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Abstract The shape of the arterial pulse waveform is intimately related to the physical properties of the car-
diovascular system. It is clinically relevant to measure those properties that are related to cardiovascular function,
such as the local elasticity and viscosity of the arterial wall, total compliance and net peripheral resistance of the
systemic arterial tree. Most of these properties cannot be directly measured in vivo, but they can be calculated from
pressure, flow and wall displacement measurements that can be obtained in vivo. We carry out a linear analysis of
the one-dimensional (1-D) equations of blood flow in Voigt-type visco-elastic vessels to study the effects on pulse
wave propagation of blood viscosity, flow inertia, wall visco-elasticity, total arterial compliance, net resistance,
peripheral outflow pressure, and flow rate at the aortic root. Based on our analysis, we derive methods to calculate
the local elastic and viscous moduli of the arterial wall, and the total arterial compliance, net resistance, time constant
and peripheral outflow pressure of the systemic arterial tree from pressure, flow and wall displacement data that
can be measured in vivo. Analysis of in vivo data is beyond the scope of this study, and therefore, we verify the
results of our linear analysis and assess the accuracy of our estimation methods using pulse waveforms simulated
in a nonlinear visco-elastic 1-D model of the larger conduit arteries of the upper body, which includes the circle of
Willis in the cerebral circulation.
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1 Introduction

The propagation of the pulse wave in systemic arteries induces changes in the luminal area, blood pressure and
volume flow rate in time and along the axial direction of arteries. The features of these space–time variations are
intimately related to the physical properties of the cardiovascular system, such as blood density and viscosity,
cardiac output, arterial wall visco-elasticity, and peripheral impedances and outflow pressures.

Measurement of these properties can be valuable to assess cardiovascular function. Indeed, the pulse wave speed
(which is directly related to local arterial stiffness and compliance) has been identified as an important predictor
of life-threatening cardiovascular events [1–3]. Changes in the total systemic arterial compliance (which is related
to the total stiffness of the systemic arterial tree) have been linked to pathological conditions, such as hypertension
[4,5]. Vessels with a dysfunctional capacity to dampen the high frequencies of the pulse waveform (which is directly
related to the viscosity of the vessel wall) are more likely to suffer from vascular disease such as atherosclerosis [6].

Most of these properties cannot be directly measured in vivo, but they can be calculated from pressure, flow and
wall displacement measurements that can be obtained in vivo. These calculations require a good understanding of
the individual role of mechanical properties on the pulse waveform. However, this understanding can be extremely
challenging to achieve in vivo, since some vessels are inaccessible to clinical measurements and several properties
of interest are not directly measurable, can be dangerous to manipulate and can elicit reflex compensation. One-
dimensional (1-D) blood flow models can effectively simulate the pulse wave propagation phenomenon in larger
systemic arteries [7–9] and, hence, offer an effective approach to study the individual role of clinically relevant
properties, derive methods to calculate them and assess the error of the calculations.

Several optimisation algorithms have been proposed to estimate clinically relevant properties from in vivo or
in vitro data, e.g. Kalman filtering techniques for the peripheral boundary conditions [10], an adjoint state approach
for the local compliance [11] and local sensitivity indices for several mechanical properties of the arteries of the
arm [12]. Other works have proposed estimation algorithms that are based upon a mechanical understanding of
the effect that the parameter to be calculated has on haemodynamic quantities that can be measured clinically. For
example, this is the approach followed in [13,14] to calculate, using the 1-D formulation, the local pulse wave speed
from simultaneous pressure and velocity measurements.

In this work we follow the latter approach to develop a methodology to calculate, from haemodynamic data that
can be measured in vivo, properties of the systemic arterial tree that are important for assessing cardiovascular
function and running patient-specific simulations. We first carry out a linear analysis of the 1-D equations of blood
flow in visco-elastic vessels to study the effects on pulse wave propagation of blood viscosity, cardiac output, flow
inertia, wall visco-elasticity, total arterial compliance, net peripheral resistance, and outflow pressure (Sect. 2).
Based on this analysis, we describe our methods appropriate for calculating the local compliance, inviscid pulse
wave speed and elastic and viscous moduli of the arterial wall from pressure and area waveforms, and the total
compliance from the flow at the aortic root and a pressure waveform (Sect. 3).

In Sect. 4 we verify the results of our linear analysis using pulse waveforms simulated in the nonlinear model
of the larger conduit arteries of the upper body described in [15], which includes the circle of Willis in the cerebral
circulation (Fig. 1). Moreover, we assess the parameter estimation methods in the upper body model, by comparing
estimates with theoretical values that are directly calculated from the parameters of the model.

2 1-D formulation

The nonlinear governing equations of the 1-D incompressible flow in a compliant and impermeable vessel
are [7]
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Physical determining factors of the arterial pulse waveform 21

Fig. 1 Schematic representation of the 33-artery network used to simulate pulse wave propagation in the cerebral circulation. The
name and properties of each artery are given in Tables 1 and 1 in [15], and are based on data for the normal human; the wall viscous
moduli from [16,17] and the rest of properties from [15]. The volume flow rate shown in the plot (whose time average is 5.6 l/min) is
the ensemble average of in vivo measurements at the ascending aorta of a healthy human. It is enforced as a periodic inflow boundary
condition (modified from [15])
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where x is the axial coordinate along the vessel, t is time, A(x, t) is the cross-sectional area of the lumen, Q(x, t)
is the mass flux, P(x, t) is the average internal pressure over the cross section, α is a non-dimensional correction
coefficient that accounts for the fact that the velocity profile is not flat, and ρ is the constant mass density of blood.
The friction force per unit length, f (x, t), is given by [18]

f = 2μπR
[
∂u

∂r

]

r=R
, (2)

where μ is the constant blood viscosity, R(x, t) is the luminal radius, and u(x, r, t) is the axial velocity (r is the
radial coordinate). A typical profile for axisymmetric flow satisfying the no-slip condition is

u = U
ζ + 2

ζ

[

1 −
( r

R
)ζ

]

, (3)

where U (x, t) = Q/A is the average axial velocity and ζ is a constant. Substitution of Eq. (3) into (2) yields
f = −2 (ζ + 2) μπU . Following [18], ζ = 9 provides a good compromise fit to experimental findings. Notice that
ζ = 2 corresponds to a parabolic profile, which leads to Poiseuille flow resistance f = −8μπU .

Following [19], we set α = 1 in the convective inertia term of Eq. (1). This is a common approximation that
leads to considerable mathematical simplifications, especially with the treatment of boundary conditions. This
approximation will not affect our linear analysis, since the convective acceleration term is nonlinear.

