the
problem size m, respectively. Here, the CPU times are shown in parentheses. In Tables 3 and 4, the speed-up ratios
of the CPU times between the exact preconditioned GMRES method in [12] and the inexact ones in this paper, i.e.,
CPUexact/CPUinexact, are listed for Examples 4.1 and 4.2 with respect to various values of the problem parameter
ω or ν and the problem size m, respectively.

From Tables 1 and 2 we see that all of these three inexact preconditioned GMRES methods can successfully
compute satisfactory approximations to the exact solutions ofExamples 4.1 and4.2 in a few iteration steps.Moreover,
the iteration steps remain almost invariant for each method and for any fixed problem parameter ω or ν when the
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Table 1 Iteration step and CPU time [IT (CPU)] for Example 4.1

Method ω m × m

625 × 625 900 × 900 1,764 × 1,764 1,936 × 1,936 2,025 × 2,025

IRBLT-GMRES 1 5 (0.22) 5 (0.43) 5 (1.57) 5 (1.85) 5 (2.01)

102 9 (0.28) 9 (0.55) 10 (2.05) 10 (2.44) 10 (2.67)

103 8 (0.25) 8 (0.50) 9 (1.98) 9 (2.32) 9 (2.56)

104 8 (0.26) 8 (0.52) 8 (1.87) 8 (2.16) 8 (2.41)

IRBUT-GMRES 1 4 (0.18) 4 (0.36) 4 (1.32) 4 (1.57) 4 (1.72)

102 9 (0.23) 9 (0.48) 9 (1.71) 9 (1.99) 9 (2.21)

103 8 (0.22) 8 (0.43) 8 (1.62) 8 (1.91) 8 (2.05)

104 7 (0.22) 8 (0.43) 8 (1.56) 8 (1.89) 8 (2.05)

IRBTP-GMRES 1 4 (0.20) 4 (0.41) 4 (1.46) 4 (1.74) 4 (1.89)

102 9 (0.27) 9 (0.56) 9 (1.97) 9 (2.37) 9 (2.55)

103 8 (0.25) 8 (0.50) 8 (1.83) 8 (2.19) 8 (2.42)

104 7 (0.25) 8 (0.52) 8 (1.87) 8 (2.18) 8 (2.38)

Table 2 Iteration step and CPU time [IT (CPU)] for Example 4.2

Method ν m × m

625 × 625 900 × 900 1,225 × 1,225 1,600 × 1,600 2,025 × 2,025

IRBLT-GMRES 0.1 6 (0.26) 6 (0.50) 7 (0.96) 7 (1.57) 6 (2.29)

1 7 (0.27) 7 (0.53) 7 (0.97) 7 (1.61) 7 (2.46)

10 7 (0.28) 7 (0.55) 8 (0.99) 8 (1.70) 8 (2.56)

100 5 (0.23) 5 (0.48) 5 (0.78) 5 (1.37) 5 (2.12)

IRBUT-GMRES 0.1 6 (0.23) 6 (0.46) 7 (0.86) 7 (1.41) 7 (2.16)

1 7 (0.24) 7 (0.47) 7 (0.83) 7 (1.37) 7 (2.15)

10 7 (0.25) 7 (0.47) 8 (0.89) 8 (1.46) 8 (2.29)

100 5 (0.20) 5 (0.43) 5 (0.75) 5 (1.23) 5 (1.92)

IRBTP-GMRES 0.1 5 (0.23) 6 (0.51) 6 (0.92) 6 (1.50) 6 (2.29)

1 6 (0.25) 6 (0.52) 7 (0.94) 7 (1.59) 6 (2.29)

10 7 (0.29) 7 (0.56) 7 (0.95) 7 (1.57) 7 (2.45)

100 5 (0.23) 5 (0.46) 5 (0.83) 5 (1.35) 5 (2.16)

problem size m increases. It can be noticed from Table 1 that of the three methods, the IRBLT-GMRES method
needs the most iteration steps and CPU time. The IRBUT-GMRES and the IRBTP-GMRESmethods require almost
the same number of iteration steps, but the IRBTP-GMRESmethod costs more CPU time because it requires solving

three subsystems of the coefficient matrix ˜αW + T and the same two subsystems for the IRBUT-GMRES method
in each preconditioning process. We see also from Table 2 that the IRBUT-GMRES method requires the least CPU
time, and the IRBTP-GMRES method sometimes requires the fewest number of iteration steps in Example 4.2.

Comparing the results in Tables 1 and 2 with those in [12] for Examples 4.1 and 4.2, we observe that for the
same parameters α,ω or ν, andm, the iteration steps of the IRBLT-GMRES, IRBUT-GMRES, and IRBTP-GMRES
methods remains almost the same as those of the RBLT-GMRES, RBUT-GMRES, and RBTP-GMRES methods.
The CPU times of these inexact preconditioned GMRES methods are much less than the corresponding exact
ones because the inexact preconditioning processes cost less CPU time than the exact ones. More specifically, in
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Example 4.1 we perform incomplete Cholesky factorization with threshold and pivoting (ICTP) [21] by making

use of the sparse structure of the matrix αW + T , denoted by αW + T ≈ L̃ L̃T , and let ˜αW + T = L̃ L̃T . Because

L̃ L̃T is a good approximation of αW + T , and L̃ is a very sparse matrix, the cost to invert ˜αW + T is very cheap
in the inexact preconditioning processes. In Example 4.2 we use incomplete LU factorization with threshold and
pivoting (ILUTP) for the matrix αW + T for the same reasons. Therefore, we say that the IRBLT, IRBUT, and
IRBTP preconditioners are superior to the exact ones in [12] for accelerating the convergence rate of the GMRES
method in Examples 4.1 and 4.2.

