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Abstract Multiphase flows of suspensions and emulsions are frequently approximated by spatially one-dimen-
sional kinematic models, in which the velocity of each species of the disperse phase is an explicitly given function of
the vector of concentrations of all species. The continuity equations for all species then form a system of conserva-
tion laws which describes spatial segregation and the creation of areas of different composition. This class of models
also includes multi-class traffic flow, where vehicles belong to different classes according to their preferential veloc-
ities. Recently, these models were extended to fluxes that depend discontinuously on the spatial coordinate, which
appear in clarifier–thickener models, in duct flows with abruptly varying cross-sectional area, and in traffic flow
with variable road surface conditions. This paper presents a new family of numerical schemes for such kinematic
flows with a discontinuous flux. It is shown how a very simple scheme for the scalar case, which is adapted to the
“concentration times velocity” structure of the flux, can be extended to kinematic models with phase velocities that
change sign, flows with two or more species (the system case), and discontinuous fluxes. In addition, a MUSCL-type
upgrade in combination with a Runge–Kutta-type time discretization can be devised to attain second-order accuracy.
It is proved that two particular schemes within the family, which apply to systems of conservation laws, preserve
an invariant region of admissible concentration vectors, provided that all velocities have the same sign. Moreover,
for the relevant case of a multiplicative flux discontinuity and a constant maximum density, it is proved that one
scalar version converges to a BVt entropy solution of the model. In the latter case, the compactness proof involves
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a novel uniform but local estimate of the spatial total variation of the approximate solutions. Numerical examples
illustrate the performance of all variants within the new family of schemes, including applications to problems of
sedimentation, traffic flow, and the settling of oil-in-water emulsions.

Keywords Conservation law · Discontinuous flux · Kinematic flow · Numerical scheme · Traffic model

1 Introduction

1.1 Scope of the paper

Numerous multiphase flows involve the flow of one disperse substance, for example solid mineral particles or oil
droplets in an emulsion, through a continuous phase, say a liquid or gas. In many cases, the disperse substance
consists of small particles that belong to different species which differ in some characteristic quantity such as size or
density. The different species will segregate and create areas of different composition, which is the most interesting
property in many applications. Similar models also include certain continuum approximations of traffic flow of
vehicles on a highway if cars with drivers having different preferential velocities are identified as different species.

In general, we distinguish between N different species that give rise to N superimposed continuous phases
associated with volume fractions (or densities) φ1, . . . , φN . If vi is the one-dimensional velocity of species i , then
the continuity equations of the N species in differential form are

∂tφi + ∂x (φivi ) = 0, i = 1, . . . , N , (1)

where t is time and x is the spatial position. The basic assumption of kinematic models is that the velocities
v1, . . . , vN are given functions of the vector� := (φ1, . . . , φN )

T of local concentrations of all species, vi = vi (�).
This yields systems of conservation laws of the type

∂tφi + ∂x
(
φivi (�)

) = 0, i = 1, . . . , N . (2)

We focus on three specific kinematic models that recently attracted interest: one of multi-species traffic flow
[1–6], one of sedimentation of polydisperse suspensions [7–11], and one of separation of oil-in-water dispersions
[12].

All these applications also give rise to spatially non-homogeneous flows, in which the velocity vi not only
depends on �, but also on a vector of parameters γ i that is a function of the spatial position x , γ i = γ i (x). While
models for which γ i depends, for example, Lipschitz continuously on x lead to conservation laws that can be treated
with standard analytical and numerical methods, we are here interested in the case that γ i depends discontinuously
on x ; more precisely, we assume that γ i is piecewise smooth with a finite number of discontinuities. The vector
γ i (x) may describe, for instance, abruptly changing road surface conditions in the traffic flow model, as was done
in [13,14] for a single-species model; singular feed sources and diverging bulk flows in clarifier–thickener models
[15,16]; and abruptly changing cross-sectional areas in vessels for the settling of suspensions and emulsions.

It is the purpose of this contribution to formulate, in part analyze, and present numerical experiments for easy-
to-implement numerical schemes for kinematic models, in which the numerical flux is explicitly based on the
“concentration times velocity” structure of each flux component. The starting point is a simple two-point monotone
numerical flux for scalar (N = 1) kinematic flows with a non-negative velocity function v = v(φ). We develop
extensions of the scheme defined by this numerical flux to equations with a velocity of variable sign, to equations
with a discontinuous flux, to systems of conservation laws (N ≥ 2 species), and finally to schemes with second-
order accuracy. All these variants form the family of new schemes under study. It is proved that for N ≥ 1 and flows
with non-negative velocities, the schemes preserve an invariant region, i.e., generate approximations that assume
values in the domain of physically relevant concentrations only. For the scalar case (N = 1) and a discontinuous
flux, we prove convergence to a BVt entropy solution. The proof is based on a new uniform but local estimate of the
spatial total variation of approximate solutions. Numerical experiments demonstrate the performance of the new
family of schemes.
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Numerical schemes for kinematic flows

What is intriguing about the new schemes is that (other than an estimate of the spectral radius for the CFL con-
dition) they do not require any calculation of eigenvalues, eigenvectors, field-by-field decomposition, flux vector
splitting etc. that are usually required for an upwind scheme. In this sense they are like a central scheme. However,
in many cases the first-order accurate version of the new schemes is much less dissipative than the first-order version
of the central scheme (the Lax–Friedrichs scheme).

1.2 Multi-species kinematic models

In this and the following section, we recall some known properties and discretizations of kinematic models of the
type (2), while some results related to conservation laws with discontinuous flux are reviewed in Sect. 1.5.

In many applications, the number N of species may be large, and the different species in these applications are
competitive. It is therefore convenient to assume a maximal density φmax (for example, a maximal ‘bumper-to-bum-
per’ car density in traffic models or the maximal sphere packing density φmax ≈ 0.66 in sedimentation models),
such that the phase space for (2) is

Dφmax := {
� = (φ1, . . . , φN )

T ∈ R
N : φ1 ≥ 0, . . . , φN ≥ 0, φ := φ1 + · · · + φN ≤ φmax

}
. (3)

Introducing the flux vector

f(�) = (
f1(�), . . . , fN (�)

)T := (
φ1v1(�), . . . , φNvN (�)

)T
, (4)

we can rewrite (2) as the nonlinear system of conservation laws

∂t�+ ∂x f(�) = 0. (5)

It is well known that solutions of (5) are discontinuous in general, and that the propagation speed σ(�+,�−)
of a discontinuity in the concentration field φi separating the states �+ and �− is given by the Rankine–Hugoniot
condition

σ = fi (�
+)− fi (�

−)
φ+

i − φ−
i

.

We recall that the system (5) is called hyperbolic at a state � if the Jacobian Jf (�) := (∂ fi/∂φk)1≤i,k≤N only has
real eigenvalues, and strictly hyperbolic if these are moreover pairwise distinct.

The kinematic traffic model for N = 1 goes back to Lighthill and Whitham [17] and Richards [18] (“LWR
model”); for the sedimentation of suspensions, the classic reference is Kynch [19]. The extension of the LWR
model to multi-class traffic flow was proposed by Benzoni–Gavage and Colombo [1] and Wong and Wong [2],
while extensions of the sedimentation model to several species have been suggested for several decades (see
[11,20] for reviews), mainly in the chemical engineering literature. The application of available tools of mathe-
matical and numerical analysis to kinematic flow models is difficult due to the dependence of the functions vi (�)

on all variables φ1, . . . , φN , which in general is nonlinear. Closed formulas for the eigenvalues and eigenvectors
of Jf (�) are at least complicated, if not unavailable for N ≥ 5. It is therefore in general not possible to solve the
Riemann problem for (2) in closed form. Moreover, for multi-species kinematic models eigenvalues lack a direct
physical interpretation, and in particular do not coincide with any of the phase velocities v1, . . . , vN .

Advances were made recently in the hyperbolicity analysis and characterization of eigenvalues of kinematic
models. For the model of settling of oil-in-water dispersions, Rosso and Sona [12] proved for arbitrary N strict
hyperbolicity in Dφmax . The proof is based on deriving an explicit closed formula of the characteristic polynomial of
Jf (�), and discussing its zeros. Berres et al. [7] proved in a similar way that the model [7,21,22] for the sedimenta-
tion of polydisperse suspensions utilized herein is strictly hyperbolic for arbitrary N , provided that all particles have
the same density. The basic idea was also used by Zhang et al. [5] to prove strict hyperbolicity of the multi-class
traffic model proposed in [1,2].
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1.3 Limitations of kinematic models

Before proceeding with the discussion, we comment on the limitations of our class of kinematic models. The
one-dimensional setting may be adequate for traffic models, but certainly presents a strong simplification for mul-
tiphase flows of real materials such as suspensions and emulsions. Nevertheless, one-dimensional multiphase flow
models are widely used in engineering applications under well-controlled flow conditions, especially for separation
processes in ducts (e.g., settling columns or hydraulic classifiers) that are aligned with the body force (gravity
or centrifugal force) that drives the separation. If one assumes that the sizes of particles or droplets are small
compared with the diameter of the vessel, then wall effects become negligible, and in many circumstances one-
dimensional approximation is acceptable. Experimental support for one-dimensional kinematic models is provided
in [10,11,21,23–38] (this list is not complete). Of course, multiphase flows under more general circumstances,
for example in equipments with more complicated geometry, in natural ducts or under a combination of various
body forces require a truly multi-dimensional treatment, which is also necessary for the description of the forma-
tion of structures like plumes and eddies that are not easily modelled in one dimension. Monographs dealing with
multi-dimensional multiphase flow models include [39–43].

The dimensionality of a multiphase flow model is intimately related with the number and structure of balance
equations that describe its evolution. For example, in more than one space dimension, the flux appearing in the solids
continuity equations of sedimentation models has a linear contribution involving the bulk velocity of the mixture
[7,8]. This quantity is then not just a controllable constant, as in one space dimension, but a flow variable with its
own equations of evolution, for example a variant of the Navier–Stokes equation which is strongly coupled with the
continuity equations. On the other hand, independently from the number of space dimensions, a physically more
accurate description (than kinematic modelling) of traffic and multiphase flows requires that we take into account
further balance equations, for example for the linear momentum and energy of each species. As a consequence, the
flow velocity vi of a particular species is no longer an explicitly prescribed function of �, but is governed by its
own equation of evolution. In traffic modelling, this leads to so-called second-order traffic models, which include
elements such as anticipation length and reaction time. For the more involved physics of non-kinematic multiphase
flow models, we refer again to [39–43]; for traffic models, see [44–47].

Frequently, the flux of a species is assumed to depend not only on �, but also on ∇� (in one space dimension,
∂x�), which results in diffusive-like models. These gradient-type terms either emerge from simplified versions of
additional balance equations, as in sedimentation models, where they reflect sediment compressibility [7]; accrue
from truncated expansions of velocities with displaced arguments reflecting anticipation length, reaction time,
and relaxation to equilibrium in traffic modelling [14,45,48]; or are postulated a priori as a formal generaliza-
tion vi = vi (�,∇�) of the dependency vi = vi (�) of kinematic models [49–52]. In traffic modelling, the last
assumption has the behaviouristic interpretation that drivers are not only sensitive to the local density, but to the
gradient of density. Some diffusive models are actually strongly degenerate, which means that diffusion is present
only wherever the density exceeds a critical value. The governing equations is of mixed parabolic-hyperbolic type,
where the location of the type-change interface is unknown beforehand. Sedimentation and traffic models of this
kind are discussed in [7] and [14,48], respectively.

1.4 Numerical schemes for kinematic models

Despite the new hyperbolicity results, insight into any specific N -species kinematic model with N ≥ 3 can real-
istically be gained through numerical simulation only. High resolution schemes for systems of conservation laws,
which approximate discontinuities sharply and without spurious oscillations and are at least second-order accurate
in smooth regions, are natural candidates for the numerical solution of (2). For example, Wong, Shu and their col-
laborators [4,6] applied weighted essentially non-oscillatory (WENO) schemes to the traffic model, while the first
and third authors and collaborators [7,20,53,54] employed central difference schemes [55,56] for the sedimentation
model. Meanwhile, central schemes have also been applied to a number of real-world problems of polydisperse
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sedimentation, see for example Xue and Sun [10], Simura and Ozawa [57] and Wang et al. [58]. Recently [59],
WENO schemes were combined with a multiresolution technique to yield a numerical method for kinematic models
that adaptively concentrates computational effort on zones of strong variation.