System (1) is typically closed by defining an explicit algebraic relationship between P and A. Here we use
P = F(A; ∂t A, x), where the function F depends on the model used to simulate the dynamics of the arterial wall.
We have included a direct dependence on x , since some of the mechanical properties of the wall may vary with x .
More precisely, we resort to the Voigt-type visco-elastic tube law [9]

P = Pe(A; x) + �(x)

A0(x)
√

A

∂ A

∂t
, (4)
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Table 1 Estimates of the theoretical local inviscid pulse wave speed, c̃i, and wall viscous modulus, �, and the theoretical global time
constant, RTCT = 1.34 s, total compliance, CT = 9.60 m3 GPa−1, and uniform outflow pressure, Pout = 666.5 Pa, in the cerebral model

Arterial segment c̃i (m s−1) � (Pa s m) RTCT (s) CT (m3 GPa−1) Pout (kPa)

1. Ascending aorta 6.4 (−0.6 %) 36.3 (25.8%) 1.3 (−6.0 %) 8.9 (−7.5 %) 0.5 (−31.2 %)

2. Thoracic aorta 5.8 (−0.6 %) 25.4 (30.5 %) 1.2 (−6.8 %) 8.8 (−7.9 %) 0.5 (−22.8 %)

3. L. brachial 7.0 (−0.2 %) 14.1 (19.1 %) 1.3 (−3.8 %) 9.0 (−6.1 %) 0.3 (−53.8 %)

4. R. brachial 7.0 (0.0 %) 14.2 (19.3 %) 1.3 (−4.4 %) 9.0 (−6.4 %) 0.3 (−48.0 %)

5. L. ext. carotid 11.5 (0.0 %) 7.2 (7.0 %) 1.3 (0.0 %) 10.3 (6.8 %) 0.1 (−89.5 %)

6. R. ext. carotid 11.5 (0.0 %) 7.2 (7.0 %) 1.3 (0.5 %) 10.2 (6.4 %) 0.0 (−95.5 %)

7. L. PCA, P2 16.1 (0.0 %) 4.8 (4.9 %) 1.4 (3.0 %) 11.2 (16.2 %) −0.1 (−110.4 %)

8. R. PCA, P2 16.1 (0.0 %) 4.8 (4.9 %) 1.4 (3.0 %) 11.2 (16.2 %) −0.1 (−110.4 %)

9. L. MCA 16.1 (0.0 %) 6.7 (4.7 %) 1.3 (0.6 %) 10.9 (13.3 %) 0.1 (−91.3 %)

10. R. MCA 16.1 (0.0 %) 6.7 (4.7 %) 1.3 (0.6 %) 10.8 (13.0 %) 0.1 (−90.9 %)

11. L. ACA, A2 16.1 (0.1 %) 5.6 (4.8 %) 1.4 (2.3 %) 11.3 (17.6 %) 0.0 (−103.8 %)

12. R. ACA, A2 16.1 (0.1 %) 5.6 (4.8 %) 1.4 (3.2 %) 11.3 (17.9 %) −0.1 (−112.5 %)

13. Aortic arch I 5.9 (−0.4 %) 29.2 (30.7 %) 1.3 (−6.3 %) 8.9 (−7.7 %) 0.5 (−28.1 %)

14. Aortic arch II 5.8 (−0.3 %) 26.9 (32.0 %) 1.3 (−6.4 %) 8.9 (−7.7 %) 0.5 (−26.6 %)

15. Brachiocephalic 6.3 (−0.2 %) 18.0 (26.6 %) 1.3 (−6.2 %) 8.9 (−7.8 %) 0.5 (−28.8 %)

16. L. subclavian 6.8 (−0.6 %) 14.4 (21.5 %) 1.3 (−6.3 %) 8.9 (−7.7 %) 0.5 (−27.6 %)

17. R. subclavian 6.8 (−0.4 %) 14.4 (21.4 %) 1.3 (−6.1 %) 8.9 (−7.6 %) 0.5 (−30.1 %)

18. L. com. carotid 8.3 (−0.4 %) 12.7 (13.4 %) 1.3 (−5.9 %) 9.1 (−5.7 %) 0.5 (−32.4 %)

19. R. com. carotid 8.3 (−0.3 %) 12.7 (13.3 %) 1.3 (−5.9 %) 9.0 (−5.9 %) 0.4 (−33.3 %)

20. L. vertebral 11.5 (−0.3 %) 6.4 (6.9 %) 1.3 (−4.6 %) 9.3 (−3.3 %) 0.4 (−45.7 %)

21. R. vertebral 11.5 (−0.3 %) 6.4 (7.0 %) 1.3 (−4.5 %) 9.3 (−3.2 %) 0.4 (−46.4 %)

22. Basilar 11.5 (−0.2 %) 7.6 (6.8 %) 1.3 (−2.7 %) 9.9 (2.6 %) 0.2 (−63.9 %)

23. L. int. carotid I 11.5 (−0.1 %) 9.5 (6.9 %) 1.3 (−4.1 %) 9.6 (0.3 %) 0.3 (−51.4 %)

24. R. int. carotid I 11.5 (−0.1 %) 9.5 (6.9 %) 1.3 (−4.2 %) 9.6 (−0.1 %) 0.3 (−51.1 %)

25. L. int. carotid II 16.1 (0.0 %) 9.3 (4.5 %) 1.3 (−2.6 %) 10.0 (4.6 %) 0.2 (−65.4 %)

26. R. int. carotid II 16.1 (0.0 %) 9.3 (4.5 %) 1.3 (−2.7 %) 10.0 (4.4 %) 0.2 (−65.2 %)

27. L. PCA, P1 16.1 (−0.1 %) 5.0 (4.2 %) 1.3 (−2.2 %) 10.0 (4.3 %) 0.2 (−68.0 %)

28. R. PCA, P1 16.1 (−0.1 %) 5.0 (4.2 %) 1.3 (−2.3 %) 10.0 (4.2 %) 0.2 (−67.9 %)

29. L. PCoA 16.1 (0.0 %) 3.3 (4.6 %) 1.3 (−2.8 %) 10.0 (4.1 %) 0.2 (−64.0 %)

30. R. PCoA 16.1 (0.0 %) 3.3 (4.6 %) 1.3 (−2.8 %) 10.0 (4.0 %) 0.2 (−63.9 %)

31. ACoA 16.3 (0.0 %) 3.5 (5.1 %) 1.3 (−1.9 %) 10.2 (6.6 %) 0.2 (−72.2 %)

32. L. ACA, A1 16.1 (0.0 %) 5.3 (3.9 %) 1.3 (−2.0 %) 10.2 (6.0 %) 0.2 (−70.4 %)

33. R. ACA, A1 16.1 (0.0 %) 5.3 (4.0 %) 1.3 (−2.0 %) 10.2 (5.9 %) 0.2 (−70.7 %)

The estimates were obtained from the cardiac output and pressure and area waveforms simulated in the midpoint of each segment, using
the methods described in Sects. 3.1–3.3. The corresponding theoretical values given by the parameters of the model were calculated as
described in the text. The relative errors of the estimates [(estimate−theoretical)/theoretical] are shown in parentheses
L left, R right, ext external, int internal, com common, PCA posterior cerebral artery, MCA middle cerebral artery, ACA anterior cerebral
artery, PCoA posterior communicating artery, ACoA anterior communicating artery

where

Pe(A; x) = Pext + β(x)

