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Abstract The motion of a spherical particle in infinite linear flow and near a plane wall, subject to the slip bound-
ary condition on both the particle surface and the wall, is studied in the limit of zero Reynolds number. In the case
of infinite flow, an exact solution is derived using the singularity representation, and analytical expressions for the
force, torque, and stresslet are derived in terms of slip coefficients generalizing the Stokes–Basset–Einstein law.
The slip velocity reduces the drag force, torque, and the effective viscosity of a dilute suspension. In the case of
wall-bounded flow, advantage is taken of the axial symmetry of the boundaries of the flow with respect to the axis
that is normal to the wall and passes through the particle center to formulate the problem in terms of a system of
one-dimensional integral equations for the first sine and cosine Fourier coefficients of the unknown traction and
velocity along the boundary contour in a meridional plane. Numerical solutions furnish accurate predictions for (a)
the force and torque exerted on a particle translating parallel to the wall in a quiescent fluid, (b) the force and torque
exerted on a particle rotating about an axis that is parallel to the wall in a quiescent fluid, and (c) the translational and
angular velocities of a freely suspended particle in simple shear flow parallel to the wall. For certain combinations of
the wall and particle slip coefficients, a particle moving under the influence of a tangential force translates parallel
to the wall without rotation, and a particle moving under the influence of a tangential torque rotates about an axis
that is parallel to the wall without translation. For a particle convected in simple shear flow, minimum translational
velocity is observed for no-slip surfaces. However, allowing for slip may either increase or decrease the particle
angular velocity, and the dependence on the wall and particle slip coefficients is not necessarily monotonic.
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1 Introduction

Gas flow in micro-electro-mechanical systems occurs at exceedingly small Reynolds numbers and under conditions
where the ratio between the molecular mean free path and the boundary size, expressed by the Knudsen number, is
no longer infinitesimal. Examples include flow in micro-reactors and minute heat exchangers in micro-electronics,
DNA sequencing systems, and hand-held gas chromatography devices. Non-infinitesimal Knudsen numbers also
arise in the flow around small aerosol particles and during the late stages of collision of particles with surfaces
when the gap becomes comparable to the molecular mean free path. The discrete nature of the fluid under these
circumstances is manifested, in part, as a defiance of the no-slip boundary condition normally assumed for non-
rarefied gas flows. In various physical and engineering systems, the slip length may vary in size from nanometers
to micrometers.

A liquid may also slide over a surface when the wall shear stress is high enough to overcome the fluid–solid
molecular attraction forces, as it does near three-phase contact lines moving over a boundary. Although slip velocity
has been reported in the flow of liquids over hydrophobic and possibly more general surfaces [1,2], the laboratory
evidence is not conclusive. On the other hand, macromolecular solutions and melts are known to exhibit intermittent
slip that may initiate flow instability [3]. In traditional engineering applications, slip occurs over the boundaries of
porous materials (e.g., [4]).

The slip boundary condition was first proposed by Navier [5] and further discussed by Maxwell [6] in the context
of gas flow [7,8]. Basset [9] derived an analytical solution for the flow due to a solid sphere translating in infinite
fluid at low Reynolds numbers, and generalized the Stokes law for the drag force. In subsequent decades, although
particle motion subject to the no-slip boundary condition has received an enormous amount of attention, only a few
efforts have been made to describe the corresponding slip flows. Hocking [10] considered the motion of a sphere
toward a plane wall or another sphere and showed that, when slip is allowed on both surfaces, the resistive force
becomes only logarithmically dependent on the gap, and contact can be achieved at a finite time. His solution was
subsequently generalized to account for different slip coefficients on the surfaces of the sphere and wall [11]. Other
authors considered Stokes flow past a slip sphere using series expansions [12–14].

Keh and Chen [15] and Mohan and Brenner [16] generalized Faxen’s laws for a spherical particle accounting
for the slip velocity, and Wen and Lai [17] considered particle motion through a cylindrical tube. Palaniappan and
Daripa [18] derived a family of two-dimensional Stokes flows inside a circular cylinder with the slip boundary con-
dition applied. More recently, Elasmi and Feuillebois [19,20] and Lauga and Squires [21] derived the fundamental
singularity of Stokes flow in a semi-infinite domain bounded by a plane wall where the slip boundary condition
applies, and developed integral and asymptotic solutions.

In this paper, we consider the motion of a spherical particle in infinite fluid and near a plane wall, allowing for
slip both over the particle surface and the wall. The particle may translate and rotate as a rigid body or be convected
in an infinite linear flow or under the influence of a simple shear flow parallel to the wall. Our main goal is to
compute resistance coefficients in the case of translation and rotation, and the translational and angular velocities
in the case of free motion. The resistance coefficients for translation can be used to compute the diffusivity of small
Brownian particles [21]. In the case of infinite flow, we seek a prediction for the effective viscosity of an infinite
dilute suspension.

An exact solution for a linear ambient flow in an infinite domain will be presented in terms of Stokes-flow
singularities. The analytical results generalize Basset’s [9] formula for the force and furnish expressions for the
torque and stresslet consistent with those derived by Felderhof and coworkers for arbitrary incident flows using
Faxen’s law combined with series expansions [12,13]. In the case of wall-bounded flow, the problem formulation
relies on the boundary-integral method for Stokes flow, properly simplified to take advantage of the axial symmetry
of the boundaries of the flow with respect to the axis that is normal to the wall and passes through the particle
center. Implementing this simplification, we obtain a system of one-dimensional integral equations for the first
Fourier coefficients of the unknown traction and velocity along the boundary contour in a meridional plane. The
solution is found efficiently and accurately by boundary-element methods for gaps as small as 10−3 times the
particle radius.
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Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall 3

2 Linear flow past a spherical particle in an infinite domain

We consider infinite linear flow with velocity u∞ = U + A · x past a translating and rotating spherical particle of
radius a, where U is a constant velocity, and A is the transpose of the velocity gradient tensor, AT = ∇u∞. Mass
conservation requires that the trace of A is zero. The Reynolds number written with respect to the particle size is
assumed to be sufficiently small so that the motion of the fluid is governed by the equations of Stokes flow,

− ∇ p + µ∇2u = 0, ∇ · u = 0, (2.1)

where p is the pressure, u is the velocity, and µ is the fluid viscosity. The no-penetration and slip boundary conditions
apply over the particle surface,

u = V + � × (x − xc) + uS, (2.2)

where V is the velocity of translation of the particle center, xc, and � is the angular velocity of rotation about xc.
The first two terms on the right-hand side of (2.2) represent rigid-body motion. The slip velocity is given by the
Navier–Maxwell–Basset formula

uS = a

µβp
f · (I − nn) = λp

µ
n × f × n, (2.3)

where f ≡ σ · n is the traction, σ is the stress tensor, n is the unit normal vector pointing into the fluid, I − nn is
the tangential projection operator, and βp is the dimensionless Basset particle-slip coefficient ranging from zero for
vanishing shear stress and perfect slip, to infinity for finite shear stress and no-slip. In the case of perfect slip, the
drag force is due exclusively to the form drag due to the pressure.