All these methods are based on schemes that can be applied universally to systems of conservation laws, and
that are not tailored to a particular algebraic structure of the flux vector. Our new family of schemes does, however,
explicitly make use of the structure of fluxes for kinematic models. The schemes, which are first-order accurate,
can be upgraded to higher order accuracy by employing MUSCL-type techniques.

1.5 Well-posedness analysis and numerical schemes for conservation laws with discontinuous flux

Toput the treatment in theproperperspective,wefirst recall someknownresults for theequationut + f (γ (x), u)x = 0.
The basic difficulty is that its well-posedness is not a straightforward limit case of the standard theory for conserva-
tion laws with a flux that depends smoothly on x . In fact, several extensions of the Kružkov entropy solution concept
[60] to conservation laws with a flux that is discontinuous with respect to x were proposed in recent years [61–74].
Each of these concepts is supported by a convergence analysis of a numerical scheme; the differences between
them appear in the respective admissibility conditions for stationary jumps of the solution across the discontinuities
of γ [75].

The choice of the entropy solution concept depends on the regularizing viscous physical model. For clarifier–
thickener models, the appropriate concept emerges from the limit ε → 0 of a viscous regularization εuxx with a
diffusion constant ε > 0 [76]. Diehl advanced thorough analyses and construction of exact entropy solutions for
clarifier–thickener models, which are culminating in his series of papers “Operating charts for continuous sedi-
mentation” [77–80]. On the other hand, the authors with collaborators made a series of contributions (including
[15,16,76,81]) to the well-posedness and numerical analysis for these models, whose basic non-standard ingredient
is a singular feed source that produces diverging bulk flows, which causes the discontinuous x-dependence of the
flux. The same entropy solution concept has also been applied to establish well-posedness, and to construct a work-
ing numerical scheme, for a model of single-species traffic flow with abruptly changing road surface conditions
[14].

The rigorous analysis is limited to the scalar case, but the numerical schemes that have been used to construc-
tively establish existence of weak solutions to the scalar clarifier–thickener model also possess working versions
for systems with discontinuous flux. In the context of clarifier–thickener models, such systems model fluidization
and classification units for polydisperse suspensions, see [82,83].

1.6 Contents of the paper

The remainder of the paper is organized as follows. In Sect. 2, three specific kinematic models are presented.
Section 2.1 presents the multi-class kinematic traffic model, which gives rise to an initial-value problem with
periodic boundary conditions. Next, in Sect. 2.2, we outline the polydisperse sedimentation model, for which the
zero-flux boundary condition is relevant. A similar model for the separation of oil-in-water dispersions is mentioned
in Sect. 2.3. The distinctive property of the sedimentation model is that the phase velocities of the particle species
may be positive, zero or negative, due to buoyancy effects, while in the two other models, these velocities are always
non-negative.

Section 3 is devoted to the presentation of the family of schemes. To this end, we first introduce in Sect. 3.1 the
basic time and space discretizations. In Sect. 3.2, the scalar versions (i.e., for N = 1) of the schemes are introduced,
starting with Schemes 1 and 2 for fluxes with non-negative velocity and a velocity of variable sign, respectively.
It is shown that both schemes are monotone provided that a CFL condition is satisfied. Furthermore, we extend
Scheme 1 to an equation with discontinuous flux (Scheme 3). In Sect. 3.3, we formulate schemes for multi-species
kinematic models, that is, for systems of conservation laws (N ≥ 1). The systems variants of the scalar Schemes 1
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and 3 for models with non-negative velocities only are Schemes 4 and 5. For models with velocities of variable
sign, the direct extension of the scalar Scheme 2 is Scheme 6. However, as is detailed in Sect. 3.3, this scheme
produces sharply resolved interfaces, but overshoots in certain situations. An analysis of the viscosity coefficients of
Scheme 6 leads to the improved Scheme 7. It turns out that for the sedimentation model, this scheme still produces
overshoots near stationary discontinuities; for this reason, the final scheme advocated for systems with velocities
of variable sign is Scheme 8, which is slightly more viscous than Scheme 7. One desirable property of schemes
for kinematic models consists in the preservation of an invariant region, i.e., under a suitable CFL condition, the
scheme should produce approximations that assume values within the physically relevant phase space only (i.e.,
concentrations should be non-negative and sum up at most to the maximal concentration). We show in Sect. 3.4 that
Scheme 5, applied to the traffic model, and Scheme 4, applied to the oil-in-water dispersion model, indeed do have
these properties. Experience with the traffic and oil-in-water dispersion model leads us to propose a working CFL
condition also for the sedimentation model. In Sect. 3.5 we demonstrate how the schemes developed so far can be
improved to second-order accuracy both in space and time by combining Runge–Kutta temporal differencing with
MUSCL-type spatial differencing. The latter involves the use of slope limiter functions; we refer to the variants
with the minmod and Van Leer limiter functions as Schemes 9 and 10, respectively. We show that if applied to
scalar problems with a flux that does not depend on x , these schemes preserve the maximum principle and the TVD
property of the first-order version under the same CFL condition.

In Sect. 4, we consider a scalar initial-boundary value problem with periodic boundary conditions and a discon-
tinuous flux, and prove that Scheme 3 generates a sequence of approximate solutions that converge to the unique
BVt entropy solution of the problem as the mesh parameters tend to zero. One basic ingredient of the compactness
argument involved here is a new type of local but uniform estimate of the total spatial variation of approximate
solutions. This type of argument (see Lemma 4.2 in Sect. 4 and its proof) is new, and has not been used in any
previous work on discontinuous flux problems.

In Sect. 5, we present eight numerical examples to demonstrate the performance of the schemes of the family,
especially compared to variants of the Lax–Friedrichs scheme. Examples 1 and 2 refer to scalar equations that do
not represent a particular application. Example 3 presents a simulation of a scalar clarifier–thickener model, and
allows comparison with a numerical result published in [16]. In Example 4, we study the multi-species traffic model
with N = 9, but without flux discontinuities, and choose parameters in such a way that results can be compared with
those presented in [4]. In addition, for this example (and for Example 6) we present a history of approximate L1

numerical errors. This is done for the first- and second-order variants of the scheme, as well as for the corresponding
variants of the LxF scheme. Example 5 corresponds to the traffic model with a discontinuously varying parameter,
and the numerical results can be compared those of Zhang et al. [6]. In Example 6, we simulate the settling of a
suspension with N = 2 species in a column using parameters from a well-documented experiment by Schneider
et al. [23]. These results, as those of Example 7, where we consider a suspension with N = 11 species, can also be
compared with those of [59]. Finally, Example 8 presents a simulation of the settling of an oil-in-water dispersion
with N = 10 species. Section 6 collects some conclusions of this paper.

2 Examples of kinematic flow models

2.1 Traffic-flow models

The classical LWR kinematic wave model [17,18] for unidirectional traffic flow on a single-lane highway starts
from the principle of “conservation of cars”, where φ is the density of cars as a function of distance x and time t
and v = v(x, t) is the velocity of the car located at position x at time t :

∂tφ + ∂x (φv) = 0, x ∈ R, t > 0. (6)

The original LWR model (6) is a single-species model (N = 1), whose basic assumption v = v(φ) states that each
driver instantaneously adjusts his velocity to the local car density. A common choice is v(φ) = vmaxV (φ), where
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vmax is a preferential velocity a assumed on a free highway, and V (φ) is a hindrance function taking into account
that the presence of other cars urges each driver to adjust his speed. Thus, the flux is

f (φ) := φv(φ) =
{
vmaxφV (φ/φmax) for 0 ≤ φ ≤ φmax,

0 otherwise,
(7)

where φmax is the maximum “bumper-to-bumper” car density.
Recently, Benzoni-Gavage and Colombo [1] and Wong and Wong [2] independently formulated an extension of

the LWR model to multi-class traffic flow, considering that cars belong to a finite number N of classes (species),
each associated with a function v = vi (�). It is assumed that drivers of each species adjust their velocity to the
global car density φ = φ1 + · · · + φN seen at a point (x, t), which means that vi (�(x, t)) = vi (φ(x, t)) for
i = 1, . . . , N , and that all drivers adjust their velocity in the same way, such that

vi (�) = vi
maxV (φ/φmax), i = 1, . . . , N . (8)

Here, vi
max is the preferential (maximum) of species i and the function V : [0, φmax] → [0, 1] describes the attitude

of drivers [1], that is, represents the same hindrance function as in the single-class case.
Also of interest are models where we replace (8) by

vi = vi (x,�) = vi
max(x)V

(
φ/φmax(x)

)
, vi

max(x) > 0, i = 1, . . . , N . (9)

By allowing vi to vary spatially through the coefficients vi
max(x) and φmax(x), it is possible to model road conditions

that change from location to location.
For the traffic model, we assume a circular road of length L and assume an initial traffic density

�(x, 0) = �0(x) = (
φ0

1(x), . . . , φ
0
N (x)

)T ∈ Dφmax , 0 ≤ x ≤ L . (10)

The periodicity condition is

φi (0, t) = φi (L , t), t > 0, i = 1, . . . , N .

2.2 Sedimentation of polydisperse suspensions

We consider a polydisperse suspension of rigid spherical particles which are dispersed in a viscous fluid of density �f

and of dynamic viscosity µf . The solid particles belong to N different species having sizes (diameters) d1 ≥ d2 ≥
· · · ≥ dN and densities �1, . . . , �N , where di �= d j or �i �= � j for i �= j . Model equations for the three-dimensional
motion of such a mixture were derived in [8], based on earlier work by Masliyah [22] and Lockett and Bassoon [21].
We consider here the kinematic model obtained by reducing these equations to one space dimension, see [8] for
details. The relevant parameters are δi := d2

i /d
2
1 and �̄i := �i −�f for i = 1, . . . , N . Here,φmax denotes a maximum

solids volume fraction, which we here assume to be constant. Moreover, we introduce the vector �̄ := (�̄1, . . . , �̄N )
T,

the cumulative solids fraction φ := φ1 + · · · + φN , the viscosity parameter µ := gd2
1/(18µf) > 0, where g is the

acceleration of gravity, and the hindered settling factor V = V (φ), which may be chosen as

V (φ) =
{
(1 − φ)n−2 if � ∈ Dφmax ,

0 otherwise,
n > 2. (11)

The phase velocity of particle species i is then given by

vi (�) = µV (φ)

[

δi (�̄i − �̄T�)−
N∑

m=1

δmφm(�̄m − �̄T�)

]

, i = 1, . . . , N . (12)

For one-dimensional batch settling of a suspension in a closed vessel of depth L , the initial condition is again (10),
while the zero-flux boundary conditions are

f |x=0 = f |x=L = 0. (13)
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If the particles differ in size only (i.e., �1 = �2 = · · · = �N =: �s), then (12) simplifies to the following expres-
sion, where v∞ = µ(�s − �f) is the settling velocity of a single particle of the largest species in an unbounded
medium (the so-called Stokes velocity of the largest species):

vi (�) = v∞(1 − φ)V (φ)
(
δi − (δ1φ1 + · · · + δNφN )

)
, i = 1, . . . , N . (14)

In [7] it is proved that for equal-density particles (�̄ = · · · = �̄N = �s − �f ), arbitrary N and particle size
distributions, the system (5) is strictly hyperbolic for all � ∈ D with φ1 > 0, . . . , φN > 0 and φ < 1 if the flux
vector (12) is chosen. As mentioned in Sect. 1.2, the proof proceeds in a similar fashion to that of Rosso and Sona
[12] outlined in Sect. 1.2.

2.3 Separation of oil-in-water dispersions

Kinematic models have also been proposed for the sedimentation of small oil droplets in liquid–liquid dispersions.
The separation process is similar to the settling of a polydisperse suspension, the major difference being that since
the density of oil is smaller than that of water, the oil droplets move upwards, a process called creaming; however, to
make results comparable with the sedimentation model, we assume that the separation takes place in the direction
of the positive x-axis, so x is considered here to be a height variable. Numerous contributions to kinematic models
for liquid–liquid dispersions have been made by Hartland, Jeelani, and their collaborators, see for example [24–28].
The analogy between suspension and dispersion models is also emphasized by Nadiv et al. [29] and Frising et al.
[30]. The model utilized herein is due to Rosso and Sona [12], who consider the separation of small oil droplets
in an oil-in-water dispersion. (It is worth mentioning that Rosso and Sona explicitly refer to [31], a doctoral thesis
prepared under Hartland’s guidance.)