A0(x)

(√
A − √

A0(x)
)

,

β(x) = 4

3

√
π E(x)h(x), �(x) = 2

3

√
πϕ(x)h(x). (5)
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Table 2 Parameters of the TG [27] and DG [9] schemes for the single-artery and cerebral 1-D simulations

Property Single artery (analytical solution) Single artery (Gaussian inflow) Cerebral model

TG DG TG DG TG DG

Elastic time step (ms) 10 10 0.1 0.1 0.01 0.05

Visco-elastic time step (ms) 10 10 0.1 0.1 0.01 0.001

Grid size (cm) 20 – 0.5 – 0.1 –

Element size (cm) – 100 – 4 – 2a

Polynomial order 1 3 1 4 1 3b

Quadrature order 2 3 2 4 2 3b

The time step is given for the purely elastic and visco-elastic models
a When physically possible
b 2 for elements smaller than 2 cm

The elastic contribution Pe assumes a thin, homogeneous, incompressible and elastic arterial wall with thickness
h(x) and Young’s modulus E(x). Each cross section deforms axisymmetrically independently of the others (without
flexural resistance) from a reference state (P, A) = (Pext, A0), with an external pressure Pext. Here we assume
Pext = 0; i.e. Pe = 0 when A = A0. The Voigt-type visco-elastic term has a wall viscosity ϕ(x). The elastic
pressure yields an area-dependent pulse wave speed c [7],

c =
√

β

2ρ A0
A1/4. (6)

Voigt-type visco-elastic models, which feature hysteresis (different stress–strain relationship for loading and
unloading) and creep (continuous extension at constant load), have been extensively used [9,16,20–22]. There are,
however, more complex models that also account for stress relaxation [10,23,24] and the nonlinear behaviour of
the wall [25,26]. Here we use a Voigt-type visco-elastic model since it is the simplest model to reproduce, to first
approximation, the main features of visco-elastic effects on blood flow in large arteries [9,16,20–22]. It requires the
estimation of only one parameter, the wall viscosity, ϕ, in addition to the geometry and wall stiffness of the artery.

We numerically solved Eqs. (1) and (4) in the problems studied here using a Taylor–Galerkin (TG) and a discon-
tinuous Galerkin (DG) scheme. The former is described in [27] and the latter in [9]. Table 2 presents the properties
of the TG and DG schemes for the problems studied in this work. Both schemes were verified by cross-comparison
of their results in Figs. 5 and 7–11, and by comparison with analytical results given by Eqs. (15) and (16).

2.1 Linearised 1-D formulation

This section explores the effects on pulse waveforms of the parameters of the 1-D model. To simplify the analysis,
Eqs. (1) and (4) are linearised about the reference state (A, P, Pe, Q) = (A0, 0, 0, 0), with β, A0 and � constant
along x , which yields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1D
∂pe

∂t
+ ∂q

∂x
= 0,

L1D
∂q

∂t
+ ∂pe

∂x
− γ

∂2q

∂x2 = −R1Dq,

p = pe − γ
∂q

∂x
, pe = a

C1D
, γ = �

A3/2
0

,

(7)

where a, p, pe and q are the perturbation variables for area, pressure, elastic component of pressure and flow rate,
respectively; i.e. (A, P, Pe, Q) = (A0 + a, p, pe, q), and
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C1D = 2A3/2
0

β
, L1D = ρ

A0
, R1D = 2(ζ + 2)πμ

A2
0

(8)

are the elastic wall compliance, flow inertia and resistance to flow due to blood viscosity, respectively, per unit
length of vessel.

Following [28, Chap. 2; 29, Chap. 6] we derive an analytical solution to (7) under the assumption of periodicity,
which allows us to write pe and q as a combination of harmonic waves of the form

pe(x, t) = p̂e ei(ωt−kx), q(x, t) = q̂ ei(ωt−kx), (9)

where i = √−1, k is the wave number, ω is the angular frequency (assumed to be real), and p̂e and q̂ are the
pressure and flow wave amplitudes at (x, t) = (0, 0), respectively.

We will focus on the solution for waves travelling in the positive x-direction. An identical analysis with pe =
p̂e ei(ωt+kx) and q = q̂ ei(ωt+kx) provides the solution for waves travelling in the negative x-direction.

Substitution of Eq. (9) into the first two equations in (7) and combination of the resulting expressions yields

L1Dω2 − (γ k2 + R1D)iω − k2

C1D
= 0, (10)

which provides the following relation between ω and k:

ω =
i
(
γ k2 + R1D

) ±
√

− (
γ k2 + R1D

)2 + 4k2 L1D
C1D

2L1D
. (11)

The resulting phase velocity cp = ω/k is

cp =
i
(
γ k + R1D

k

)
±

√

−
(
γ k + R1D

k

)2 + 4 L1D
C1D

2L1D
. (12)

Solving Eq. (10) for k yields k2 = ξei(θ+2nπ), with n an integer and

ξ = ωC1D

1 + (γωC1D)2

√

ω2 (L1D − γ C1D R1D)2 + (
R1D + γω2C1DL1D

)2
, (13)

θ = arctan

(−R1D − γω2C1DL1D

ω (L1D − γ C1D R1D)

)

. (14)

Substitution of Eq. (9) into the mass conservation in (7) yields q̂ = cpC1D p̂e. Assuming that p̂e is real, q̂ must be
complex because cp is complex. Therefore we can write q̂ = Re

(
q̂
) + iIm

(
q̂
)
, where Re and Im denote the real

and imaginary parts of q̂, respectively. Equations (9) then become

pe(x, t) = p̂eeIm(k)x ei
(
ωt−Re(k)x

)

,

q(x, t) =
(

Re
(
q̂
) + iIm

(
q̂
))

eIm(k)x ei
(
ωt−Re(k)x

)

.

Their real parts represent the physical solution to (7), i.e.

Re
(

pe
) = p̂eeIm(k)x cos

(
ωt − Re(k)x

)
, (15)

Re
(
q
) = eIm(k)x

(
Re

(
q̂
)

cos
(
ωt − Re(k)x

) − Im
(
q̂
)

sin
(
ωt − Re(k)x

))
. (16)

Equations (12–16) allow us to study the individual roles of C1D, L1D, R1D, γ and ω in dictating the shape of the
pressure and flow pulse waves before any reflection.

