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Abstract The mechanisms underlying the shape of pulse waves in the systemic arterial network are studied using
the time-domain, one-dimensional (1-D) equations of blood flow in compliant vessels. The pulse waveform at an
arbitrary location in the network is initially separated into a peripheral component that depends on the cardiac output,
total compliance and total peripheral resistance of the network, and a conduit component governed by reflections
at the junctions of the large conduit arteries and at the aortic valve. The dynamics of the conduit component are
then analysed using a new algorithm that describes all the waves generated in the linear 1-D model network by a
single wavefront starting at the root. This algorithm allows one to systematically follow all the waves arriving at
the measuring site and identify all the reflection sites that these waves have visited. Application of this method to
the pulse waves simulated using a 1-D model of the largest 55 systemic arteries in the human demonstrates that
peripheral components make a larger contribution to aortic pressure waveforms than do the conduit components.
Conduit components are closely related to the outflow from the left ventricle in early systole. Later in the cardiac
cycle, they are the result of reflections at the arterial junctions and aortic valve. The number of reflected waves
increases approximately as 3m , with m being the number of reflection sites encountered. The pressure changes
associated with these waves can be positive or negative but their absolute values tend to decrease exponentially. As
a result, wave activity is minimal during late diastole, when the peripheral components of pressure and the flow are
dominant, and aortic pressures tend to a space-independent value determined by the cardiac output, total compliance
and total peripheral resistance. The results also suggest that pulse-wave propagation is the mechanism by which
the arterial system reaches the mean pressure dictated by the cardiac output and total resistance that is required to
perfuse the microcirculation. The total compliance determines the rate at which this pressure is restored when the
system has departed from its equilibrium state of steady oscillation. This study provides valuable information on
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identifying and measuring the parameters and pathways of the arterial network that have the largest effect on the
simulated pulse waveforms.

Keywords Arterial pulse waveforms · Diastolic decay · Dicrotic notch · One-dimensional modelling ·
Wave tracking algorithm

1 Introduction

Pulse waveforms carry information about the morphology and functionality of the cardiovascular system. Therefore,
a good understanding of the mechanics of pulse wave propagation in normal conditions and the impact of disease
and anatomical variations on the patterns of propagation can provide valuable information for clinical diagnosis
and treatment. Several comparisons against in vivo [1,2] and in vitro [3, Chap. 3], [4] data have shown the ability
of the nonlinear one-dimensional (1-D) equations of blood flow in compliant vessels [5–10] to capture the main
features of pressure and flow waveforms in large arteries. Indeed, arterial pulse wavelengths are sufficiently long
compared to arterial diameters to justify the use of a 1-D rather than a three-dimensional (3-D) approach when a
global and sectionally averaged assessment of blood flow in the arterial system is required.

The shape of the arterial pulse wave is continuously altered as it propagates from central (or conduit) to periph-
eral arteries. According to the 1-D formulation, pulse waveforms depend on the geometry, local pulse wave speeds
(or distensibilities), velocity profiles, and boundary conditions of the arterial network. Imaging techniques such as
computer tomography, magnetic resonance and ultrasound are now able to provide patient-specific information on
vessel geometry and the inflow waveform at the root of the arterial model (typically at the ascending aorta), as well
as more limited information on pulse wave speeds and local velocity profiles. Outflow boundary conditions can be
estimated from pressure and flow data that can be measured in vivo [11]. These techniques permit the use of the
1-D model to quickly and accurately simulate pulse waveforms, potentially under patient-specific conditions, in
vessels that cannot be assessed in vivo for technical and physiological reasons, such as the inability to access vessels
of interest and isolate variables without compensatory effects of cardiovascular homeostatic reflexes. Examples of
clinically relevant problems studied using the 1-D formulation are [2,7,12–16]. Moreover, the 1-D model can also
be used to provide the boundary conditions for 3-D flow simulations [17,18].

Full understanding of the mechanisms that produced the simulated pulse waveforms, however, remains an open
problem. It has been shown [19–21] that separation of the pressure waveform into a space-independent reservoir
component, generated by the windkessel effect, and a wave component, which varies with time and distance along
the arteries, allows a better interpretation of the mechanics behind the typical pulse waveforms in the systemic
circulation. However, the physical bases of this separation have not been yet established, and the relation between
the shape of the wave components and the local features of the complex arterial network remains to be studied
in detail. It would be particularly useful to determine the physical properties of the cardiovascular system that
contribute to the pattern of pulse waves throughout the cardiac cycle, which should elucidate those properties to be
monitored to diagnose disease and those to be targeted to prevent and treat disease.

In this work, we investigate the mechanisms that produce the patterns of systemic arterial pulse waves using a
time-domain analysis of the linear 1-D equations. In particular, we are interested in identifying the properties of the
system that dictate the dicrotic notch typically observed in the pressure waveform at the end of systole (the phase
of the heartbeat when the heart contracts and ejects blood into the ascending aorta, T0 ≤ t ≤ TN ) and the pressure
decay during diastole (the phase of the heartbeat when the heart relaxes and the aortic valve is closed, TN ≤ t ≤ T f )
(Fig. 1, right). Section 2 introduces the 1-D formulation and Sects. 3–5 show the novel method proposed in this
work to separate and analyse the contributions from different parts of the arterial network to the pressure and flow
waveforms at an arbitrary location. Section 3 establishes the relation between the 1-D formulation and Frank’s
windkessel model [22], and studies the contributions from the peripheral flow dynamics. Section 4 analyses the
reflections produced by the boundary condition at the inlet of the ascending aorta, which models the dynamics of
the outflow from the left ventricle through the aortic valve. Finally, Sect. 5 focuses on the flow dynamics in the
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Fig. 1 (left) Connectivity of the largest 55 systemic arteries in the human, as proposed in [12]. Their names and properties are shown
in Tables 1 and 2. (top right) Periodic inflow rate imposed at the inlet of the ascending aorta (segment 1). T0, TN , and T f are the times
when systole starts, systole ends, and diastole ends, respectively. (bottom right). Pressure in the thoracic aorta (midpoint of segment 18)
once the flow has reached a periodic state. p̃0 is the diastolic pressure
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Fig. 2 Networks used to illustrate the wave-tracking analysis: (left) a tree with six nodes (N = 6) and five edges (E = 5), and (right)
a network containing a loop with N = 8 and E = 8. Table 3 shows the geometrical properties of both networks

conduit arteries controlled by wave reflections at the arterial junctions, and proposes a new algorithm to describe all
the waves generated in a linear, 1-D model network by a single wavefront starting at the root. This wave tracking
algorithm allows us to systematically follow all the waves generated at an arbitrary measuring site and identify all
the reflection sites that these waves have visited. The networks shown in Figs. 1 and 2 will be used to illustrate this
analysis.
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2 1-D formulation