The model outlined in [12] can be written in the form (2) if we consider oil droplets of N different volumes
V∞ > V2 > · · · > VN > 0, where x is the upward-increasing height variable and φi = φi (x, t) is the volume frac-
tion occupied by droplets of volume Vi . The model is similar to that of sedimentation, but as the authors argue, the
differential motion of the particle species is not driven by the dispersion–water-density difference, which actually
can be considered constant, but rather by differences in viscosity. The basic nonlinearity is introduced by a viscosity
function µd = µd(�) = µd(φ1, . . . , φN ). If we denote again by µf the viscosity of pure water (without oil), then
µd(�) is assumed to satisfy

µd ∈ C1(D); µd(�) > 0,
∂µd

∂φ1
> 0, . . . ,

∂µd

∂φN
> 0 ∀� ∈ D; µd(0, . . . , 0) = µf .

The velocity functions v1(�), . . . , vN (�) are then given by

vi (�) = c
V2/3

i

µd(�)
(1 − φ), i = 1, . . . , N , c := 2g(�f − �oil)

9(4π/3)2/3
, (15)

where g, �f and �oil denote the acceleration of gravity, the density of pure water and density of pure oil, respectively.
For separation of a dispersion in a column of height L , we may again employ the initial and boundary conditions
(10) and (13).

3 Numerical schemes

Section 2 shows that we are interested in schemes for kinematic models with a flux that possibly depends discon-
tinuously on the spatial position x . Thus, we seek weak solutions to the initial-value problem

∂tφi + ∂x fi (x,�) = 0, (x, t) ∈ (0, L)× (0, T ) =: 	T , i = 1, . . . , N ,

fi (x,�) = φivi
(
γ i (x),�

)
, �(x, 0) = �0(x), x ∈ (0, L),

(16)
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which may be supplemented by periodic boundary conditions

�(0, t) = �(L , t), t > 0,

or zero-flux boundary conditions

fi (0,�) = fi (L ,�) = 0, i = 1, . . . , N .

This setup is general enough to include the models discussed in the previous section.

3.1 Discretizations

We start by discretizing the domain [0, L]×[0, T ]. To discretize the spatial interval [0, L], we choose a mesh width

x and an integer J such that (J + 1)
x = L , and set

x j = ( j + 1/2)
x, j = −1/2, 0, 1/2, 1, 3/2, . . . ,J − 1,J + 1/2.

With this setup, x−1/2 = 0, xJ +1/2 = L . We discretize the time interval [0, T ] by selecting an integer N and a
sequence of temporal mesh widths 
tn , and defining t0 := 0 and tn+1 := tn +
tn for n = 0, 1, . . . ,N subject to
the condition 
t0 + · · · + 
tN−1 = T . The ratio λn := 
tn/
x is always assumed to satisfy a CFL condition,
which will be specified below. Our numerical schemes will generate an approximation �n

j ≈ �(x j , tn) defined at
the mesh points (x j , tn) for j ∈ {0, 1, . . . ,J } =: ZJ and n = 0, 1, . . . ,N . For our first-order accurate scheme,
we start by discretizing the initial data and the parameter vectors

�0
j = �0

(
x+

j

) := lim
x↓x j

�0(x), γ i, j := γ i

(
x+

j

)
, i = 1, . . . , N .

Here we have arbitrarily chosen the limit from above to resolve the ambiguities at possible jump discontinuities in
the data. This is somewhat arbitrary; we could also use the limit from below, or any average of the two. We then
march the solution forward in time according to

�n+1
j = �n

j − λn
(
hn

j+1/2 − hn
j−1/2

)
, j ∈ ZJ , n = 0, 1, . . . ,N . (17)

The numerical flux vector hn
j+1/2 is

hn
j+1/2 := (

h1
(
γ 1, j+1,�

n
j+1,�

n
j

)
, . . . , hN

(
γ N , j+1,�

n
j+1,�

n
j

))T
. (18)

Recall that we are considering two types of boundary conditions. When dealing with zero flux boundary conditions,
we always set

hn−1/2 = hn
J +1/2 = 0, n = 0, 1, 2, . . . (19)

When dealing with periodic boundary conditions, we may have formulas where j < −1/2 or j > J + 1/2. In
such cases we simply interpret j modulo (J + 1), in such a way that it lies within the proper range. For periodic
boundary conditions, we will always have

hn−1/2 = hn
J +1/2, n = 0, . . . ,N . (20)

With these observations, we can deal with both types of boundary conditions simultaneously, and mostly avoid
discussing special processing at the boundaries.

3.2 The scalar case

To discuss our new numerical flux in the simplest possible setting, we start with scalar kinematic wave models,
where no spatially dependent parameter vector occurs:

φt + f (φ)x = 0, (21)
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where the flux takes the special form for kinematic flow models

f (φ) = φv(φ). (22)

The assumptions are that φ ≥ 0, and that v(φ) is given by a positive default velocity multiplying a hindrance
function. Since the hindrance increases with φ, the assumptions v(φ) ≥ 0 and v′(φ) ≤ 0 are very natural, and
clearly satisfied for all examples of kinematic models considered herein. For traffic flow, φ is the traffic density,
and v is the velocity of cars as a function of density, while for sedimentation, φ is the solids volume fraction and v
is the solids phase velocity.

3.2.1 Scheme 1 for scalar equations (N = 1) with non-negative velocity

The following is a two-point numerical flux consistent with the actual flux (22):

h(φ j+1, φ j ) := φ jv(φ j+1). (23)

For easy reference, we refer to the scheme (17), (18) with N = 1, γ ≡ const. and the flux (23) as Scheme 1. Due
to the special structure of this problem (φ ≥ 0, v(φ) ≥ 0, v′(φ) ≤ 0), Scheme 1 is monotone [84], meaning that
the function h(φ j+1, φ j ) is non-increasing with respect to φ j+1 and non-decreasing with respect to φ j . Therefore,
Scheme 1 produces approximations that converge to the correct entropy solution to the conservation law (21).
However, these approximations will be at best first order accurate. What makes the flux (23) interesting is that like
the Lax–Friedrichs numerical flux, it is very simple (there is no Riemann solver involved), but in many cases it is
less dissipative than the Lax–Friedrichs numerical flux. This motivates us to use (23), and various extensions to
deal with systems and discontinuous coefficients, as a starting point to build a second-order scheme.

3.2.2 Scheme 2 for scalar equations (N = 1) with a velocity of variable sign

Motivated by the polydisperse settling model, where the velocities may become negative, we next consider the
scalar case where the velocity v may become negative. It is easy to check that the following modification of (23)
is a flux that retains the monotonicity property in this more general situation:

h(φ j+1, φ j ) = φ j max
{
0, v(φ j+1)

} + φ j+1 min
{
0, v(φ j+1)

}
. (24)

We refer to the scheme (17), (18) for N = 1 and γ ≡ const. with the flux (24) as Scheme 2. Another formulation
of (24) that will be useful in what follows is the so-called viscous form:

h(φ j+1, φ j ) = 1

2

(
f (φ j+1)+ f (φ j )

) − 1

2λ
Q(φ j+1, φ j )(φ j+1 − φ j ), (25)

where the numerical viscosity coefficient Q(φ j+1, φ j ) is defined by

Q(φ j+1, φ j ) := λ
∣∣v(φ j+1)

∣∣ + λφ j
v(φ j )− v(φ j+1)

φ j+1 − φ j
. (26)

To derive CFL conditions, let us concentrate for now on the case where the boundary conditions are periodic. If
we write Scheme 2 in incremental form

φn+1
j = φn

j + C j+1/2
+φn
j − D j−1/2
−φn

j ,

where we define the spatial difference operators 
−Vj := Vj − Vj−1 and 
+Vj := Vj+1 − Vj , the incremental
coefficients are given by

C j+1/2 = λφ j
v(φn

j )− v(φn
j+1)

φn
j+1 − φn

j
− λmin

{
0, v(φn

j+1)
}
, D j+1/2 = λmax

{
0, v(φn

j+1)
}
. (27)

To have a maximum principle

min
{
φn

j−1, φ
n
j , φ

n
j+1

} ≤ φn+1
j ≤ max

{
φn

j−1, φ
n
j , φ

n
j+1

}
(28)

123

396



Numerical schemes for kinematic flows

and the Total Variation Decreasing (TVD) property

J∑

j=0

∣∣φn+1
j+1 − φn+1

j

∣∣ ≤
J∑

j=0

∣∣φn
j+1 − φn

j

∣∣, (29)

sufficient conditions are [85,86]

C j+1/2 + D j+1/2 ≤ 1, C j+1/2 + D j−1/2 ≤ 1, C j+1/2 ≥ 0, D j+1/2 ≥ 0.

It is clear from (27) that C j+1/2 ≥ 0 and D j+1/2 ≥ 0 are already satisfied. To enforce the first two inequalities, we
impose the CFL conditions

λ max
j∈ZJ

∣∣v(φ j )
∣∣ ≤ α, α = 1/4, λ max

j∈ZJ
φ j · max

j∈ZJ

∣∣v′(φ j )
∣∣ ≤ α, α = 1/2. (30)

In this paper we state a CFL condition, like those in (30), in terms of the number α for ease of comparison with
other CFL conditions (with different values of α) that will appear elsewhere.

If the speed v is nonnegative, the second term on the right-hand side of the equation for C j+1/2 in (27) is not
present, and we can replace (30) by the less restrictive CFL conditions

λ max
j∈ZJ

v(φ j ) ≤ α, λ max
j∈ZJ

φ j · max
j∈ZJ

∣∣v′(φ j )
∣∣ ≤ α, α = 1/2. (31)

3.2.3 Scheme 3 for scalar equations (N = 1) with non-negative velocity with a discontinuous flux

We will also consider scalar conservation laws of the form

φt + f
(
γ (x), φ

)
x = 0, f

(
γ (x), φ

) = φv
(
γ (x), φ

)
, v(γ , φ) ≥ 0, (32)

where the spatially varying coefficient vector γ may have jump discontinuities. For the traffic flow model, the
coefficient γ modulates the velocity function, and provides a way to model spatially varying road conditions. For
the conservation law (32), our numerical flux becomes

h(γ j+1, φ j+1, φ j ) = φ jv(γ j+1, φ j+1), γ j+1 := γ
(
x+

j+1

)
. (33)

For the scheme defined by (33), Scheme 3, we cannot derive CFL conditions by enforcing a maximum principle
like (28) or TVD property like (29). Nevertheless, we demonstrate in Sect. 4 that at least in one important case the
scheme is stable and convergent if the following CFL conditions are satisfied:

λ max
j∈ZJ

v(φ j , γ j ) ≤ α, λ max
j∈ZJ

φ j · max
j∈ZJ

∣∣∂φv(γ j , φ j )
∣∣ ≤ α, α = 1/2.

3.3 Numerical flux for systems of conservation laws

When generalizing the numerical flux to multi-species kinematic flows governed by (1), one should observe that
only for the traffic and dispersion models, the velocities vi (�) are always nonnegative; for the sedimentation model,
the velocities vi (�) are defined by (8) and may become negative due to buoyancy effects. This also occurs in the
special case that all particles have the same density, and the velocities vi (�) are defined by (14).

3.3.1 Scheme 4 for systems (N ≥ 1) with non-negative velocities

In light of the above observation, for the multi-class traffic and the dispersion models a reasonable generalization
of the scalar flux (23) is

hi, j+1/2 = hi (� j+1,� j ) = φi, jvi (� j+1), i = 1, . . . , N . (34)

We refer to the corresponding scheme as Scheme 4.

123

397



R. Bürger et al.

3.3.2 Scheme 5 for systems (N ≥ 1) with non-negative velocities and discontinuous flux

As mentioned previously, for the multi-class traffic model, we are also interested in spatially varying velocities of
the form (9). In that case we replace the numerical flux (34) by

hi, j+1/2 = hi (ki, j+1,� j+1,� j ) = φi, jv
i
max, j+1V (φ j+1/φmax, j+1),

vi
max, j+1 := vi

max

(
x+

j+1

)
, φmax, j+1 := φmax

(
x+

j+1

)
, i = 1, . . . , N

(35)

(Scheme 5).