Next we will focus on the local effects of the parameters of the model on the pulse waveform within an artery
(Sect. 2.2), and the global effects involving all the arterial network as a whole (Sect. 2.3).
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Table 3 Typical
geometrical and mechanical
properties of the human
aorta based on
[16–18,30,32]

The calculated linear
inviscid pulse wave speed is
c̃i = 6.17 m s−1

Property Value

Cross-sectional area, A0 π cm2

Wall thickness, h 1.5 mm

Blood mass density, ρ 1,050 kg m−3

Blood viscosity, μ 4 mPa s

Velocity profile constant, ζ 9

Young’s modulus, E 0.4 MPa

Wall viscosity, ϕ 15 kPa s

2.2 Single-artery model

In the cardiovascular system and under normal conditions C1D > 0, L1D > 0, R1D > 0 and γ > 0. Since we are
interested in unsteady solutions we may also assume ω > 0 to obtain

Im(k2) = − ωC1D

1 + (γωC1D)2

(
R1D + γω2C1DL1D

)
< 0

from Eq. (10). Moreover we have

Re(k2) = ω2C1D

1 + (γωC1D)2 (L1D − γ C1D R1D) > 0

whenever L1D > γ C1D R1D; i.e. fluid inertia dominates over the combined effect of wall compliance and fluid and
wall viscous damping. This is equivalent to

ρE A0 > 2(ζ + 2)πϕμ, (17)

which is satisfied for the aortic data in Table 3; ρE A0 is two orders of magnitude greater than 2(ζ + 2)πϕμ. It
is usually satisfied for arteries with smaller diameter under normal physiological conditions, since the decrease in
A0 is counterbalanced by the increase in the Young’s modulus E and the decrease in the velocity profile constant
ζ . Indeed, peripheral arteries are stiffer than the aorta [30, Chap. 7] and have a velocity profile closer to parabolic
[31].

Thus, the argument in Eq. (14) is negative so that −π/2 < θ < 0. Therefore, k = √
ξei(θ/2+nπ) satisfies

−π/4 < θ < 0, Re(k) > 0 and Im(k) < 0. Equations (15) and (16) show that Im(k) modulates the amplitude of
the pressure and flow waves; they decay exponentially with x if Im(k) < 0. On the other hand, the phase shift
between the flow and pressure depends on Im

(
q̂
)
.

Figure 2 shows a decrease in Im(k) (i.e. an increase in the pressure and flow damping with distance) with
increasing frequency ω, blood viscosity μ and wall viscosity ϕ, and decreasing Young’s modulus E and arterial
diameter D. At low frequencies the damping due to μ is dominant, whereas at high frequencies the damping due
to ϕ dominates (Fig. 3).

Assuming blood to be inviscid (μ = 0) and the arterial wall purely elastic (ϕ = 0), Eqs. (10) and (12) reduce to
k = ω

√
L1DC1D and

cp ≡ c̃i = 1√
L1DC1D

=
√

2
√

π Eh

3ρ
√

A0
, (18)

respectively, so that Im(k) = 0, Im
(

q̂
) = 0, and Eqs. (15) and (16) become p = pe = p̂e cos

(
ωt − kx

)
and

q = q̂ cos
(
ωt − kx

)
. Thus, pressure and flow are in phase, have constant amplitude, and travel with frequency-

independent speed c̃i, which is called inviscid pulse wave speed hereafter. If either μ > 0 or ϕ > 0, cp depends
on k (Eq. 12), and hence, both μ and ϕ cause wave dispersion; i.e. higher-frequency waves travel faster than
lower-frequency ones (Fig. 4).
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Im Im Im

Im Im

Fig. 2 Imaginary part of the wave number Im(k) (which dictates the pressure and flow damping with distance) calculated for the
parameters given in Table 3 and a range of frequencies ω (top left), blood viscosities μ (top middle), wall viscosities ϕ (top right),
Young’s moduli E (bottom left) and arterial diameters D (bottom right). In the panels with variable μ, ϕ, E or D, we have ω = πs−1

Im

Fig. 3 Imaginary part of the wave number Im(k) for a range of
frequencies ω. It is calculated using the parameters in Table 3,
except for ϕ = 0 (solid line) or μ = 0 (dashed line)

Fig. 4 Modulus (top) and phase angle (bottom) of the phase
velocity cp with the wave frequency ω in the vessel with the
properties presented in Table 3. They are obtained by solving
Eq. (12) for ω ∈ (0, 100] and ϕ = 0 (left) or μ = 0 (right)

It is important to note that the phase velocity, cp, tends to the inviscid pulse wave speed, c̃i, with increasing
frequency ω (and, hence, increasing wave number k) when ϕ = 0 and with decreasing frequency ω when μ = 0
[see Eqs. (12) and (18) and Fig. 4]. Moreover, the expression for c̃i given by Eq. (18) is also valid for non-periodic
flow, as is shown in [33] using the method of characteristics.

Figure 5 shows that wall viscosity ϕ (unlike blood viscosity μ) widens the foot of a narrow Gaussian-shaped
wave as it propagates in a single vessel with a completely absorbent outflow boundary condition (i.e. with a zero
reflection coefficient [33]). This is because high frequencies dominate in this wave and μ causes wave dispersion
at low frequencies (up to ω = 1 s−1 for the data in Table 3; see Fig. 4, left),1 whereas ϕ increases wave dispersion
with increasing ω (Fig. 4, right). The results in Fig. 5 are in qualitative agreement with in vivo experiments using
short trains of high frequency waves [34].

Unlike in the human pulse waveform, very high frequencies are dominant in our Gaussian-shaped wave. Due to
the dependence of the pressure and flow damping, Im(k), on ω (see Fig. 2, left), we used a smaller wall viscosity,
ϕ = 0.5 kPa s, for this numerical test to be able to plot the results in the scale of Fig. 5.

1 This is in agreement with the viscous damping due to μ being frequency independent [i.e. Im(k) is uniform] for ω > 1 s−1 (Fig. 3).
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q

Fig. 6 The j-th terminal segment of the arterial network, j =
2, . . . , M , is coupled to an RCR windkessel model relating the
outgoing flow q j

out to the pressure p j
eout . The downstream vascula-

ture is represented by a constant peripheral resistance R j , com-

pliance C j , characteristic impedance Z j
0 and outflow pressure

Pout

We consider this Gaussian-shaped wave to be a continuous approximation to the unit pulse δ(t − t0), t0 = 0.05 s
[i.e. δ(t0) = 1 and δ(t) = 0 for t �= t0]. Propagation of δ in a linear dynamic system produces the so-called
impulse response function, whose convolution with any input function yields its corresponding output function
directly in the time domain [35]. Thus, the pressure waveforms shown in Fig. 5 are continuous approximations to
the impulse response function at different times. When nonlinear effects are small (as is the case for arterial pulse
wave propagation in physiological conditions [36]), the results shown in Fig. 5 can be applied to show that blood
viscosity only decreases the magnitude of the pulse waveform with distance, whereas wall viscosity also modifies
its shape, especially the high-frequency components.