Conservation of mass and balance of momentum applied to a 1-D impermeable and deformable tubular control
volume of Newtonian incompressible fluid leads to the nonlinear system of hyperbolic partial differential equations
[10]

∂ A

∂t
+ ∂ (AU )

∂x
= 0, (1)

∂U

∂t
+ U

∂U

∂x
+ 1

ρ

∂ P

∂x
= f

ρ A
, (2)

where x is the axial coordinate along the vessel, t is the time, A(x, t) is the cross-sectional area of the lumen, U (x, t)
is the average axial velocity, P(x, t) is the average internal pressure over the cross-section, and ρ =1,050 Kg m−3

is the density of blood. The friction force per unit length f is given by f = −2(γ + 2)µπU , where µ=4 mPa s is
the viscosity of blood and γ is a non-dimensional correction factor that depends on the assumed velocity profile.
Following [7], γ =9 is a good compromise fit to the experimental data. Note that γ =2 corresponds to a parabolic
profile which leads to the Poiseuille’s flow resistance f =−8µπU . The system of governing equations can be
completed with the tube law [1,2,8,10]

P = β

A0

(√
A − √

A0

)
, β(x) = 4

3

√
πhE, (3)

which assumes a thin, homogeneous, incompressible and elastic arterial wall, in which each cross-section is inde-
pendent of the others, with a thickness h(x), a Young’s modulus E(x), and a lumen area A0(x) at the reference
state (P, U ) = (0, 0).

Riemann’s method of characteristics applied to Eqs. 1 to 3 shows that changes in pressure and velocity are
propagated forward (in the positive direction of x) by W f and backward (in the negative direction of x) by Wb

along the characteristic curves dx̂ f,b/dt = U ± c, respectively, where x̂ f,b(t) represent curves in the (x, t) space,
W f,b = U ± 4(c − c0) are the characteristic or Riemann variables, c = √

β/2ρ A0 A1/4 is the pulse wave speed,
and c0 = c(A0). If f = 0 and β and A0 are constant, W f,b are invariant along the characteristic curves [11].

2.1 Linear formulation

To simplify the analysis of pulse waveforms to be described in Sects. 3–5, we express Eqs. 1 and 2 in terms
of the (A, P, Q) variables, with Q = AU , and we linearise them together with Eq. 3 about the reference state
(A, P, Q) = (A0, 0, 0), with β and A0 constant along x , to obtain
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C1D
∂p

∂t
+ ∂q

∂x
= 0,

L1D
∂q

∂t
+ ∂p

∂x
= −R1Dq,

p = a

C1D
,

(4)

where a, p and q are the perturbation variables for area, pressure and flow rate, respectively, i.e., (A, P, Q) =
(A0 + a, p, q), and

R1D = 2(γ + 2)πµ

A2
0

, L1D = ρ

A0
, C1D = A0

ρc2
0

(5)

are the viscous resistance to flow, blood inertia and wall compliance, respectively, per unit of length of vessel.
Applying the method of characteristics, system (4) can be written as

∂w f

∂t
+ c0

∂w f

∂x
= − R1D

L1D
q,

∂wb

∂t
− c0

∂wb

∂x
= − R1D

L1D
q, (6)
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where

w f,b = q ± p

Z0
, Z0 = ρc0

A0
(7)

are the linear Riemann variables, Z0 is the characteristic impedance of the vessel, and c0 = √
1/L1DC1D is the

linearized pulse wave speed. The set of equations (6) show that linear changes in pressure and flow are propagated
forward by w f and backward by wb along the characteristic lines dx̃ f,b/dt = ±c0, respectively, where x̃ f,b(t)
represent lines in the (x, t) space. If viscous dissipation is neglected (R1D = 0), Eq. 6 forms a system of decoupled
equations in w f and wb, which are invariant along the characteristic lines. The variables w f and wb allow us to
derive the coefficients that reflect and transmit pulse waves at the junctions and boundaries of the arterial network, as
described in the following sections. These coefficients are the direct analogy to the coefficients commonly applied
in acoustics and surface waves [10, 23, Chap. 8].

According to Eq. 7, p and q can be written in terms of w f and wb as follows

p = w f − wb

2
Z0, q = w f + wb

2
. (8)

Eq. 8 shows that p and q can be separated into forward and backward components,

p = p f + pb, q = q f + qb,

p f = Z0w f /2, pb = −Z0wb/2, q f = w f /2, qb = wb/2,
(9)

so that changes in p f and q f are propagated in the forward direction by w f , whereas changes in pb and qb are
propagated backward by wb.

We solve the inviscid form of system (4) (R1D = 0) in the arterial networks shown in Figs. 1 and 2 using a
discontinuous Galerkin scheme with a spectral/hp spatial discretisation, a second-order Adams–Bashforth time-
integration scheme, and the initial conditions (a, p, q) = (0, 0, 0) everywhere in the 1-D model arteries. At the
arterial junctions we enforce conservation of mass and continuity of pressure.

Figure 1 (top right) shows the periodic inflow boundary condition (with a mean value of 93 ml/s) imposed at
the ascending aorta of the 55-arteries model, which will be described in Sect. 4. Terminal branches are coupled to
peripheral windkessel models as will be described in Sect. 3.1. Table 1 shows the geometrical data and wave speeds
of each arterial segment, and Table 2 shows the peripheral resistances and compliances of the terminal branches.
They are based on the data in [12].

Further details on the 1-D model and its numerical solution are given in [10,11].

Table 1 Lengths, initial radii, and wave speeds of the 55-arteries network in Fig. 1

Arterial segment Length (cm) Radius (mm) c0 (m/s) Rinlet Routlet

1. Ascending aorta 4.0 14.5 4.3 − 0.1

2. Aortic arch I 2.0 11.2 4.3 −0.3 0.0

3. Brachiocephalic 3.4 6.2 4.6 −0.8 0.2

4. R. subclavian 3.4 4.2 5.1 −0.5 0.2

5. R. common carotid 17.7 3.7 5.3 −0.6 0.8

6. R vertebral 14.8 1.9 9.0 −0.9 −
7. R. brachial 42.2 3.2 5.9 −0.4 0.4

8. R. radial 23.5 1.6 9.5 −0.8 −
9. R ulnar I 6.7 2.2 8.4 −0.6 0.1

10. R. interosseous 7.9 0.9 14.3 −0.9 −
11. R. ulnar II 17.1 1.9 8.9 −0.2 −
12. R. internal carotid 17.7 1.3 10.7 −0.9 −
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Table 1 continued