In rarified gases, the slip coefficient, βp, and slip length, λp, can be rigorously related to the mean free path, λ f ,
by the Maxwell relation λ f /λ = βp K n = σ/(2 − σ), where K n ≡ λ f /a is the Knudsen number, and σ is the
tangential momentum accommodation coefficient (TMAC) expressing the fraction of molecules that undergo dif-
fusive instead of specular reflection (e.g., [7,8]). The limit σ = 2 yields the no-slip boundary condition, βp → ∞,
whereas the limit σ = 0 yields the perfect-slip boundary condition, βp → 0.

For convenience, we set the particle center at the origin, xc = 0. Using the singularity representation (e.g., [22]),
we express the velocity field in the form

ui = Ui + Ai j x j + a Gi j g j + a3 �i j d j + a3 Ri j γ j + a3 Di jl α jl + a5 Qi jl ζ jl , (2.4)

where Gi j is the Stokeslet representing a point force, �i j is the potential doublet, Ri j is the rotlet representing a
point couplet, Di jl is the Stokeslet doublet representing a point-force dipole, and Qi jl is the potential quadrupole,
given by

Gi j = δi j

r
+ xi x j

r3 , �i j = −δi j

r3 + 3
xi x j

r5
, Ri j = εi jl

xl

r3 ,

Di jl = δi j xl − δil x j − δ jl xi

r3 + 3
xi x j xl

r5
,

Qi jl = −3
δi j xl + δil x j + δ jl xi

r5
+ 15

xi x j xl

r7 . (2.5)

In these expressions, r is the distance from the particle center, δi j is Kronecker’s delta representing the identity
matrix, and g j , d j , γ j , α jl , and ζ jl , are unknown singularity coefficients. Since Qi jl is symmetric with respect to
j and l, we can assume that ζ jl is also symmetric.

The no-penetration boundary condition requires ui xi = Vi xi at r = a. Substituting the singularities and simpli-
fying, we find

u j x j = U j x j + A jl x j xl + 2 (g j + d j ) x j + (−δ jl a2 + 3 x j xl) (α jl + 3 ζ jl) = Vj x j , (2.6)

and hence

g + d = −1

2
(U − V), αS + 3 ζ = −1

3
E, (2.7)

123



4 H. Luo, C. Pozrikidis

where the superscript S denotes the symmetric part of a tensor, and E is the rate-of-deformation tensor, E = AS .
The tangential component of the velocity is

u|
i = ui − um

xi xm

a2 = Ui + Ai j x j + a Gi j g j + a3 �i j d j + a3 Di jl α jl + a5 Qi jl ζ jl + a3 Ri j γ j

− xi xm

a2

(
Um + Amj x j + a Gmj g j + a3 �mj d j + a3 Dmjl α jl + a5 Qmjl ζ jl + a3 Rmj γ j

)
. (2.8)

Making substitutions and simplifying, we find

u|
i = (U j + g j − d j )(δi j − xi x j

a2 ) + εil j γl x j + (Ai j + αi j − α j i − 3 ζi j − 3 ζ j i ) x j

+ 1

a2 (−Al j + 6 ζ jl) xi x j xl . (2.9)

The stress field is given by

σik = µ
(

Aik + Aki + a 
G
i jk g j + a3 
�

i jk d j + a3 
R
i jk γ j + a3 
D

i jlk α jl + a5 

Q
i jlk ζ jl

)
, (2.10)

where


G
i jk = −6

xi x j xk

r5
, 
�

i jk = 6
δi j xk + δik x j + δ jk xi

r5
− 30

xi x j xk

r7 ,


D
i jlk = 6

δil x j xk + δ jl xi xk + δkl xi x j

r5
− 30

xi x j xl xk

r7 ,



Q
i jlk = −6

δi j δkl + δik δ jl + δ jk δil

r5
+ 30

(δi j xk + δik x j + δ jk xi ) xl

r7

+30
δil x j xk + δ jl xi xk + δkl xi x j

r7 − 210
xi x j xl xk

r9 , (2.11)


R
i jk = 3

εil j xk + εkl j xi

r5
xl ,

are the stress tensors of the individual singularities. Note that all of these tensors are symmetric with respect to i
and k, as required.

The surface traction on the sphere is fi = σik xk/a, and its tangential component is

f |
i = fi − fm

xi xm

a2 = µxk

a

(
Aik + Aki + a 
G

i jk g j + a3 
�
i jk d j + a3 
R

i jk γ j + a3 
D
i jlk α jl + a5 


Q
i jlk ζ jl

)

−µxi xm xk

a3

(
Amk + Akm + a 
G

mjk g j + a3 
�
mjk d j + a3 
R

mjk γ j + a3 
D
mjlk α jl + a5 


Q
mjlk ζ jl

)
. (2.12)

Making substitutions and simplifying, we find

f |
i = 6µ d j

(
δi j − x j xi

a2

)
+ 3µ

a
γl εi jl x j + µ

a
(Ai j + A ji + 6α j i + 24 ζi j + 24 ζ j i − 6 ζkkδi j ) x j

+ µ

a3 (6 ζkk − 2A jl − 6α jl − 48 ζ jl) xi x j xl . (2.13)

The slip boundary condition on the particle surface requires

u|
i − Vi + Vm

xi xm

a2 − εi jk� j xk = a

µβp
f |
i . (2.14)

Substituting the expressions for the tangential components of the velocity and traction and grouping similar terms,
we find

U − V + g − d = 6

βp
d, γ = βp

βp + 3
�, (2.15)

and also

A + 2 αA − 6 ζ = 1
βp

(
2 E + 6 αT + 48 ζ − 6 Trace(ζ ) I

)
,

(βp − 2) E − 6 αS − 6 (8 + βp) ζ + 6 Trace(ζ ) I = 0,
(2.16)
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Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall 5

where the superscript A denotes the antisymmetric part of a tensor, and the superscript T denotes the matrix
transpose.

Combining the first equation in (2.7) with the first equation in (2.15), we find

g = 3

4

βp + 2

βp + 3
(V − U), d = 1

4

βp

βp + 3
(U − V). (2.17)

The force exerted on the sphere is

F = −8 πµag = −6 πµa
βp + 2

βp + 3
(V − U), (2.18)

in agreement with earlier analysis [9,12,13]. The parameter ξ used by Schmitz and Felderhof [13] is related to the
Basset parameter, β, by ξ = 1/(β + 3). As βp → 0, the Stokes-law coefficient of six tends to four, indicating a
substantial reduction in the drag force.

Combining the second equation in (2.7) with Eqs. (2.16), we find

αS = −5

6

βp + 2

βp + 5
E, αA = −1

2

βp

βp + 3
�, ζ = 1

6

βp

βp + 5
E, (2.19)

where � is the vorticity tensor, � = AA. Thus,

α = αS + αA = − (4β2
p + 20 βp + 15) A + (β2

p + 5 βp + 15)AT

6 (βp + 3)(βp + 5)
. (2.20)

The coefficient of the couplet inherent in the antisymmetric part of the Stokeslet dipole is

Lm = −εmjl a3 αA
jl = 1

2
εmjl a3 βp

βp + 3
A jl = −a3

2

βp

βp + 3
ω∞

m , (2.21)

where ω∞ is the vorticity of the linear flow. The torque exerted on the sphere is given by

T = −8πµ (a3 γ + L) = −4πµa3 βp

βp + 3
(2 � − ω∞). (2.22)

A torque-free particle thus rotates with an angular velocity that is equal to half the vorticity of the incident flow.
When βp = 0, a rotating particle does not generate a flow and the torque vanishes.