2.3 Arterial network model

We consider the arterial system to be a network of N elastic and uniform arterial segments, in which pulse wave
propagation is modelled using Eq. (7) and initially without assuming periodicity. To provide a synthetic description
of the behaviour of each artery as a compartment of the network, we integrate the first two equations in (7) over the
arterial length li (x ∈ [0, li ]) and obtain
⎧
⎪⎪⎨

⎪⎪⎩

Ci
0D

d p̃i
e

dt
+ qi

out − qi
in = 0,

Li
0D

dq̃i

dt
+ pi

eout
− pi

ein
− γ i

(
∂qi

out

∂x
− ∂qi

in

∂x

)

= −Ri
0Dq̃i ,

i = 1, . . . , N , (19)

where the superscript i indicates the number of the segment,

qi
in(t) = qi (0, t), pi

ein
(t) = pi

e(0, t),
∂qi

in

∂x
(t) = ∂qi

∂x
(0, t),

qi
out(t) = qi (li , t), pi

eout
(t) = pi

e(l
i , t),

∂qi
out

∂x
(t) = ∂qi

∂x
(li , t),

Ri
0D = Ri

1Dli , Li
0D = Li

1Dli and Ci
0D = Ci

1Dli . The space-averaged elastic pressure and flow rate over the whole
segment i are given by
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p̃i
e(t) = 1

li

li
∫

0

pe dx, q̃i (t) = 1

li

li
∫

0

qi dx .

For convenience, we assume that i = 1 refers to the ascending aorta and i = 2 to M (M < N ) refer to terminal
segments. We also assume that the inlet inflow q1(0, t) is given and equal to the flow waveform at the inlet of the
ascending aorta, qIN(t), and that the distal ends of segments numbered from 2 to M are coupled to matched RCR
windkessel models relating q j

out to p j
eout , j = 2, . . . , M , through (Fig. 6) [33]

q j
out

(

1 + Z j
0

R j

)

+ C j Z j
0

dq j
out

dt
= p j

eout − Pout

R j
+ C j

d p j
eout

dt
, (20)

with a constant peripheral resistance R j , compliance C j , characteristic impedance Z j
0 = ρc̃i/A j

0 and outflow
pressure Pout. This is the pressure at which flow to the microcirculation ceases.

Imposing mass conservation at the junctions of the network and combining the N equations of mass conservation
in (19) we obtain the equation for the mass conservation for the whole network as

qIN =
N∑

i=1

Ci
0D

d p̃i
e

dt
+

M∑

j=2

q j
out. (21)

Next we explore the role of the model parameters in the time-averaged and inertia-free solutions of Eq. (19). For
this study we assume Ri

0D = 0, i = 1, . . . , N , since it is well known that the fluid resistance in larger arteries is
much smaller than peripheral resistances [30, Chap. 12].

2.3.1 Time-averaged solution

The time-averaged behaviour of the arterial network is not affected by (Voigt-type) wall visco-elasticity. Integrating
Eq. (21) over the time interval [T0, T f ] yields

T

⎛

⎝qIN −
M∑

j=2

q j
out

⎞

⎠ =
N∑

i=1

Ci
0D

[
p̃i

e(T f ) − p̃i
e(T0)

]
, (22)

where (·) = 1
T

∫ T f
T0

(·) dt is the time average over [T0, T f ], with T = T f − T0 the duration of the heartbeat, and qIN

is the cardiac output. If the flow is periodic with a period T , Eqs. (20) and (22) lead to

qIN =
M∑

j=2

q j
out =

M∑

j=2

p j
eout − Pout

R j + Z j
0

. (23)

Integrating the balance of momentum in (19) over the time interval [T0, T f ] and assuming periodic flow with a
period T yields

T f∫

T0

pi
eout

dt −
T f∫

T0

pi
ein

dt =
T f∫

T0

γ i

(
∂ai

in

∂t
− ∂ai

out

∂t

)

dt, i = 1, . . . , N ,

where we have set ai
in(t) = ai (0, t) and ai

out(t) = ai (li , t) and used the continuity equation ∂qi

∂x = − ∂ai

∂t . Since

the flow is periodic,
∫ T f

T0

∂ai
in

∂t dt and
∫ T f

T0

∂ai
out

∂t dt are zero, so that pi
eout

= pi
ein

, i = 1, . . . , N . Moreover, since

Eq. (19) holds for any length li , we deduce that pi
eout

(t) = pi
ein

(t) = pi
e(x, t) = pi (x, t), i = 1, . . . , N ; i.e. the

time-averaged pressure is space independent within each segment.
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Combining these results with the assumption of continuity of pressure at the junctions of the network leads to

p j
eout (t) = pi (x, t), j = 2, . . . , M, i = 1, . . . , N , so that Eq. (23) becomes

pi = Pout + RTqIN, i = 1, . . . , N ,
1

RT
=

M∑

j=2

1

R j + Z j
0

, (24)

where RT is the net peripheral resistance of the network.
According to Eq. (22), for a given cardiac output, heart rate and peripheral properties R j , Z j

0 and Pout, j =
2, . . . , M , wall compliances determine the time to reach a periodic state in which Eq. (24) is satisfied. Equation
(24) shows that the cardiac output, outflow pressure and net resistance dictate the time-averaged pressure required
to perfuse the microcirculation.