Arterial segment Length (cm) Radius (mm) c0 (m/s) Rinlet Routlet

13. R. external carotid 17.7 1.3 10.3 −0.9 −
14. Aortic arch II 3.9 10.7 4.2 −0.1 0.0

15. L. common carotid 20.8 3.7 5.3 −0.9 0.8

16. L. internal carotid 17.7 1.3 10.7 −0.9 −
17. L. external carotid 17.7 1.3 10.3 −0.9 −
18. Thoracic aorta I 5.2 10.0 4.3 −0.1 0.4

19. L. subclavian 3.4 4.2 5.1 −0.9 0.2

20. L vertebral 14.8 1.9 9.0 −0.9 −
21. L. brachial 42.2 3.2 5.9 −0.4 0.4

22. L. radial 23.5 1.6 9.5 −0.8 −
23. L. ulnar I 6.7 2.2 8.4 −0.6 0.1

24. L. interosseous 7.9 0.9 14.3 −0.9 −
25. L. ulnar II 17.1 1.9 8.9 −0.2 −
26. Intercostals 8.0 1.8 6.8 −1.0 −
27. Thoracic aorta II 10.4 6.6 5.0 −0.5 −0.1

28. Abdominal aorta I 5.3 6.1 5.0 −0.2 −0.2

29. Celiac I 1.0 3.9 5.2 −0.7 0.4

30. Celiac II 1.0 2.0 7.3 −0.7 −0.5

31. Hepatic 6.6 2.2 6.0 −0.6 −
32. Gastric 7.1 1.8 6.4 −0.6 −
33. Splenic 6.3 2.8 5.7 0.1 −
34. Superior mesenteric 5.9 4.4 5.1 −0.6 −
35. Abdominal aorta II 1.0 6.0 4.7 −0.2 −0.1

36. L. renal 3.2 2.6 5.8 −0.9 −
37. Abdominal aorta III 1.0 5.9 4.7 −0.1 0.0

38. R. renal 3.2 2.6 5.8 −0.8 −
39. Abdominal aorta IV 10.6 5.6 4.7 −0.1 0.0

40. Inferior mesenteric 5.0 1.6 6.7 −0.9 −
41. Abdominal aorta V 1.0 5.2 4.5 −0.1 0.1

42. R. common iliac 5.8 3.6 5.3 −0.5 0.2

43. L. common iliac 5.8 3.6 5.3 −0.5 0.2

44. L. external iliac 14.4 3.0 7.7 −0.4 0.0

45. L. internal iliac 5.0 2.0 11.5 −0.8 −
46. L. femoral 44.3 2.2 8.6 −0.5 0.2

47. L. deep femoral 12.6 2.2 8.4 −0.5 −
48. L. posterior tibial 32.1 1.9 12.4 −0.4 −
49. L. anterior tibial 34.3 1.3 14.1 −0.8 −
50. R. external iliac 14.4 3.0 7.7 −0.4 0.0

51. R. internal iliac 5.0 2.0 11.5 −0.8 −
52. R. femoral 44.3 2.2 8.6 −0.5 0.2

53. R. deep femoral 12.6 2.2 8.4 −0.5 −
54. R. posterior tibial 32.1 1.9 12.4 −0.4 −
55. R. anterior tibial 34.3 1.3 14.1 −0.8 −
They are based on the data provided in [12]. The last two columns show the reflection coefficients at the inlet and outlet of the segments
connected to junctions
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Table 2 Peripheral
resistances and compliances
at the terminal branches of
the 55-arteries network in
Fig. 1

In all these branches
Pout = 0

Arterial segment R C
(1010 Pa s m−3) (10−10 m3 Pa−1)

6. R vertebral 0.60 0.62

8. R. radial 0.53 0.70

10. R. interosseous 8.43 0.04

11. R. ulnar II 0.53 0.70

12. R. internal carotid 1.39 0.27

13. R. external carotid 1.39 0.27

16. L. internal carotid 1.39 0.27

17. L. external carotid 1.39 0.27

20. L vertebral 0.60 0.62

22. L. radial 0.53 0.70

24. L. interosseous 8.43 0.04

25. L. ulnar II 0.53 0.70

26. Intercostals 0.14 2.68

31. Hepatic 0.36 1.02

32. Gastric 0.54 0.69

33. Splenic 0.23 1.60

34. Superior mesenteric 0.09 4.00

36. L. renal 0.11 3.29

38. R. renal 0.11 3.29

40. Inferior mesenteric 0.69 0.54

45. L. internal iliac 0.79 0.47

47. L. deep femoral 0.48 0.78

48. L. posterior tibial 0.48 0.78

49. L. anterior tibial 0.56 0.67

51. R. internal iliac 0.79 0.47

53. R. deep femoral 0.48 0.78

54. R. posterior tibial 0.48 0.78

55. R. anterior tibial 0.56 0.67

3 Peripheral dynamics

This section studies the effect on arterial pulse waveforms of the resistance and compliance of vessels downstream
the largest arteries of the network. We first analyse the local effect on a terminal 1-D model artery (Sect. 3.1) and
the global effect involving all the arterial segments of the network (Sect. 3.2). Then, we show how to separate the
contribution of peripheral resistances and compliances to the pressure and flow waveforms at any location in the
arterial network, and we apply this separation to the pulse waves obtained using the 55-arteries model (Sect. 3.3).

3.1 Local peripheral dynamics

We have previously shown [11] that a single resistance R coupled to the outflow of a 1-D model terminal segment
relates w f and wb through

wb = −Rtw f − 2Pout

R + Z0
, Rt = R − Z0

R + Z0
, (10)
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where Rt is the terminal reflection coefficient, Z0 is the characteristic impedance of the terminal segment and Pout

is the pressure at which flow to the venous system ceases. The coefficient Rt is also found in the acoustics and
surface-waves literature [23, Chap. 8], and relates the pressure change associated with the reflected wave to that
of the incident wave. Equation 10 shows that any incident wave is completely absorbed by the outflow if R = Z0

(Rt = 0).
Our study in [11] also showed that a resistance equal to Z0 is required to match the propagation of forward-travel-

ling waves when a terminal 1-D model artery is coupled to a peripheral compliance C and resistance R. Significant
non-physiological reflected waves are generated by the CR model unless the resistance Z0 is included, resulting in
a matched RCR model.