The coefficient of the stresslet is given by

S = −8πµ a3 αS = 20

3
πµa3 βp + 2

βp + 5
E, (2.23)

and the effective viscosity of a dilute suspension is given by

µeff = µ

(
1 + c

5

2

βp + 2

βp + 5

)
, (2.24)

where c is the particle volume fraction. This expression generalizes Einstein’s formula for no-slip spheres, recovered
in the limit βp → ∞. As βp → 0, the Einstein coefficient of 5/2 tends to unity, indicating a substantial reduction
in the effective viscosity of an infinitely dilute suspension.

We have derived an exact solution for linear flow past a translating and rotating spherical particle. The results
confirm our intuition that the slip velocity reduces the drag force, the torque, and the effective viscosity of a dilute
suspension.

3 Particle motion near a plane wall

In the second part of this paper, we consider the motion of a spherical particle near an infinite plane wall under
the action of an imposed simple shear flow (Fig. 1). The x-axis is perpendicular to the wall and passes through the
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Fig. 1 (a) Illustration of a spherical particle near a planar wall in the presence of a simple shear flow. (b) Typical discretization of the
particle and wall contour in an azimuthal plane

particle center, and the y points in the direction of the unperturbed shear flow. Far from the particle, the velocity
field, designated by the superscript ∞, is given by u∞

x = 0, u∞
z = 0, and u∞

y = kx , where k is the shear rate. The
coordinate system is convected in the y-direction with the wall-slip velocity corresponding to the unperturbed shear
flow so that the wall-velocity appears to be zero. For simplicity, we assume that the particle is neutrally buoyant.
The presence or motion of the particle generates a disturbance flow, denoted by the superscript D, that may be
added to the simple shear flow to yield the total flow with velocity u = u∞ + uD .

The no-penetration and slip boundary conditions prevail over the particle surface and the wall. Over the particle
surface, we require the boundary condition (2.2) subject to the slip condition (2.3). Over the wall, we require the
corresponding condition

u = a

µβw

n × f D × n = λw

µ
f D · (I − nn), (3.1)

where βw is a dimensionless wall slip coefficient, and λw = a/βw is the wall slip length.

3.1 Boundary-integral formulation

To compute the solution, we use the boundary-integral formulation for Stokes flow and express the disturbance
velocity at the point x0 that lies inside the fluid in terms of integrals over the particle surface, P , and wall, W , as

uD(x0) = − 1

8πµ
S(x0, f, P) − 1

8πµ
S(x0, f D, W ) + 1

8π
D(x0, uS, P) + 1

8π
D(x0, u, W ). (3.2)

We have introduced the single- and double-layer potentials of Stokes flow defined over a generic surface, D,

S j (x0, f, D) ≡
∫∫

D
fi (x) Gi j (x, x0) dS(x),

D j (x0, u, D) ≡
∫∫

D
ui (x) Ti jk(x, x0) nk(x) dS(x),

(3.3)

where

Gi j (x, x0) = δi j

r
+ x̂i x̂ j

r3 , Ti jk(x, x0) = −6
x̂i x̂ j x̂k

r5
, (3.4)

are, respectively, the free-space Green’s function and associated stress tensors, x̂ = x − x0, and r = |x̂| (e.g.,
[22]). Note that the integral representation (3.2) involves the total traction and the slip velocity over the particle
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Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall 7

surface. This has become possible through the application of the reciprocal identity for the simple shear flow over
the particle volume, and the subsequent application of integral identities for the part of the boundary condition
expressing rigid-body motion. Since in the chosen frame of reference the velocity of the simple shear flow is zero
over the wall, the total velocity has been used instead of the disturbance velocity over the wall.

On the wall located at x = 0, the unit normal vector points along the x-axis, the x velocity component is zero
due to the no-penetration boundary condition, and the double-layer potential takes the form

D j (x0, u, W ) = −6 x̂
∫∫

W

uy ŷ + uz ẑ

[x2
0 + ŷ2 + ẑ2]5/2

(x − x0) j dS(x)

= −6 x̂
∫∫

W

uσ (σ − σ0 cos ϕ̂) + uϕ σ0 sin ϕ̂

(x2
0 + σ 2 + σ 2

0 − 2σσ0 cos ϕ̂)5/2
(x − x0) j dS(x), (3.5)

where ϕ is the meridional angle, ϕ̂ = ϕ −ϕ0, and σ is the distance from the x-axis. The associated cylindrical polar
components are
⎡
⎣

Dx

Dσ

Dϕ

⎤
⎦ (x0, u, W ) = −6 x̂

∫∫

W

uσ (σ − σ0 cos ϕ̂) + uϕ σ0 sin ϕ̂

(x2
0 + σ 2 + σ 2

0 − 2σσ0 cos ϕ̂)5/2

⎡
⎣

x̂
σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ dS(x). (3.6)

On the sphere, the double-layer potential takes the form

D j (x0, u, P) = −6
∫∫

P

ux x̂ + uy ŷ + uz ẑ

[x̂2 + ŷ2 + ẑ2]5/2
(x − x0) j (x − x0) · n(x) dS(x) (3.7)

= −6

a

∫∫

P

ux x̂ + uσ (σ − σ0 cos ϕ̂) + uϕ σ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)5/2

(x − x0) j G dS(x),

where x̂ = x − x0, xc is the x coordinate of the particle center, and G = (x − xc) x̂ + σ (σ − σ0 cos ϕ̂). The
associated cylindrical polar components are
⎡
⎣

Dx

Dσ

Dϕ

⎤
⎦ (x0, u, P) = −6

a

∫∫

P

ux x̂ + uσ (σ − σ0 cos ϕ̂) + uϕ σ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)5/2

× [
(x − xc) x̂ + σ (σ − σ0 cos ϕ̂)

]
⎡
⎣

x̂
σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ dS(x). (3.8)

To derive integral equations, we apply (3.2) at the particle surface and enforce the aforementioned boundary
condition to find

S(x0, f, P) + S(x0, f D, W ) − µDPV (x0, uS, P) − µD(x0, u, W )

= −8πµ
[
V + � × (x0 − xc) − u∞(x0)

] − 4πµuS(x0), (3.9)

where the point x0 lies on P , and PV denotes the principal-value integral. Next, we apply (3.2) at the wall and note
that the principal value of the double-layer potential is identically zero due to the vanishing of the kernel, Ti jk , to
find

S(x0, f, P) + S(x0, f D, W ) − µ D(x0, uS, P) = −4πµuD(x0), (3.10)

where the point x0 lies on W . Complemented with (2.3) and (3.1), the last two equations provide us with a system
of six scalar equations for (a) the three components of the traction over the particle surface, and (b) the three
components of the disturbance traction over the wall. This three-dimensional problem presents us with significant
numerical challenges concerning the discretization of the spherical and planar surfaces bounding the flow and the
accurate evaluation of the singular boundary integrals.
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8 H. Luo, C. Pozrikidis

3.2 Fourier expansion

A key observation is that the boundaries of the flow, but not the flow itself, are axially symmetric with respect to the
x-axis. This geometrical property allows us to simplify the problem by expressing the cylindrical polar components
of the left- and right-hand sides of (3.9) and (3.10) in Fourier series with respect to the meridional angle, ϕ, defined
such that y = σ cos ϕ and z = σ sin ϕ. The formulation is considerably simplified by observing that each of these
Fourier series contains only one non-zero term corresponding to the sine or cosine of the meridional angle.