2.3.2 Inertia-free solution

In a linear model of the larger 55 conduit arteries in the human with inviscid flow, purely elastic walls, and RCR
windkessel terminal models governed by Eq. (20), the work in [37] showed that blood pressure at any location
tends to a space-independent pressure pw(t) with increasing time in diastole. This is satisfied in general without
requiring the flow to be periodic. The pressure pw(t) is obtained by setting Li

0D = 0, i = 1, . . . , N , and satisfies

qIN = qOUT + Cc
d pw

dt
, (25)

qOUT = Cp
d pw

dt
+ pw − Pout

RT
−

M∑

j=2

C j Z j
0 R j

R j + Z j
0

dq j
out

dt
,

Cc =
N∑

i=1

Ci
0D, Cp =

M∑

j=2

R j C j

R j + Z j
0

, (26)

where qOUT(t) is the total outflow to the periphery driven by pw, Cc is the total conduit compliance, and Cp is the
total peripheral compliance. The solution to Eq. (25) is

pw = Pout + (pw(T0) − Pout)e
− t−T0

RTCT + e
− t

RTCT

CT

t∫

T0

(

qIN(t ′) + ∑M
j=2

C j Z j
0 R j

R j +Z j
0

dq j
out(t

′)
dt ′

)

e
t ′

RTCT dt ′, t ≥ T0, (27)

where pw(T0) is the pressure pw at t = T0 and CT = Cc + Cp is the total compliance of the systemic arterial tree.
In our model, the elastic component of pressure pe anywhere in the arterial network will tend to pw(t) with

increasing time in diastole. Since the wall viscosity term γ
∂q
∂x in Eq. (7) is linearly added to pe, the total pressure pi

will tend to pw − γ i
(

∂q
∂x

)i
, i = 1, . . . , N , in which γ i and

(
∂q
∂x

)i
may be different for each arterial segment. Thus,

if inertial effects are neglected, the system features a space-independent elastic pressure in diastole that depends on
global quantities: the total arterial compliance, net peripheral resistance, outflow pressure, and flow rate at the inlet
of the ascending aorta.2 The visco-elastic terms account for the differences in total pressure among the different
arterial segments.

Figure 7 illustrates these results using the numerical solution of Eqs. (1) and (4) in the cerebral model (Fig. 1),
with zero blood viscosity, so that Ri

0D = 0, i = 1, . . . , N . The inflow boundary condition in Fig. 1 was scaled by
1, 000, so that nonlinearities could be considered negligible. Pressures were then rescaled under the assumption of
linearity. In diastole, the elastic pressure waveform in any artery tends to pw(t) (Fig. 7, left), calculated using Eq.

(27) with T0 = 0 and pw(T0) = 0, and the total pressure tends to pw − γ i
(

∂q
∂x

)i
, i = 1, . . . , N (Fig. 7, right).

These results suggest that blood inertia is negligible to describe blood pressure in the last part of the cardiac cycle.

2 Even though qIN ≈ 0 during normal diastolic conditions, pw(T0) in Eq (27) depends on the systolic part of qIN(t).
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Fig. 7 Elastic (left) and total (right) pressure waveforms in the midpoint of the aortic arch I (Arch), left brachial (Brach) and left pos-
terior communicating artery (PCoA) of the inviscid-flow, visco-elastic cerebral model (Fig. 1). Nonlinearities are neglected to compare
these pressures against the space-independent pressure pw given by Eq. (27)
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Fig. 8 Area–pressure curves in the midpoint of the right carotid artery (left) and right middle cerebral artery (right) of the viscous-fluid,
nonlinear cerebral model (Fig. 1). Two cases are shown: elastic wall and visco-elastic wall with ϕ = 15 kPa s. In the latter, the curves
evolve in time counterclockwise

It is interesting to remark that, if C j = 0, j = 2, . . . , M in Eq. (20) (i.e. we only have conduit compliance), Eq.
(25) reduces to Frank’s windkessel equation [38],

qIN = pwF − Pout

RT
+ CT

d pwF

dt
, (28)

and pe tends to the windkessel pressure pwF with increasing time in diastole.

3 Calculation of clinically relevant properties

3.1 Local compliance, inviscid pulse wave speed and elastic modulus from pressure and area waveforms

According to our numerical results and for any point in our 1-D model network, ∂ A/∂t tends to a constant value with
increasing time in diastole. In late diastole, the elastic term in Eq. (4) leads to an approximately linear relationship
between P and A (Fig. 8). The slope is equal to the local compliance C1D, according to the linear tube law (7).
From this slope, Eqs. (8) and (18) allow us to calculate the inviscid pulse wave speed in late diastole as

c̃i =
√

A0

ρC1D
, (29)

using a reasonable value for ρ and approximating A0(x) by the time-averaged area Ā(x).
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If the wall thickness h(x) can be measured, then the local elastic modulus E(x) can be calculated as (Eq. 18)

E = 3 Ā3/2

2
√

πhC1D
. (30)

3.2 Local viscous modulus � and wall viscosity from pressure and area waveforms

The area–pressure curve in a viscoelastic vessel exhibits hysteresis, as shown in Fig. 8. Under the assumption of
periodic flow, approximating 1/(A0 A1/2) by 1/A3/2

d , with Ad(x) the diastolic area, and integrating Eq. (4) over a
cardiac cycle (which is indicated by

∮
) leads to

� =
A3/2

d

∮

P dA
∮

∂ A

∂t
dA

. (31)

This equation follows from Eq. (4) since
∮

PedA = 0. It allows us to calculate �(x) from simultaneous measure-
ments of pressure P and area A at an arbitrary location in the arterial network.

If the wall thickness h(x) can be measured, then the local wall viscosity ϕ(x) can be calculated as (Eq. 5)

ϕ = 3�

2
√

πh
. (32)

3.3 Total compliance from the aortic root flow and a pressure waveform

The total compliance of the systemic arterial tree CT is a measure of the change in the total blood volume of the
systemic vessels for a given change in blood pressure. From the pressure and flow waveforms at the inlet of the
ascending aorta, CT can be approximated as

CT = Qp − Q0

Ps − Pd
�t, (33)

where Qp is the peak flow rate, Q0 is the flow rate at the onset of the systolic ejection, Ps is the systolic pressure, Pd

is the diastolic pressure and �t is the difference between the time at Qp and the time at Q0. Note that
(
Qp − Q0

)
�t

is the blood volume pumped by the left ventricle from the onset of systole up to the time of Qp.
Alternatively, if we know the cardiac output and the pressure waveform at any other point in the systemic arterial

network, we can calculate CT using Eq. (27). During diastole, it is reasonable to assume zero flow at the inlet of the
ascending aorta in normal conditions, which reduces the space-independent pressure pw(t) to exponential functions
with a time constant RTCT. We will explore the accuracy of estimating RTCT and Pout from an exponential fit of
the form

pw = Pout + (pw(T0) − Pout)e
− t−T0

RTCT , t ≥ T0, (34)

to the pressure decay in diastole simulated in any arterial segment. This expression follows from Eq. (27) when
all peripheral compliances C j ( j = 2, . . . , M) are neglected. We use the MATLAB (MathWorks Inc.) function
fminsearch with pressure non-dimensionalised by its maximum value and time by the period of the heartbeat,
the initial conditions RTCT = 1 s and Pout = 0, and a tolerance of 10−12.

If the cardiac output qIN is known, then RT can be calculated using Eq. (24), with pi calculated from the measured
pressure waveform. The total compliance of the system, CT, then follows from RT and RTCT.