3.2 Global peripheral dynamics

Integration of (4) along the length l of an arterial segment in which x ∈ [0, l] leads to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C0D
d p̂

dt
+ qout − qin = 0,

L0D
dq̂

dt
+ pout − pin = −R0Dq̂,

(11)

where qin(t) = q(0, t), qout(t) = q(l, t), pin(t) = p(0, t) and pout(t) = p(l, t) are the flow rates and pressures at
the inlet and outlet of the segment, R0D = R1Dl, L0D = L1Dl, C0D = C1Dl, and

p̂(t) = 1

l

l∫

0

p dx, q̂(t) = 1

l

l∫

0

q dx

are the mean pressure and flow rate over the whole segment.
Equation 11 applies to each segment i (i = 1, . . . , N ) of a bifurcating tree arterial network with N segments and

M outflows (M < N ); i.e.
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ci
0D

d p̂i

dt
+ qi

out − qi
in = 0,

Li
0D

dq̂i

dt
+ pi

out − pi
in = −Ri

0Dq̂i ,

i = 1, . . . , N , (12)

where the index i indicates the number of the segment. Applying conservation of mass at the junctions of the
network, the N equations of conservation of mass in system (12) combine to produce

qIN =
M∑

j=1

q j
out +

N∑
i=1

Ci
0D

d p̂i

dt
, (13)

where qIN(t) is the flow rate at the root of the network. Assuming that Ri
0D = 0 (see 1) and Li

0D = 0 (see 2)
(i = 1, . . . , N ), we have that the N equations of balance of momentum in system (12) lead to p̃ = pi

in = pi
out = p̂i ,

(i = 1, . . . , N ), where p̃ is the space-independent pressure to which the 1-D model pressures in system (4) approach
as pulse wave activity decreases. Under these conditions, Eq. 13 leads to

qIN =
M∑

j=1

q j
out + Cc

d p̃

dt
, (14)

1 The greatest fall in mean pressure occurs in the arterioles in normal physiological conditions [24, Chap. 12].
2 In the limit Li

0D → 0 then ci
0 =

√
1/Li

0DCi
0D → ∞; i.e. changes in pressure and velocity occur synchronously.

123



Analysing the pattern of arterial pulse waves 339

where

Cc =
N∑

i=1

Ci
0D (15)

is the total conduit compliance.
If each terminal branch j = 1, . . . , M is coupled to a matched RCR windkessel model relating q j

out to p j
out

through [11]

q j
out

(
1 + Z j

0

R j

)
+ C j Z j

0
dq j

out

dt
= p j

out − Pout

R j
+ C j

d p j
out

dt
, (16)

with a peripheral resistance R j , compliance C j , characteristic impedance Z j
0 , and p j

out = p̃ ( j = 1, . . . , M) when
Ri

0D = Li
0D = 0 (i = 1, . . . , N ), then Eq. 14 yields

qIN = qOUT + CT
d p̃

dt
, (17)

qOUT = p̃ − Pout

RT
−

M∑
j=1

C j Z j
0 R j

R j + Z j
0

dq j
out

dt
,

CT = Cc + C p, C p =
M∑

j=1

R j C j

R j + Z j
0

,
1

RT
=

M∑
j=1

1

R j + Z j
0

, (18)

where qOUT(t) is the total outflow through the terminal branches of the system, CT and RT are the total compliance
and resistance, and C p is the total peripheral compliance. The solution to Eq. 17 is

p̃ − Pout = ( p̃0 − Pout)e
T0−t

RT CT + e
−t

RT CT

CT

t∫

T0

⎛
⎝qIN(t ′) +

M∑
j=1

C j Z j
0 R j

R j + Z j
0

dq j
out(t

′)
dt ′

⎞
⎠ e

t ′
RT CT dt ′, t ≥ T0, (19)

where p̃0 = p̃(T0) is the pressure at the onset of the ejection, t = T0 (Fig. 1, bottom right).
Equation 19 fails to reproduce the wave-like nature of pulse propagation because changes in pressure and flow

rate are assumed to occur synchronously throughout the arteries. However, it is a good approximation to the pressure
in the arterial network when wave activity is minimal, so that blood inertia can be neglected. According to [19,21]
this is the case in approximately the last two thirds of diastole under normal conditions. During diastole the aortic
valve is closed so qIN = 0, which reduces Eq. 19 to

p̃ − Pout = ( p̃(TN ) − Pout)e
TN −t
RT CT + e

−t
RT CT

CT

M∑
j=1

C j Z j
0 R j

R j + Z j
0

t∫

TN

dq j
out(t

′)
dt ′

e
t ′

RT CT dt ′, TN ≤ t ≤ T f , (20)

where p̃(TN ) is the pressure p̃ at the start of diastole (t = TN ) and T f is the time at which the heartbeat ends, as
shown in Fig. 1 (top right). Equation 20 shows that, if viscous resistance to flow and blood inertia can be neglected
in large arteries, the diastolic pressure decay depends on the global conditions CT , RT and Pout.

Note that if C j = 0 ( j = 1, . . . , M) in Eq. 16, then the lumped parameter model described by Eq. 17 leads to
the windkessel equation proposed by Frank [22]; i.e.

qIN = p̃ − Pout

RT
+ C p

d p̃

dt
, (21)

whose solution during diastole (qIN = 0) is

p̃ − Pout = ( p̃(TN ) − Pout)e
TN −t
RT Cc , TN ≤ t ≤ T f . (22)

Integration of Eq. 17 over a cardiac cycle T0 ≤ t ≤ T f yields(
qIN − qOUT

)
T = CT

[
p̃(T f ) − p̃(T0)

]
, (23)
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where

qIN = 1

T

T f∫

T0

qIN dt, qOUT = 1

T

T f∫

T0

qOUT dt

are the mean values of qIN (cardiac output) and qOUT over the interval [T0, T f ], respectively, and T = T f − T0 is
the period of the heartbeat. If the flow is periodic with a period T , Eq. 23 reduces to

qIN = qOUT = p̃ − Pout

RT
, (24)

where

p̃ = 1

T

T f∫

T0

p̃ dt.

3.3 Separation of the effects of peripheral dynamics

We now wish to separate the pressure and flow waveforms at any location in the arterial network into a contribution
resulting from the peripheral flow dynamics and a contribution resulting from the propagation of the pulse wave
imposed at the root and its reflections at the arterial junctions and aortic valve (referred to as ‘conduit dynamics’).
This separation can be achieved by enforcing terminal boundary conditions that completely absorb any incident
wave, i.e. single resistances with R = Z0, according to (10).

Figure 3 (left) shows that the largest contribution of the conduit component of pressure to the pressure wave-
form at the thoracic aorta of the 55-arteries model occurs during the early systolic rise. Later in the cardiac cycle,
the peripheral component becomes dominant, which highlights the importance of the peripheral flow dynamics to
produce the diastolic decay. Overall, the peripheral component has a larger contribution to the pressure waveform
than does the conduit component. Nevertheless, the conduit component is responsible for the dicrotic notch.