Since we are interested in a particle moving parallel to the wall and rotating about an axis that is parallel to the
wall, we set Vx , Vz , �x , and �y equal to zero and obtain

V + � × (x − xc) − u∞ = −�zσ cos ϕ ex + W (x) cos ϕ eσ − W (x) sin ϕ eϕ, (3.11)

where ex , eσ , eϕ , are unit vectors, and

W (x) = Vy + �z (x − xc) − u∞
y (x). (3.12)

Motivated by this form, we express the velocity as

u = Vx cos ϕ ex + Vσ cos ϕ eσ − Vϕ sin ϕ eϕ, (3.13)

and the boundary traction as

f = Fx cos ϕ ex + Fσ cos ϕ eσ − Fϕ sin ϕ eϕ, (3.14)

where the coefficients Vα and Fα are functions of x and σ . The Cartesian components of the traction are related to
the corresponding Fourier coefficients by

f = Fx cos ϕ ex + (Fσ cos2 ϕ + Fϕ sin2 ϕ)ey + (Fσ − Fϕ) sin ϕ cos ϕ ez . (3.15)

The y-component of the force and the z-component of the torque exerted on the particle are given by

Fy = π

∫

CP

(Fσ + Fϕ) σ dl,

(3.16)

Tz = π

∫

CP

(
(x − xc) (Fσ + Fϕ) − σ Fx

)
σ dl,

where CP is the particle contour in the ϕ = 0 azimuthal plane consisting of half the xy-plane with y > 0, and l
is the arc length along CP . All other components of the force and torque are zero. The Fourier expansion of the
tangential component of the traction required for the evaluation of the slip velocity can be expressed in the form

n × f × n = Tx cos ϕ ex + Tσ cos ϕ eσ − Tϕ sin ϕ eϕ, (3.17)

where

Tx = σ

a2 (σFx − x̃Fσ ), Tσ = − x̃

a2 (σFx − x̃Fσ ), Tϕ = Fϕ, (3.18)

over the particle surface, x̃ = x − xc, and

Tx = 0, Tσ = Fσ , Tϕ = Fϕ (3.19)

over the wall. Substituting (3.15) in the cylindrical polar components of the single-layer potential, we find
⎡
⎣

Sx

Sσ

Sϕ

⎤
⎦ (x0) =

∫

C

⎡
⎣

cos ϕ0
(
�xxFx + �xσ Fσ + �xϕFϕ

)
cos ϕ0

(
�σ xFx + �σσ Fσ + �σϕFϕ

)
− sin ϕ0

(
�ϕxFx + �ϕσ Fσ + �ϕϕFϕ

)

⎤
⎦ dl, (3.20)

where the kernel �αγ is given in Appendix A.
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Next, we substitute (3.13) in the double-layer potential (3.6) and work in a similar fashion to obtain⎡
⎣

Dx

Dσ

Dϕ

⎤
⎦ (x0) =

∫

CW

⎡
⎣

cos ϕ0
(
Kxσ Vσ + KxϕVϕ

)
cos ϕ0

(
Kσσ Vσ + KσϕVϕ

)
− sin ϕ0

(
Kϕσ Vσ + KϕϕVϕ

)

⎤
⎦ dσ, (3.21)

where CW is the line contour of the wall in the azimuthal plane, and the kernel Kαβ is given in Appendix A.
Substituting also (3.13) in (3.8), we obtain⎡

⎣
Dx

Dσ

Dϕ

⎤
⎦ (x0) = −6

a

∫∫

P

Vx cos ϕ x̂ + Vσ cos ϕ (σ − σ0 cos ϕ̂) − Vϕ sin ϕ σ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)5/2

× [
(x − xc) x̂ + σ (σ − σ0 cos ϕ̂)

]
⎡
⎣

x̂
σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ dS(x). (3.22)

Carrying out the integrations, we find⎡
⎣

Dx

Dσ

Dϕ

⎤
⎦ (x0) =

∫

CP

⎡
⎣

cos ϕ0
(
LxxVx + Lxσ Vσ + LxϕVϕ

)
cos ϕ0

(
Lσ xVx + Lσσ Vσ + LσϕVϕ

)
− sin ϕ0

(
LϕxVx + Lϕσ Vσ + LϕϕVϕ

)

⎤
⎦ dl, (3.23)

where Lαβ is a derived 3 × 3 kernel matrix given in Appendix A.
A force balance requires the integral identity∫∫

P
Ti jk(x, x0) nk(x) dS(x) = −8πc δi j , (3.24)

where c = 0 when x0 is outside the particle, c = 1 when x0 is inside the particle, and c = 1/2 when x0 is on the
surface of the particle. In the third case, the principal value of the integral is implied. Applying this identity for
i = y, we obtain the derivative identity

a
∫ π

0
(Lασ + Lαϕ) dθ = −8πc (δασ + δαϕ), (3.25)

where θ is the azimuthal angle. The numerical satisfaction of this identity was confirmed with high accuracy as a
check on the numerical method.

Now substituting the preceding expressions in (3.2), we obtain an integral representation for the Fourier coeffi-
cients,

V D
α (x0) = − 1

8πµ

∫

CP

�αβ(x0, x) Fβ(x) dl(x) − 1

8πµ

∫

CW

�αβ(x0, x) F D
β (x) dl(x)

+ 1

8π

∫

CP

Lαδ(x0, x) V S
δ (x) dl(x) + 1

8π

∫

CW

Kαδ(x0, x) V D
δ (x) dl(x), (3.26)

where the point x0 lies in the fluid. Substituting this expression in (3.9) and enforcing the boundary conditions, we
obtain∫

CP

�αβ(x0, x) Fβ(x) dl(x) +
∫

CW

�αβ(x0, x) F D
β (x) dl(x) (3.27)

− a

βp

∫ PV

CP

Lαδ(x0, x) Tδ(x) dl(x) − a

βw

∫

CW

Kαδ(x0, x) F D
δ (x) dl(x) + 4πa

βp
Tα

= −8πµ
(−�z σ0 δαx + W (x0) δασ + W (x0) δαϕ

)
, (3.28)

where the point x0 lies on the particle contour, CP . Finally we substitute (3.26) in (3.10) and find∫

CP

�αβ(x0, x) Fβ(x) dl(x) +
∫

CW

�αβ(x0, x) F D
β (x) dl(x) − a

βp

∫

CP

Lαδ(x0, x) Tδ(x) dl(x)

+ 4πa

βw

T D
α (x0) = 0, (3.29)

where the point x0 lies on the wall contour, CW .
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3.3 Numerical methods

To solve the integral equations, we divide the boundary contours in the ϕ = 0 meridional plane into straight
elements over the wall and circular elements over the particle, and approximate the Fourier coefficients with a
constant function over each element. For better accuracy, the elements are concentrated near the axis of symmetry
with their length increasing geometrically with distance from the axis of symmetry, as depicted in Fig. 1(b). The
wall is truncated at a radial distance equal to 48 times the particle separation from the wall, xc. Applying point
collocation at the mid-point of each element, we compile a system of linear equations for the unknown solution
vector consisting of the particle and wall traction. In the case of a freely suspended particle, the translational and
angular velocities Vy and �z are appended to the vector of unknowns, and two more equations are introduced
expressing the vanishing of Fy and Tz .