From Tables 3 and 4 we see that the speed-up ratios of CPUexact/CPUinexact are greater than 1 for any fixed
problem parameter ω or ν and problem size m, which indicates that the IRBLT-GMRES, IRBUT-GMRES, and
IRBTP-GMRES methods cost less CPU time than the exact ones, respectively. This shows the advantages of these

Table 3 Speed-up (CPUexact/CPUinexact) for Example 4.1

Method ω m × m

625 × 625 900 × 900 1,764 × 1,764 1,936 × 1,936 2,025 × 2,025

IRBLT-GMRES 1 1.22 1.22 1.31 1.32 1.48

102 1.41 1.32 1.44 1.44 1.61

103 1.45 1.36 1.42 1.44 1.63

104 1.40 1.30 1.42 1.48 1.60

IRBUT-GMRES 1 1.24 1.23 1.35 1.36 1.49

102 1.63 1.37 1.49 1.55 1.70

103 1.51 1.42 1.50 1.53 1.76

104 1.42 1.42 1.54 1.63 1.88

IRBTP-GMRES 1 1.42 1.36 1.45 1.51 1.72

102 1.75 1.53 1.65 1.66 1.95

103 1.91 1.61 1.70 1.68 1.94

104 1.62 1.57 1.66 1.68 1.97

Table 4 Speed-up (CPUexact/CPUinexact) for Example 4.2

Method ν m × m

625 × 625 900 × 900 1,225 × 1,225 1,600 × 1,600 2,025 × 2,025

IRBLT-GMRES 0.1 1.01 1.07 1.12 1.19 1.27

1 1.00 1.08 1.10 1.17 1.27

10 1.01 1.10 1.15 1.17 1.29

100 1.01 1.04 1.18 1.20 1.31

IRBUT-GMRES 0.1 1.09 1.04 1.16 1.21 1.31

1 1.02 1.12 1.19 1.24 1.33

10 1.03 1.10 1.17 1.23 1.29

100 1.08 1.07 1.15 1.23 1.35

IRBTP-GMRES 0.1 1.10 1.10 1.18 1.25 1.35

1 1.09 1.09 1.21 1.24 1.36

10 1.04 1.08 1.20 1.26 1.35

100 1.09 1.14 1.21 1.31 1.35
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inexact preconditioners over the exact preconditioners in [12]. And the larger the speed-up ratio is, themore apparent
the superiority of the inexact preconditioners over the exact ones. Further, the speed-up ratios also increase when
the parameter m grows (i.e., the size of the matrices becomes large) in both Examples 4.1 and 4.2. In particular,
when m = 2, 025, the speed-up ratios are the largest for all cases listed in Tables 3 and 4. Hence, we may conclude
that when matrices grow in size, their structures become more sparse and the inexact preconditioners are more
suitable for solving the systems of linear equations in Examples 4.1 and 4.2. Moreover, the speed-up ratios of the
IRBTP-GMRES method is generally greater than that of the IRBLT-GMRES and IRBUT-GMRES methods. Thus,
it is obvious that the inexact preconditioners proposed in this paper are more effective than the exact ones in [12]
based on the speed-up ratios of the CPU times.

5 Concluding remarks

IRBLT, IRBUT, and IRBTP preconditioning matrices were proposed to precondition linear systems, when the
coefficient matrix is a block two-by-two matrix of real square blocks based on the RBLT, RBUT, and RBTP
preconditioners in [12]. We analyzed the eigenvalue properties of these three inexact preconditioned matrices and
showed the effectiveness of the IRBLT, IRBUT, and IRBTP preconditioners at accelerating the convergence rates
of Krylov subspace iteration methods such as GMRES for solving the linear system (1.1) on the basis of both
theoretical analysis and numerical results.

In Sect. 2 we proved that the eigenvalues of the IRBLT, IRBUT, and IRBTP preconditioned matrices are respec-
tively located within the union of some circles. It is difficult to provide details about the eigenvalues and eigen-
vectors of these preconditioned matrices like the exact ones in [12] in the general case. In practical applica-

tions, we may choose the approximate matrix ˜αW + T by splitting the matrix αW + T . More specifically, let

αW + T = B(α) − C(α) be a splitting of αW + T . Then we can take ˜αW + T = B(α) or

˜αW + T = (αW + T )
[
I −

(
B(α)−1C(α)

)m]−1 = B(α)

⎡
⎣m−1∑

j=0

(
B(α)−1C(α)

) j

⎤
⎦

−1

, (5.1)

withm being a positive integer; see [31]. It is expected that in future work, when the approximation matrix ˜αW + T
is specially defined as in (5.1), more eigenproperties of the preconditioned matrices will be derived.
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