The conduit component of the flow waveform is dominant during most of the systolic period, whereas the peri-
pheral component causes the reverse flow at the end of systole and dictates the total flow during approximately
the last two thirds of diastole (Fig. 3, right). This pattern of conduit and peripheral components of the flow repeats
every cardiac cycle from the beginning of the simulation. However, Fig. 4 highlights that there is a transient in
the pressure waveform over multiple cycles, which is dictated by the peripheral component of pressure. According
to Eq. 23, this transient is the result of the cardiac output qIN being larger than the total outflow qOUT. The flow
volume remaining in the arterial system increases p̃ at the end of each cardiac cycle by a magnitude that depends on
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Fig. 3 Pressure (left) and flow (right) waveforms (solid lines) in the midpoint of the thoracic aorta (segment 27) separated into conduit
and peripheral components once the flow has reached a periodic state
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Fig. 4 Total (solid line) pressure waveform and its conduit and
peripheral components in the midpoint of the thoracic aorta
(segment 27) during the first three cardiac cycles after starting
the heart from rest

9 9.5 10 10.5 11

5

10

15

t (s)

p 
(k

P
a)

Abd
Tho

Asc

p~

Fig. 5 Pressures at the root of the ascending aorta (Asc), and
the midpoints of the thoracic aorta II (Tho) and abdominal aorta
IV (Abd). The solid line shows the space-independent pressure
p̃ obtained using Eq. 19 with T0 = 0 and p̃0 = 0. The periodic
inflow rate in Fig. 1 (top right) was imposed until t = 10 s. For
t > 10 s, qIN = 0

the ratio T/CT . In our model it takes approximately six cardiac cycles to reach a periodic flow with qIN = qOUT.
At that time, the mean pressure everywhere in the 1-D model arteries is p̃ = 12.5 kPa, which is in agreement with
the value dictated by Eq. 24.

The results reported for the thoracic aorta apply to any other arterial segment in the model. Figure 5 shows that
the differences between the exponential decay dictated by Eq. 19 (with RT CT = 1.3 s) and the pressures simulated
using the 1-D model at different locations along the aorta decrease towards the last part of diastole. This pressure
behaviour suggests that Eq. 20 provides a good description of pressure during the last part of diastole and, hence,
wave activity is decreasing during diastole.

4 Aortic-valve dynamics

The hyperbolic nature of system (4) allows us to prescribe either a pressure proot(t) or a flow rate qroot(t) at the
inlet of the ascending aorta through the solution of a Riemann problem (Fig. 6). An intermediate state (p∗, q∗)
originates at time t + �t (�t is an arbitrary small time interval) from the states (pL , qL ) and (pR, qR) at time t .
In our model the state (pR, qR) corresponds to the solution at the beginning of the 1-D domain, and (pL , qL ) is a
virtual state selected so that p∗ = proot or q∗ = qroot. According to (8),

p∗ = w f − wb

2
Z0, q∗ = w f + wb

2
, (25)

with w f = qL + pL/Z0 and wb = qR − pR/Z0, which leads to 2q∗ = qL +qR +(pL − pR)/Z0. We can, therefore,
prescribe qroot using pL = pR and qL = 2qroot − qR , which yields q∗ = qroot and p∗ = Z0(qroot − wb). Note that
p∗ 	= Z0q∗ unless wb = 0 (i.e. no waves arrive at the inlet from the periphery). This is the case at the beginning of
the systolic ejection [25].

When wb 	= 0, any perturbation (δp, δq) propagating in the backward direction of the 1-D domain (i.e. w f = 0
and δp = −Z0δq) produces a reflected state (δp∗, δq∗) that satisfies δq∗ = qroot and δp∗ = Z0qroot +2δp. Follow-
ing the notation used in the acoustics and surface waves literature [23, Chap. 8], we define the reflection coefficient
at the aortic valve, Rv , as the ratio of the pressure change associated with the reflected wave to that of the incident
wave; i.e.
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Fig. 6 Notation for the
Riemann problem at the
inlet of the ascending aorta
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Fig. 7 Pressure (solid line) with its forward (p f ) and backward (pb) travelling components (left), and reflection coefficient (right) at
the inlet of the ascending aorta

Rv = δp∗ − δp

δp
= δq − δq∗

δq
= −w f

wb
. (26)

Substituting δq∗ = qroot in Eq. 26 leads to

Rv = 1 − qroot

δq
, (27)

where Rv > 1 or Rv < 1 depending on the ratio qroot/δq, and Rv = 1 if qroot = 0. If wb 	= 0, combination of
Eqs. 9 and 26 leads to the following relation between the forward and backward components of pressure and flow
rate at the inlet of the network

p f = Rv pb, q f = −Rvqb. (28)

The equations of (28) tell us that p and q at the inlet depend on the state of the valve (Rv) and on the pulse waves
coming from peripheral locations.

If proot is prescribed (using qL = qR and pL = 2proot − pR) instead of qroot, a similar analysis shows that

Rv = proot

δp
− 1. (29)

Figure 7 (left) indicates that p f at the inlet of the ascending aorta of the 55-arteries model contains a notch at
the end of systole unlike pb. The shape of p f during systole depends on the shapes of Rv and pb (Fig. 7, right)
through (28), which shows that the dicrotic notch is sharpened by the notch in Rv . According to Eq. 27, Rv < 1 at
the end of systole because both qroot and δq are negative. The reverse flow in qroot (Fig. 1, top right) is caused by
the suction generated after the closure of the valve [24, Chap. 11].
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Fig. 8 Tree of waves generated by a single wave starting at the root of the bifurcating tree in Fig. 2 (left). The dotted branches indicate
points of iteration in the tree, i.e. waves that have already appeared in the tree. The wave on each branch is indicated by (ne), where n
is the node at which the wave originated and e is the edge along which it is travelling

5 Conduit dynamics

Section 5.1 describes the wave tracking algorithm used to analyse the conduit components of pulse waveforms in
a 1-D model arterial network. Section 5.2 discusses the application of this algorithm to the simple networks shown
in Fig. 2 and Sect. 5.3 to the 55-arteries model shown in Fig. 1.

5.1 Wave-tracking algorithm

We consider the arterial system to be a network of uniform tubes with N nodes and E edges.3 All nodes are assumed
to be either of degree d = 1 (external nodes with one edge) or d = 3 (internal nodes with three edges). A wave
arriving at an internal node will generate three new waves; a reflected wave in the same edge and two transmitted
waves in the other two edges connected to that node. A wave arriving at an external node will generate only one
wave; a reflection in the connected edge. Thus, the number of waves in the network will increase exponentially with
the number of nodes m that are encountered, growing approximately as 3m (it is less than 3m because some of the
nodes are external in the arterial system).