3.3.3 Schemes 6, 7 and 8 for systems (N ≥ 1) with velocities of variable sign

For the sedimentation model, where the velocities may become negative, a potential generalization of the scalar
numerical flux (24) is

hi (� j+1,� j ) = φi, j max
{
0, vi (� j+1)

} + φi, j+1 min
{
0, vi (� j+1)

}
, i = 1, . . . , N (36)

(Scheme 6), and for this flux, the numerical viscosity coefficients are given by

Qi (� j+1,� j ) = λ
∣∣vi (� j+1)

∣∣ + λφi, j
vi (� j )− vi (� j+1)

φi, j+1 − φi, j
. (37)

Our numerical experiments with (34) give satisfactory results, and this is the first-order version of the flux that we
use for systems where there are no negative velocities. When negative velocities are present, numerical experiments
with (36) produce sharply resolved interfaces, but with overshoot in certain situations. To devise a numerical flux
which overcomes this shortcoming, we return to the viscous formulation (25), (26) of the scalar numerical flux
and observe that due to our assumption that v(·) is non-increasing, both terms on the right-hand side of (26) are
nonnegative. In fact, we can rewrite (26) in the equivalent form

Q(φ j+1, φ j ) = λ
∣∣v(φ j+1)

∣∣ + λφ j

∣∣∣∣
v(φ j )− v(φ j+1)

φ j+1 − φ j

∣∣∣∣ = λ
∣∣v(φ j+1)

∣∣ + λφ j
|v(φ j )− v(φ j+1)|

φ j+1 − φ j
sgn(φ j+1 − φ j ).

Inserting this into (25) yields the following form of the scalar numerical flux (24):

h(φ j+1, φ j ) = 1

2

(
f (φ j+1)+ f (φ j )

) − 1

2

∣∣v(φ j+1)
∣∣(φ j+1 − φ j )− φ j

2

∣∣v(φ j )− v(φ j+1)
∣∣ sgn(φ j+1 − φ j ), (38)

and this is the formulation that we generalize to systems when the velocities can become negative. In light of (38),
a natural candidate for systems with velocities of both signs is

hi (� j+1,� j ) = 1

2

(
φi, j+1vi (� j+1)+ φi, jvi (� j )

) − |vi (� j+1)|
2

(φi, j+1 − φi, j )

− φi, j

2

∣∣vi (� j )− vi (� j+1)
∣∣ sgn(φi, j+1 − φi, j ), i = 1, . . . , N ,

(39)

which defines Scheme 7. For this flux the numerical viscosity coefficient is

Qi (� j+1,� j ) = λ
∣∣vi (� j+1)

∣∣ + λφi, j

∣∣∣∣
vi (� j )− vi (� j+1)

φi, j+1 − φi, j

∣∣∣∣ .

Our modification (39) to the numerical flux (34) consists in forcing the second term in the viscosity coefficient
(37) to be positive. For scalar equations, this term is always positive, but this is not always true for systems. This
modification is also potentially applicable to systems where all of the velocities are non-negative, but we have found
that the original flux (34) is satisfactory for such systems.

For polydisperse settling problems we find that (39) is an improvement over (36) but still sometimes gives
non-physical overshoots at the interfaces between beds of sediment. For these problems we propose a slightly more
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viscous version of (39) that provides a good compromise between sharply resolved interfaces and suppression of
overshoots:

hi (� j+1,� j ) = 1

2

(
φi, j+1vi (� j+1)+ φi, jvi (� j )

) − E j+1

2
(φi, j+1 − φi, j )

− φi, j

2

∣∣vi (� j )− vi (� j+1)
∣∣ sgn(φi, j+1 − φi, j ), i = 1, . . . , N ,

which defines Scheme 8, and where E j+1 := max{|v1(� j+1)|, . . . , |vN (� j+1)|}.

3.4 Invariant regions and CFL conditions for systems

In Sect. 3.2 we derived CFL conditions by enforcing the TVD property and a very strong maximum principle. Both
of these regularity properties are satisfied by the true solutions of the scalar conservation laws being approximated,
but not generally for systems of conservation laws. In this section we derive CFL conditions for systems. We first
derive the form of these CFL conditions by requiring that a certain invariant region be preserved. Once we have the
form of the CFL conditions, we determine the constants on the right sides by referring to our scalar CFL conditions.

As discussed in Sect. 1.1, the problems of interest to us have a natural invariant region Dφmax defined by (3). It is
possible to show that our first-order scheme preserves this invariant region if we place some restrictions upon the
velocity functions vi (�). Since we also wish to allow for spatially varying coefficients, we generalize the definition
(3), allowing it to vary spatially:

Dφmax, j := {
� = (φ1, . . . , φN )

T ∈ R
N : φ1 ≥ 0, . . . , φN ≥ 0, φ := φ1 + · · · + φN ≤ φmax, j

}
. (40)

The following theorem applies to the multi-class traffic flow model discussed in Sect. 2.1.

Theorem 3.1 Consider Scheme 5 defined by (17) with numerical flux (35), and either type of boundary conditions,
(19) or (20). Assume that all velocity functions vi are of the form (9), where 0 ≤ vi

max(x) ≤ vi
max ≤ vmax and

0 < φ
max

≤ φmax(x) ≤ φmax, and that the hindrance factor V (z) satisfies

0 ≤ V (z) ≤ Vmax, V ′(z) ≤ 0, |V ′(z)| ≤ |V ′|max, z ∈ [0, 1]; V (1) = 0. (41)

Then if �n
j ∈ Dφmax, j and the CFL conditions

λvmaxVmax ≤ α, λ
(
φmax/φmax

)
vmax|V ′|max ≤ α, α = 1 (42)

are satisfied at time level n, we will also have �n+1
j ∈ Dφmax, j .

Proof Assume for now that the boundary conditions are periodic. The marching formula takes the form

φn+1
i, j = φn

i, j − λφn
i, jv

i
max, j+1V

(
φn

j+1

φmax, j+1

)
+ λφn

i, j−1v
i
max, j V

(
φn

j

φmax, j

)
, i = 1, . . . , N . (43)

From this expression, it is clear that

φn+1
i, j ≥ φn

i, j − λφn
i, jv

i
max, j+1V

(
φn

j+1

φmax, j+1

)
=

[
1 − λvi

max, j+1V

(
φn

j+1

φmax, j+1

)]
φn

i, j

for i = 1, . . . , N . This inequality implies that if �n
j ∈ Dφmax, j for all j ∈ ZJ we will have φn+1

i, j ≥ 0 if the first
CFL condition appearing in (42) is satisfied.

Returning to the marching formula (43), we obtain that

φn+1
i, j ≤ φn

i, j + λφn
i, j−1v

i
max, j V

(
φn

j

φmax, j

)
≤ φn

i, j + λφn
i, j−1vmaxV

(
φn

j

φmax, j

)
.
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Summing over i gives

φn+1
j ≤ φn

j + λ

N∑

i=1

φn
i, j−1vmaxV

(
φn

j

φmax, j

)
=: G(φn

j ).

Assumption (41) implies that G(φmax, j ) = φmax, j . Moreover,

G ′(φn
j ) = 1 + λ

N∑

i=1

φn
i, j−1vmax

φmax, j
V ′

(
φn

j

φmax, j

)
.

From this expression we deduce that if the second of the CFL conditions appearing in (42) is satisfied, the function
G will be a nondecreasing function of φn

j . Thus,

max
φn

j ∈[0,φmax, j ]
G(φn

j ) = G(φmax, j ) = φmax, j ,

implying that φn+1
j ≤ φmax, j . Finally, if the boundary conditions are of the zero-flux type, we only have to modify

the proof at the two mesh points j = 0 and j = J , where one of the flux contributions in (43) will be zero.
Retracing the steps of the proof, we see that all inequalities remain valid. 
�

It is common in traffic modeling to use a linear version of V , i.e., V (z) = 1 − z. In that case the CFL conditions
(42) can be reduced to the single condition

λ
(
φmax/φmax

)
vmax ≤ α, α = 1, (44)

and if φmax does not depend on x , i.e., φmax(x) ≡ φmax, this can be simplified even further to

λvmax ≤ α, α = 1. (45)

The oil-in-water dispersion model of Sect. 2.3 does not quite fit the hypotheses of the previous theorem, but
it is still possible to prove that the scheme preserves the invariant region Dφmax if appropriate CFL conditions are
enforced.

Theorem 3.2 Consider Scheme 4 defined by (17) with numerical flux functions defined by (34), and the zero-flux
boundary conditions (20). With the form of the velocities vi for the oil-in-water dispersion model specified in
Sect. 2.3, if �n

j ∈ Dφmax (here φmax = 1) and the CFL conditions

λvi (�
n
j ) ≤ α, i = 1, . . . , N , j ∈ ZJ ; λ c

µd(�
n
j )

N∑

i=1

φn
i, j−1 V2/3

i ≤ α, α = 1, j ∈ ZJ (46)

are satisfied, then �n+1
j ∈ Dφmax .

Proof First take the case where the boundary condition is not involved, 0 < j < J (an interior point). The marching
formula then takes the form

φn+1
i, j = φn

i, j − λφn
i, jvi

(
�n

j+1

) + λφn
i, j−1vi

(
�n

j

)
, i = 1, . . . , N . (47)

This expression implies that

φn+1
i, j ≥ φn

i, j − λφn
i, jvi

(
�n

j+1

) = (
1 − λvi

(
�n

j+1

))
φn

i, j , i = 1, . . . , N .

Using this inequality, along with the first CFL condition in (46), we conclude that φn+1
i, j ≥ 0. The marching formula

(47) also implies that φn+1
i, j ≤ φn

i, j + λφn
i, j−1vi (�

n
j ). Summing over i gives

φn+1
j ≤ φn

j + λ

N∑

i=1

φn
i, j−1vi

(
�n

j

) =: G
(
�n

j

)
.
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To simplify notation, we write G as

G(�) = φ + λ

N∑

i=1

ψi vi (�), � = �n
j , φ = φn

j , ψi = φn
i, j−1.

Recalling that for this model φmax = 1, we complete the proof by showing that

max
�∈Dφmax

G(�) ≤ 1. (48)

From (15), we obtain that

G(�) = φ + λB · 1 − φ

µd(�)
, B := c

N∑

i=1

ψi V2/3
i . (49)

Rearranging (49) and using φ ≤ φmax = 1 yields

G(�) =
(

1 − λ
B

µd(�)

)
φ + λ

B

µd(�)
≤ 1.

To obtain the last inequality, we have used the second CFL condition appearing in (46). Thus, (48) is valid, and the
proof is complete for each interior point. To complete the proof, we must deal with the remaining mesh points x0

and xJ . At x0, the marching formula (47) simplifies to

φn+1
i,0 = φn

i,0 − λφn
i,0vi

(
�n

1

)
, i = 1, . . . , N . (50)

That φn+1
i,0 ≥ 0 now follows from the CFL condition exactly as in the case of an interior point. For the upper bound,

it is immediate by summing over i in (50) that φn+1
0 ≤ φn

0 , and thus �n+1
0 ∈ Dφmax . At xJ , the marching formula

(47) becomes

φn+1
i,J = φn

i,J + λφn
i,J −1vi

(
�n

J
)
, i = 1, . . . , N . (51)

Now the proof that φi,J ≥ 0 is clear from (51), and the upper bound φn+1
J ∈ Dφmax follows exactly as in the proof

above for an interior point. 
�
In view of (15), the maximum velocities are given by vi

max = cV2/3
i /µf . Using these maximum velocities, it is

possible to combine the CFL conditions (46) for the oil-in-water dispersion model into the single and simplified,
but possibly more restrictive, condition

λ max
i=1,...,N

vi
max ≤ α, α = 1. (52)

In the scalar case (N = 1), the CFL conditions (42) and (46) are essentially the CFL conditions (31), except
with Courant number α = 1 instead of 1/2. The smaller α = 1/2 on the right side of (31) can be explained by
the fact that those conditions were derived in order to enforce both a TVD property and a more restrictive local
maximum principle. The non-oscillatory property of our scalar scheme is due to the TVD property. Since we wish
to extend this property to the systems version of our scheme, in practice we use the more restrictive Courant number
α = 1/2 in (42) for the multi-class traffic model. Similarly, we use α = 1/2 in the CFL condition (46) for the
scheme as it applies to the oil-in-water dispersion model. Finally, we replace Courant number α = 1 by α = 1/2 in
the simplified single CFL conditions (44) and (45) and the simplified single CFL condition (52) for the oil-in-water
model.