4 Numerical verification using nonlinear pulse waveforms

We verify the results of the linear analysis (Sect. 4.1) and assess the accuracy of the parameter estimation techniques
(Sect. 4.2) using pressure, velocity and area waveforms simulated in the cerebral network (Fig. 1) by the nonlinear
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Fig. 9 Pressure (left) and velocity (right) waveforms in the midpoint of the aortic arch II (Arch), right common carotid (CCA), right
middle cerebral (MCA) and anterior communicating (ACoA) arteries of the viscous-fluid, visco-elastic wall, nonlinear cerebral model
(Fig. 1). The left panel shows the space-independent pressure pw(t) given by Eq. (27) with the parameters calculated as described in
the text

Eqs. (1) and (4) with a sample rate of 1 kHz. Figures 8–10 show these waveforms at several locations once the
solution is periodic (after eight cardiac cycles).

4.1 Linear analysis

In agreement with the propagation of the narrow Gaussian-shaped waveform (Fig. 5), blood viscosity mainly affects
the magnitude of pressure and velocity waveforms rather than their shapes (Fig. 10, top). At the aortic root, blood
viscosity increases pressure relative to the inviscid case, due to the effect of the resistance per unit of length R1D

(Eq. 8). This yields a net systemic resistance that is larger than the net peripheral resistance RT by 3.5 %. Blood
viscosity also leads to a decrease in time-averaged pressure (over the cardiac cycle) with the distance from the aortic
root (Fig. 9, left). The pressure drop with distance is greater toward peripheral locations, since they have greater
R1D due to their smaller luminal areas (Eq. 8). Moreover, R1D affects the distribution of the cardiac output to each
terminal branch, which in turn affects the velocity waveform (Fig. 10, top right).

If blood is assumed to be inviscid, then all the arterial segments have the same time-averaged pressure P̄ =
13.2 kPa, which depends on the cardiac output qIN, outflow pressure Pout, and net peripheral resistance RT, in
agreement with Eq. (24).

Wall viscosity smooths the pressure and flow waveforms predominantly where high frequencies are dominant
(Fig. 10, bottom). Moreover, distal waveforms are smoother than proximal ones (Fig. 9), since the pulse wave is
subject to a visco-elastic damping along every arterial segment, with Im(k) decreasing (i.e. the damping effect with
distance increasing) toward the periphery.

Although wall viscosity is set to ϕ = 15 kPa s in all segments (based on data published in [16,17] for the carotid
artery of normotensive men), �/(A0

√
A) in the tube law (4) increases toward peripheral locations. Therefore, for

a given pressure P and elastic contribution Pe, ∂ A/∂t will decrease as �/(A0
√

A) increases. This leads to smaller
areas of hysteresis in the area–pressure curve in peripheral segments (Fig. 8).

The foot of the pulse waveform, which is made up of high frequencies, arrives at the measuring site ear-
lier in the visco-elastic model (Fig. 10, bottom). This is in agreement with the increase in wave dispersion with
frequency shown in Fig. 4 (right). In early systole, the expansion of the vessel wall (∂ A/∂t > 0) leads to a
larger pressure in the visco-elastic model than in the purely elastic one (Fig. 10, bottom left), which is in agree-
ment with Eq. (4). The opposite effect is observed when the vessel wall relaxes (∂ A/∂t < 0) in late systole and
diastole.

Figure 9 (left) shows the tendency in time of all pressure waveforms to a similar exponential shape (except
for the magnitude due to viscous blood dissipation) in diastole. This shape is well captured by a space-inde-
pendent pw(t) calculated using Eq. (27) with an asymptote Pout = 666.5 Pa, pw(T0) taken to be equal to the
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Fig. 10 Pressure (left) and velocity (right) waveforms in the midpoint of the right common carotid artery of the nonlinear cerebral
model (Fig. 1), comparing the models with viscous and inviscid fluid (top) and elastic wall and visco-elastic wall (bottom). Pe is the
elastic contribution to pressure

pressure at the aortic root at the beginning of the cardiac cycle (T0 = 7.63 s), RT = 139.11 MPa s m−3 calculated
using RT = (pi − Pout)/qIN from Eq. (24), with the time-averaged pressure at the aortic root, Cp calculated

using Eq. (26), and Cc = ∑N
i=1 Ci

1Dli = 5.15 m3 GPa−1, with Ci
1D = 2Ai

0( Āi )1/2/β i and Āi the mean area
over one cardiac cycle (i = 1, . . . , N ). The resulting time constant and total compliance are RTCT = 1.34 s
and CT = 9.60 m3 GPa−1, respectively. This result is in agreement with observations that human [39] and
canine [40] in vivo pressure waveforms are remarkably uniform in about the last two-thirds of diastole in normal
conditions.

4.2 Estimation techniques

Table 1 shows the estimates of the inviscid pulse wave speed, c̃i, wall viscous modulus, �, time constant, RTCT,
total compliance, CT, and outflow pressure, Pout. They were obtained from the cardiac output and pressure and
area waveforms simulated in the midpoint of each segment, using the methods described in Sects. 3.1–3.3 [fit-
ting Eq. (34) to calculate CT]. The estimate of CT using Eq. (33) is CT = 9.00 m3 GPa−1. These estimations
are compared with the corresponding theoretical values obtained from the parameters of the model using Eq.
(6) for c̃i (with A equal to its time-averaged value over one cardiac cycle, Ā), Eq. (5) for �, the calculations
described in the paragraph above for RTCT = 1.34 s and CT = 9.60 m3 GPa−1, and the prescribed Pout =
666.5 Pa.

In any segment, c̃i is estimated with an error smaller than 1 %. The estimates of c̃i are not very sensitive to
errors in the blood density ρ; if a ±5 % error is introduced in ρ, errors in the estimates are smaller than 3 %. � is
overestimated, especially in proximal vessels, since they undergo greater changes in cross-sectional area than distal
ones, thus increasing the approximation error in Eq. (31).
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Fig. 11 Top Pressure waveform at the aortic root of the viscous-fluid, visco-elastic wall, nonlinear cerebral model (Fig. 1). A zero
volume flow rate was prescribed after t = 8.6 s. Bottom Estimates of RTCT (left) and Pout (right) with the diastolic period Td: from the
last two-thirds of diastole (Td = 0.4 s) to Td = 5.8 s (see upper panel). The corresponding theoretical values are shown in dashed lines

The accuracy of the estimates of RTCT and Pout depends upon the diastolic region used for the exponential
fitting. Figure 11 (top) shows the simulated pressure decay at the aortic root when the cardiac ejection is stopped
(qIN = 0) after t = 8.6 s. The lower panels show the sensitivity of the estimates of RTCT and Pout to changes in the
diastolic period Td. As Td increases, the estimates of Pout approach the theoretical values. The estimates of RTCT

improve up to the threshold T̃d = 0.6 s. They worsen for Td > T̃d since in our nonlinear model CT decreases as
the pressure drops, in agreement with the in vivo system [41], and RT decreases as the wall friction f drops with
the decreasing blood velocity. Different thresholds T̃d are obtained at other locations (e.g. in the midpoint of the
thoracic, carotid and middle cerebral arteries T̃d is equal to 0.5, 0.6 and 1.7 s, respectively). In Table 1 we used
Td = 1.5 s, which is a feasible value in vivo, e.g. when a missing or ectopic beat occurs (as observed even in healthy
subjects) [42] or when drugs are administered to temporally stop the heartbeat in animal experiments.