We now describe a way of monitoring the waves propagating in a network. We denote a wave with the syntax
(ne) where n is the node at which the wave starts and e is the edge in which it is travelling. Each wave will have a
history which is given by the sequence of waves (ne)i (i = 1, . . . , W ) that produced it (W is the number of waves
in the sequence). We will call this sequence the ‘wave path’. To keep track of the possible wave paths through the
network, we will use the concept of the ‘tree of waves’ introduced in [26]. Figure 8 shows the tree of waves for the
bifurcating tree in Fig. 2 (left).

3 Edges were previously called arterial segments that could taper and continuously reflect waves. We will now consider the case in
which all the reflection sites of the network are concentrated in its nodes.
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An arterial network will be described using the N × E incidence matrix, B, containing −1 for the node at the
start of an edge and +1 for the node at the end of the edge. This implies a direction for the network which we will
take as the direction of the mean blood flow.

The incidence matrices for the bifurcating tree and single loop networks shown in Fig. 2 are

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0
1 −1 −1 0 0
0 1 0 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0
0 1 0 −1 −1 0 0 0
0 0 1 0 0 −1 −1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. Note that each column of the incidence matrix sums to zero (one inlet and one outlet per edge) and
that the sum of the absolute values of the rows give the degree of the node, 1 or 3.

Given the matrix B and an initial wave (ne), we can build the tree of waves using the following algorithm.
Considering that the initial wave is the first generation of the tree of waves, for subsequent generations:

1. For each of the wave paths � calculated in the previous generation, get the last wave (ne)W and use the eth
column of B to determine the other node of edge e, n′, towards which (ne)W is travelling. Use the n′th row of B
to determine the degree, d, of n′.

2. If d = 1 (external node), generate a new wave path �′ with the same history of waves as � plus a new wave
(n′e)W+1; i.e. [�, (n′e)W+1]. Else (d = 3, internal node), generate three new wave paths �′

i (i = 1, . . . , 3) with
the same history of waves as � plus a new wave (n′ei )W+1; i.e. [�, (n′ei )W+1] (i = 1, . . . , 3). The edges ei

will be those connected to the node n′, which can be determined from the n′th row of B.

Note that the computation of the tree of waves will never end and so we limit the waves generated to those whose
net time of travel is smaller than a given time (e.g. one cardiac cycle).

Once we know all the wave paths generated in a network, we can calculate the time of travel (Sect. 5.1.1) and
pressure (Sect. 5.1.2) of their final waves (ne)W . Combination of these times and pressures yields the pressure and
flow rate time histories at a location xe in an edge e (Sect. 5.1.3).

5.1.1 Time of travel of a wave path

Given the wave path (ne)i (i = 1, . . . , W ), we define the ‘time of travel’ τ as

τ =
W∑

i=1

(τe)i , (30)

where (τe)i = le/ce is the time of transit of the wave (ne)i (i = 1, . . . , W ), with le and ce the length and wave
speed of edge e. The time of arrival of the last wave (ne)W at a location xe in edge e, denoted τxe , is

τxe = τ − (1 − xe/ le)(τe)W , if B(n, e) = −1,

τxe = τ − (xe/ le)(τe)W , if B(n, e) = 1.

5.1.2 Pressure of a wave path

A wave arriving at an external node will be reflected with a reflection coefficient that is determined by the properties
of the edge and the properties of the vessels outside of the network that are connected to the node. We assume
that these reflection coefficients, which are typically part of the boundary conditions, are known. The reflection
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coefficients at the internal nodes depend upon the properties of the edges connected to the node and the edge from
which the wave approaches the node. Consider the internal node n connecting the edges a, b and c. The reflection
coefficient for a wave approaching in edge j ( j = a, b, c) will be designated R jn . According to the linear 1-D
formulation, the three reflection coefficients at this node are [10]

Ran = Ya − Yb − Yc

Ya + Yb + Yc
, Rbn = Yb − Yc − Ya

Yb + Yc + Ya
, Rcn = Yc − Ya − Yb

Yc + Ya + Yb
, (31)

where Y = A0/ρc0 is the admittance of the edge (the subscripts denote the edge number). The transmission coef-
ficients for the waves transmitted into the other two edges connected to the node n will be designated by Tjn . They
are Tjn = R jn + 1. Since Y is real and positive, R jn are bounded by −1 and +1. The limit −1 is for a vessel with
an open end and the limit +1 is for a vessel with a closed end. The case R jn = 0 is for a vessel with a well-matched
end. The coefficients Tjn are bounded by 0 and 2.

Given a wave path (ne)i (i = 1, . . . , W ), we observe that the pressure P of its final wave is given by

P =
W−1∏
i=1

(RT )i , (32)

where (RT )i = Ren′ if (ne)i is travelling towards an external node n′, or (RT )i = Ten′ if (ne)i is travelling
towards an internal node n′. For instance, P = T12T23T56 R88T86T64T32 for the wave path (11)(22)(35)(68)

(88)(66)(43)(21) in the single loop network of Fig. 2 (right), assuming that the magnitude of the initial wave
(11) is 1 (in pressure units).

5.1.3 Pressure and flow time histories

We first show how to obtain the discrete pressure time history, TP (xe, t), at a location xe in an edge e produced by
a single pulse wave propagating from the root at time t = 0; i.e. the system is excited with the input

p(t) = δ(t) =
{

1 if t = 0,

0 if t 	= 0.
(33)

This wave will generate a combinatorial number 
e of wave paths with their last wave travelling in edge e. As the
wave paths lengthen, the number 
τ < 
e of wave paths �i (i = 1, . . . , 
τ ) with the same τxe increases, since τ

does not depend upon the sequence of edges (Eq. 30). Therefore, the total pressure at xe at t = τxe will be

TP (xe, τxe ) =

∑

i=1

Pi , (34)

where Pi is the pressure of the final wave of �i (i = 1, . . . , 
). Note that TP (xe, τxe ) can be separated into the
pressure time histories of the waves travelling forward, TPf (xe, τxe ), and backward, TPb(xe, τxe ), where

TPf =

 f∑
i=1

Pi , if B(ni , ei ) = −1,

TPb =

b∑

i=1
Pi , if B(ni , ei ) = 1,

(35)

ni and ei are the node and edge, respectively, of the last wave of �i (i = 1, . . . , 
) and 
 = 
 f + 
b.
Making use of the linear Riemann variables (7), we can relate TPf and TPb to the corresponding flow rate time

histories TQ f and TQb . For a wave travelling in the forward direction, we have wb = 0 and, hence, q = p/Z0. For
a wave travelling in the backward direction, we have w f = 0 and, hence, q = −p/Z0. Therefore,

TQ f = TPf

Z0
, TQb = −TPb

Z0
. (36)

In digital signal processing terminology [27, Chap. 3], TPf , TPb , TQ f , and TQb are the ‘transfer functions’ that,
convoluted with an input pressure enforced at the root of the network, give the forward and backward pressure and
flow rate time histories at xe, respectively, produced by the input pressure.
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Table 3 Geometrical data
of the bifurcating tree and
single loop networks in
Fig. 2