For the multi-class traffic model and the oil-in-water dispersion model, we have found the form that CFL condi-
tions should take by enforcing certain invariant regions, and then modifying the parameter on the right side of the
CFL inequalities by referring back to simpler scalar conservation laws. For the polydisperse sedimentation model,
we do not currently have a proof that our scheme preserves the invariant region Dφmax , so we can not directly carry
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out such a program. However, based on our analysis of the simpler multi-class traffic and oil-in-water dispersion
models, the CFL condition of the following type seems reasonable for the polydisperse sedimentation model:

λ max
i=1,...,N

|vi |max ≤ α, α = 1/2, |vi |max := max
�∈Dφmax

∣∣vi (�)
∣∣. (53)

Due to the complicated form of the velocities vi for the polydisperse sedimentation model, these maximum velocities
may be difficult to calculate. As an alternative, we can replace the CFL condition (53) by

λn max
j∈ZJ

max
i=1,...,N

∣∣vi
(
�n

j

)∣∣ ≤ α, α = 1/2.

We enforce this CFL condition by computing at each time level

λn = 1

2 max j∈ZJ maxi=1,...,N |vi (�
n
j )|
,

and then computing the time step via 
tn = λn
x . Our numerical experiments indicate that this approach works
well.

3.5 Higher-order versions (Schemes 9 and 10)

Schemes 1–8 are only first-order accurate, meaning that a very fine mesh is required in order to accurately resolve
some features of the solution. To improve on this situation, we propose a formally second-order scheme, constructed
by using MUSCL [87] spatial differencing and Runge–Kutta temporal differencing. The MUSCL version of the i th
flux component reads

hm
i (γ i, j+1,� j+2,� j+1,� j ,� j−1) = hi

(
γ i, j+1,� j+1 − 1

2
σ j+1,� j + 1

2
σ j

)
, (54)

γ i, j+1 := γ i

(
x+

j+1

)
, i = 1, . . . , N , (55)

where hi is the first-order version of the flux, and we define the slope vector σ j := (σ1, j , . . . , σN , j )
T with

σi, j =
{

minmod{φi, j+1 − φi, j , φi, j − φi, j−1} if j = 1, . . . , J − 1,

0 if j = 0 or j = J ,
i = 1, . . . , N , (56)

where as usual, minmod{a, b} := (sgn(a)+ sgn(b))min{|a|, |b|}/2, or the less dissipative Van Leer limiter

σi, j =
{
�i, j if j = 1, . . . , J − 1,

0 if j = 0 or j = J ,
i = 1, . . . , N ,

�i, j := |φi, j − φi, j−1|(φi, j+1 − φi, j )+ |φi, j+1 − φi, j |(φi, j − φi, j−1)

|φi, j − φi, j−1| + |φi, j+1 − φi, j | .

(57)

When the boundary conditions are of the zero-flux type, we simply set σ j = 0 when j = 0,J . In the scalar case,
this avoids non-physical overshoot that can occur otherwise.

In all examples in this paper, the parameter γ is piecewise constant. If γ is piecewise smooth, it is necessary
to use γ i, j+1/2 := γ i (x

+
j+1/2) in (54) instead of γ i, j+1 in order to achieve second-order accuracy. Some care is

required here in order to avoid non-physical overshoots at jumps in γ . A simple way to avoid such overshoots is
to use γ j+1 instead of γ j+1/2 when there is a jump in γ between x j and x j+1. Note that in any case we are not
attempting to achieve higher than first-order accuracy at the location of jumps in γ .

Consequently, away from the boundaries, the MUSCL scheme is formally second-order accurate in space, but
not in time. To achieve formal second-order accuracy in time also, we use second-order Runge–Kutta (RK) time
stepping. More specifically, if we write our scheme with first-order Euler time differencing and second-order spatial
differencing abstractly as

�n+1
j = �n

j − � j
(
�n

j+2,�
n
j+1,�

n
j ,�

n
j−1,�

n
j−2

)
, (58)
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then the RK version takes the following two-step form

�̃n+1
j = �n

j − � j

(
�n

j+2,�
n
j+1,�

n
j ,�

n
j−1,�

n
j−2

)
,

�n+1
j = 1

2
�n

j + 1

2
�̃n+1

j − 1

2
� j

(
�̃n+1

j+2, �̃
n+1
j+1, �̃

n+1
j , �̃n+1

j−1, �̃
n+1
j−2

)
.

(59)

This type of time discretization is formally second-order accurate in time, Strong Stability Preserving (SSP), see
[88], and does not require any additional reduction of the allowable time step. We refer to the scheme based on
the first-order flux (23) and extended to second-order in space and time accuracy by (54), (56) and (58), (59),
respectively, as Scheme 9, while the variant that uses the Van Leer limiter (57) (instead of (56)) as Scheme 10.

Theorem 3.3 Consider the scalar initial value problem with flux (21) and periodic boundary conditions. Assume
that v′(φ) ≤ 0, v(φ) ≥ 0, v(φmax) = 0, v(0) = vmax. Assume that the initial data satisfies φ0(x) ∈ [0, φmax],
T V (φ0) < ∞. Then Schemes 9 and 10 produce approximations that satisfy the maximum principle (28) and TVD
property (29) if the CFL condition (31) is satisfied and the slopes σ j satisfy

0 ≤ σ j

2
+φ j
≤ 1, 0 ≤ σ j

2
−φ j
≤ 1. (60)

Remark 3.1 The main point of the preceding theorem is that we do not have to reduce the allowable time step
when using the second-order scheme. Also, note that both the minmod limiter and the Van Leer limiter enforce the
inequalities (60).

Proof Since the RK processing does not affect the stability properties, we carry out the proof for the scheme where
only the MUSCL processing is included. Following [89], we write the scheme in incremental form

φn+1
j = φn

j + Cn
j+1/2
+φn

j − Dn
j−1/2
−φn

j ,

where

Cn
j+1/2 = −λ


+φn
j

[(

φn
j + σ n

j

2

)

v

(

φn
j+1 − σ n

j+1

2

)

−
(

φn
j + σ n

j

2

)

v

(

φn
j − σ n

j

2

)]

,

Dn
j−1/2 = λ


−φn
j

[(

φn
j + σ n

j

2

)

v

(

φn
j − σ n

j

2

)

−
(

φn
j−1 + σ n

j−1

2

)

v

(

φn
j − σ n

j

2

)]

.

A straightforward calculation gives

Cn
j+1/2 = −λ

(

φn
j + σ n

j

2

)

v′(ξn
j+1/2

)[
1 − σ n

j+1

2
+φn
j

+ σ n
j

2
+φn
j

]
, (61)

Dn
j−1/2 = λv

(

φn
j − σ n

j

2

) [
1 + σ n

j

2
−φn
j

− σ n
j−1

2
−φn
j

]
. (62)

The assumptions onφ0 implyφ0
j ∈ [0, φmax] and T V (φ0) < ∞. Assume thatφn

j ∈ [0, φmax] and T V (φn) < ∞ also
hold. Thanks to (60), the bracketed terms in (61) and (62) are nonnegative. The requirement (60) also implies that
the quantities φn

j ±σ n
j /2 are contained in the interval [0, φmax]. With these observations, it is clear that Cn

j+1/2 ≥ 0
and Dn

j−1/2 ≥ 0.
Finally, (60) implies that the bracketed terms in (61) and (62) do not exceed 2. Combining this fact with

the CFL condition (31), it is clear that Cn
j+1/2 ≤ 1/2 and Dn

j−1/2 ≤ 1/2. Thus Cn
j+1/2 + Dn

j+1/2 ≤ 1 and
Cn

j+1/2 + Dn
j−1/2 ≤ 1. Combining these inequalities with the non-negativity of Cn

j+1/2 and Dn
j+1/2 proves that

φn+1
j ∈ [0, φmax], and T V (φn+1) < ∞, and thus the proof is complete by induction on n. 
�
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4 Convergence analysis

In this section we focus on the scalar initial value problem with periodic boundary conditions:

φt + (
k(x)φV (φ/φmax)

)
x = 0, (x, t) ∈ [0, L] × (0, T ) =: 	T

φ(x, 0) = φ0(x),

φ(0, t) = φ(L , t)

(63)

with the initial datum φ0 satisfying

φ0 ∈ BV ([0, L]) ∩ L1([0, L]) ∩ L∞([0, L]), φ0(x) ∈ [0, φmax] for all x ∈ [0, L]. (64)

We assume that the coefficient k is positive, bounded, and piecewise constant:

0 < kmin ≤ k(x) ≤ kmax, ∃ξ1, . . . , ξM ∈ (0, L) : k|(ξm ,ξm+1) ≡ km . (65)

Note that the coefficient k has jumps at the points ξm .
Let f (φ) := φV (φ/φmax). We assume that V : [0, 1] �→ [0, Vmax] is C1, satisfies (41), and that

∃φ∗ ∈ (0, φmax) : f ′(φ) > 0 for φ ∈ (0, φ∗) and f ′(φ) < 0 for φ ∈ (φ∗, φmax). (66)

This last condition is satisfied if for example, V (z) = (1 − z)n , where n ≥ 1.
This is a simple scalar model of traffic flow discussed in Sect. 2.1. Relating this to (7)–(9), we obtain the scalar

velocity v(x, φ) = k(x)V (φ/φmax). The parameter k(x) is playing the role of v1
max(x); we make this change to

simplify the notation in this section. Also, we take φmax to be constant in this section. With this simplification, along
with the other assumptions stated above, the problem is a well-studied one.

Definition 4.1 (BVt entropy solution) A measurable function φ : 	T → R is a BVt entropy solution of the initial
value problem (63) if

φ ∈ L1(	T ) ∩ BVt (	T ) ∩ L∞(	T ), φ(x, t) ∈ [0, φmax] for a.e. (x, t) ∈ 	T ; (67)

the following Kružkov-type entropy inequality holds for any ψ ∈ D(	T ), ψ ≥ 0, ψ(0, t) = ψ(L , t):
∫∫

	T

(
|φ − c|∂tψ + sgn(φ − c)

(
k(x) f (φ)− k(x) f (c)

)
∂xψ

)
dt dx

+
∫ T

0

M∑

m=0

∣
∣k

(
ξ+

m

) − k
(
ξ−

m

)∣∣ f (c)ψ(ξm, t) dt ≥ 0 ∀c ∈ R;

and the initial condition is satisfied in the following strong L1 sense:

ess lim
t↓0

∫

R

∣
∣φ(x, t)− φ0(x)

∣
∣ dx = 0. (68)

Due to our assumptions on the flux f and the coefficient k, there is a well-developed uniqueness and existence
theory for the problem (63). In particular, by combining the results of [66] and [67], we have

Theorem 4.1 Problem (63) with assumptions (64)–(66) has a unique BVt entropy solution in the sense of
Definition 4.1.

To construct approximate solutions to the initial value problem (63) we discretize 	T as in Sect. 3.1, and use
the marching formula

φn+1
j = φn

j − λ
(
hn

j+1/2 − hn
j−1/2

)
, hn

j+1/2 := k j+1φ
n
j V (φn

j+1/φmax). (69)

Here the flux hn
j+1/2 is defined by (33) (Scheme 3), as applied to the assumptions of this section.
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To simplify the analysis, we choose a uniform time step 
tn = 
t such that the CFL condition

λkmaxVmax ≤ α, λkmax|V ′|max ≤ α, α = 1/2 (70)

is satisfied. This is the version of (42) that applies to the present situation. We extend the grid function φn
j so that

it is defined on all of 	T via

φ
(x, t) =
N∑

n=0

J∑

j=0

φn
j χ j (x)χn(t),

where χ j (x) is the characteristic function for the spatial interval [x j −
x/2, x j +
x/2) and χn(t) is the charac-
teristic function for the temporal interval [tn, tn +
t).

Lemma 4.1 Scheme 3 is monotone in the sense that if {φn
j } and {ψn

j } are two approximate solutions lying in the
interval [0, φmax] such that φn

j ≤ ψn
j for all j ∈ J , then φn+1

j ≤ ψn+1
j for all j ∈ J . Furthermore, if the initial data

φ0(x) lies in the interval [0, φmax] for all x ∈ [0, L], then the computed approximation also satisfies φn
j ∈ [0, φmax]

for all n ≥ 0 and all j ∈ J . In addition, we have the discrete time continuity estimate

J∑

j=0

∣∣φn+1
j − φn

j

∣∣ ≤ C, n = 0, 1, . . . ,N , (71)

where the constant C is independent of the mesh size 
 and the time level n.