The elements of the coefficient matrices consisting of element integrals of the single and double-layer potentials
are computed by the six-point Gauss–Legendre quadrature. The diagonal components of the dimensionless single-
layer kernel, �αα , exhibit a logarithmic singularity as the azimuthal angle of the integration point, θ , tends to the
azimuthal angle of the evaluation point, θ0, �xx � −2 log |θ − θ0|, �ϕϕ � −2 log |θ − θ0|, �ϕϕ � −4 log |θ − θ0|.
The Lϕϕ component of the particle double-layer kernel, but not any other component, exhibits the singular behavior
Lϕϕ � (6/a) log |θ − θ0|. These singularities are subtracted out and integrated analytically after the numerical
quadrature has been applied.

Basset [9] found that the force exerted on a sphere translating along the y-axis through a quiescent infinite ambient
fluid is given by the modified Stokes law Fy = −6πµacT Vy , where cT = (βp +2)(βp +3) is a slip-correction coef-
ficient. For a no-slip surface, cT = 1, and for a perfect-slip surface, cT = 2/3. In Sect. 2, we found that the torque
exerted on a sphere rotating about the z-axis in a quiescent infinite ambient fluid is given by Tz = −4πµa3cR�z ,
where cR = βp/(βp +3) is a slip-correction coefficient. For a no-slip surface cR = 1, and for a perfect-slip surface
cR = 0. By way of validating the numerical method, we have confirmed these slip correction coefficients. For
example, computations in the absence of the wall with βp = 1 and 16, 32, and 64 boundary elements around the
particle contour, yielded, respectively, cT = 0.7546, 0.7511, and 0.7503, which clearly converge to the exact value,
0.75. As the number of elements is doubled, the numerical error is reduced by a factor of four, revealing that the
numerical error is quadratic in the element size.

4 Results and discussion

We have carried out computations for three modular cases to identify (a) the force and torque exerted on a particle
that translates parallel to a plane wall in a quiescent fluid, (b) the force and torque exerted on a particle that rotates
about an axis that is parallel to a plane wall in a quiescent fluid, and (c) the translational and angular velocities of
a freely suspended particle in semi-infinite simple shear flow above a plane wall. The force and torque exerted on
a particle that is held stationary in semi-infinite simple shear flow above a plane wall can be deduced readily from
these results by linear superposition.

4.1 Translation and rotation in a quiescent fluid

Figure 2 illustrates the effect of the particle and wall slip coefficients for a particle that translates parallel to a plane
wall in a quiescent fluid, and Table 1 of Appendix B gives numerical values. In the absence of wall and particle slip,
βw, βp → ∞, the numerical results agree with the predictions of Goldman et al. [23] up to the third significant
figure. As expected, allowing for slip on the wall or particle surface reduces the drag force for any particle-to-wall
separation, xc/a. The reduction may lower the magnitude of the drag force coefficient below the value of unity
corresponding to Stokes’ law for a no-slip particle moving in an infinite ambient fluid, even at small particle-wall
separations. As βw approaches zero, the effect of the particle position, xc/a, on the drag coefficients becomes less
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Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall 11

significant. In the case of slip surfaces, the torque is negative in a certain regime of the parametric space determined
by the particle and wall slip coefficients. Zero torque occurs under certain conditions where a particle moving under
the influence of a force parallel to the wall translates parallel to the wall without rotation, as shown in Fig. 2(b).
As the wall and particle surfaces become increasingly slippery, βw, βp → 0, the torque becomes negative for any
particle position.

Figure 3 illustrates the effect of the slip coefficients on the distribution of the traction along the particle contour and
the distribution of the disturbance traction along the wall contour, both reduced by µVy/a, for flow due to a spherical
particle translating parallel to a wall at the distance xc/a = 1.0453. Results are shown for three modular cases: (a)
βw = ∞ and βp = ∞ (no-slip wall and particle), (b) βw = 0.10 and βp = ∞ (slip wall and no-slip particle), and (c)
βw = ∞ and βp = 0.10 (no-slip wall and slip particle). The solid lines representing the x Fourier coefficient of the
traction tend to zero at the axis of symmetry in all graphs, while the corresponding σ and ϕ coefficients of the traction
tend to common limits. The latter is necessary for the solution to be single valued. The results confirm that the wall and
particle slip has a profound effect on the distribution of the particle and wall shear stress.

Lauga and Squires [21] determined the force on a no-slip sphere translating normal or parallel to a slip wall,
βp = ∞, at large distances. Their analysis for parallel motion furnishes the asymptotic prediction

Fy = −6πµaVy

[
1 + 3

8
δ[1 − 2 J (βw/δ)] + O(δ3)

]−1

, (4.1)

where δ = a/xc,

J (x) = − x

8
(x + 3) + x

8
(x + 2)2 ex E(x) + 2 x e2x E(2x), (4.2)

and E(x) is the exponential integral (a typographical omission of a factor of two has been incorporated in the above
formula.) As x tends to zero or infinity, J (x) tends, respectively, to zero or 5/2. Replacing the Stokes with the
Basset drag formula and keeping only the first-order terms, we find

Fy = −6πµaVy
βp + 2

βp + 3

1

1 + 3
8 δ

+ O(δ2). (4.3)

Yang and Leal [24] determined the force exerted on a small sphere translating parallel to the flat interface between
two viscous liquids with viscosities µ and λµ,

Fy = −6πµVy

(
1 − � + �2 − �3 − 1 + 2λ

16(1 + λ)
δ3

)
+ O(δ4), (4.4)

where the sphere is immersed in the fluid with viscosity µ, � = αδ and α = 3(2 − 3λ)/[16(1 + λ)]. Setting λ = 0
reduces the interface to a free surface with zero shear stress identified with a perfectly slippery wall, βw = 0. Setting
λ = ∞ immobilizes the lower fluid and reduces the interface with a solid wall, βw = ∞.

(a) (b)

10
−2

10
0

10
2

10
4

10
6

0.5

1

1.5

2

2.5

3

β
p

−
F

y/(
6π

µ 
a 

V
y)

10
−2

10
0

10
2

10
4

10
6

−0.1

−0.05

0

0.05

0.1

0.15

β
p

T
z/(

8π
µ 

a2  V
y
)

Fig. 2 (a) Reduced force, −Fy/(6πµaVy), and (b) reduced torque, Tz/(8πµa2Vy), exerted on a particle translating parallel to a wall
at a distance xc/a = 1.0453, for βw = ∞ (triangles), 10 (squares), 1 (×), 0.1 (+), and 0.01 (o), against the particle slip coefficient, βp
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Fig. 3 Flow due to a spherical particle translating parallel to a plane wall at a distance xc/a = 1.0453. The frames on the left show
the distribution of the particle traction coefficients Fx (solid line), Fσ (dashed line), and Fϕ (dotted line), plotted against the arc length
measured from the axis of symmetry farthest from the wall. The frames on the right show the distribution of the disturbance wall traction
coefficients F D

x (solid line), F D
σ (dashed line), and F D

ϕ (dotted line), plotted against the arc length measured from the axis of symmetry,
for (a) βp = ∞ and βw = ∞, (b) βp = ∞ and βw = 0.10, and (c) βp = 0.10 and βw = ∞

Figure 4(a) shows our numerical results for βp = ∞ and several values of βw. The broken lines represent
the second-order predictions stated in (4.1), and the upper solid line represents the asymptotic predictions for a
flat free surface, λ = 0. The agreement between the numerical and asymptotic results is excellent even for small
particle-to-wall separations. Figure 4(b) shows corresponding results for βw = ∞ and several values of βp. The
broken lines represent the asymptotic predictions stated in (4.3). In this case, the first-order theory is clearly unable
to describe with sufficient accuracy the force coefficients, except at very large separations.