The last two columns show
the reflection coefficients at
the inlet and outlet of the
edge, separated by a slash
(tree/loop) if they differ in
both networks. Waves
propagate at a speed
c0 = 5.6 m/s in all edges

Edge Length (cm) Radius (mm) Rinlet Routlet

1 50 5.0 −1.00 0.19

2 75 4.0 −0.24 0.11

3 100 1.0 −0.95 0.50/−0.86

4 125 0.8 −0.96 0.50

5 100 3.5 −0.15 0.50/−0.36

6 75 0.9 −0.88 −0.96

7 75 3.5 0.74 0.50

8 50 5.0 0.31 0.50

5.2 Application to simple networks

We first apply the wave tracking algorithm to calculate the pressure and flow transfer functions generated by a single
wave starting at node 1 in the bifurcating tree and single loop networks (Fig. 2) at t = 0. The reflection coefficients
of these networks are shown in Table 3. Figure 9 shows TPf , TPb , TQ f , and TQb in the midpoint of edge 1 of both
networks during the first 2 s. After the initial wave has arrived at the measuring site, subsequent forward-travelling
waves are the result of the reflection of backward-travelling waves at node 1, where the reflection coefficient is
R11 = −1 (i.e. node 1 is an open end). Therefore, there is an equal number of forward waves with the same net
time of travel as backward waves. This is the case for all the edges connected to an external node whose reflection
coefficient is not zero.

In any edge, the number of waves with the same time of travel increases with the number of generations of the
tree of waves. The total number of wave paths generated during 0 ≤ t ≤ 2 s is 36,929 in the bifurcating tree network
and 456,553 in the single loop network. In both cases, the total number of generations of the tree of waves is 24;
i.e. W = 24 at most. More wave paths are generated in the loop network after approximately 0.7 s, because this
network contains more reflection sites than the bifurcating tree and the loop multiplies the number of wave paths
with the same number of waves. Although the simultaneous arrival of separate waves with the same time of travel
can lead to an amplification of the total magnitude of pressure and flow, only a few waves (at most four) contribute
> 95% of the corresponding total magnitudes of the results in Fig. 9.

The wave tracking algorithm allows us to determine the path history of all the waves arriving at a measurement
site. For instance, the six backward-travelling waves at approximately t = 0.75 s in Fig. 9 (top left) followed the
edges 1–2–2–3–3–1, 1–2–4–4–2–1, 1–3–3–2–2–1, 1–1–1–1–1–2–2–1, 1–1–1–2–2–1–1–1, and 1–2–2–1–1–1–1–1.
Their pressures are 0.0023, 0.426, 0.0023, 0.0035, 0.0035 and 0.0035, respectively, of the pressure of the initial
wave a t = 0.

5.3 Application to the 55-arteries model

We now apply the wave tracking algorithm to analyse the conduit component of the pressure waveforms obtained
in Sect. 3.3. The reflection coefficients at the internal nodes of the 55-arteries model is shown in Table 1. Zero
reflection coefficients have been considered at all the external nodes. Only waves with a pressure larger than 0.001
of the pressure of the initial wave at the ascending aorta are computed.

Figure 10 (top) shows an increase of 62% in the pressure of the initial wave that propagates from the inlet of the
ascending aorta to the midpoint of the thoracic aorta. This result is in accordance with the transmission coefficients
encountered on the way from edge 1 to edge 27 through edges 2, 14 and 18. The number of the waves produced
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(a) (b)

(c) (d)

Fig. 9 Forward (solid lines) and backward (dashed lines) travelling pressures (top) and flows (bottom) in the midpoint of edge 1 of the
bifurcating tree (left) and single loop (right) networks (Fig. 2) generated by a delta wave (which is truncated in the plots) starting at node
1 when t = 0. They were calculated using the wave tracking algorithm. The delta waves are represented by Gaussian functions with
a small variance for ease of presentations. The numbers indicate the total number of wave paths with the same time of travel coming
from node 2 that combine to produce the backward-travelling waves. Pressures and flows are nondimensionalised by the corresponding
values of the initial wave coming from node 1

by the reflection of the initial wave increases approximately as 3m , with m being the number of internal nodes
encountered. As a result, there is an increase in the number of wave paths with the same net time of travel, whose
combined pressure can take positive and negative values (Fig. 10, bottom left). However, the absolute values of
these pressures tend to decrease exponentially. The wave tracking algorithm allows us to isolate those wave paths
that have visited a particular vessel, the right carotid artery in this particular example, whose pressures also tend to
decrease exponentially (Fig. 10, bottom right).

Convolution of the pressure transfer function (TPf + TPb ) shown in Fig. 10 (top) with p f at the inlet of the
ascending aorta (Fig. 11, left) yields the conduit component of pressure in the midpoint of the thoracic aorta II
(Fig. 11, right). This result has been validated with the corresponding thoracic pressure obtained using the discon-
tinuous Galerkin scheme (Fig. 3, left). Note that in this study we impose a forward-travelling pressure, p f , which
already accounts for the reflection of pb at Rv and, hence, the external node in edge 1 was set to absorb any incident
wave (unlike the reflective boundary dictated by Eq. 27 and considered in Sect. 3.3). The form of p f is evaluated
by executing the computational model with the inflow condition given in Fig. 1 (top right) and monitoring the
forward pressure wave necessary to enforce this condition. This p f simplifies the wave tracking analysis because
it reduces the number of waves generated, but does not consider the influence of internal reflections as compared
with reflections from the aortic valve. Figure 11 (right) shows that direct transmission of p f from the inlet of the
ascending aorta to the thoracic aorta through the aortic arch contributes most of the conduit component of pressure
at the thoracic aorta. Pressure contributions from more distal reflection sites, such as the carotids, are smaller and
they can take positive or negative values.
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Fig. 10 (top) Pressure (TPf + TPb ) in the midpoint of the thoracic aorta (edge 27) of the 55-arteries model generated by a single wave
starting at the inlet of the ascending aorta (edge 1) when t = 0. It was calculated using the wave tracking algorithm with zero reflection
coefficients at the external nodes. (bottom) Zoom of the reflections after the arrival of the initial wave (left) and of the reflections whose
wave paths contain the node at the outlet of the right common carotid (edge 5) (right). All pressures are nondimensionalised by the
initial pressure in edge 1
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Fig. 11 (left) Conduit component of pressure (solid line) and its forward (p f ) and backward (pb) travelling components at the inlet
of the ascending aorta (edge 1). They were obtained using the discontinuous Galerkin scheme. (right) Conduit component of pressure
(solid line) in the midpoint of the thoracic aorta (edge 27) obtained by convoluting p f with the transfer function TPf + TPb in the
midpoint of edge 27 (Fig. 10, top). This panel also shows the result of convoluting p f with the initial wave in Fig. 10 (top) (‘valve’)
and with the part of the signal that contains all waves reflected at the outlet of the right carotid artery (Fig. 10, bottom right) (‘carotid’)