Proof Substituting the formula for the numerical flux in the marching formula (69) and then taking partial derivatives
yields

∂φn+1
j

∂φn
j+1

= −λk j+1φ
n
j

φmax
V ′

(
φn

j+1

φmax

)

,
∂φn+1

j

∂φn
j−1

= λk j V (φn
j /φmax),

∂φn+1
j

∂φn
j

= 1 − λk j+1V

(
φn

j+1

φmax

)

+ λk jφ
n
j−1

φmax
V ′

(
φn

j

φmax

)

.

That the first two partial derivatives are non-negative is obvious. The third one is non-negative thanks to the CFL
condition. The first assertion is now an immediate consequence of the non-negativity of these partial derivatives.
For the second assertion, note that if we apply the scheme to the constant data p0

j ≡ 0 and q0
j ≡ φmax, the result

is p1
j ≡ 0 and q1

j ≡ φmax. Since 0 = p0
j ≤ φ0

j ≤ q0
j ≤ φmax, we will have 0 = p1

j ≤ φ1
j ≤ q1

j ≤ φmax; this
follows from the monotonicity. Continuing this way by induction completes the proof of the second assertion. The
third assertion (71) is basically a consequence of the Crandall–Tartar lemma [84], along with the boundedness of
the variation of the initial data. The proof is very similar to that of [66, Lemma 3.3], so we omit the details. 
�

In order to establish compactness, we a need a spatial variation bound, which is provided by the following lemma.
Let V b

a (z) denote the total variation of the function x �→ z(x) over the interval [a, b].
Lemma 4.2 For any interval [a, b] such that {ξ1, . . . , ξM } ∩ [a, b] = ∅, and any t ∈ [0, T ] we have a spatial
variation bound of the form V b

a (φ

(·, t)) ≤ C(a, b), where C(a, b) is independent of 
 and t for t ∈ [0, T ].

Proof Due to our time continuity estimate (71), there is a constant K such that


x
J∑

j=0

N∑

n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K . (72)

Since {ξ1, . . . , ξM } ∩ [a, b] = ∅, we can assume that there is an index m such that ξm < a < b < ξm+1. Fix r > 0
satisfying 2r < min{dist (ξm, [a, b]) , dist (ξm+1, [a, b])}, and without loss of generality, assume that r > 
x for
all mesh sizes 
x of interest. Let

A := A(
) := { j |x j ∈ [a − r −
x, a]}, B := B(
) := { j |x j ∈ [b, b + r +
x]},
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and observe that |A|
x ≥ r , |B|
x ≥ r . It is then clear from (72) that


x
∑

j∈A

N∑

n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K , 
x
∑

j∈B

N∑

n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K . (73)

We can choose ja = ja(
), jb = jb(
) with ja ∈ A, jb + 1 ∈ B such that

N∑

n=0

∣∣φn+1
ja

− φn
ja

∣∣ = min
j∈A

N∑

n=0

∣∣φn+1
j − φn

j

∣∣,
N∑

n=0

∣∣φn+1
jb+1 − φn

jb+1

∣∣ = min
j∈B

N∑

n=0

∣∣φn+1
j − φn

j

∣∣.

It follows from (73) that

N∑

n=0

∣
∣φn+1

ja
− φn

ja

∣
∣ ≤ K

|A|
x
≤ K

r
,

N∑

n=0

∣
∣φn+1

jb+1 − φn
jb+1

∣
∣ ≤ K

|B|
x
≤ K

r
. (74)

Due to the way that we selected ja and jb, for ja ≤ j ≤ jb we can write the scheme as

φn+1
j = φn

j − kmλ
− f̄ (φn
j+1, φ

n
j ), f̄ (φn

j+1, φ
n
j ) := φn

j V (φn
j+1/φmax). (75)

The formula (75) can also be written in incremental form

φn+1
j = φn

j + Cn
j+1/2
+φn

j − Dn
j−1/2
−φn

j , (76)

where

Cn
j+1/2 = λkm

f (φn
j )− f̄ (φn

j+1, φ
n
j )


+φn
j

, Dn
j−1/2 = λkm

f (φn
j )− f̄ (φn

j , φ
n
j−1)


−φn
j

.

Using the definitions of f and f̄ , and invoking the CFL condition (70), it is easy to check that

Cn
j+1/2 ≥ 0, Dn

j+1/2 ≥ 0, Cn
j+1/2 + Dn

j+1/2 ≤ 1. (77)

The incremental form (76) implies that the differences evolve according to


+φn+1
j = 
+φn

j + Cn
j+3/2
+φn

j+1 − Cn
j+1/2
+φn

j − Dn
j+1/2
+φn

j + Dn
j−1/2
−φn

j . (78)

Note that when j = ja , we can write (78) as


+φn+1
ja

= 
+φn
ja + Cn

ja+3/2
+φn
ja+1 − Dn

ja+1/2
+φn
ja −

(
φn+1

ja
− φn

ja

)
. (79)

Similarly, when j = jb, (78) takes the form


+φn+1
jb

= 
+φn
jb − Cn

jb+1/2
+φn
jb + Dn

jb−1/2
−φn
jb +

(
φn+1

jb+1 − φn
jb+1

)
. (80)

Taking absolute values and summing over j in (78), we use the properties (77) to proceed as in the proof of Har-
ten’s lemma (Lemma 2.2 of [85]). To deal with the boundary contributions, we use (79) and (80). This calculation
yields

jb∑

j= ja

∣∣
+φn+1
j

∣∣ ≤ (
1 − Dn

ja+1/2

)∣∣
+φn
ja

∣∣ + Cn
ja+3/2

∣∣
+φn
ja+1

∣∣ + ∣∣φn+1
ja

− φn
ja

∣∣

+
jb−1∑

j= ja+1

(
1 − Cn

j+1/2 − Dn
j+1/2

)∣∣
+φn
j

∣
∣ +

jb−1∑

j= ja+1

Cn
j+3/2

∣
∣
+φn

j+1

∣
∣

+
jb−1∑

j= ja+1

Dn
j−1/2

∣
∣
−φn

j

∣
∣ + (

1 − C jb+1/2
) ∣
∣
+φn

jb

∣
∣ + Dn

jb−1/2

∣
∣
−φn

jb

∣
∣ + ∣

∣φn+1
ja

− φn
ja

∣
∣

≤
jb∑

j= ja

∣
∣
+φn

j

∣
∣ + ∣

∣φn+1
ja

− φn
ja

∣
∣ + ∣

∣φn+1
jb+1 − φn

jb+1

∣
∣.
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Proceeding by induction, and then using (74), we find that for 1 ≤ n ≤ N
jb∑

j= ja

∣∣
+φn
j

∣∣ ≤
jb∑

j= ja

∣∣
+φ0
j

∣∣ +
n∑

ν=1

(∣∣φνja − φν−1
ja

∣∣ + ∣∣φνjb+1 − φν−1
jb+1

∣∣
)

≤
jb∑

j= ja

∣∣
+φ0
j

∣∣ + 2K

r
. (81)

The proof is completed with the observation that [a, b] ⊆ [x ja , x jb+1 ], along with the assumption that u0 has
bounded variation. 
�
Remark 4.1 Note that the spatial-variation bound provided by Lemma 4.2 is only local and due to the term 2K/r
appearing in (81), it blows up if the distance from one of the endpoints of the interval [a, b] to one of the jump
points ξm or ξm+1 approaches zero. This is consistent with the fact that there is currently no known global spatial
variation bound for conservation laws of this type (i.e., with a discontinuous coefficient). This has made it necessary
to use alternative approaches to prove compactness, including the singular mapping approach, and the compensated
compactness approach. The local variation bound established above provides one more analytical tool for such
problems.

We state the following lemma without proof; it follows from the monotonicity property (Lemma 4.1), and is
based on a discrete entropy inequality due to Crandall and Majda [84] which was later adapted to the situation
where there are discontinuous coefficients; see [66] or [67].

Lemma 4.3 For any c ∈ R, the following cell entropy inequality is satisfied by approximate solutions φn
j generated

by the scheme (69) (Scheme 3):
∣∣φn+1

j − c
∣∣ ≤ ∣∣φn

j − c
∣∣ − λ
−Hn

j+1/2 + λ|k j+1 − k j | f (c),

where the numerical entropy flux Hn
j+1/2 is defined by

Hn
j+1/2 = k j+1 f̄

(
φn

j+1 ∨ c, φn
j ∨ c

)
− k j+1 f̄

(
φn

j+1 ∧ c, φn
j ∧ c

)
,

and f̄ is defined in (75).

Theorem 4.2 Let the function φ
 be defined by (69) (Scheme 3). Assume that 
 := (
x,
t) → 0 with the ratio
λ fixed and satisfying the CFL condition (70). Then φ
 → φ boundedly a.e. and in L1(	T ), where φ is the unique
BVt entropy solution to the initial-value problem (63) in the sense of Definition 4.1.

Proof For our approximate solutions φ
, Lemma 4.1 gives us an L∞ bound and a time continuity bound. Since
our spatial domain [0, L] is compact, a uniform L1 bound follows immediately from our L∞ bound. We also have
a bound on the spatial variation in any interval [a, b] not containing any of the points ξ1, . . . , ξM .

By standard compactness results, for any set S of the form

S =
P⋃

p=1

[ap, bp], S ∩ {ξ1, . . . , ξM } = ∅, (82)

there is a subsequence (which we do not bother to relabel) such that φ
 converges in L1(S × [0, T ]). Taking a
countable sequence of intervals Sν satisfying (82) and

∞⋃

ν=1

Sν = [0, L] \ {ξ1, . . . , ξM },

and employing a standard diagonal process we can extract a subsequence (which we again do not relabel) such
that φ
 converges in L1(	T ) and also a.e. in 	T to some φ ∈ L1(	T ) ∩ L∞(	T ). That the limit φ is also in
BVt (	T ) is a consequence of the time continuity estimate (71). We have verified that the limit φ satisfies (67) of
Definition 4.1.
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That the limit φ satisfies the entropy inequality is a consequence of a Lax–Wendroff type calculation, which we
omit since it is similar to the proof Lemma 4.1 of [66], see also the proof of of Theorem 3.1 of [16]. A proof of
(68), i.e., that the initial values are assumed in the strong L1 sense, can be found in [67], specifically, the proofs of
Theorem 5.1 and Lemma B.1.

Finally, by the uniqueness portion of Theorem 4.1, the entire computed sequence φ
 (not just a subsequence)
converges to φ in L1(	T ) and boundedly a.e. in 	T . 
�

5 Numerical examples

5.1 Example 1: scalar equation without spatially varying parameters

To study the scalar scheme in the simplest possible setting, we apply Scheme 1 and the Lax–Friedrichs (LxF) flux

hLxF
j+1/2 := 1

2

(
φ j+1v j+1 + φ jv j

) − q

2λ
(φ j+1 − φ j ) (83)

to the initial value problem

φt + (
φ(1 − φ)ν

)
x = 0, φ0(x) =

{
0.85 if |x | > 1,

0.1 if |x | < 1.
(84)

For the parameter q appearing in (83), we take q = 1/2 because this ensures that the resulting scheme satisfies
the maximum principle (28) and TVD property (29). Plots (a) and (b) of Fig. 1 show that for ν = 1, both schemes
give similar results. Plots (c) and (d) illustrate that for ν = 5, the schemes based on (23) (both first-order and
second-order versions, Schemes 1 and 10) give better resolution than the schemes based on the LxF flux. The solid
line in all plots of Fig. 1 is a reference solution, computed using Scheme 10, and the discretization parameters
reduced by a factor of 8.

5.2 Example 2: scalar equation with spatially varying coefficients

We next apply the variant of Scheme 1 that applies to conservation laws with discontinuous flux, namely Scheme 3,
and Scheme 10 to scalar conservation laws with discontinuous flux of the form (7). The equation considered is

φt + (
vmax(x)φ(1 − φ/φmax(x))

)
x = 0.

In Figs. 2a, b we use

φmax = 1, φ0(x) =
{

0.8 for x < 0,

0.1 for x > 0,
, vmax(x) =

{
1.0 for x < 0,

0.5 for x > 0.
(85)

In Figs. 2c, d we set

φmax(x) =
{

1.0 for x < 0,

0.5 for x > 0,
φ0(x) =

{
0.3 for x < 0,

0.7 for x > 0,
, vmax = 1. (86)

The solid line visible in all plots is a reference solution, computed using Scheme 10, and the discretization parameters
reduced by a factor of 16.