Figure 5 illustrates the effect of the particle and wall slip coefficients for a particle rotating about the z-axis
that is parallel to the wall, Table 2 of Appendix B gives numerical values, and Fig. 6 illustrates the distribution
of the traction coefficients reduced by µ�z . Once again, we observe the significant effect of the slip velocity.
Brenner [25] and Cox and Brenner [26] demonstrated that the torque exerted on a particle in translation along the
x-axis, T T

z , is related to the force exerted on a particle in rotation about the z-axis, F R
y , by T T

z = a F R
y . Accord-

ingly, the second entry of Table 1 in Appendix B is related to the first entry of Table 2 in the same appendix by
0.0146 × 8 ≈ 6 × 0.0195. This symmetry is borne out from our numerical results for arbitrary values of the wall
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Fig. 4 Force coefficient, Fy/(6πµa), for βp = ∞, and βw = 100 (lower solid line and circles), 1.0 (dashed line and squares), 0.1
(dot-dashed line and plus signs), 0.01 (dotted line and diamonds), and 0.001 (upper solid line and asterisks). The lower solid line
and broken lines represent Lauga and Squires’s [21] asymptotic predictions, and the upper solid line represents Yang and Leal’s [24]
asymptotic predictions for a flat free surface. (b) Force coefficient, Fy/(6πµa), for βw = ∞ and βp = 100 (lower solid line and
circles), 1.0 (dashed line and squares), 0.1 (dot-dashed line and plus signs), 0.01 (dotted line and diamonds), and 0.001 (upper solid
line and asterisks). The solid lines represent the predictions of the asymptotic expansion (4.3)
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Fig. 5 (a) Reduced force, Fy/(6πµa2�z), and (b) torque, −Tz/(8πµa3�z), exerted on a particle rotating about the z-axis at a distance
xc/a = 1.0453 above a plane wall. The slip coefficient is βw = ∞ (triangles), 10 (squares), 1 (×), 0.1 (+) and 0.01 (circles)

and particle slip coefficients. Zero force occurs at the boundaries between contiguous regimes in the slip-coefficient
space. Under these specific conditions, a particle moving under the influence of a torque parallel to the wall will
rotate without migrating parallel or normal to the wall.

Davis et al. [11] considered the translation and rotation of a sphere whose lower surface is tangential to a plane
wall, xc = a, and found that, at large values of βw and βp, the force and torque behave as

Fy � −4

5
πµa

(
4Vy log βw − �za log βm

)
,

(4.5)

�z � −4

5
πµ2a

(−4Vy log βm + 4�za log βp
)
,

where βm is the minimum of βp and βw. Thus, the force on a translating but non-rotating sphere diverges for a
no-slip wall, and the torque on a rotating but non-translating sphere diverges for a no-slip particle. The torque
on a translating but non-rotating sphere and the force on a rotating but non-translating sphere is finite either for
a no-slip wall or for a no-slip particle, but not for a no-slip wall and a no-slip particle. Davis et al. [11] further
developed a series solution for a non-touching sphere and presented numerical results for a slip wall and no-slip
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Fig. 6 Counterpart of Fig. 3 for a spherical particle rotating about the z-axis above a plane wall

sphere. Unfortunately, because their data are seemingly plotted on an incorrect scale that does not conform with
the asymptotic predictions, we are unable to compare our respective predictions.

To investigate the asymptotic behavior for small sphere-to-wall separations, we introduce the dimensionless gap
ε = (xc − a)/a. Figure 7(a, b) shows graphs of the force and torque coefficients for a translating particle with a
no-slip surface, and Fig. 7(c, d) shows corresponding results for a rotating particle with a no-slip surface. In both
cases, allowing for wall slip yields finite values for the force and torque in the limit of zero gap. When the no-slip
condition is imposed on the wall, the force and torque diverge in the limit of zero gap, in agreement with the results
of previous authors [11].

O’Neill [27] developed a series solution in bispherical coordinates for no-slip sphere and wall surfaces. The
derived expressions are exact, except that the coefficients must be determined numerically from a difference equa-
tion. Goldman et al. [23] applied the series solution to calculate the force and torque for dimensionless gaps ε

as small as 0.0032, and found a logarithmic dependence in the range below 0.0453. O’Neill and Stewartson [28]
developed full inner and outer expansions for small gaps. As the gap approaches zero, the force and torque behave
like
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Fig. 7 (a) Reduced force, and (b) reduced torque on a translating particle with a no-slip surface, βp = ∞, plotted against the
dimensionless gap, ε = (xc − a)/a, for βw = 0.1, 1, 10, 100, 1000, and ∞ (bold lines). The dashed line represents the asymptotic
solution for small gaps. (c, d) Same as (a, b) for a rotating particle. Note that the offset of the asymptotic solution is arbitrary

FT
y

6πµaVy
∼ 8

15
log ε,

T T
z

8πµa2Vy
∼ − 1

10
log ε. (4.6)

In the case of rotation about the z-axis, the asymptotic expansion yields

F R
y

6πµa2�z
∼ − 2

15
log ε,

T R
z

8πµa3�z
∼ 2

5
log ε. (4.7)

These predictions, represented by the dashed lines in Fig. 7, are in excellent agreement with our numerical results
for no-slip surfaces represented by the bold lines. Consistent with the analytical results, a logarithmic-dependence
regime arises when ε � 0.04. In principle, the boundary-integral method is able to handle arbitrarily small gaps
using a higher number of boundary elements; in practice, increased computational time restricts us to gaps that are
greater than 10−3 times the particle radius.

4.2 Particle freely suspended in shear flow

In the third case study, we consider the motion of a spherical particle freely suspended in simple shear flow parallel
to the wall. Figure 8 illustrates the reduced velocity of translation, Vy/(kxc), and angular velocity of rotation,
2�z/k, and Table 3 of Appendix B gives numerical values. For all particle positions, a minimum translational
velocity is observed for no-slip surfaces. In the case of no-slip particle and wall surfaces, βp, βw → ∞, the
numerical results represented by the triangles in Fig. 8 agree with the theoretical predictions of Goldman et al.
[29] up to the third significant figure. It is interesting that, for the smallest wall slip coefficients, βw = 0.1 and
0.01, where the wall nearly behaves like a free surface, the translational particle velocity increases as the particle

123



16 H. Luo, C. Pozrikidis

(a) (b)

10
−2

10
0

10
2

10
4

10
6

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

β
p

V
y/(

k 
x c)

10
−2

10
0

10
2

10
4

10
6

0.55

0.6

0.65

0.7

0.75

0.8

0.85

β
p

2
Ω

z/k

Fig. 8 (a) Reduced velocity of translation, Vy/(kxc), and (b) angular velocity of rotation, 2�z/k, for a particle freely convected in
simple shear flow parallel to the wall at a distance xc/a = 1.0453. The slip coefficient is βw = ∞ (triangles), 10 (squares), 1 (×), 0.1 (+)
and 0.01 (o)

surface becomes less slippery, and the reduced velocity Vy/(kxc) may become greater than unity, which means
that the particle may travel faster than the unperturbed fluid velocity evaluated at the particle center. Curiously, a
positive shift in the translational velocity is observed for no-slip or nearly no-slip particle surfaces and slippery
wall surfaces. However, in wall-bounded flow, there is nothing special about the particle center, and physical intu-
ition suggests that the particle velocity should be less than the unperturbed fluid velocity evaluated at the particle
top.