6 Discussion and concluding remarks

We have studied the mechanisms underlying the pattern of arterial pulse waves in the systemic arterial network in
normal conditions, using a time-domain analysis of the linear and inviscid 1-D equations of blood flow in compliant
vessels. These equations are based on the physical principles of conservation of mass and balance of momentum.
The assumptions of linearity and inviscid flow make the analysis simpler. They are justified because nonlinear-
ities, such as the convective term in Eq. 2 and the dependence of the wave speed on pressure, do not produce
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significant changes in the features of pulse waveforms studied in this work. Viscous dissipation in the large arteries
can be neglected because the greatest fall in mean pressure occurs in the arterioles downstream the arterial network
[24, Chap. 12].

Our work has focused on separating and analysing the flow dynamics at the flow out of the left ventricle (aortic
valve) and at the conduit and peripheral reflection sites of the arterial network. Understanding of the local and global
effects on pulse waveforms of the resistances and compliances that model the perfusion of the microcirculation
has allowed us to identify the peripheral contributions to the simulated pulse waveforms (Sect. 3 and Figs. 3 and
4). Overall, the peripheral component of the pressure waveform at an arbitrary arterial location makes a larger
contribution than does the conduit component. The peripheral component is very nearly equal to the total pressure
during the last part of diastole, when the conduit component is minimal and the pressure diastolic decay approaches
a space-independent value p̃(t). The pressure p̃, and hence the diastolic pressure decay, depend on the total com-
pliance CT and the total peripheral resistance RT of the arterial network, and the pressure Pout at which flow to the
venous system ceases (Eq. 20 and Fig. 5).

These results suggest that wave activity is vanishing towards the end of diastole, which is in agreement with
previous studies involving human and canine in vivo data [19–21]. Nevertheless, the pulse waves generated by the
contraction of the left ventricle have to produce both the conduit and peripheral components of pressure, since they
are the only supply of energy into the system. The conduit component is independent of the transient undergone by
pressure in the first few cardiac cycles (Fig. 4). Consequently, it is the peripheral component that brings the blood
flow towards the steady-state oscillation dictated by the cardiac output (q̄IN), RT and Pout through Eq. 24. In this
state, q̄IN is equal to the mean value of the total peripheral outflow q̄OUT in one cardiac cycle (of duration T ), and
the mean pressure ¯̃p in each cardiac cycle depends on q̄IN, RT and Pout only. The ratio T/CT dictates the rate at
which the flow approaches this steady-state oscillation (Eq. 23). We can conclude that pulse wave propagation is
the mechanism by which the arterial system reaches the mean pressure dictated by q̄IN, RT and Pout that is required
to perfuse the microcirculation. Conduit and distal compliances determine the rate at which this pressure is restored
when the system has departed from its equilibrium state of steady oscillation.

The analysis of the reflection coefficient at the aortic valve has shown that pulse waveforms are closely related to
the outflow from the left ventricle in early systole. Later in systole, they depend on reflections at the junctions of the
arterial network and the aortic valve. We have shown that the reflection coefficient at the aortic valve changes with
time and its pattern is close to the shape of the flow at the inlet of the ascending aorta (Eq. 27 and Fig. 7). During
systole, it is larger than 1, it becomes smaller than 1 when the valve is closing, and it is equal to 1 when the valve
is closed. The resulting notch in the reflection coefficient sharpens the dicrotic notch. It is the suction generated
after the closure of the valve [24, Chap. 11] that leads the reverse flow at the ascending aorta (Fig 1, top right) and,
hence, the notch in the reflection coefficient.

The wave-tracking algorithm that we have proposed to study the reflections at the junctions of the arterial network
assumes constant arterial diameters between branches, so that the arterial network is represented using a network
of edges and nodes. According to [28], this representation is a good approximation to physiological diameters. The
algorithm can be applied to arterial networks with terminal branches coupled to peripheral resistances, which relate
the flow to pressure without any time delay and can be expressed as a reflection coefficient using (10). Networks
with other types of terminal boundary conditions (e.g. peripheral windkessel models) can also be analysed using
the wave-tracking algorithm. We first need to separate the peripheral components and then apply the algorithm to
the conduit components.

Figures 3 and 4 show that the conduit component of pressure is responsible for the dicrotic notch in the pressure
waveforms obtained in a 1-D model of the largest 55 arteries in the human. Application of the wave-tracking
algorithm to study the conduit components of this system has shown that there are multiple reflection sites in the
arterial network. As a result, the number of reflected waves increases exponentially as the cardiac cycle progresses.
Moreover, reflected waves get trapped in the arterial network, within the closed aortic valve and the peripheral ves-
sels. According to [28,29], arterial bifurcations are close to well matched for forward-travelling waves in normal
conditions. However, the reflection coefficients in (31) show that the same bifurcations have to be poorly matched
for backward-travelling waves [10]. As a result, waves get trapped on their way back to the heart. The total pressure
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of simultaneous waves can be positive or negative, but its absolute value tends to decrease exponentially leading to
minimal wave activity during the last part of diastole (Fig. 10). This result is in agreement with the space-independent
pressure described by Eq. 19 to which the flow tends during diastole (Fig. 5).

This work has elucidated the mechanisms that relate the patterns of pulse waves to the flow out of the left ventri-
cle, the geometry and compliance of the arterial network, and the flow dynamics in the peripheral vessels. We have
shown that aortic pressure waveforms are closely related to the outflow from the left ventricle and to reflections at
the arterial junctions and aortic valve during systole. These mechanisms produce the dicrotic notch. Wave activity
decreases during diastole and, hence, the diastolic pressure decay approaches an uniform value that depends on the
cardiac output and the total compliance and peripheral resistance. The cardiac output and total peripheral resistance
dictate the mean pressure required to perfuse the microcirculation, and the total compliance determines the time it
takes to reach this pressure.

The tools provided in this work could be applied to elucidate the physical parameters that should be monitored
to diagnose disease (such as hypertension) and those that should be targeted to prevent and treat disease. Moreover,
these tools can allow us to assess if pulse waveforms carry sufficient information to infer vascular anatomies (e.g.
the circle of Willis in the cerebral circulation, which frequently presents anatomical variations) from non-invasive
measurements, and to improve the efficacy of current tools for determining local wave speeds from simultaneous
pressure and flow measurements [25,30].
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