In each case, the new scheme (Scheme 3 or 10) gives better resolution than the corresponding scheme based on
the LxF flux. Note that there is some overshoot visible in plots (a) and (b). This overshoot originates at the location
of the jump in vmax, and then propagates as a travelling wave (a bump). As the mesh size approaches zero, the
magnitude and width of the bump approaches zero. Clearly, this non-physical feature is more pronounced for the
LxF scheme.
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Fig. 1 Example 1 (scalar case, problem (84)): Scheme 1 (×) (a, c), Scheme 10 (×) (b, d) and LxF flux (·). Plot (a): first-order schemes,
ν = 1. Plot (b): second-order schemes, ν = 1. Plot (c): first-order schemes, ν = 5. Plot (d): second-order schemes, ν = 5. The solid
line is the reference solution

5.3 Example 3: Clarifier–thickener model

We now adapt our scheme to the clarifier–thickener model with constant cross-sectional area studied in [16],
specifically Example 2 of that paper. In this case the conservation law is of the form

φt + (
φ[a(x)S(φ)+ c(x)] + b(x)

)
x = 0, x ∈ R, t > 0, (87)

where S(φ) = φ∞(1 − φ)2 and

a(x) =
{

1 for x ∈ (−1, 1),

0 for x /∈ (−1, 1),
b(x) =

{
−qLφF for x < 0,

−qRφF for x > 0,
c(x) =

{
qL for x < 0,

qR for x > 0.

Except for the term b(x) which we discretize separately, this problem fits into the framework of (16) with N = 1,
and the velocity v(φ, x) = a(x)S(φ)+ c(x), which may assume either sign. Consequently, and following (24), the
appropriate first-order scheme is Scheme 2, whose numerical flux is defined by

h j+1/2 = φ j max{0, v j+1} + φ j+1 min{0, v j+1} + b j+1, v j := a jS(φ j )+ c j . (88)

Note that we use b j+1, as opposed to b j (or some average of the two values) for the first-order version of the scheme.
Indeed, this biased discretization of the parameter b can be motivated by the requirement that if S ≡ 0, then φ ≡ φF

should be a stationary solution of (87).
For the second-order version of the scheme, we discretize γ (x) := (a(x), c(x)) as in (55), and and continue to

use b j+1 in (88); this discretization of b(x) preserves the steady solution φ ≡ φF if S ≡ 0. We use the Van Leer
limiter (57), so the scheme in question is Scheme 10.

For our experiments, we used the same parameters as for Example 2 of [16], namely qL = −1, qR = 0.6,
φF = 0.8 and φ∞ = 27/4. For discretization parameters, we used 
x = 5 × 10−3, 
t = 3.125 × 10−4, implying
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Fig. 2 Example 2 (scalar case with discontinuous flux; see (84)): Scheme 3 (×) (a, c), Scheme 10 (×) (b, d) and LxF flux (·). Plot (a):
coefficients (85), first-order schemes. Plot (b): coefficients (85), second-order schemes. Plot (c): coefficients (86), first-order schemes.
Plot (d): coefficients (86), second-order schemes. The solid line is the reference solution
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Fig. 3 Example 3 (clarifier-thickener model (87)): (first-order) Scheme 2 (dashed line) and second-order Scheme 10 (solid line). Plot
(a) shows t = 1, plot (b) shows t = 3

λ = 1/16; this value of λ was chosen to agree with Example 2 of [16]. We started with initial data φ0 ≡ 0. Plot (a)
of Fig. 3 shows the solution at t = 1, and plot (b) shows the solution at t = 3. These approximations are in good
agreement with the solutions obtained in Example 2 of [16]. Scheme 2 provides a somewhat less accurate solution
than the one provided by the Engquist–Osher scheme proposed in [16]. However, Scheme 2 is much easier to code,
and at least with our implementation, runs significantly faster.
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Fig. 4 Example 4 (traffic model, N = 9): simulated total car density. Plots (a, c): first-order schemes (LxF and Scheme 4). Plots (b,
d): second-order schemes (LxF MM/RK and Scheme 9). Plots (a, b) show t = 0.01 h, and plots (c, d) show t = 0.03 h

5.4 Example 4: multi-species traffic model

Zhang et al. [4] present numerical simulations of a traffic flow model with N = 9 species (classes) of vehicles
with the maximum velocities vi

max = (52.5 + i · 7.5) km/h, i = 1, . . . , 9. We consider here Case 2 simulated
in [4], where the function V (φ) = exp(−(φ/φ∗)2/2) with the parameter φ∗ = 50 cars/km is used. This case,
which forms our Example 4, consists of the evolution of an isolated initial traffic “platoon” given by �0(x) =
p(x)0.04φ0(1, 2, 3, 4, 5, 4, 3, 2, 1)T, where

p(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

10x for 0 < x ≤ 0.1,

1 for 0.1 < x ≤ 0.9,

−10(x − 1) for 0.9 < x ≤ 1,

0 otherwise

is the platoon “shape function”, where x denotes distance measured in kilometers and φ0 = 120 cars/km. We here
use this example to compare the performance of Scheme 4, which is the first-order version of the scheme that applies
to systems with non-negative velocities only, with the standard first-order LxF scheme; and that of Scheme 9, which
is the second-order version of Scheme 4 generated by spatial MUSCL extrapolation in combination with a second-
order RK type discretization, with that of a second-order version of the LxF scheme generated by the analogous
MUSCL/RK “upgrades”. The reference solution was calculated using Scheme 9 with the discretization parameters

x = 1/480 km. The reference solution and all numerical solutions of this example have been calculated with
λ = 1/240 h/km.
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Fig. 5 Example 4 (traffic model, N = 9): approximate L1 errors (a, c) e1 and (b, d) e2, measured at (a, b) t = 0.01 h and (c, d)
t = 0.03 h

In Examples 4 and 6, we record an approximate L1 error defined with respect to the reference solution, to evaluate
the performance of some of the new schemes. We introduce two types of L1 error, denoted e1 and e2, which are
defined by

e1 := 
̃x
MR∑

i=ML

m∑

j=1

N∑

k=1

∣∣φ̃n
k,m(i−1)+ j − φn

k,i

∣∣, e2 := 
̃x
MR∑

i=ML

m∑

j=1

∣
∣∣∣∣

N∑

k=1

(
φ̃n

k,m(i−1)+ j − φn
k,i

)
∣
∣∣∣∣
,

where φ̃n
k,l̃

and φn
k,l are the reference solution at x = xl̃ and the approximate solution at x = xl , respectively, both

for species k at t = tn ; m is the value of 
x of the approximate solution divided by that of the reference solution;
ML and MR are the indices of the positions between which we calculate the errors of the numerical approximation;
and 
̃x is the spatial discretization parameter of the reference solution.

For Example 4, Fig. 4 shows the simulated total car density at two times produced by the LxF scheme, Scheme 4,
the second-order version of the LxF scheme using the minmod limiter, and Scheme 9, while Fig. 5 displays the
approximate L1 errors for this example, measured over the interval [−1 km, 6 km]. Both Figs. 4 and 5 indicate the
superiority of Scheme 4 over the LxF scheme, and of Scheme 9 over the second-order MM/RK upgrade of the LxF
scheme, respectively.

5.5 Example 5: multiclass traffic model with spatially varying φmax

As an example where the flux has a spatially varying parameter, we also present two simulations (Examples 5.1
and 5.2) that can be compared with numerical results by Zhang et al. [6]. The model is the multi-class traffic model
of Sect. 2.1, whose flux is given by (9). Both examples are Riemann problems, and N = 3. The (normalized [6])
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Fig. 6 Examples 5.1 (a, b) and 5.2 (c, d) (traffic model with spatially varying φmax, N = 3): plots (a, c) show φ1/φmax (solid line),
φ2/φmax (dashed line), φ3/φmax (dash-dotted line). Plots (b, d) show (φ1 + φ2 + φ3)/φmax. Solutions are obtained by Scheme 9

maximum velocities are constant: v1
max = 0.50, v2

max = 0.75 and v3
max = 1.00. We use the second-order scheme

of Section 3.5 with the minmod limiter (56) (Scheme 9). The mesh size for both problems is 
x = 6.25 × 10−4,

t = 1.25 × 10−4. We march the solution forward in time for 8000 steps, arriving at t = 1. The initial data �0

and maximum density φmax are constant except for a jump at x0 ∈ (0, 1),

φmax(x) =
{

3 for x < x0,

1 for x > x0,
, �0(x) =

{
�0

L for x < x0,

�0
R for x > x0.

For Examples 5.1 and 5.2, we choose x0 = 0.5, �0
L = (0.6, 0.3, 0.9)T and �0

R = (0.1, 0.0, 0.5)T, and x0 = 0.3,
�0

L = (0.6, 0.45, 0.15)T and �0
R = (0.05, 0.15, 0.2)T, respectively. As shown in Fig. 6, for both problems, the

various waves are well resolved, and there is good agreement with the results obtained by Zhang et al. in [6] (see
Figs. 4 and 7 of that paper).

5.6 Example 6: settling of a bidisperse suspension of equal-density spheres

In this example, the parameters are N = 2, �1 = �2 = �s = 2790 kg/m3, d1 = 4.96×10−4 m, d2 = 1.25×10−4 m,
�f = 1208 kg/m3 and µf = 0.02416 Pa s. Here, we have δ1 = 1 and δ2 = d2

2/d
2
1 = 0.06351213. For this mixture,

we select the phase space D0.68 [53] and the function V (φ) given by (11) with the exponent n = 4.7; all these param-
eters correspond to experimental data by Schneider et al. [23]. As in [23], we consider an initially homogeneous
suspension with �0 = (φ0

1 , φ
0
2)

T = (0.2, 0.05) in a vessel of height L = 0.3 m.
The reference solution was calculated using the Scheme 10 with the discretization parameter
x = 1/8, 000 m.

For the reference solution and all other computations of this example, we use λ = 56.95 s/m. For Example 6, Fig. 7
shows the numerical solution of the total solids concentration for t = 60 s and t = 240 s, produced by the first-order
LxF scheme, Schemes 6 and 8, the second-order version of the LxF scheme involving the Van Leer limiter function,
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Fig. 7 Example 6 (settling of a suspension of equal-density spheres, N = 2): simulated total solids concentration. Plots (a, c): first-order
schemes (LxF, Schemes 6 and 8). Plots (b, d): second-order schemes (LxF VL/RK, Scheme 8 VL/RK and Scheme 9). Plots (a, b) show
solutions at t = 60 s, and plots (c, d) show solutions at t = 240 s

Scheme 8 with the Van Leer limiter function, and Scheme 10, while Fig. 8 displays the approximate L1 errors for
this example, measured over the interval [0 m, 0.3 m]. (Again, all second-order schemes utilize RK time stepping.)

It is clear from Fig. 7 that Schemes 6 and 8 and their second order versions are less dissipative than their coun-
terparts based on the LxF flux. In plots (c) and (d), there is a spurious “kink” and a small overshoot in the solution
created by Schemes 6 and 10. These artifacts are diminished by using instead the more viscous Scheme 8 and
its second-order version. In the reference solution, which is computed using a very fine mesh, these features are
not visible at all. Figure 8 corroborates what we see in the plots, specifically, smaller errors and faster rates of
convergence for Schemes 6 and 8 and their second-order versions than the LxF based schemes. It is interesting that
Scheme 6, which is formally first-order accurate, has smaller errors at t = 240 s than the formally second-order
accurate version of the LxF scheme.

5.7 Example 7: settling of a suspension with particles of 11 different sizes

To illustrate that the new method handles systems with a large number of particle species, we consider a suspension
of equal-density particles of N = 11 different sizes. The parameters and initial concentrations of these size classes
are displayed in Table 1. This size distribution was determined by Tory et al. [9] as a discrete approximation for a
suspension of closelysized spherical particles with continuously, roughly normally distributed particle sizes [90].
Following [90], we consider a settling column of height L = 0.935 m. The hindered settling factor found suitable
is (11) with n = 4.65 and φmax = 0.641. According to [90], a single sphere with diameter 6.694 × 10−5 m has
a Stokes velocity of ṽ∞ = 0.00392 m/s, so we here use (14) with v∞ = (8.769/6.694)2ṽ∞ = 0.00673 m/s. We
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Fig. 8 Example 6 (settling of a suspension of equal-density spheres, N = 2): approximate L1 errors (a, c) e1 and (b, d) e2, measured
at (a, b) t = 60 s and (c, d) t = 240 s

Table 1 Example 7:
parameters for the settling
of a
suspension with N = 11
particle sizes

i di [10−5 m] δi φ0
i

1 8.769 1.0000 0.000435

2 8.345 0.9056 0.003747

3 7.921 0.8159 0.014420

4 7.497 0.7309 0.032603

5 7.073 0.6506 0.047912

6 6.649 0.5749 0.047762

7 6.225 0.5039 0.032663

8 5.801 0.4376 0.015104

9 5.377 0.3760 0.004511

10 4.953 0.3190 0.000783

11 4.529 0.2668 0.000060

calculate the numerical solution at the times t = t1 = 247.77 s, t = t2 = 412.94 s and t3 = 578.15 s, using Scheme
10 with the discretization parameters
x = 9.13 × 10−4 m = L/1024 and
t = λ
x , where λ = 74.29 s/m. The
values of 
x and t1, t2 and t3 have been chosen such that results can be compared with the numerical solution of
the same example by the multiresolution WENO scheme done by Bürger and Kozakevicius [59].