Allowing for slip may either increase or reduce the particle angular velocity, and the dependence on βw is not
necessarily monotonic. Since the ratio a�z/Vy is well under unity in the limit xc → a, the particle slips as it rolls
over the wall. Figure 9 illustrates the distribution of the particle and wall-traction coefficients and demonstrates
once again the important effect of boundary slip.

5 Discussion

We have investigated by analytical and numerical methods the effect of slip velocity on the motion of a parti-
cle in infinite fluid and near a plane wall. In the case of infinite flow, we have derived an exact solution using
the singularity method, and extracted analytical expressions for the force, torque, and stresslet expressing the
particle stress tensor in a dilute suspension. In the case of flow above a plane wall, we have presented numer-
ical results for the force and torque exerted on the particle in the case of translation and rotation, and for the
translational and angular velocity in the case of free convection in simple shear flow. Previous authors have con-
sidered in great detail corresponding motion for no-slip surfaces and investigated the asymptotic limits of small
gaps and large separations for slip surfaces. Our numerical results agree with these predictions in appropriate
asymptotic limits, and reveal conditions for particle translation without rotation, and vice versa, under the action
of a tangential force or torque near a plane wall. Although we are not able to produce a physical explanation
as to why translation without rotation and vice versa may occur near a plane wall due to the slip velocity, we
note that a similar situation occurs in the motion of an oblate spheroid with a no-slip surface near a plane wall
[30].

The boundary-integral method developed in this paper can handle arbitrary particle shapes subject to the condi-
tion of rotational symmetry about an axis that is normal to the wall. Examples include prolate and oblate spheroids
and flat disks. However, with the exception of the sphere and the zero-thickness disk, the axisymmetry is lost as
these particles tumble under the influence of a shear flow. Moreover, the method can be applied to describe the
particle motion in a channel confined between two parallel walls encountered in microfluidics devices. Finally, the
method can be applied to describe the motion of a spherical particle near another spherical particle with the same
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Fig. 9 Counterpart of Fig. 3 for a spherical particle freely convected in simple shear flow above a plane wall

or different radius [31,32]. In all of these configurations, the boundaries of the flow domain are axisymmetric with
respect to the axis that passes through the spherical surface or is perpendicular to planar walls.
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Appendix A: Fourier kernels of the Stokes potentials

In this Appendix, we give expressions for the kernels of the single- and double-layer potentials for flow in an
axisymmetric domain. The kernel of the single-layer potential defined in (3.20) is given by

�αγ (x0, x) = σ

⎡
⎣

I11 + x̂2I31 x̂(σ I31 − σ0I32)

x̂(σ I32 − σ0I31) I12 + (σ 2 + σ 2
0 )I32 − σσ0 (I33 + I31)

x̂σ(I30 − I32) I10 − I12 + σ 2(I30 − I32) − σσ0 (I31 − I33)

x̂σ0(I32 − I30)

I10 − I12 + σ 2
0 (I30 − I32) − σσ0 (I31 − I33)

I12 + σσ0 (I31 − I33)

⎤
⎦ , (A1)
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where

Imn =
∫ 2π

0

cosn ω dω

[x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ω]m/2

= 4wm

(4σσ0)m/2

∫ π/2

0

(2 cos2 ω − 1)n

(1 − w2 cos2 ω)m/2 dω, (A2)

and w2 = 4σσ0/[x̂2 + (σ + σ0)
2]. These integrals can be expressed in terms of complete elliptic integrals of the

first and second kind that may be evaluated efficiently by iterative methods.
The kernel of the double-layer potential defined in (3.21) is given by

Kαβ(x0, x)

= −6 σ x̂

⎡
⎣

x̂2 I51 x̂(σ I51 − σ0 I52)

x̂(σ I52 − σ0 I51) (σ 2 + σ 2
0 ) I52 − σσ0 (I51 + I53)

x̂ σ (I50 − I52) σ 2(I50 − I52) + σσ0(I53 − I51)

x̂σ0 (I52 − I50)

σσ0(I53 − I51) − σ 2
0 (I52 − I50)

σσ0(I51 − I53)

⎤
⎦ . (A3)

The kernel in the double-layer potential (3.23) is given by

Lαx (x0, x) = −6σ x̂

a

⎡
⎣

x̂(x̂ x̃ + σ 2) I51 − x̂σσ0 I52

−σ0(x̂ x̃ + σ 2) I51 + (x̂ x̃σ + σ 3 + σσ 2
0 ) I52 − σ 2σ0 I53

σ (x̂ x̃ + σ 2) (I50 − I52) − σ 2σ0 (I51 − I53)

⎤
⎦ ,

(A4)

Lασ (x0, x) = −6σ

a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂
[
σ (x̂ x̃ + σ 2) I51 − σ0 (x̂ x̃ + 2σ 2) I52 + σσ 2

0 I53
]

−σσ0 (x̂ x̃ + σ 2) I51 + (σ 2 + σ 2
0 ) (x̂ x̃ + σ 2) I52 + σ 2σ 2

0 I52

−σσ0 (x̂ x̃ + 2σ 2 + σ 2
0 ) I53 + σ 2σ 2

0 I54

σ 2 (x̂ x̃ + σ 2) I50 + σ 2 (σ 2
0 − x̂ x̃ − σ 2) I52

−σσ0 (x̂ x̃ + 2σ 2) (I51 − I53) − σ 2σ 2
0 I54

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A5)

and

Lαϕ(x0, x) = −6σ

a

⎡
⎢⎢⎢⎢⎢⎢⎣

−x̂
[
σ0(x̂ x̃ + σ 2) (I50 − I52) − σσ 2

0 (I51 − I53)
]

σ 2
0 (x̂ x̃ + σ 2) I50 − σσ0 (x̂ x̃ + σ 2 + σ 2

0 ) (I51 − I53)

−σ 2
0 x̂ x̃ I52 − σ 2σ 2

0 I54

σσ0 (x̂ x̃ + σ 2) (I51 − I53) − σ 2σ 2
0 (I52 − I54)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A6)

where x̂ = x − x0, and x̃ = x − xc.