In agreement with Fig. 11 (bottom, right), Pout is underestimated in all the segments, especially in distal ves-
sels. The error in the estimates of RTCT is smaller than 7 % in any segment; it is overestimated in all cere-
bral vessels and underestimated in more proximal vessels. Despite the large errors in the estimates of Pout,
CT is estimated with a relative error smaller than 8 % in all segments, except for the cerebral arteries. Relative
errors for CT are smaller than 13 % in non-cerebral arteries if a ±5 % error is introduced in the cardiac output, qIN.

The high symmetry of the system yields similar estimates in those arteries that are present on the right and left
circulations.

5 Concluding remarks

We have used the 1-D formulation to investigate mechanisms underlying the effect on pressure, flow and area
waveforms of several physical properties of the cardiovascular system. Based on these investigations, we have
derived methods to calculate the local visco-elastic properties of the arterial wall, and the total arterial compliance,
net resistance, time constant and peripheral outflow pressure of the systemic arterial tree from data that can be
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measured in vivo. Knowledge of these properties is clinically important for the diagnosis and treatment of disease
and for providing patient-specific parameters to computational models, which have the potential to support the
prognosis and design of therapeutic interventions.

We have shown that the damping effect on the pulse waveform increases with increasing frequency, blood viscos-
ity and wall viscosity, and decreasing Young’s modulus and luminal area. Blood viscosity causes wave dispersion for
the lower frequencies of pulse waveforms, decreasing the pulse wave magnitude, whereas wall viscosity, ϕ, increases
wave dispersion with increasing frequency, smoothing pulse waveforms predominantly where higher frequencies
are dominant. Although all the arteries studied here have the same ϕ, distal pulse waveforms are smoother and have
smaller areas of hysteresis in the area–pressure curve than proximal ones. This is due to the combined effect of the
visco-elastic damping acting along every arterial segment, and �(x)/A0(x)

√
A increasing as the cross-sectional

area of the lumen decreases. Moreover, ϕ amplifies the pulse pressure due to the expansion of the vessel wall during
early systole.

We have also shown that the inertial effects of blood flow become negligible during approximately the last two-
thirds of diastole, when pressures tend to the space-independent shape pw(t) dictated by global quantities (cardiac
ejection, total compliance, net peripheral resistance, and outflow pressure) and the local viscous modulus. Although
pw(t) fails to reproduce the wave-like nature of pulse propagation during systole and early diastole, it provides a
zero-order approximation to the nonlinear pressure P(x, t) in larger systemic arteries. This approximation allows
us to study the effect on the pressure waveform of the cardiac ejection, total compliance, net peripheral resistance,
and outflow pressure.

We have focussed the exposition on understanding mechanisms underlying arterial pulse wave propagation in
the upper body, but similar mechanisms are expected in most of the conduit arterial network, since the mathematical
problem is conceptually the same. The coronary arteries are an exception due to the effect of myocardial contraction.

We have described methods to calculate the local compliance, inviscid pulse wave speed and wall visco-elas-
tic moduli from simultaneous pressure and area waveforms, and the total compliance, net resistance and outflow
pressure from the flow at the aortic root and a pressure waveform at an arbitrary arterial location. These methods
rely on the ability of the 1-D formulation to capture the main features of pulse waveforms in large arteries, which
is supported by several studies [9,23,25,36,43], and the feasibility of taking accurate measurements of the in vivo
data required for the calculations.

In vivo measurements are currently available for only some human arteries. The flow at the aortic root can be
measured using Doppler ultrasound [44, p. 38] and magnetic resonance (MR) [45]. Blood pressure can be recorded
noninvasively in superficial arteries, such as carotid, brachial, radial and femoral, using applanation tonometry
[16,25,26,46]. Invasive measurements can be obtained in the aorta and other extracranial arteries using pressure-
sensing catheters [14]. The internal luminal area can be measured in superficial arteries using ultrasound-based
echo-tracking [16,26,47] and MR [45]. Invasive measurements using piezoelectric crystal transducers have been
carried out in animal experiments [26].

According to the results in Table 1, accurate measurements of pressure and area at the common carotid artery
and the cardiac output could lead to errors smaller than 6 % in the estimates of the local compliance, total systemic
compliance, and time constant at the aortic root.

For patient-specific 1-D simulations we also need arterial lengths and mean cross-sectional areas, which can be
obtained from medical images, such as MR imaging [10,48,49]. The wall thickness is necessary to calculate the
local Young’s modulus, Eq. (30), and wall viscosity, Eq. (32). It is not necessary, however, to calculate local pulse
wave speeds (or compliances C1D) and viscous moduli �, which are sufficient to simulate the propagation of the
pressure and flow waveforms using the 1-D formulation.

Given the amount of in vivo data usually available in the clinic, not all the parameters of the 1-D model can be
calculated using the methods proposed here. Optimisation techniques as those proposed in [10,11] can be used to
calculate the rest of parameters. We believe, however, that mechanical-based algorithms, as those described here,
should first be used to determine the total compliance and net resistance of the system, outflow pressures, and local
compliances and viscous moduli at as many locations as possible. For example, knowledge of the wave speed, c̃i,
and luminal area at a few locations allows us to relate them through a least-squares fitting [25,31,50], so that c̃i
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can be inferred elsewhere in the system given local areas from medical images. Once the net peripheral resistance
and compliance are known, we can distribute them among the terminal branches based on mechanical principles
[8,33].

Analysis of in vivo data is beyond the scope of this study. We have used numerical waveforms to verify our
results, which are free of measurement and alignment errors. Moreover, the numerical model provides theoretical
values to compare with the estimates. However, numerical waveforms are an approximation to in vivo waveforms.
This is, therefore, a limitation of our study, and a full verification of our results using in vivo data remains to be done
in future work. Future work could also carry out a similar analysis using more complex visco-elastic models of the
arterial wall that account for stress relaxation [10,23,24] and the nonlinear behaviour of the arterial wall [25,26].

This work has proposed methods to calculate physical quantities of the system that are important for assessing
cardiovascular function and running patient-specific simulations of pulse wave propagation in the systemic arterial
network.
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