Figures 9–11 show the numerical solutions of each species concentration and the total solids concentration for
t = 247.77 s, t = 412.94 s, and t = 578.15 s, respectively, over intervals where the solutions are different from
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Fig. 9 Example 7 (settling of a suspension with particles of N = 11 different sizes): solids concentrations at t = 247.77 s simulated
by Scheme 10

zero. By comparing these figures with Figs. 18, 19, and 20 of [59], it is clear that Scheme 10 captures the same
solution as the multiresolution scheme of that paper.

In all figures we notice that larger species settle first and fill the lower layers of the vessel. In Fig. 10 we can see
spurious tips in the solutions of the species 4–9, which do not appear in Figs. 9 and 11. There are also peaks in the
simulated total concentration in Figs. 10 and 11. It is clear that this does not have physical sense and therefore is a
numerical artefact.

5.8 Example 8: oil-in-water dispersion model: creaming of a dispersion with 10 different droplet sizes

We consider the settling of a dispersion of droplets of diesel oil in water. We utilize the droplet size distribution
with N = 10 given by Fig. 2 of Das and Biswas [91], a histogram of relative frequencies, which is converted into
the initial vector �0 in Table 2. We use here the viscosity function µd(�) = µd(φ) = µf(1 − φ/φmax)

−2, and
consider the creaming of the mixture characterized by Table 2 in three different vessels of height L = 1 m and
with the bottom located in x = 0: Vessel 1 (Example 8.1), a settling column of unit cross-sectional area, Vessel 2
(Example 8.2), which is defined by the cross-sectional area function

S2(x) =
{

0.0025 m2 for 0 m ≤ x ≤ 0.5 m,

0.01 m2 for 0.5 m < x ≤ 1.0 m,

and Vessel 3 (Example 8.3), which is just Vessel 2 turned “upside-down”, and is characterized by the cross-sectional
area function S3(x) := S2(1.0 m− x). Thus, in Examples 8.2 and 8.3, we have a system of conservation laws whose
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Fig. 10 Example 7 (settling of a suspension with particles of N = 11 different sizes): solids concentrations at t = 412.94 s simulated
by Scheme 10

flux depends discontinuously on x . Namely, we have the initial-value problem

S(x)∂tφi + ∂x fi (S(x),�) = 0, (x, t) ∈ (0, L)× (0, T ) =: 	T , i = 1, . . . , N ,

fi (S(x),�) = S(x)φivi (�), �(x, 0) = �0(x), x ∈ (0, L),

which is supplemented by the zero-flux boundary conditions fi (S(0),�) = fi (S(L),�) = 0 for i = 1, . . . , N ,
where the cross-sectional area function S equals S2 and S3 for Vessels 2 and 3, respectively.

For Examples 8.2 and 8.3, in the numerical scheme we multiply λ by 1/S j with S j = S(x+
j ), and in the CFL

conditions (46), multiply the Courant number α by Smin/Smax, where Smin and Smax denote the minimum and the
maximum cross-sectional areas of the vessel, respectively.

For Example 8.1, we present the solution at three different times plus a plot of the cumulate density φ, while for
Examples 8.2 and 8.3 we consider plots of φ only. In Example 8.1, we compare the performances of Schemes 4
and 9, while in Examples 8.2 and 8.3, we use Scheme 9 only. We set 
x = 1/512 m in all cases, λ = 738.9 s/m
for Example 8.1, and λ = 184.725 s/m for Examples 8.2 and 8.3.

Figure 12 shows the simulated total oil concentration φ of Example 8.1 for t = 1, 000 s, t = 10, 000 s, and
t = 150, 000 s, with a zoom into a zone where the solution exhibits strong variation. In Figs. 13–15 we show the
numerical solutions of the concentration of each species and the total oil concentration of the Example 8.1 for
t = 1, 000 s, t = 10, 000 s, and t = 150, 000 s, respectively, over intervals where the solutions are different from
zero. Clearly, the larger species settle first and fill the upper layers of the vessel.

Figures 16a, c and e show the numerical solutions of the total oil concentration of Example 8.2 (creaming of a
oil-in-water dispersion with 10 different droplet sizes in Vessel 2) at three different times, with a zoom in a zone
with many changes in the solution, while Fig. 16b, d and f display the corresponding results of Example 8.3.
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Fig. 11 Example 7 (settling of a suspension with particles of N = 11 different sizes): solids concentrations at t = 578.15 s simulated
by Scheme 10

Table 2 Example 8:
Droplet sizes and initial
volume fractions for a
dispersion of diesel oil in
water according to [91]

i Di [10−6 m] Vi [10−18 m3] θi φ0
i /φ

0 φ0
i

1 5 65.4 0.019 6.654×10−5 3.327×10−6

2 10 523.6 0.050 1.401×10−3 7.004×10−5

3 15 1767.1 0.047 4.444×10−3 2.222×10−4

4 20 4188.8 0.081 1.815×10−2 9.077×10−4

5 25 8181.2 0.148 6.479×10−2 3.239×10−3

6 30 14137.2 0.207 1.566×10−1 7.829×10−3

7 35 22449.3 0.202 2.426×10−1 1.213×10−2

8 40 33510.3 0.169 3.030×10−1 1.515×10−2

9 45 47712.9 0.064 1.634×10−1 8.169×10−3

10 50 65449.8 0.013 4.553×10−2 2.276×10−3

We notice the effect of the geometry of Vessels 2 and 3 on the concentration profile. In the case of Vessel 2, for
t = 1, 000 s, the expansion of the area produces an instantaneous decrease of the total concentration at x = 0.5 m.
In the case of Vessel 3, for t = 1, 000 s, due to the contraction of the area, the total concentration increases instan-
taneously just below x = 0.5 m, decreases strongly in x = 0.5 m, and then decreases smoothly. Moreover, near
steady state, for example at t = 150, 000 s, the thickness of the sediment in Vessel 2 is smaller than that in Vessel 3.
We see that in general that there is some oscillation in the solution using Scheme 9 at the location of a large jump in
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Fig. 12 Example 8.1 (creaming of a oil-in-water dispersion with N = 10 droplet sizes in Vessel 1): simulated total oil concentration
with Schemes 4 and 9: (a, b) at t = 1000 s, (c, d) at t = 10, 000 s, and (e, f) at t = 150, 000 s

φ; this does not seem to be present with the first order version of the scheme (Scheme 4). This is left as a problem
for future investigation.

6 Conclusions

In this paper, we have presented a family of working numerical schemes for kinematic flows with discontinu-
ous flux. The basic design principle of the schemes, and the analysis of some of them, is based on the explicit
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Fig. 13 Example 8.1 (creaming of an oil-in-water dispersion with N = 10 droplet sizes in Vessel 1): concentrations at t = 1, 000 s
simulated by Scheme 9

Fig. 14 Example 8.1 (creaming of a oil-in-water dispersion with N = 10 droplet sizes in Vessel 1): concentrations at t = 10, 000 s
simulated by Scheme 9
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Fig. 15 Example 8.1 (creaming of a oil-in-water dispersion with N = 10 droplet sizes in Vessel 1): concentrations at t = 150, 000 s
simulated by Scheme 9

“concentration times velocity” structure of the flux of each species. Our Example 1 shows that the simple Scheme 1
exhibits noticeably smaller numerical viscosity than the LxF scheme, but has the same monotonicity property as
the LxF scheme. This property is crucial for the convergence analysis for Scheme 3 conducted in Sect. 4. The
marching formula (17) combined with the numerical flux of Scheme 1, (23), also forms the core of a discrete traffic
model proposed by Hilliges and Weidlich [92] (see also [45]). Interestingly, they do not view their discrete model
as a method to approximate solutions of a first-order conservation law, and therefore do not discuss, for example,
whether the scheme satisfies a discrete entropy condition; rather, they focus on the second-order, diffusive modified
equation associated with a semi-discrete version of their model, and show by a linear stability analysis that the
model is always stable. Consequently, our analysis complements that of [92].

The kinematic models studied herein are algebraically very similar, but belong to two groups, one formed by
the traffic and the oil-in-water dispersion model, for which all velocities are nonnegative, and another including
the polydisperse sedimentation model, which for N ≥ 2 includes velocities of either sign. It has been shown that
although the basic scheme, Scheme 1, can be adapted to accomodate multi-species models of both groups (Schemes
4–8), only in the case of non-negative velocities it is possible to establish an invariant region principle (Theorems 3.1
and 3.2). This principle represents a very desirable property in multiphase and traffic flow modeling. It is not clear
whether this principle can also be possibly established for the polydisperse sedimentation model. Furthermore, our
Example 8.1, for instance (see Fig. 12), illustrates that for N ≥ 2 our second-order schemes do not seem to obey an
invariance principle. The oscillatory numerical behaviour visible in Fig. 12d and f (and others) is, however, more
distracting than it questions the principal soundness of the second-order upgrade, since our Figs. 5 and 8 illustrate
that all second-order schemes converge with consistently smaller errors in the L1 sense, and at slightly better rates
than their first-order versions, even in the systems case that is not backed up by a convergence analysis.
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Fig. 16 Examples 8.2 and 8.3 (creaming of a oil-in-water dispersion with N = 10 droplet sizes in Vessels 2 (a, c, e) and 3 (b, d, f)):
total oil concentration simulated by Scheme 9 at (a, b) t = 1, 000 s, (c, d) t = 10, 000 s and (e, f) t = 150, 000 s

Let us now comment on a few aspects of our treatment that are more related to the discontinuity of the numerical
flux. Of course, the formulation of Scheme 3, for example, and the first part of the analysis of Sect. 4 are strongly
based on the authors’ previous works on conservation laws with discontinuous flux; see, for example [16,66,67].
However, the local variation bound established in Lemma 4.2 is genuinely new. To put this result in the proper
perspective, we mention that the local variation bound is one more analytical tool that can be used for establishing
compactness of conservation laws with discontinuous coefficients. The main technical challenge in establishing
convergence of an approximating sequence for such problems is somehow controlling the spatial variation. Up until
now this has been done either via the singular mapping approach [16,61,70], or by compensated compactness (using
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weak L2 bounds on the spatial derivatives) [68]. The singular mapping approach quickly becomes unwieldy in the
absence of convexity. The compensated compactness approach is probably the most powerful in that it is applicable
even for coefficients that are discontinuous both space and time, but has the drawback that the flux is required to
be genuinely non-linear. The local variation bound developed here only applies to spatial discontinuities, but does
not become any more complicated if the flux is non-convex, and does not require any assumptions about genuine
non-linearity.

Finally, the reader may have noted that our definition (40) and the invariance principle for Scheme 5, Theorem 3.1,
explicitly include the case of a spatially (possibly discontinuously) varying maximum density φmax = φmax(x), and
that this case also appears in Examples 2 and 5 of Sect. 5, but that the convergence analysis of Sect. 4 is limited
to the case of constant φmax. As we state in Sect. 4, this simplification is made so that problem (63) reduces to the
well-studied case of an initial-value problem for a conservation law with a multiplicative discontinuous coefficient
(in this case, k(x)). Meanwhile, in another paper [93] we have made further advances in analyzing the problem
(63), where we consider k(x) constant, but allow φmax(x) to vary discontinuously, and prove uniqueness of properly
defined entropy solutions and convergence of a slightly modified version of Scheme 3, as well as of variants of the
Godunov and Engquist–Osher schemes. The solution concept adopted in [93] is a novel one, which is based on the
concept of so-called adapted entropies [94].
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