Appendix B: Tabulated results

Tables 1–2 give the force and torque exerted on a particle translating or rotating above a plane wall. Table 3 gives
the velocity of translation and angular velocity of rotation of a freely suspended particle in simple shear flow above
a plane wall.
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Table 1 Reduced force, Fy/(6πµaVy) (first entry in each cell), and torque, Tz/(8πµa2Vy) (second entry in each cell), for a particle
translating parallel to the wall at a distance (a) xc/a=1.5431, (b) 1.1276, and (c) 1.0453

βp βw = ∞ 10 1 0.1 0.01

(a)
∞ −1.568, 0.0146 −1.515, 9.45e−3 −1.286, −0.0239 −0.969, −0.0578 −0.830, −0.0618
10 −1.386, 8.00e−3 −1.344, 5.07e−3 −1.163, −0.0166 −0.899, −0.0413 −0.778, −0.0448
1 −1.039, −4.46e−5 −1.015, −1.87e−4 −0.907, −4.50e−3 −0.737, −0.0111 −0.653, −0.0124
0.1 −0.912, −1.22e−4 −0.892, −1.19e−4 −0.806, −5.45e−4 −0.668, −1.31e−3 −0.599, −1.48e−3
0.01 −0.896, −1.42e−5 −0.876, −1.36e−5 −0.793, −5.57e−5 −0.659, −1.33e−4 −0.591, −1.50e−4

(b)
∞ −2.151, 0.0737 −1.906, 0.0286 −1.340, −0.0729 −0.914, −0.1059 −0.773, −0.1029
10 −1.788, 0.0286 −1.631, 0.0122 −1.212, −0.0487 −0.852, −0.0769 −0.727, −0.0761
1 −1.279, −4.32e−3 −1.189, −3.57e−3 −0.948, −0.0130 −0.707, −0.0217 −0.617, −0.0222
0.1 −1.119, −1.02e−3 −1.040, −7.78e−4 −0.845, −1.58e−3 −0.645, −2.60e−3 −0.568, −2.69e−3
0.01 −1.099, −1.11e−4 −1.022, −8.41e−5 −0.831, −1.61e−4 −0.637, −2.65e−4 −0.562, −2.75e−4

(c)
∞ −2.648, 0.1468 −2.103, 0.0268 −1.348, −0.0995 −0.898, −0.1213 −0.759, −0.1148
10 −2.053, 0.0332 −1.766, 8.71e−3 −1.221, −0.0656 −0.840, −0.0887 −0.716, −0.0857
1 −1.460, −0.0109 −1.279, −7.73e−3 −0.960, −0.0177 −0.698, −0.0256 −0.608, −0.0256
0.1 −1.291, −1.98e−3 −1.123, −1.39e−3 −0.857, −2.16e−3 −0.639, −3.11e−3 −0.561, −3.14e−3
0.01 −1.270, −2.10e−4 −1.104, −1.48e−4 −0.844, −2.21e−4 −0.631, −3.18e−4 −0.554, −3.21e−4

The exponential field is defined as e-n = 10−n

Table 2 Reduced force Fy/(6πµa2�z) (first entry in each cell) and torque Tz/(8πµa3�z) (second entry in each cell), for a particle
rotating about the z-axis at a distance (a) xc/a =1.5431, (b) 1.1276, and (c) 1.0453 above a plane wall. The exponential field is defined
as e−n=10−n

βp βw = ∞ 10 1 0.1 0.01

(a)
∞ 0.0195, −1.100 0.0126, −1.084 −0.0318, −1.035 −0.0767, −1.004 −0.0821, −0.998
10 0.0106, −0.826 6.74e−3, −0.816 −0.0221, −0.788 −0.0551, −0.770 −0.0598, −0.766
1 7.44e−5, −0.256 −2.35e−4, −0.255 −6.00e−3, −0.252 −0.0148, −0.250 −0.0165, −0.250
0.1 −1.31e−4, −0.0324 −1.32e−4, −0.0323 −7.12e−4, −0.0323 −1.74e−3, −0.0323 −1.97e−3, −0.0323
0.01 1.43e−5, −3.32e−3 1.08e−5, −3.32e−3 −5.82e−5, −3.32e−3 −1.73e−4, −3.32e−3 −2.00e−4, −3.32e−3

(b)
∞ 0.098, −1.388 0.038, −1.270 −0.097, −1.111 −0.141, −1.057 −0.137, −1.049
10 0.038, −0.960 0.016, −0.909 −0.065, −0.824 −0.103, −0.790 −0.102, −0.784
1 −0.0057, −0.265 −0.0047, −0.262 −0.0174, −0.255 −0.0289, −0.251 −0.0296, −0.250
0.1 −1.27e−3, −0.0325 −9.68e−4, −0.0325 −2.08e−3, −0.0323 −3.47e−3, −0.0323 −3.59e−3, −0.0323
0.01 −4.72e−5, −3.33e−3 −3.82e−5, −3.33e−3 −1.84e−4, −3.32e−3 −3.47e−4, −3.32e−3 −3.65e−4, −3.32e−3

(c)
∞ 0.194, −1.700 0.036, −1.424 −0.132, −1.210 −0.158, −1.153 −0.152, −1.145
10 0.044, −1.052 0.012, −0.966 −0.087, −0.855 −0.118, −0.818 −0.114, −0.812
1 −0.0145, −0.270 −0.0102, −0.266 −0.0236, −0.257 −0.0341, −0.252 −0.0340, −0.252
0.1 −2.47e−3, −0.0326 −1.75e−3, −0.0325 −2.84e−3, −0.0324 −4.14e−3, −0.0323 −4.19e−3, −0.0323
0.01 −1.01e−4, −3.33e−3 −8.88e−5, −3.33e−3 −2.55e−4, −3.33e−3 −4.15e−4, −3.33e−3 −4.26e−4, −3.33e−3
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Table 3 Reduced velocity of translation, Vy/(kxc) (first entry in each cell), and angular velocity of rotation, 2�z/k (second entry in
each cell), for a particle freely convected in simple shear flow parallel to the wall at a distance (a) xc/a=1.5431, (b) 1.1276, and (c)
1.0453

βw = ∞ 10 1 0.1 0.01

(a)
βp = ∞ 0.922, 0.924 0.930, 0.933 0.959, 0.934 0.995, 0.914 1.007, 0.908
10 0.937, 0.938 0.944, 0.946 0.967, 0.948 0.995, 0.933 1.005, 0.928
1 0.956, 0.956 0.961, 0.962 0.977, 0.967 0.994, 0.959 1.001, 0.956
0.1 0.961, 0.961 0.965, 0.967 0.979, 0.972 0.994, 0.966 0.999, 0.964
0.01 0.961, 0.962 0.966, 0.967 0.980, 0.973 0.994, 0.967 0.999, 0.965

(b)
βp = ∞ 0.767, 0.780 0.812, 0.807 0.921, 0.777 1.015, 0.730 1.042, 0.719
10 0.817, 0.822 0.850, 0.849 0.932, 0.834 1.006, 0.795 1.027, 0.786
1 0.855, 0.863 0.885, 0.889 0.944, 0.896 0.992, 0.875 1.006, 0.869
0.1 0.859, 0.875 0.890, 0.899 0.946, 0.912 0.988, 0.897 0.999, 0.892
0.01 0.859, 0.876 0.891, 0.901 0.946, 0.914 0.987, 0.899 0.998, 0.895

(c)
βp = ∞ 0.654, 0.675 0.747, 0.710 0.912, 0.659 1.032, 0.610 1.065, 0.600
10 0.734, 0.744 0.799, 0.786 0.920, 0.759 1.016, 0.714 1.042, 0.705
1 0.768, 0.805 0.836, 0.844 0.928, 0.850 0.992, 0.824 1.009, 0.818
0.1 0.765, 0.825 0.838, 0.859 0.928, 0.873 0.985, 0.854 0.999, 0.848
0.01 0.764, 0.827 0.838, 0.861 0.928, 0.875 0.984, 0.857 0.998, 0.852
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